# LeArn 

## Thermodynamics

## Workbook




## Introduction to Engineering Thermodynamics

## 4th Edition 2014

By
William B. Baratuci
B - Cubed

| Editor | William Baratuci |
| :--- | :--- |
| Cover Illustration | Ariana Pinto and William Baratuci |
| Layout | William Baratuci |
| Illustrations | William Baratuci |
|  | Jennifer Kilwien |
|  | Kory Mills |

Copyright © 2014 by B-Cubed. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying recording, scanning or otherwise except as permitted under Sections 107 or 108 of the United States Copyright Act, without the prior written permission of B-Cubed. Requests for permission should be emailed to Dr.B@LearnThermo.com. To order books or for customer service, send email to Dr.B@LearnThermo.com.

Printed in the United States of America

1098765432

## Foreword

This Workbook is an integral part of the LearnThermo learning package for the Introduction to Thermodynamics Course. This Workbook is intended to provide five benefits to the student of thermodynamics.

1- The Workbook provides an off-line reference for the LearnThermo website.
2- It provides a structured environment for taking notes both in class and while interacting with the LearnThermo website.
3- It provides all of the thermodynamic data to solve the homework problems, test problems and many real-world problems.
4- The Workbook contains brief summaries of the chapters that make up the LearnThermo website. These include all of the key equations and concepts from each of the chapters.
5- The Workbook also contains the 151 example problems from the LearnThermo website. These problems are worked out in great detail and the solutions follow the problem solving procedure developed on the LearnThermo website.

LearnThermo.com is an interactive website designed to help students learn thermodynamics without excessive reading. Learning still takes time and effort, but the mini-lecture format of each screen in the LearnThermo website allows students to see and read equations and graphs as well as to hear an explanation of their meaning, use and function.

## How to Use This Workbook

Although the LearnThermo website is the centerpiece of this learning package, the key to success is the effective combination of this Workbook with the LearnThermo website. This Workbook is filled with hyperlinks to specific pages on the LearnThermo website. The header and footer on almost every page are linked to the website. Almost every image in the chapters of the Workbook is linked to the related information on the website. Some of the links in Chapter 1 are highlighted to help you learn to use the links.

A good strategy is to take notes while studying the LearnThermo website. It might be best to take those notes in this Workbook using the highlighting and sticky-note capabilities of Acrobat Reader 11 (or newer). Then, you can bring this Workbook to class. You can ask questions in class based on the notes derived from the LearnThermo website and supplement your notes with information from the lecture. This process of repeated exposure to the material, linked by this Workbook, helps many students learn thermodynamics faster, more easily and more thoroughly. I hope it works well for you.

Learning thermodynamics is challenging. I hope that the LearnThermo learning package makes it easier. Enjoy the learning process as you might enjoy practicing and training for a sporting event.

## Table of Contents

LEARNTHERMO CHAPTER SUMMARIES
CHAPTER 1 - Introduction: Basic Concepts of Thermodynamics ..... 6
Chapter 2 - Properties of Pure Substances ..... 7
Chapter 3 - Heat Effects ..... 9
Chapter 4 - The First Law of Thermodynamics - Closed Systems ..... 10
Chapter 5 - The First Law of Thermodynamics - Open Systems ..... 12
Chapter 6 - The Second Law of Thermodynamics ..... 14
ChAPTER 7 - Entropy ..... 15
Chapter 8 - Thermodynamics of Flow Processes ..... 16
Chapter 9 - Power Systems ..... 18
Chapter 10 - Refrigeration and Heat Pump Systems ..... 20
LEARNTHERMO NOTEBOOK
ChAPTER 1 - Introduction: Basic Concepts of Thermodynamics ..... 22
Chapter 2 - Properties of Pure Substances ..... 62
Chapter 3 - Heat Effects ..... 126
Chapter 4 - The First Law of Thermodynamics - Closed Systems ..... 164
Chapter 5 - The First Law of Thermodynamics - Open Systems ..... 216
Chapter 6 - The Second Law of Thermodynamics ..... 269
Chapter 7 - Entropy ..... 316
Chapter 8 - Thermodynamics of Flow Processes ..... 380
Chapter 9 - Power Systems ..... 440
Chapter 10 - Refrigeration and Heat Pump Systems ..... 488
APPENDICES - THERMODYNAMIC DATA TABLES
Appendix A - Steam tables
SI Units ..... 525
American Engineering Units ..... 534
Appendix B - Ammonia Tables
SI Units ..... 544
American Engineering Units ..... 549
Appendix C - R-134A Tables
SI Units ..... 555
American Engineering Units ..... 561
Appendix D - Ideal Gas Property Tables
SI Units ..... 567
American Engineering Units ..... 574
Appendix E- Ideal Gas, Constant Pressure Heat Capacity
Shomate Equation Constants for Common Gases ..... 581
Appendix F - Conversion Factors and the Universal Gas Constant ..... 582

## Thermodynamics

Comes from the Greek words
therme (heat) and dynamis (power).

## Classical Thermodynamics

Characterizes the behavior of large groups of molecules based on properties of the entire group of molecules, such as $\mathbf{T} \& \mathbf{P}$.

Pure Component Thermodynamics
Characterize the behavior of systems that contain a pure component.

## Phase Equilibrium Thermodynamics

Characterizes the behavior of multiple phases that exist in equilibrium with each other.

## 1st Law of Thermo

Energy can neither be created nor destroyed; it can only change forms.

## 2nd Law of Thermo

Energy in the form of heat only flows spontaneously from regions of higher $\mathbf{T}$ to regions of lower $\mathbf{T}$.

## Internal Energy

Energy associated with the structure and motion of molecules within the system.

## Potential Energy

Energy associated with the position of the system within a potential field.
$\mathbf{E}_{\mathbf{P}}=\mathbf{m} \frac{\mathbf{g}}{\mathbf{g}_{\mathbf{c}}} \mathbf{Z}$

## Kinetic Energy

Energy associated with the net linear or angular velocity of the system.
$E_{K}=\frac{1}{2} \frac{\mathrm{~m} \mathrm{v}^{2}}{g_{c}}$

## Fundamental Dimensions

Mass, Length, Time, Temperature, moles and sometimes Force.

## Derived Dimensions

Can be calculated or derived by multiplying or dividing fundamental dimensions. Examples: area, velocity, density, and volume.

## Dimensions <br> Multiplication/Division is always possible with any dimensions. Addition/Subtraction is only allowed when both quantities have the same dimensions. (If an eqn follows this rule the eqn is said to be dimensionally homogeneous.)

## Closed System

A fixed amount of mass. No mass can cross the boundary of the system.

## Open System

A fixed region of space, a device, or a collection of devices in which mass crosses the boundary during a process.

## State

The condition of a piece of matter or system as determined by its intensive properties.

## Properties

Characteristics of a substance that do not depend on the events that brought the substance to its current condition.
Examples include: $\mathbf{P}, \mathbf{T}, \mathbf{m}, \mathbf{V}, \& \mathbf{U}$.
Intensive Properties
Do not depend on the size of the system during a process. Examples include: $\mathbf{P} \& \mathbf{T}$.

## Extensive Properties

Do depend on the size of the system. Examples include: $\mathbf{m}, \mathbf{V}, \& \mathbf{U}$.

## Molar Properties

The ratio of any extensive property to the number of moles in the system. (intensive properties) Examples include: molar volume, and molar internal energy.

## Specific Properties

The ratio of any extensive property to the mass of the system. (Intensive property) Examples include: specific volume and specific internal energy.

## Process

When the value of a property of the system changes the system is in a different state.

## Process Path

The series of states that a system passes through as it moves from an initial state to a final state.

Isobaric- Constant Pressure
Isothermal- Constant Temperature
Isochoric- Constant Volume

Cycle
A process in which the initial and final states are the same.

## Thermodynamic Cycle

When 2 or more processes occur and the system returns to its initial states.

## Quasi-Equilibrium

A process during which the system only deviates from equilibrium by an infinitesimal amount.

## Equilibrium

A system is at equilibrium when no unbalanced potentials or driving forces exists within the system boundary.

## Thermal Equilibrium

No $\mathbf{T}$ driving force

## Chemical Equilibrium

No chemical driving force

## Phase Equilibrium

No mass transfer driving force
Mechanical Equilibrium
No unbalanced forces

## Pure Substance

A substance comprised of a single chemical element or compound.

## Gas Phase

Molecules move randomly with more vibrational, rotational \& translational energies than the liquid \& solid phases \& are separated by large distances, \& travel a long way between collisions.

Miscible
Multiple liquid components that completely dissolve in each other. (Ex. Water and Vinegar)


Subcooled Liquid
A liquid at a T below its b.p.
( $\mathbf{T}<\mathbf{T}_{\text {sat }}$ ) for the existing $\mathbf{P}$.

## Saturated Liquid

A liquid at exactly $\mathbf{T}_{\text {sat }}$ at which it would boil at the existing $\mathbf{P}\left(\mathbf{P}=\mathbf{P}^{*}\right)$.

## Saturated Mixture

A mixture of sat. liquid \& sat. vapor in equilibrium at $\mathbf{T}_{\text {sat }}$ and $\mathbf{P}^{*}$.

## Saturated Vapor

A vapor at exactly Tsat at which it would condense at the existing $\mathbf{P}\left(\mathbf{P}=\mathbf{P}^{*}\right)$.

## Superheated Vapor

A vapor at a $\mathbf{T}$ above its b.p. $\left(\mathbf{T}>\mathbf{T}_{\text {sat }}\right)$ for the existing $\mathbf{P}$.

## Partial Pressure

The fraction of the total $\mathbf{P}$ in a gas phase due to the presence of 1 particular substance.

| Pure Substance | $\mathbf{P}_{\mathrm{i}}=\left(\mathbf{y}_{\mathrm{i}}\right)\left(\mathbf{P}_{\text {total }}\right)$ |
| :---: | :---: |
| At equilibrium: | $\mathbf{P}_{\mathrm{i}}=\mathbf{P}_{\text {total }}=\mathbf{P}^{*}$ |
| Single Condensible | $\mathbf{P}_{\mathrm{i}}=\left(\mathbf{y}_{\mathrm{i}}\right)\left(\mathbf{P}_{\text {total }}\right)$ |
|  | $\mathbf{P}_{\mathrm{j}}=\left(\mathbf{y}_{\mathrm{j}}\right)\left(\mathbf{P}_{\text {total }}\right)$ |
|  | $y_{i}+y_{j}=1$ |
|  | $\mathrm{P}_{\mathrm{i}}+\mathrm{P}_{\mathrm{j}}=\mathrm{P}_{\text {tot }}$ |
| At equilibrium: | $\mathbf{P}=\mathbf{P}_{\mathrm{i}}=\mathbf{P}_{\mathrm{i}}(\mathbf{T})$ |

## Homogeneous Mixture

A uniform mixture that can often be treated as a pure substance.

## Liquid Phase

Molecules move randomly with more vibrational, rotational \& translational energies than the solid phase but less than the gas phase but are much closer together than in the gas phase \& cannot travel far between collisions.

## Immiscible

Multiple liquid components that do not dissolve in each other.
(Ex. Oil and Water)


Saturated Liquid Curve
The curve where only sat liq exists.

## Saturated Vapor Curve

The curve where only sat vap exists.

## Critical Point

pt where the sat. liq phase $=$ sat. vap phase

## Quality

$\mathbf{x}=\frac{\mathbf{m}_{\text {vap }}}{\mathbf{m}}=\frac{\mathbf{m}_{\text {vap }}}{\boldsymbol{m}_{\text {vap }}+\mathbf{m}_{\text {liq }}}$
$\hat{\mathbf{V}}=\hat{\mathbf{V}}_{\text {satiqq }}+\mathbf{x}\left(\hat{\mathbf{V}}_{\text {sat vap }}-\hat{\mathbf{V}}_{\text {satiqq }}\right)$

## Linear Interpolation

## Humidity

Refers to an air-water system.

## Saturation

Refers to any gas-vapor system.

## Relative Humidity/Saturation

$\mathrm{h}_{\mathrm{r}}=\mathrm{S}_{\mathrm{r}}=\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{i}}^{*}(\mathrm{~T})} \times \mathbf{1 0 0 \%}$

## Absolute Humidity/Saturation

$\mathbf{h}_{\mathbf{a}}=\mathbf{s}_{\mathbf{a}}=\frac{\mathbf{P}_{\mathbf{i}} \mathbf{M} \mathbf{w}_{\mathbf{i}}}{\mathbf{P}_{\mathbf{j}} \mathbf{M} \mathbf{w}_{\mathbf{j}}} \quad \begin{aligned} & \text { IDEAL GAS } \\ & \text { PHASE ONLY }\end{aligned}$

## Heterogeneous Mixture

A non-uniform mixture that cannot be treated as a pure substance.

## Solid Phase

Molecules move with less vibrational, rotational \& translational energies than the gas \& liquid phases \& are very close together \& cannot travel far at all before they collide.


## Vaporization or Boiling

Process where a liq changes into a vap (reverse process is condensation)

## Melting

Process where a solid changes into a liq (reverse process is freezing or fusion)

## Sublimation

Process where a solid evaporates directly into a vap without melting first. (reverse process is desublimation)

## Triple Point

pt where solid, liq \& vap can all exist in equilibrium.

$$
y_{?}=y_{1}+\left(x_{?}-x_{1}\right)\left[\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]
$$

## Evaporation

Occurs at liq-vap interface
$\mathbf{P}_{\text {total }}>\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(\mathbf{T}_{\text {liq }}\right)>\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}$

## Boiling

Occurs at solid-liq interface
$\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(\mathbf{T}_{\text {liq }}\right) \geq \mathbf{P}_{\text {total }}$
Boiling Point ( $\mathrm{T}_{\mathrm{bp}}$ )
Lowest T that a pure liq can boil at P .
$\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(\mathbf{T}_{\mathrm{bp}}\right)=\mathbf{P}_{\text {total }}$
Normal Boiling Point ( $\mathrm{T}_{\text {nbp }}$ )
Lowest T that a pure liq can boil at 1 atm .
$\mathbf{P}_{\mathrm{H}_{2} \mathrm{O}}^{*}\left(\mathrm{~T}_{\mathrm{nbp}}\right)=\mathbf{1} \mathbf{~ a t m}$

## Equations of State (EOS)

An equation that relates $\mathbf{P}, \mathbf{T} \&$ molar $\mathbf{V}$ of a substance.

## Ideal Gas EOS

Good approximation at high T
(above $\left.0^{\circ} \mathrm{C}\right) \&$ low $\mathbf{P}(1 \mathrm{~atm}$ or less).
$\mathbf{P V}=\mathbf{n R T}$
$\mathbf{P} \widetilde{\mathbf{V}}=\mathbf{R T}$

## Graphical EOS:

Compressibility Charts
$\mathbf{Z}$ accounts for the deviation from IG.
$\mathbf{P V}=\mathbf{n Z R T}$
$\mathbf{P} \widetilde{\mathbf{V}}=\mathbf{Z R T}$
$Z=\frac{P V}{n R T}$

## Universal Gas Constant

$8.3144621 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{K}$
$8.3144621 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kmol} \cdot \mathrm{K}$
$0.083144621 \mathrm{bar} \cdot \mathrm{m}^{3} / \mathrm{kmol} \cdot \mathrm{K}$
$R=82.05746 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{kmol} \cdot \mathrm{K}$
1.985884 Btu/lbmol•R
$1545.348 \mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}} / \mathrm{lbmol} \cdot \mathrm{R}$
10.73159 psia•ft $^{3}$ /lbmol•R

## Critical Properties

Properties at the critical point such as the critical T, critical $\mathbf{P}$ \& critical molar $\mathbf{V}$ (although the ideal critical molar volume is ofen used instead).
$\widetilde{\mathbf{V}}_{\mathrm{C}}^{\text {ideal }}=\mathbf{R T}_{\mathrm{C}} / \mathbf{P}_{\mathrm{C}}$

Ideal Gas at Std. Cond.
$0^{\circ} \mathrm{C}$, 1 atm : $22.415 \mathrm{~L} / \mathrm{mol}$
Ideal Gas EOS Validity
$\varepsilon=\frac{\mathbf{X}_{\text {ideal }}-\mathbf{X}_{\text {true }}}{\mathbf{X}_{\text {true }}} \times 100$
$|\varepsilon|<1 \%$ if :
$\widetilde{\mathbf{V}}=\mathbf{R T} / \mathbf{P}>\mathbf{2 0 L} / \mathbf{m o l}$ for most gases
$\widetilde{\mathrm{V}}=\mathrm{RT} / \mathrm{P}>5 \mathrm{~L} / \mathrm{mol}$
for diatomic \& noble gases

## Reduced Properties

Dimensionless properties determined from critical properties.
$P_{R}=\frac{P}{P_{C}} \quad T_{R}=\frac{T}{T_{C}}$
$\widetilde{\mathbf{V}}_{\mathbf{R}}^{\text {ideal }}=\frac{\widetilde{\mathbf{V}}}{\widetilde{\mathbf{V}}_{\mathbf{C}}^{\text {ideal }}}=\frac{\widetilde{\mathbf{V}}}{\mathbf{R T}_{\mathrm{C}} / \mathbf{P}_{\mathbf{C}}}$

## Virial EOS

Based on the IG EOS where $\mathbf{Z}$ is expanded as an infinite power series.

$$
Z=\frac{\mathbf{P} \widetilde{\mathbf{V}}}{\mathbf{R T}}=1+\frac{\mathbf{B}(\mathbf{T})}{\widetilde{\mathbf{V}}}+\frac{\mathbf{C}(\mathbf{T})}{\widetilde{\mathbf{V}}^{2}}+\ldots
$$

## Truncated Virial EOS

$Z=\frac{P \widetilde{\mathbf{V}}}{\mathbf{R T}}=1+\frac{\mathbf{B}(\mathbf{T})}{\widetilde{\mathbf{V}}}$

## Van der Waal EOS

Constant b accounts for the volume the molecules occupy.
$\mathbf{a} / \widetilde{\mathbf{V}}_{\mathbf{2}}$ accounts for attractive forces between molecules (Van der Waal's forces).

$$
\begin{aligned}
& \mathbf{P}=\frac{\mathbf{R T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}^{2}} \\
& \mathbf{a}=\frac{\mathbf{2 7} \mathbf{R}^{2} T_{\mathrm{C}}^{2}}{\mathbf{6 4} \mathbf{P}_{\mathrm{C}}}[=] \frac{\mathbf{P} \cdot \mathbf{V}^{2}}{\mathbf{m o l}^{2}} \\
& \mathbf{b}=\frac{\mathbf{R} T_{\mathrm{C}}}{\mathbf{8} \mathbf{P}_{\mathrm{C}}}[=] \frac{\mathrm{V}}{\mathrm{~mol}}
\end{aligned}
$$

| Species |  | $\underline{\omega}$ |
| :--- | :---: | :---: |
| Ammonia |  | 0.250 |
| Argon | - | 0.004 |
| Carbon Dioxide |  | 0.225 |
| Carbon Monoxide | 0.049 |  |
| Chlorine |  | 0.073 |
| Ethane | 0. | 098 |
| Hydrogen Sulfide | 0.100 |  |
| Methane |  | 0.008 |
| Methanol |  | 0.559 |
| Nitrogen |  | 0.040 |
| Oxygen | 0. | 021 |
| Propane | 0. | 152 |
| Sulfur Dioxide |  | 0.251 |
| Water | 0. | 344 |

## Redlich-Kwong

Modification of the Van der Waal EOS which includes a correction for the $\mathbf{T}$ dependence of the Van der Waal attraction term.
$\mathbf{P}=\frac{\mathbf{R T}}{\widetilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\widetilde{\mathbf{V}}(\widetilde{\mathbf{V}}+\mathbf{b}) \mathbf{T}^{1 / 2}}$
$\mathrm{a}=0.42748 \frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{C}}^{5 / 2}}{\mathbf{P}_{\mathrm{C}}}$
$\mathrm{b}=0.08664 \frac{\mathrm{RT}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{C}}}$

## Estimating the first virial coefficient:

$\mathbf{B}=\frac{\mathbf{R T}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{C}}}\left(\mathbf{B}_{0}+\omega \mathbf{B}_{1}\right)$
$B_{0}=0.083-\frac{0.422}{T_{R}^{1.6}}$
$B_{1}=0.139-\frac{0.172}{T_{R}^{4.2}}$

## Soave-Redlich-Kwong

$P=\frac{R T}{\widetilde{\mathbf{V}}-b}-\frac{\alpha a}{\widetilde{V}(\widetilde{\mathbf{V}}+b)}$
$\mathbf{a}=0.42748 \frac{\mathbf{R}^{2} \mathrm{~T}_{\mathrm{C}}^{2}}{\mathbf{P}_{\mathrm{C}}}$
$b=0.08664 \frac{R_{C}}{P_{C}}$
$\mathrm{m}=0.48508+1.55171 \omega-0.1561 \omega^{2}$
$\alpha=\left[1+m\left(1-\sqrt{T_{R}}\right)\right]^{2}$

## Real Gases

U is a strong function of $\mathrm{T} \& \mathrm{a}$
weak function of P .
H is a function of both $\mathrm{T} \& \mathrm{P}$.

## NIST WebBook

http://webbook.nist.gov

## Enthalpy $\quad \mathbf{H}=\mathbf{U}+\mathbf{P V}$

## Ideal Gases

U is a function of T only.
H is a function of T only.

## NIST Thermophysical Properties of Fluid Systems <br> http://webbook.nist.gov/chemistry/fluid/

## Incompressible Liquid \& Solid

U is a function of T only
H is a function of both $\mathrm{T} \& \mathrm{P}$.

## Reference State

A state ( $\mathbf{T}, \mathbf{P}$, phase) where 1 property is arbitrarily assigned a value of zero $\&$ from this all other properties are determined.

## Molar Heat Capacity

Energy required to raise the $\mathbf{T}$ of a mole of a substance by 1 degree.

## Specific Heat Capacity

Energy required to raise the $\mathbf{T}$ of a unit mass of a substance by 1 degree.

## Heat Capacity Ratio

$\gamma=\frac{\widetilde{\mathbf{C}}_{\mathbf{P}}}{\widetilde{\mathbf{C}}_{\mathrm{V}}}=\frac{\widehat{\mathbf{C}}_{\mathbf{P}}}{\widehat{\mathbf{C}}_{\mathrm{V}}}$

## Change in Internal Energy

As a function of IG const $\mathbf{V}$ heat capacity.
$\Delta \widetilde{\mathbf{U}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \widetilde{\mathbf{C}}_{\mathrm{V}}^{\mathbf{o}} \mathrm{dT}$

## IG Heat Capacity Approx

For near room temperature
$\widetilde{\mathbf{C}}_{\mathbf{P}}^{\mathbf{o}}=(\mathbf{5 / 2}) \mathbf{R}$ Monatomic Gases:
$\widetilde{\mathbf{C}}_{\mathbf{P}}^{0}=(\mathbf{7 / 2}) \mathbf{R}$ Diatomic Gases:

## Constant V Heat Capacity

$\widetilde{\mathbf{C}}_{\mathrm{V}}=\left(\frac{\partial \widetilde{\mathbf{U}}}{\partial T}\right)_{\widetilde{\mathrm{v}}}$

## Constant V Specific Heat

$\widehat{\mathbf{C}}_{\mathbf{v}}=\left(\frac{\partial \widehat{\mathbf{U}}}{\partial \mathbf{T}}\right)_{\hat{\mathbf{v}}}$

## IG Heat Capacities

$\mathbf{U} \& \mathbf{H}$ are functions of $\mathbf{T}$ only.
Indicates IG
$\widetilde{\mathbf{C}}_{\mathrm{P}}^{\mathbf{o}}=\left(\frac{\partial \widetilde{\mathbf{H}}}{\partial \mathbf{T}}\right) \quad \widetilde{\mathbf{C}}_{\mathrm{V}}^{\mathbf{0}}=\left(\frac{\partial \widetilde{\mathbf{U}}}{\partial \mathbf{T}}\right)$

## Change in Enthalpy

As a function of IG const $\mathbf{P}$ heat capacity.

$$
\Delta \widetilde{\mathbf{H}}=\int_{T_{1}}^{T_{2}} \widetilde{\mathbf{C}}_{P}^{\mathbf{o}} \mathbf{d T}
$$

## For Liq \& Solids

(over a moderate $\mathbf{T} \& \mathbf{P}$ range)
$\widehat{\mathbf{C}}_{\mathbf{P}}=\widehat{\mathbf{C}}_{\mathbf{V}}$
$\widetilde{\mathbf{C}}_{\mathbf{P}}=\widetilde{\mathbf{C}}_{\mathbf{V}}$

## Constant P Heat Capacity

$\widetilde{\mathbf{C}}_{\mathbf{P}}=\left(\frac{\partial \widetilde{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$

## Constant P Specific Heat

$\widehat{\mathbf{C}}_{\mathbf{P}}=\left(\frac{\partial \widehat{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$

## Gibbs Phase Rule

Lets you determine how many intensive variables you can choose arbitrarily for a system.
${ }^{\circ} \mathbf{F}=\mathbf{C}-\mathbf{P}+2$

## IG Heat Capacity Relationships

$\widetilde{\mathbf{C}}_{\mathbf{P}}^{\mathbf{0}}=\widetilde{\mathbf{C}}_{\mathbf{V}}^{\mathbf{0}}+\mathbf{R}$
$\widehat{\mathbf{C}}_{\mathrm{P}}^{0}=\widehat{\mathbf{C}}_{\mathrm{V}}^{0}+\frac{\mathbf{R}}{\mathbf{M W}}$

## NIST IG Heat Capacity Polynomial

Approx.in terms of $\mathbf{T}$ where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \& \mathbf{e}$ are constants for a given substance.
$\widetilde{\mathbf{C}}_{\mathrm{P}}^{0}=\mathbf{A}+\mathbf{B t}+\mathbf{C t}^{2}+\mathbf{D} \mathbf{t}^{3}+\mathbf{E} / \mathbf{t}^{2}$
$\widetilde{\mathbf{C}}_{\mathbf{P}}^{\mathbf{o}}[=] \mathrm{J} / \mathrm{mol} \cdot \mathrm{K} \quad \mathrm{t}=\mathbf{T}(\mathrm{K}) / \mathbf{1 0 0 0}$

## Process Path

The actual series of states that the system passes through as it moves from the initial state to the final state during a process.

## State Variables

They are not path dependent.

## Hypothetical Process Path

A path that connects the initial \& final states and allows you to solve the problem easier. Construct a path in which each step involves a change in just one key intensive property (usually $\mathbf{P}, \mathbf{T}$, or $\mathbf{V}$ ).

## IG HPP Simplification

The gas must be considered an IG at both the initial \& final states.
$\Delta \widetilde{\mathbf{H}}=\int_{T_{1}}^{T_{2}} \widetilde{\mathbf{C}}_{P}^{\mathbf{o}} \mathbf{d T}$


Enthalpy of Vaporization
Energy needed to convert 1 mol of sat liq into 1 mol sat vap at $\mathbf{T}_{\text {sat }} \& \mathbf{P}^{*}$.
$\Delta \widehat{\mathbf{H}}_{\text {vap }}=\widehat{\mathbf{H}}_{\text {sat rap }}-\widehat{\mathbf{H}}_{\text {sat liq }}$
Clapeyron Equation
Relationship of how $\mathbf{P}^{*}$ depends on $\mathbf{T}$.
$\frac{\mathbf{d P} *}{\mathbf{d T}}=\frac{\Delta \tilde{\mathbf{H}}_{\text {vap }}}{\mathbf{T}\left(\widetilde{\mathbf{V}}_{\text {sat tap }}-\widetilde{\mathbf{V}}_{\text {satiq }}\right)}$

## Clausius-Clapeyron Equation

1- Plot $\mathbf{L n} \mathbf{P}^{*}$ vs. $\mathbf{1 / T}(\mathbf{K})$ and use the slope to determine $\Delta \mathbf{H v a p}$.
2- Linearly interpolate on $\mathbf{L n} \mathbf{P}^{*}$ vs. $\mathbf{1 / T}(\mathbf{K})$ to determine $\mathbf{P}^{*}$ at an intermediate T.
3- Correlate $\mathbf{P}^{*}, \mathbf{T}$ data by fitting it to an eqn in terms of $\mathbf{L n} \mathbf{P}^{*}$ vs. $\mathbf{1 / T}(\mathbf{K})$.
$\operatorname{Ln} \mathbf{P}^{*}=-\frac{\Delta \tilde{\mathbf{H}}_{\text {vap }}}{\mathbf{R}} \frac{\mathbf{1}}{\mathbf{T}}+\mathbf{C}$
Antoine
Equation

$$
\log _{10} \mathbf{P}^{*}=\mathbf{A}-\frac{\mathbf{B}}{\mathbf{T}+\mathbf{C}}
$$

## Work

Is energy transfer associated with a
force acting through a distance.
$W=\int_{1}^{2} F d x$
Work Rate (Power)
$\dot{\mathbf{W}}=\frac{\delta \mathrm{W}}{\mathbf{d t}} \quad$ Watt $(\mathrm{W}): \quad 1 \mathbf{W}=1 \mathrm{~J} / \mathrm{s}$

## Accelerational Work

$\mathbf{W}$ associated w/ change in velocity of sys.
$W_{a}=\frac{m}{2 g_{c}}\left(v_{2}^{2}-v_{1}^{2}\right)$

## Gravitational Work

$\mathbf{W}$ done by or against a gravitational field.
$\mathbf{W}_{\mathrm{g}}=\mathbf{m}\left(\mathrm{g} / \mathrm{g}_{\mathrm{c}}\right)\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)$

## Electrical Work

$\mathbf{W}$ done on the sys whenever electrons cross the boundary in response to an externally supplied electrical potential.

## Heat

A form of energy that is transferred between two systems driven by $\Delta T$.

$$
\mathbf{Q}=\int_{t_{1}}^{t_{2}} \dot{Q} d t
$$

$$
\mathbf{Q}=\dot{\mathbf{Q}} \Delta \mathbf{t}
$$

## Heat Flux ( $\mathbf{W} / \mathbf{m}^{2}$ )

Heat transfer rate per unit area (area of heat transfer normal/perpendicular to the direction of heat flow).


## Conduction

A mode of heat transfer where more energetic atoms, molecules or electrons interact/collide w/less energetic ones.

## Fourier's Law of Conduction

Heat conduction flux is proportional to the T gradient driving force. The proportionality constant, $\mathbf{k}$, is the thermal conductivity.

$$
q=\frac{\dot{\mathbf{Q}}_{\text {cond }}}{A}=-k \frac{d T}{d x}
$$

| Conduction | $\mathbf{k}(\mathbf{W} / \mathbf{m ~ K})$ <br> Order of magnitude <br> Metals |
| :--- | :---: |
| Nonmetallic Solids | 100 |
| Liquids | 0.10 |
| Insulation Materials | $0.1-0.01$ |
| Gases | $0.1-0.01$ |

## Exact Differential

The differentials of state variables ( $\mathbf{V}, \mathbf{T}$, $\mathbf{P}, \mathbf{U} \& \mathbf{H}$ ) are exact (they depend only on the state and not the details of the process) $\&$ are represented by the prefix " $d$ ".

## Inexact Differential

The differentials of path variable ( $\mathbf{W} \& \mathbf{Q}$ ) are inexact (we need to know the process path). \& are represented by the prefix " $\delta$ ".

## Mechanical Work

W associated with the movement of the boundary of a sys or with the movement of the entire sys as a whole. (includes shaft, boundary \& spring work)

## Spring Work

W that results in a change in the length or displacement of a spring.
$\mathrm{W}_{\mathrm{sp}}=\mathbf{1 / 2} \mathrm{k}_{\mathrm{sp}}\left(\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right)$

## Quasi-Equilibrium Process

A process in which the sys remains in equilibrium at all times.

## $W_{b}=\operatorname{nRTLn} \frac{V_{2}}{V_{1}} \quad$ IG Isothermal

$W_{b}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n} \quad \begin{aligned} & \text { Polytropic } \\ & \mathbf{V} \& P \text { are related } \\ & \text { by: } P^{\mathbf{n}}=\mathbf{C}\end{aligned}$

$$
W_{b}=\frac{n R\left(T_{2}-T_{1}\right)}{1-n} \quad \text { IG Polytropic }
$$

## Shaft Work

W associated w/energy transmission what is either driven by a rotating shaft (pump/compressor) or that causes a shaft to rotate (turbine).

$$
\mathbf{W}_{\mathrm{sh}}=2 \pi \tau \mathbf{N} \quad \dot{\mathbf{W}}_{\mathrm{sh}}=2 \pi \tau \dot{\mathbf{N}}
$$

## Thermo-CD Sign Convention

$\mathbf{W}>\mathbf{0}$ work done on the surr (positive)
$\mathbf{W}=\mathbf{0}$ no work done
$\mathbf{W}<\mathbf{0}$ work done on the sys (negative)
$\mathbf{Q}>\mathbf{0}$ heat transferred to the sys (positive)
$\mathbf{Q}=\mathbf{0}$ no heat transferred (adiabatic)
$\mathbf{Q}<\mathbf{0}$ heat transferred from the sys (negative)


## Adiabatic Process

A process where no heat transfer across the sys boundary occurs.

$$
\mathbf{Q}=\mathbf{0}
$$

## Convection

A mode of heat transfer usually between a solid surface at one T \& an adjacent moving fluid at another T. Forced- fluid motion caused by external forces. Free- fluid motion caused by density differences \& buoyancy forces within the fluid phase.

## Newton's Law of Cooling

Convection heat flux at a solid-fluid interface is proportional to $\Delta \mathbf{T}$ between the bulk fluid \& the solid surface. The proportionality constant, $\mathbf{h}$, is the convective heat transfer coefficient.

$$
\mathbf{q}=\frac{\dot{\mathbf{Q}}_{\text {conv }}}{\mathbf{A}}=\mathbf{h}\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{f}}\right)
$$

| Condvection | $\mathbf{h}\left(\mathbf{W} / \mathbf{m}^{\mathbf{2}} \mathbf{K}\right)$ |
| :--- | :---: |
| Free Conv. of Gases | $2-25$ |
| Free Conv. of Liquids | $50-1000$ |
| Forced Conv. of Gases | $25-250$ |
| Forced Conv. of Liquids | $50-20000$ |
| Boiling Phase Change | $2500-100000$ |

## Radiation

A mode of heat transfer that is caused by the emission of photons by the molecules giving up energy \& the absorption of photons by the molecules gaining energy.

## Stefan-Boltzmann Law

Allows you to calculate the radiation heat transfer rate between 2 objects based on $\mathbf{T} \&$ surface properties of the emitter \& absorber.
$\dot{\mathbf{Q}}_{\mathrm{e}, \text { max }}=\sigma \mathrm{AT}_{\mathrm{s}}^{4} \quad$ Max
$\dot{\mathbf{Q}}_{\mathrm{e}}=\varepsilon \sigma \mathrm{AT}_{\mathrm{s}}^{4} \quad \quad$ Real Surfaces
$\dot{\mathbf{Q}}_{\text {net }}=\varepsilon \sigma \mathbf{A}\left(\mathrm{T}_{\mathrm{s}}^{4}-\mathrm{T}_{\text {surr }}^{4}\right) \quad$ Net

Emissivity
Quantifies the ability of a surface to radiate. Blackbody $\boldsymbol{\varepsilon}=\mathbf{1} \&$ Real substance $\mathbf{0}<\varepsilon<\mathbf{1}$.

## Absorptivity

Fraction of the incident radiation energy that is absorbed by a surface. Blackbody $\alpha=\mathbf{1} \&$ Real substances $\mathbf{0}<\alpha<\mathbf{1}$.

## First Law of Thermodynamics

Relationship between $\mathbf{Q}, \mathbf{W}$ \& $\mathbf{E}_{\text {total }}$.
Energy cannot be created or destroyed; it can only change forms.
$\Delta \mathbf{E}=\Delta \mathbf{E}_{\mathrm{K}}+\Delta \mathbf{E}_{\mathbf{P}}+\Delta \mathbf{U}$
$\Delta \mathbf{E}=\mathbf{E}_{2}-\mathbf{E}_{1}$
$\frac{d E}{d t}=\frac{\mathrm{dE}_{\mathrm{P}}}{\mathrm{dt}}+\frac{\mathrm{dE}_{\mathrm{K}}}{\mathrm{dt}}+\frac{\mathrm{dU}}{d t}=\dot{\mathrm{Q}}-\dot{\mathrm{W}}$

## First Law for Adiabatic, Closed

## Systems

The only form of energy which crosses the sys boundary is $\mathbf{W}$. For this process the total work depends only on the initial \& final states (not path dependent).
$\Delta \mathbf{E}=\Delta \mathbf{E}_{\mathrm{K}}+\Delta \mathbf{E}_{\mathrm{P}}+\Delta \mathbf{U}=-\mathbf{W}_{\mathrm{ad}}$
$\Delta \mathbf{E}=\mathbf{E}_{2}+\mathbf{E}_{1}=-\left(\mathbf{W}_{\mathrm{b}}+\mathbf{W}_{\mathrm{sh}}+\mathbf{W}_{\mathrm{e}}\right)$
$\Delta \mathbf{E}=\Delta \mathbf{E}_{\mathrm{K}}+\Delta \mathbf{E}_{\mathbf{P}}+\Delta \mathbf{U}=\mathbf{Q}-\mathbf{W}$
First Law for Non-Adiabatic, Closed Systems
Energy can cross the sys boundary as both $\mathbf{Q} \& \mathbf{W}$. For this process the total work depends on the process path.
$\Delta E=\mathbf{Q}-\left(\mathbf{W}_{\mathrm{b}}+\mathbf{W}_{\mathrm{sh}}+\mathbf{W}_{\mathrm{e}}\right)$
$\mathbf{d E}=\delta \mathbf{Q}-\delta \mathbf{W}$

## Problem Solving Procedure

1 - Read Carefully
2 - Draw a Diagram
3 - List Given Information
4 - List All Assumptions
5 - Write Equations and Lookup Data
6 - Solve Equations
7 - Verify Assumptions
8 - Answers
First Law for a Thermodynamic Cycle A sys completes a thermo cycle when it undergoes two or more processes \& the system returns to its initial state.

## First Law for an Isobaric, QuasiEquilibrium Process in a Closed System

$\Delta \mathbf{U}=\mathbf{Q}-\mathbf{W}_{\text {other }}-\mathbf{P}\left(\mathbf{V}_{2}-\mathbf{V}_{\mathbf{1}}\right)$
$\mathbf{Q}=\Delta \mathbf{H} \quad$ if process involves only $\mathbf{W}_{\text {b }}$

## Reservoirs

Systems that are so large that their intensive properties ( $\mathbf{T}, \mathbf{P}$ ) always remain constant.

First Law for an Isochoric, QuasiEquilibrium Process in a Closed System
$\Delta \mathbf{U}=\mathbf{Q}-\mathbf{W}_{\text {other }}-\mathbf{W}_{\text {b }}$
$\mathbf{Q}=\Delta \mathbf{U}$ if process involves only $\mathbf{W}_{\mathbf{b}}$

## First Law for Refrigeration Cycles

Purpose: to maintain the $\mathbf{T}$ within the sys to be below the $\mathbf{T}$ of the surr.
$\mathbf{W}_{\mathrm{R}}=\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}$

## COP for

Refrigeration Cycles

$$
\begin{aligned}
& \mathrm{COP}_{\mathrm{R}}=\frac{\mathrm{Q}_{\mathrm{C}}}{W_{\text {ref }}}=\frac{Q_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{H}}-Q_{\mathrm{C}}} \\
& \mathrm{COP}_{\mathrm{R}}=\frac{1}{Q_{\mathrm{H}} / Q_{\mathrm{C}}-1}
\end{aligned}
$$



## First Law for Heat Pump Cycles

Purpose: to maintain the $\mathbf{T}$ within the system to be above the $\mathbf{T}$ of the surr.
$\mathbf{W}_{\mathrm{HP}}=\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}$

COP for
Heat Pump Cycles
$\operatorname{COP}_{H P}=\frac{Q_{H}}{W_{H P}}=\frac{Q_{H}}{Q_{H}-Q_{C}}$
$\operatorname{COP}_{H P}=\frac{1}{1-Q_{C} / Q_{H}}$


## Mass Balance

Mass cannot be created or destroyed.

## Integral Mass Balance

$\Delta \mathbf{m}_{\text {sys }}=\sum_{\mathrm{i}} \mathbf{m}_{\text {in, }}-\sum_{\mathrm{j}} \mathbf{m}_{\text {out }, \mathbf{j}}$
$\Delta m_{\text {sys }}=\left(m_{\text {sys }}\right)_{\text {initial }}-\left(m_{\text {sys }}\right)_{\text {final }}=m_{\text {in }}-m_{\text {out }}$

## Integral Mass Balance

$\mathbf{m}=\rho\langle\mathbf{v}\rangle \mathbf{A}=\frac{\langle\mathbf{v}\rangle \mathbf{A}}{\hat{\mathbf{V}}}$
Differential Mass Balance
$\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\dot{m}_{\text {in }}-\dot{m}_{\text {out }}$
$\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\sum_{\mathrm{i}} \dot{\mathbf{m}}_{\text {in }}-\sum_{\mathrm{j}} \dot{\mathbf{m}}_{\text {out }}$

## Integral Energy Balance

## Flow Work

Work done when a volume of fluid flows into or out of the system opposed by a pressure.

$$
\dot{\mathbf{W}}_{\text {flow }}=\mathbf{P}_{\text {out }}\left(\dot{\mathbf{m}}_{\text {out }} \hat{\mathbf{V}}_{\text {out }}\right)-\mathbf{P}_{\text {in }}\left(\dot{\mathbf{m}}_{\text {in }} \hat{\mathbf{V}}_{\text {in }}\right)
$$

$\frac{d}{d t} E_{\text {sys }}=\dot{E}_{\text {in }}-\dot{E}_{\text {out }}$
$\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}+\dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{U}}_{\text {in }}+\frac{\left\langle\mathbf{v}_{\text {in }}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {in }}\right]-\dot{m}_{\text {out }}\left[\hat{\mathbf{U}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}_{\mathbf{g}_{c}}}{} \mathbf{z}_{\text {out }}\right]$

## Enthalpy Form of the Differential Energy Balance

$\frac{d}{d t} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\text {sh }}+\dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\frac{\left\langle\mathbf{v}_{\mathrm{in}}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {in }}\right]-\dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {out }}\right]$
$\frac{d}{d t} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\text {sh }}+\sum_{\mathrm{i}}^{\mathrm{in}} \dot{\mathbf{m}}_{\mathrm{in}}\left[\hat{\mathbf{H}}_{\mathrm{in}}+\frac{\left\langle\mathbf{v}_{\text {in }}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\mathrm{in}}\right]-\sum_{\mathrm{j}}^{\text {out }} \dot{\mathbf{m}}_{\mathrm{out}}\left[\hat{\mathbf{H}}_{\mathrm{out}}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {out }}\right]$

## SS Mass \& Energy Balance

$\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\mathbf{0} \quad \quad \dot{\mathbf{m}}_{\text {in }}=\dot{\mathbf{m}}_{\text {out }}$
$\frac{d}{d t} E_{\text {sys }}=0$

SISO, SS with no electrical or boundary work interactions

$$
\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{sh}}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\frac{\Delta \mathbf{v}^{2}}{2 g_{c}}+\frac{g}{\mathbf{g}_{c}} \mathbf{z}\right]
$$

| $\begin{aligned} & \text { 1st Law for SISO, SS Nozzles \& } \\ & \underline{\text { Diffusers }} \end{aligned}$ | $\Delta \hat{\mathbf{H}}+\frac{\Delta \mathbf{v}^{2}}{2 \mathbf{g}_{\mathrm{c}}}=0$ | Nozzle- increases the velocity of a fluid by decreasing P. DIFFUSER- increases the $\mathbf{P}$ of a fluid by decreasing its velocity. |
| :---: | :---: | :---: |
| 1st Law for SISO, SS |  |  |
| Turbines \& Compressors | $\dot{\mathbf{W}}_{\text {sh }}=-\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$ | TURbine- $\mathbf{W}$ is produced by decreasing the enthalpy. Compressor- $\mathbf{W}$ is input to increase the $\mathbf{H} \& \mathbf{P}$ of fluid. |
| $\frac{\text { 1st Law for SISO, SS }}{\text { Throttling Devices }}$ | $\Delta \hat{\mathbf{H}}=\mathbf{0}$ | Throttling Devices- Decreases P no W \& little heat transfer. |
| 1st Law for SISO, SS | $\dot{\mathbf{Q}}=\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$ | Heat Exchanger- 2 streams exchange heat |
| Heat Exchanger | $\mathrm{m}_{\mathrm{C}} \Delta \hat{\mathbf{H}}_{\mathrm{C}}=-\mathrm{m}_{\mathrm{H}} \Delta \hat{\mathbf{H}}_{\mathrm{H}}$ | without mixing. |
| $\begin{aligned} & \text { 1st Law for MIMO, SS Mixing } \\ & \text { Chamber } \end{aligned}$ | $\sum_{j}^{\text {out }} \dot{\mathbf{m}}_{\mathrm{j}} \hat{\mathbf{H}}_{\mathrm{j}}-\sum_{\mathrm{i}}^{\text {in }} \dot{\mathbf{m}}_{\mathrm{i}} \hat{\mathbf{H}}_{\mathrm{i}}=\mathbf{0}$ | Mixing Chamber- 2 or more feed streams mix \& form 1 effluent. |
| Bernoulli Equation | $\frac{\Delta \mathbf{P}}{\rho}+\frac{\Delta v^{2}}{2 g_{c}}+\frac{g}{g_{c}} \Delta z=0$ | PiPES OR DUCTS- fluid flow follows Bernoulli Equation |

## Transient Process (or Unsteady Process)

A process in which 1 or more properties or process variables change as a function of time.

## Uniform Flow

The properties and flow rates of all inlet and outlet streams are constant over the cross-sectional area for flow and are also constant with respect to time.

## Uniform State

At all times, the properties of the outlet stream are exactly the same as the properties of the system at that point in time.
The properties do change with time, but they are always the same as the properties of the outlet stream.

## SISO Transient Mass Balance

$\Delta \mathbf{m}_{\text {sys }}=\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{\mathbf{2}}\right)-\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{\mathbf{1}}\right)=\dot{\mathbf{m}}_{\text {in }}\left(\mathbf{t}_{\mathbf{2}}-\mathbf{t}_{\mathbf{1}}\right)-\dot{\mathbf{m}}_{\text {out }}\left(\mathbf{t}_{\mathbf{2}}-\mathbf{t}_{\mathbf{1}}\right)=\mathbf{m}_{\text {in }}-\mathbf{m}_{\text {out }}$

## MIMO Transient Mass Balance

$\Delta \mathbf{m}_{\text {sys }}=\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{2}\right)-\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{1}\right)=\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \sum_{i}^{\text {in }} \dot{m}_{i}-\left(\mathbf{t}_{\mathbf{2}}-\mathbf{t}_{1}\right) \sum_{\mathbf{j}}^{\text {out }} \dot{m}_{j}$
SISO Transient Energy Balance
$\Delta \mathbf{E}_{\text {sys }}=\mathbf{Q}-\mathbf{W}_{\text {sh }}+\mathbf{m}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\frac{<\mathbf{v}_{\text {in }}>^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {in }}\right]-\mathbf{m}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{<\mathbf{v}_{\text {out }}>^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {out }}\right]$
MIMO Transient Energy Balance

$$
\Delta \mathbf{E}_{\mathrm{sys}}=\mathbf{Q}-\mathbf{W}_{\mathrm{sh}}+\sum_{i}^{\mathrm{in}} \mathbf{m}_{\mathrm{in}}\left[\hat{\mathbf{H}}_{\mathrm{in}}+\frac{\left\langle\mathbf{v}_{\mathrm{in}}\right\rangle^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {in }}\right]-\sum_{j}^{\text {out }} \mathbf{m}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{2 \mathbf{g}_{c}}+\frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{z}_{\text {out }}\right]
$$

SISO, Uniform State Energy Balance with Negligible Kinetic and Potential Energies
$\mathbf{m}_{\text {sys }, 2} \hat{\mathbf{U}}_{\mathrm{sys}, 2}-\mathbf{m}_{\mathrm{sys}, 1} \hat{\mathbf{U}}_{\mathrm{sys}, 1}=\mathbf{Q}-\mathbf{W}_{\mathrm{sh}}+\mathbf{m}_{\text {in }} \hat{\mathbf{H}}_{\text {in }}-\mathbf{m}_{\text {out }} \hat{\mathbf{H}}_{\text {out }}$

## Power Cycles

Purpose: to transfer a net work to the surroundings.
$\mathbf{W}_{\mathrm{HE}}=\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}$
$\eta=\frac{\mathbf{W}_{\mathrm{HE}}}{\mathbf{Q}_{\mathrm{H}}}=\frac{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}$
$\eta=1-\frac{Q_{C}}{\mathbf{Q}_{\mathrm{H}}}$

## Clausius Statement

A system operating in a thermodynamic cycle can not transfer energy (heat) from a cooler body to a hotter body and produce no other effect.

## Refrigeration Cycles

Purpose: to maintain the $\mathbf{T}$ within the sys to be below the $\mathbf{T}$ of the surr.

$$
\begin{aligned}
& W_{R}=Q_{H}-Q_{C} \\
& \operatorname{COP}_{R}=\frac{Q_{C}}{W_{\text {ref }}}=\frac{Q_{C}}{Q_{H}-Q_{C}} \\
& \operatorname{COP}_{R}=\frac{1}{Q_{H} / Q_{C}-1}
\end{aligned}
$$

## Kelvin-Planck Statement

A system operating on a thermodynamic cycle cannot deliver a net amount of work as a result of exchange of heat from a single thermal reservoir.

## Heat Pump Cycles

Purpose: to maintain the $\mathbf{T}$ within the sys to be above the $\mathbf{T}$ of the surr.
$\mathbf{W}_{\mathrm{HP}}=\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}$
$\operatorname{COP}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\mathrm{HP}}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}$
$\operatorname{COP}_{H P}=\frac{1}{1-Q_{C} / Q_{H}}$

## Perpetual-Motion Machines

1st Kind- creating mass, energy, or work from nothing. (violates 1st Law)
2nd Kind- extracting heat from a source and converting it completely into work. (violates 2nd Law)
3rd Kind- produces no work, has no friction, and runs indefinitely.

## Irreversible Process

Processes where the system and its surroundings cannot return to their initial

## Externally Reversible

There are no irreversibilities in the surroundings but there may be irreversibilities in the system.

## 1st Carnot Principle

No cyclic process can operate with $100 \%$ efficiency, and the reversible process is the most efficient.
$\mathbf{W}_{\text {net }}=\mathbf{W}_{\text {irrev }}-\mathbf{W}_{\text {rev }}<\mathbf{0}$
$\eta_{\text {rev }}>\eta_{\text {irrev }}$
$\mathbf{C O P}_{\mathrm{R}, \text { rev }}>\mathbf{C O P}_{\mathrm{R}, \text { irrev }}$
$\mathbf{C O P}_{\mathrm{HF}, \text { rev }}>\mathrm{COP}_{\mathrm{HP}, \mathrm{irrev}}$

## 2nd Carnot Principle

All reversible processes operating between the same two reservoirs will have the same efficiency.

## Internally Reversible

Tthere are no irreversibilities in the system but there may be irreversibilities in the surroundings.

## states after the process is completed

Process 1-2: Reversible Isothermal Process 2-3: Reversible Adiabatic Process 3-4: Reversible Isothermal Process 4-1: Reversible Adiabatic

## Four Basic Processes of the

 Carnot Cycle
## Kelvin Temperature Scale

Based in the triple pt of water (273.15K).

## Celsius Temperature Scale

Based by assigning the normal melting pt of water a value of $\mathbf{0}^{\circ} \mathbf{C} \&$ the normal boiling pt $\mathbf{1 0 0}{ }^{\mathbf{0}} \mathrm{C}$. $\left(\mathbf{2 7 3} .15 \mathrm{~K}=\mathbf{0}^{\mathbf{0}} \mathrm{C}\right)$

## Maximum Efficiencies

T in Kelvin or Rankine
$\eta_{\text {rev }}=\mathbf{1}-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}$
$\operatorname{COP}_{\mathrm{R}, \mathrm{rev}}=\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}$
$\mathrm{COP}_{\mathrm{HP}, \mathrm{rev}}=\frac{\mathrm{T}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}$

## Quality

$100 \% \mathbf{W}$ can be converted to $\mathbf{Q}$ but only fraction of $\mathbf{Q}$ can be converted to $\mathbf{W}$.

## Energy in the form of heat for HE

$\Delta T=T_{H}-T_{C}$
Large $\Delta \mathbf{T}$ : thermal efficiency high
Small $\Delta \mathbf{T}$ : thermal efficiency low.

Clausius Inequality
$\oint \frac{\delta Q}{T} \leq 0$
$\oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\mathbf{0} \begin{aligned} & \text { Internally } \\ & \text { Reversible }\end{aligned}$
$\oint \frac{\delta Q}{T}<0 \quad$ Irreversible

## Trends for HE

As the irreversibility of the cycle increases, the work output decreases, \& the left-hand side of the Clausius Inequality becomes more negative.

## Trends for Refrigerators \& Heat Pumps

As the irreversibility of the cycle increases, the work input increases \& the left-hand side of the Clausius Inequality becomes more negative.

Entropy
A property that allows us to apply the 2 Law to processes \& to quantitatively assess \& compare their performance.

$$
\mathbf{d S}=\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text {int rev }}
$$

$\Delta S=\left(S_{2}-S_{1}\right)_{\text {intrev }}=\left(S_{2}-S_{1}\right)_{\text {irrev }}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\text {int rev }}$ $\Delta \mathbf{S}=\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}=\frac{\mathbf{Q}}{\mathbf{T}_{\mathbf{0}}} \begin{aligned} & \text { Internally Reversible, } \\ & \text { Isothermal Process }\end{aligned}$


## 1st \& 2nd Gibbs Equations

$\mathbf{T d S}=\mathbf{d U}+\mathbf{P d V} \quad \begin{aligned} & \text { Easier to apply to } \\ & \text { closed systems. }\end{aligned}$
$\mathbf{T d S}=\mathbf{d H}-\mathbf{V} \mathbf{d P} \quad$ Easier to apply to open systems.
Incompressible Liquids \& Solids
$\Delta \tilde{\mathbf{S}}=\int \widetilde{\mathbf{C}}(\mathbf{T}) \frac{\mathbf{d T}}{\mathbf{T}}$

## Entropy Generated

Reversible Processes:
Irreversible Processes: $\quad \mathbf{S}_{\text {gen }}>\mathbf{0}$
Impossible Processes: $\quad \mathbf{S}_{\text {gen }}<\mathbf{0}$
$\mathbf{d S}=\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\delta \mathbf{S}_{\text {gen }}$
$\Delta S=S_{2}-S_{1}=\int\left(\frac{\delta Q}{T}\right)+S_{\text {gen }}$
$S_{\mathrm{gen}}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{int} \mathrm{rev}}-\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{irrev}}$

## Relative Molar Volume

$\widetilde{\mathbf{V}}_{\mathrm{r}}=\frac{\widetilde{\mathbf{V}}}{\widetilde{\mathbf{V}}_{\text {ref }}}$
$\frac{\tilde{\mathbf{V}}_{1}}{\widetilde{\mathbf{V}}_{2}}=\left(\frac{\widetilde{\mathbf{V}}_{\mathrm{r}}\left(\mathrm{T}_{1}\right)}{\widetilde{\mathbf{V}}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)}\right)$
$\operatorname{Ln} \widetilde{\mathbf{V}}_{\mathbf{r}}=-\frac{\tilde{\mathbf{S}}_{\mathbf{T}}^{\mathbf{0}}}{\mathbf{R}}+\mathbf{L n}\left(\frac{\mathbf{T}}{\mathbf{T}_{\text {ref }}}\right)$
Polytropic Processes
$\mathbf{T}_{1} \widetilde{\mathbf{V}}_{1}^{\delta-1}=\mathbf{T}_{2} \widetilde{\mathbf{V}}_{2}^{\delta-1}=\mathbf{C}_{1}$
$\mathbf{T}_{1} \mathbf{P}_{1}^{(1-\delta) / \delta}=\mathbf{T}_{2} \mathbf{P}_{2}^{(1-\delta) / \delta}=\mathbf{C}_{2}$
$\mathbf{P}_{1} \widetilde{\mathbf{V}}_{1}^{\delta}=\mathbf{P}_{2} \widetilde{\mathbf{V}}_{2}^{\delta}=\mathbf{C}_{3}$

Principle of Increasing Entropy
Entropy of the universe is ALWAYS increasing.
$\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=S_{\text {gen }} \geq 0$

Heat Transfer For an
Irrev Path

$$
\mathbf{Q}=\text { Area }-\int_{1}^{2} \mathbf{T} \delta \mathbf{S}_{\mathrm{gen}}
$$

## Relative Pressure

$\mathbf{P}_{\mathrm{r}}=\frac{\mathbf{P}}{\mathbf{P}_{\text {ref }}}$
$\frac{P_{1}}{P_{2}}=\left(\frac{\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{1}\right)}{\mathbf{P}_{\mathrm{P}_{2}}\left(\mathrm{~T}_{2}\right)}\right)$
$\operatorname{Ln} \mathbf{P}_{\mathrm{r}}=\frac{\tilde{\mathbf{S}}_{\mathbf{T}}^{\mathbf{o}}}{\mathbf{R}}$
$\Delta \tilde{\mathbf{S}} \cong \widetilde{\mathbf{C}}_{\text {ave }} \ln \frac{\mathbf{T}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{1}}} \quad \begin{aligned} & \text { Constant Heat } \\ & \text { Capacity }\end{aligned}$

## Methods for Ideal Gases

Method 1: Constant Heat Capacity

$$
\begin{aligned}
& \Delta \tilde{S}=\widetilde{\mathbf{C}}_{\mathrm{V}}^{0} \operatorname{Ln}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+R \operatorname{Ln}\left(\frac{\widetilde{\mathbf{V}}_{2}}{\widetilde{\mathbf{V}}_{1}}\right) \\
& \Delta \tilde{\mathbf{S}}=\widetilde{\mathbf{C}}_{\mathrm{P}}^{0} \operatorname{Ln}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-R \operatorname{Ln}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)
\end{aligned}
$$

Method 2: Heat Capacity Polynomial
$\widetilde{\mathbf{C}}_{\mathrm{P}}^{0}=\mathbf{A}+\mathbf{B T}+\mathbf{C} \mathbf{T}^{2}+\mathbf{D} \mathbf{T}^{3}+\mathbf{E} / \mathbf{T}^{2}$
Method 3: Ideal Gas Entropy Tables

$$
\tilde{\mathbf{S}}_{\mathrm{T}}^{\mathbf{o}}=\int_{\mathrm{Tref}}^{\mathrm{T}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{\mathbf{0}} \frac{\mathbf{d T}}{\mathbf{T}}
$$

$$
\Delta \tilde{\mathbf{S}}=\tilde{\mathbf{S}}_{\mathbf{T} 2}^{\mathbf{o}}-\tilde{\mathbf{S}}_{\mathbf{T} 1}^{\mathbf{o}}-\mathbf{R} \mathbf{L n}\left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)+\mathbf{R} \mathbf{L n}\left(\frac{\tilde{\mathbf{V}}_{2}}{\widetilde{\mathbf{V}}_{1}}\right)
$$

$\underline{\text { ISOBARIC PROCESS }} \quad \delta=0 \quad \widetilde{\mathbf{W}}_{\mathrm{b}}=\mathbf{P} \Delta \widetilde{\mathbf{V}}$ $\begin{array}{ll}\text { ISOTHERMAL PROCESS } \\ \delta=1 & \widetilde{\mathbf{W}}_{\mathrm{b}}=\operatorname{RTLn}\left(\frac{\widetilde{\mathbf{V}}_{2}}{\widetilde{\mathbf{V}}_{1}}\right)\end{array}$
ISOCHORIC PROCESS $\quad \delta=\infty \quad \widetilde{\mathbf{W}}_{\mathrm{b}}=0$
ISENTROPIC PROCESS $\quad \delta=\gamma \quad \widetilde{\mathbf{W}}_{\mathrm{b}}=-\widetilde{\mathbf{C}}_{\mathrm{V}}^{0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$

## Closed System Entropy Balance

Integral form $\quad \Delta S=\int\left(\frac{\delta Q}{T}\right)+S_{\text {gen }}$
Differential form $\quad \mathbf{d S}=\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\delta \mathbf{S}_{\text {gen }}$

Rate form

$$
\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{S}=\frac{\delta \dot{\mathbf{Q}}}{\mathbf{T}}+\dot{\mathbf{S}}_{\mathrm{gen}}
$$

## Reversible Processes

$\Delta S=\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text {rev }} \quad$ and $\quad \mathbf{S}_{\text {gen }}=\mathbf{0}$

Irreversible Processes
$\Delta S>\int\left(\frac{\delta \mathbf{Q}}{T}\right)_{\text {irrev }} \quad$ and $\quad S_{\text {gen }}>0$

Open System Entropy Balance

$$
\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{S}_{\text {sys }}=\sum_{\text {in }} \dot{\mathbf{m}}_{\text {in }} \hat{\mathbf{S}}_{\text {in }}-\sum_{\text {out }} \dot{\mathbf{m}}_{\text {out }} \hat{\mathbf{S}}_{\text {out }}+\sum_{\text {sys }} \int \frac{\mathbf{d} \dot{\mathbf{Q}}_{\text {sys }}}{\mathbf{T}_{\text {sys }}}+\dot{\mathbf{S}}_{\text {gen }} \quad \frac{\dot{\mathbf{Q}}_{\text {sys }}}{\dot{\mathbf{m}}}=\int_{\text {in }}^{\text {out }} \mathbf{T}_{\text {sys }} \mathbf{d} \hat{\mathbf{S}}
$$

SS

$$
\mathbf{0}=\sum_{\text {in }} \dot{\mathbf{m}}_{\text {in }} \hat{\mathbf{S}}_{\text {in }}-\sum_{\text {out }} \dot{\mathbf{m}}_{\text {out }} \hat{\mathbf{S}}_{\text {out }}+\sum_{\text {sys }} \frac{\dot{\mathbf{Q}}_{\text {sys }}}{\mathbf{T}_{\text {sys }}}+\dot{\mathbf{S}}_{\text {gen }}
$$

$\underline{\text { SS, SISO }} \quad\left(\hat{\mathbf{S}}_{\text {out }}-\hat{\mathbf{S}}_{\text {in }}\right)=\frac{1}{\dot{\mathbf{m}}} \sum_{\text {sys }} \int \frac{\mathbf{d} \dot{\mathbf{Q}}_{\text {sys }}}{\mathbf{T}_{\text {sys }}}+\frac{\dot{\mathbf{S}}_{\text {gen }}}{\dot{\mathbf{m}}}$
Mechanical Energy Balance (MEBE)

$$
\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathrm{m}}}=-\int_{\text {in }}^{\text {out }} \widehat{\mathbf{V}} \mathbf{d P}+\frac{\Delta \mathbf{v}^{2}}{2 g_{\mathrm{c}}}+\frac{g}{g_{c}} \Delta z
$$

Bernoulli Eqn
$-\int_{\text {in }}^{\text {out }} \widehat{\mathbf{V}} \mathbf{d P}+\frac{\Delta \mathbf{v}^{2}}{2 \mathbf{g}_{c}}+\frac{\mathbf{g}}{\mathbf{g}_{c}} \Delta z=0$

SS, SISO, Int. Rev., One Reservoir

SS, SISO, Int. Rev., One Reservoir, Isothermal
$\frac{\dot{\mathbf{Q}}_{\text {sys }}}{\dot{\mathbf{m}}}=\mathbf{T}_{\text {sys }}\left(\hat{\mathbf{S}}_{\text {out }}-\hat{\mathbf{S}}_{\text {in }}\right)$

SISO, SS, Internally Reversible, Polytropic Processes where $\Delta \mathbf{E}_{P}=\Delta \mathbf{E}_{K}=0$

| Isobaric$\delta=\mathbf{0}$ | Real Fluids | Ideal Gas |
| :---: | :---: | :---: |
|  | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=0$ | $\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}}=\mathbf{0}$ |
| Isothermal $\delta=\mathbf{1}$ | $\begin{aligned} \frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathrm{m}}} & =-\mathbf{P}_{1} \widehat{\mathbf{V}}_{1} \operatorname{Ln}\left(\mathbf{P}_{2} / \mathbf{P}_{1}\right) \\ & =-\mathbf{P}_{2} \widehat{\mathbf{V}}_{2} \operatorname{Ln}\left(\mathbf{P}_{2} / \mathbf{P}_{1}\right) \end{aligned}$ | $\begin{aligned} \frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}} & =-\mathrm{T}_{1}\left(\frac{\mathbf{R}}{\mathbf{M W}}\right) \operatorname{Ln}\left(\mathbf{P}_{2} / \mathbf{P}_{1}\right) \\ & =-\mathbf{T}_{2}\left(\frac{\mathbf{R}}{\mathbf{M W}}\right) \operatorname{Ln}\left(\mathbf{P}_{2} / \mathbf{P}_{1}\right) \end{aligned}$ |
| Polytropic $\delta \neq 1$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\text { min }}=-\frac{\delta}{\delta-1}\left(\mathbf{P}_{2} \widehat{\mathbf{V}}_{2}-\mathbf{P}_{1} \widehat{\mathbf{V}}_{1}\right)$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\frac{\delta}{\delta-1}\left(\frac{\mathbf{R}}{\mathrm{MW}}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ |
| Isentropic $(\gamma=\text { constant })$ $\delta=\gamma$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\frac{\gamma}{\gamma-1}\left(\mathbf{P}_{2} \widehat{\mathbf{V}}_{2}-\mathbf{P}_{1} \widehat{\mathbf{V}}_{1}\right)$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\frac{\gamma}{\gamma-1} \frac{\mathbf{R}}{\mathbf{M W}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$ |
| Isochoric $\delta=\infty$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\mathrm{V}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$ | $\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\frac{\mathbf{R}}{\mathbf{M W}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ |

## Turbine Isentropic Efficiency

$$
\eta_{\mathrm{s}, \text { turb }}=\frac{\widehat{\mathbf{H}}_{1}-\widehat{\mathbf{H}}_{2, \mathrm{act}}}{\widehat{\mathbf{H}}_{1}-\widehat{\mathbf{H}}_{2, \mathrm{~s}}}
$$

## Adiabatic Turbines:

Best Case = Isentropic (internally reversible
Worst Case = Isothermal (highly irreversible)



## Nozzle Isentropic Efficiency

$\eta_{\mathrm{s}, \mathrm{noz}}=\frac{\mathrm{v}_{2 \mathrm{a}}^{2} / 2 \mathrm{~g}_{\mathrm{c}}}{\mathbf{v}_{2 \mathrm{~S}}^{2} / 2 \mathrm{~g}_{\mathrm{c}}}$
If $\mathbf{A}_{\mathbf{1}} \gg \mathbf{A}_{\mathbf{2}}$ and the process is not highly irreversible:
$\eta_{\mathbf{s}, \mathrm{noz}}=\frac{\widehat{\mathbf{H}}_{\mathbf{1}}-\widehat{\mathbf{H}}_{\mathbf{2}, \text { act }}}{\widehat{\mathbf{H}}_{\mathbf{1}}-\widehat{\mathbf{H}}_{\mathbf{2}, \mathrm{S}}} \quad \begin{aligned} & \text { only exact } \\ & \text { when } \mathrm{v}_{1}=0\end{aligned}$

Adiabatic Compressor Isentropic Efficiency
$\eta_{\mathrm{s}, \text { comp }}=\frac{\widehat{\mathbf{H}}_{2 \mathrm{~S}}-\widehat{\mathbf{H}}_{1}}{\widehat{\mathbf{H}}_{2, \text { act }}-\widehat{\mathbf{H}}_{1}}$

Multistage Compressor
Isentropic Efficiency
$\eta_{\mathrm{T}, \text { multi }}=\frac{\widehat{\mathbf{H}}_{2 \mathrm{~T}}-\widehat{\mathbf{H}}_{1}}{\widehat{\mathbf{H}}_{2, \text { act }}-\widehat{\mathbf{H}}_{1}}$
Optimal Intermediate Pressure for a
2-stage Compressor
$\mathbf{P}_{\mathrm{x}}=\sqrt{\mathbf{P}_{1} \mathbf{P}_{2}} \quad \frac{\mathbf{P}_{1}}{\mathbf{P}_{\mathrm{x}}}=\frac{\mathbf{P}_{\mathrm{x}}}{\mathbf{P}_{2}}$

Lost Work
Work that is wasted due to irreversibilities in a process.
$\dot{\mathbf{W}}_{\mathrm{sh}, \text { lost }}=\dot{\mathbf{W}}_{\mathrm{sh}, \text { rev }}-\dot{\mathbf{W}}_{\mathrm{Sl}, \text { act }}$
$\dot{\mathbf{W}}_{\text {sh }, \text { lost }}=\mathbf{T}_{\text {surr }} \dot{\mathbf{S}}_{\text {gen,total }}$

## Compressor

2nd Law Efficiency
$\eta_{\text {II,comp }}=\frac{\dot{\mathbf{W}}_{\text {Sh,rev }}}{\dot{\mathbf{W}}_{\text {Sh,act }}}$

Processes that only exchange heat with surroundings
$\dot{\mathbf{W}}_{\text {Sb, lost }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }} \Delta \hat{\mathbf{S}}-\dot{\mathbf{Q}}_{\text {act }}$
$\dot{\mathbf{S}}_{\text {gen, total }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}$

## Processes that exchange heat with a

 Thermal Reservoir$$
\begin{aligned}
& \dot{\mathbf{W}}_{\text {sh,lost }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }} \hat{\mathbf{S}}-\hat{\mathbf{Q}}_{\text {act }} \frac{\mathbf{T}_{\text {surr }}}{\mathbf{T}_{\text {res }}} \\
& \dot{\mathbf{S}}_{\text {gen,total }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\mathbf{T}_{\text {res }}}
\end{aligned}
$$

Turbine
2nd Law Efficiency
$\eta_{\text {II,turb }}=\frac{\dot{\mathbf{W}}_{\text {Sh,act }}}{\dot{\mathbf{W}}_{\text {Sh, }} \text { rev }}$

Lost Work Analysis for a
Vapor Cycle

$$
\begin{aligned}
& \left(\dot{\mathbf{S}}_{\text {gen }}\right)_{\text {cycle }}=\sum_{i}^{\text {Processes }}\left(\dot{\mathbf{S}}_{\text {gen }}\right)_{i}=\sum_{i}^{\text {Processes }}\left(-\dot{\mathbf{Q}}_{i} / \mathbf{T}_{i, \text { ext }}\right) \\
& \dot{\mathbf{W}}_{\text {Sh, lost }}=\mathbf{T}_{\text {surr }}\left(\dot{\mathbf{S}}_{\text {gen }}\right)_{\text {cycle }}=\mathbf{T}_{\text {surr }} \sum_{i}^{\text {Processes }}\left(-\dot{\mathbf{Q}}_{i} / \mathbf{T}_{i, \text { ext }}\right)
\end{aligned}
$$

Rankine Cycle
Process 1-2: Boiler Heat added at constant pressure.
Process 2-3: Turbine
Isentropic expansion.
Process 3-4: Condenser Heat rejected at constant pressure.
Process 4-1: Pump Isentropic compression.

## Assumptions in applying the 1st Law

1- Int. Rev., SS, SISO Process
2- Negligible $\mathbf{E}_{\mathbf{K}} \& \mathbf{E}_{\mathbf{P}}$
3- No shaft work in boiler or condenser
4- No heat transfer occurs in the turbine or pump

## 1st Law: Boiler

1st Law: Turbine

1st Law: Condenser

$$
\frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{1}
$$

$$
\frac{\dot{\mathbf{W}}_{\mathrm{s}, \text { turb }}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{3}
$$

$$
\frac{\dot{\mathbf{Q}}_{\mathrm{C}}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{4}-\widehat{\mathbf{H}}_{3}
$$

$$
\frac{\dot{\mathbf{W}}_{\mathrm{p}}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{4}-\widehat{\mathbf{H}}_{1}
$$

## Thermal Efficiency of a Power Cycle

$$
\begin{aligned}
& \eta=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{\mathbf{H}}}=\frac{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}} \\
& \mathbf{B W R}=\frac{-\widehat{\mathbf{W}}_{\mathbf{P}}}{\widehat{\mathbf{W}}_{\mathrm{T}}}=\frac{\widehat{\mathbf{H}}_{1}-\widehat{\mathbf{H}}_{4}}{\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{3}}
\end{aligned}
$$



Increasing Boiler Pressure
$\mathbf{Q}_{\mathbf{H}}$ increases significantly and
$\mathbf{Q}_{\mathrm{C}}$ decreases slightly.
Therefore, $\eta_{\mathrm{t}} \underline{\text { increases. }}$

## Decreasing Condenser Pressure

$\mathbf{Q}_{\mathbf{C}}$ decreases significantly and
$\mathbf{Q}_{\mathbf{H}}$ increases slightly.
Therefore, $\eta_{\mathrm{t}}$ increases.

## Superheat Rankine Cycle

Boiler produces superheated vapor.
Result: $\eta_{\mathbf{t}}$ increases and quality of the turbine
effluent increases.

## Reheat Rankine Cycle

A superheat Rankine Cycle that uses 2 turbines to allow the condenser to operate at a
low P and still maintain a very high quality at the turbine effluent. The working fluid is reheated in the boiler before it enters the $2^{\text {nd }}$ turbine.


Binary Vapor Rankine Cycle Consists of 2 separate Rankine Vapor Power Cycles that use different working fluids.


## Supercritical Rankine Cycle

Boiler operating pressure is greater than the critical pressure of the working fluid.
Result: $\boldsymbol{\eta}_{\mathbf{t}}$ increases ( $\mathbf{Q}_{\mathbf{H}}$ increases greatly while $\mathbf{Q}_{\mathbf{C}}$ increases very little) and quality of the turbine effluent can increase.

## Rankine Cycle With Regeneration

The condenser effluent is pumped back up to the high pressure of the boiler in 2 stages. At the intermediate $P$ between the 2 pumps, the working fluid is heated back to the sat. liquid state in the feedwater heater (open or closed).


## Cogeneration Gas-Vapor Rankine Cycle

Uses heat from a high temperature reservoir to simultaneously produce work and heat, at a moderately high temperature and pressure, for use in an external system.


## Main reasons real vapor power cycles are not as efficient as ideal Rankine Vapor Power Cycle

1. Heat Loses
2. Fluid Friction
3. Mechanical Losses
4. Condenser Subcooling

## Lost Work

$\dot{\mathbf{W}}_{\mathrm{S}, \text { lost }}=\mathrm{T}_{\text {surr }}\left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}\right)+\dot{\mathbf{Q}}_{\text {lost }}$

## Air-Standard Assumptions

1- The working fluid is air and it behaves as an ideal gas.
2- The cycle is modeled as a closed cycle with the air cooled in HEX \#2 and recirculated to the compressor.
3- The combustion reactor is replaced HEX \#1.
4- All processes are internally reversible.

## Assumptions in applying the 1st Law

5- Int. Rev., SS, SISO Process
6- $\quad$ Negligible $\mathbf{E}_{\mathbf{K}} \& \mathbf{E}_{\mathbf{P}}$
7- No shaft work in HEX \#1 or HEX \#2
8- No heat transfer occurs in the turbine or comp.

| 1st Law: HEX \#1 | $\frac{\dot{\mathbf{Q}}_{\mathbf{H}}}{\dot{\mathbf{m}}}=\frac{\dot{\mathbf{Q}}_{12}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{1}$ |
| :--- | :--- |
| 1st Law: Turbine | $\frac{\dot{\mathbf{W}}_{\mathrm{s}, \text { turb }}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{3}>\mathbf{0}$ |
| 1st Law: HEX \#2 | $\frac{\dot{\mathbf{Q}}_{\mathrm{C}}}{\dot{\mathbf{m}}}=\frac{\dot{\mathbf{Q}}_{34}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{4}-\widehat{\mathbf{H}}_{3}$ |
| 1st Law: Compressor | $\frac{\dot{\mathbf{W}}_{\text {s,comp }}}{\dot{\mathbf{m}}}=\widehat{\mathbf{H}}_{4}-\widehat{\mathbf{H}}_{1}<\mathbf{0}$ |

## Back Work Ratio (BWR)

Fraction of work produced by the turbine that is consumed by the compressor.
$\mathbf{B W R}=\frac{-\widehat{\mathbf{W}}_{\mathrm{C}}}{\widehat{\mathbf{W}}_{\mathrm{T}}}=\frac{\widehat{\mathbf{H}}_{1}-\widehat{\mathbf{H}}_{4}}{\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{3}}$

## The Air-Standard Brayton Cycle

## Process 1-2: HEX \#1

Heat transferred to the working fluid at constant pressure from the external heat source.
Process 2-3: Turbine
Hot gases expand isentropically to produce shaft work.
Process 3-2 HEX \#2
Heat is rejected to the low temperature reservoir at constant pressure.
Process 4-1: Compressor
Cool gas is compressed isentropically.


Cold Air-Standard Assumptions
Heat capacities of air are constant and have the values determined at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$.

Cold Air-Standard Brayton Cycle Thermal Efficiency

$$
\eta=1-\frac{1}{\mathbf{r}_{\mathbf{p}}^{(\gamma-1) / \gamma}}
$$

Compressor Pressure Ratio

$$
r_{p}=\frac{\mathbf{P}_{1}}{\mathbf{P}_{4}}
$$

$\eta_{\text {Regeb }}=1-\frac{\mathbf{T}_{1}}{\mathbf{T}_{4}}\left(\mathbf{r}_{\mathrm{p}}\right)^{(\gamma-1) / \gamma}$
Simple Air-Standard
Brayton Cycle
$\eta=1-\frac{1}{\mathbf{r}_{\mathrm{p}}^{(\gamma-1) / \gamma}}$

## Refrigeration Cycle Maximum COP

The Carnot Refrigeration Cycle provides the upper limit of the COP.

$$
\mathrm{COP}_{\mathrm{R}, \max }=\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{~W}_{\text {cycle }}}=\frac{1}{T_{\mathrm{H}} / T_{\mathrm{C}}-1}=\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}-T_{\mathrm{C}}}
$$

## Impracticalities of the Carnot Vapor-Compression Refrigeration Cycle

Problem: Most Compressors do not work well on two-phase mixtures.
Solution: Completely vaporize the refrigerant in the evaporator.

Problem: Turbines are not designed to handle vapor-liquid mixtures.
Solution: Replace the turbine with an expansion valve.

## Ideal Vapor-Compression

## Refrigeration Cycle

## Process 1-2: Evaporator

Heat absorbed at constant pressure.
Effluent is a saturated vapor.
Process 2-3: Compressor Isentropic compression.
Process 3-4: Condenser
Heat is rejected at constant pressure.
Process 4-1: Expansion Valve Isenthalpic expansion.


COP of Ideal Vapor-Compression Refrigeration Cycles

$$
\mathbf{C O P}_{\mathrm{R}}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\text {cylc }}}=\frac{\widehat{\mathbf{H}}_{2}-\widehat{\mathbf{H}}_{1}}{\widehat{\mathbf{H}}_{3}-\widehat{\mathbf{H}}_{2}}
$$

## Factors to Consider in Choosing a Refrigerant

- Cost, the $\mathrm{P}^{*}$-T relationship, enthalpy of vaporization, chemical stability, corrosiveness, toxicity, and flammability.


## The $\mathbf{P}^{*}$-T Relationship

The saturation temperature of the working fluid at the operating pressure of the condenser must be greater than the temperature of the hot reservoir in order to reject heat.
The saturation pressure of the refrigerant should not be too high because a condenser that is capable of operating at high pressure is much more expensive and hazardous.

The saturation temperature of the working fluid at the operating pressure of the evaporator must be less than the temperature of the cold reservoir in order to absorb heat. The saturation pressure of the refrigerant should not be less than atmospheric pressure because air leaks into the system can severely decrease the COP.

## Cascade Vapor-Compression Refrigeration Cycle

- Two refrigeration cycles that use two different refrigerants are linked by a HEX.
- The lower cycle is colder and it absorbs heat from the refrigerated space.
- The lower cycle rejects heat into the upper cycle through the HEX.
- The upper cycle absorbs heat from the lower cycle through the HEX.
- The upper cycle is hotter and can reject heat to a very hot reservoir.
- Can use the same refrigerant in both cycles or use a refrigerant with a low vapor pressure in the upper cycle and one with a relatively high vapor pressure in the lower cycle.



## Multistage Vapor-Compression Refrigeration Cycle

- Similar to the Cascade Cycle.
- Both cycles must use the same refrigerant.
- Instead of exchanging heat between two cycles, the flash tank separates the saturated liquid and the saturated vapor.
- The saturated liquid leaves the flash drum in stream 4 and proceeds to the lower expansion valve.
- The saturated vapor leaves the flash drum in stream 6 and flows to the mixer and passes through the upper cycle again.
- The saturated vapor, in stream 6, recycled back into the upper cycle has a high enthalpy. By diverting this high enthalpy stream from the lower cycle into the upper cycle, we have accomplished the same energy transfer that the heat exchanger does in a Cascade cycle.



## Heat Pump Cycle Maximum COP

The Carnot Heat Pump Cycle provides the upper

## COP of Heat Pump Cycles

 limit of the COP.$$
\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\text {cycle }}}=\frac{\widehat{\mathbf{H}}_{3}-\widehat{\mathbf{H}}_{4}}{\widehat{\mathbf{H}}_{3}-\widehat{\mathbf{H}}_{2}}
$$

## Gas Refrigeration Cycles

Disadvantage: tend to be less efficient than Vapor-Compression Cycles.
Advantages: relatively lightweight and are capable of achieving very low temperatures.

## Air-Standard Assumptions

1. The working fluid is air and it behaves as an ideal gas.
2. The cycle is modeled as a closed cycle with the air cooled in HEX \#2 and recirculated to the compressor.
3. The combustion reactor is replaced HEX \#1.
4. All processes are internally reversible.

## Cold Air-Standard Assumptions



Heat capacities of air are constant and have the values determined at $\mathbf{2 5}^{\mathbf{o}} \mathbf{C}$.

## Regenerative Gas Refrigeration Cycles

Increases the coefficient of performance and it reduces the minimum temperature in the cycle.
Multistage regeneration allows the air-standard refrigeration cycle to achieve cryogenic temperatures.


Used by permission from Trane


## Introduction: Basic Concepts of <br> Thermodynamics

In this chapter, you will discover the nature of thermodynamics and how it effects your life. The scope of this book is provided so you will know what you will and will not learn. Many of the key terms that are used to discuss thermodynamics are introduced and explained.

## How Does Thermo Affect You?

- Engines: Trains, Planes \& Automobiles
- Heating Systems: Heat Pumps
- Cooling Systems:
$\diamond$ Air Conditioning
$\checkmark$ Refrigeration
- Others:
$\diamond$ Aspects of Thermo that are beyond the scope of this course make it a key aspect of chemical and biological systems
- Thermo touches the lives of most people as a means of transportation.
- Heating and cooling systems make many people's lives more comfortable and keep food from spoiling.
- Thermo is also the key to electrical power generation.

- If you live in a mild climate, such as Seattle's, you may have one of these behind your house.
- Ever wonder what is inside or how it works?

- Looks kind of complicated.
- Reversible heat pumps, like this one, can also be used as air-conditioners
- So, what is the purpose of this device ?

- In cooling mode, the heat pump uses electrical work to transfer heat from cool air (inside your home) into the warm air (outside your home).
- The cool part is that, for each Watt of electrical power used by the $\mathrm{A} / \mathrm{C}$ unit, more than one Watt of energy is removed from the air inside your home.
- Not bad!
- What happens when the reversing valve is switched?

- In heating mode, the heat pump uses electrical work to transfer heat from cool air (outside your home) into the warm air (inside your home).
- The cool part is that, for each Watt of electrical power used by the heat pump unit, more than one Watt of energy is added to the air inside your home.
- So, a heat pump is more efficient than an electrical resistance heater! Nice.
- A refrigerator works in much the same way that a heat pump does.
- In fact an $\mathrm{A} / \mathrm{C}$ unit is technically a refrigerator because the purpose is to keep the cool space cool.

The Continuum Scale

- A large group of molecules is larger than 100 mm across
- Behavior of individual molecules is not studied
- Only the properties of the large group of molecules are studied: think $\mathrm{P}, \mathrm{V}$ and T
- $1_{\text {st }}$ Law - Energy is a conserved quantity
- This is the basis for much of this course.
- 2nd Law - A simple and sensible idea, right?
- The implications of the 2nd law are ENORMOUS
- Forms of Energy
- There are many types of potential energy, but we will generally only consider gravitational potential energy
- I suspect you already have a pretty good understanding of Kinetic Energy
- You were introduced to Internal Energy in general chemistry, but in this class, you will learn a lot more about how to use this quantity to solve problems.
- Dimensions are more fundamental than units
- Other dimensions include electrical charge and temperature
- Units are not very difficult except when we must convert between systems of units, such as AE and SI.
- The easiest way to keep this straight is to use $\mathrm{g}_{\mathrm{c}}$ and Newton's $2_{\text {nd }}$ Law of Motion.
- We will work a problem using this in class.
- Online, I like the FootRule website. Check it out!


## Terminology or Nomenclature

- System: The material or volume that we are studying
- Systems have boundaries
- Closed Systems: Mass does not cross the boundary
- Open Systems: Mass does cross the boundary
- Properties
- Intensive vs. Extensive Properties
- Extensive properties depend on the size of the system, intensive properties do not.
- Molar Properties: per mole. Molar volume: $\tilde{\mathbf{V}}$
- Specific Properties: per kg or per $\mathrm{lb}_{\mathrm{m}}$. Specific volume: $\hat{\mathbf{V}}$
- States
- The condition of a piece of matter or system as determined by its intensive properties.
- If ANY intensive property is different, then the system is in a different state.
- Systems
- The entire universe is divided into two regions: the system and the surroundings.
- The surface that separates the system from the surroundings is called the boundary of the system.
- If mass flows across the system boundary, then the system is called OPEN.
- If NO mass flows across the system boundary, then the system is called CLOSED.
- Properties
- Intensive properties are more important in this course because they determine the STATE of the system.
- Molar and specific properties are intensive variables. We will use them MUCH more than we will use extensive properties, such as volume.
- States
- Consider a system that contains a pure substance in a single phase.
- If we measure just TWO intensive properties of the system, then we don't need to measure any more properties.
- They are all fixed and could be determined from the two values that we measured.
- This cool part is a special case of the Gibbs Phase Rule. We'll learn more about this in Lesson 3C.


## More Nomenclature

- Process
$\diamond$ A change in the state of a system
- Process Path
- The series of states that a system moves through on its way from the initial state to the final state.
- Special Types of Processes
$\checkmark$ Isobaric - constant pressure
$\checkmark$ Isothermal - constant temperature
$\diamond$ Isochoric - constant volume
- Cycles
$\checkmark$ Special process paths in which the initial state is the same as the final state
$\diamond$ Thermodynamic cycles are a key topic in this course
- Most of the problems we solve in this course will involve the analysis of processes
- One key to understanding the effects of any process on a system is to know which states the system passes through during the process. That is, we need to understand the process path
- Special types of processes are a little bit easier to analyze because one property does not change.
- These are the big three special processes, but we will add 3 or 4 more special types of processes later in the course.
- Cycles are special and cool types of processes.
- Engines, refrigerators and heat pumps all operate on Thermodynamic Cycles.
- Analysis of cycles is the ultimate goal of this course !


## Equilibrium

- A system is in equilibrium when no unbalanced potentials or driving forces exist within the system boundary.
- Thermal: no temperature driving forces
- Chemical: no chemical driving forces
- Phase: no mass transfer driving forces
- Mechanical: no unbalanced mechanical forces
- Quasi-Equilibrium Processes
- A process during which the system only deviates from equilibrium by an infinitessimal amount.
- Every state along the process path is very nearly an equilibrium state.
- Equilibrium
- For a system to truly be in equilibrium, it must be in equilibrium thermally, chemically, mechanically and it must be in phase equilibrium as well.
- Quasi-Equilibrium Processes
- All forces are balanced or nearly balanced throughout the process
- Q-E processes must occur very slowly so the system only deviates slightly from equilibrium.
- Although no real process is actually a QE process, we can use the Q-E process as a best case.
- Then we can compare the performance of real processes to the performance of equivalent $\mathrm{Q}-\mathrm{E}$ processes.
- Volume is pretty straightforward and the units should be very familiar.
- The units of pressure for SI may not all be familiar.
- My favorite unit for pressure is the kPa. 1 $\mathrm{atm}=101.325 \mathrm{kPa}=14.696 \mathrm{psia}$
- Oddly enough, there are different types of pressures.
- Before today, you only worked with absolute pressure and that is what you want to continue to use.
- So, if you are given a vacuum pressure or gage pressure, the first thing you want to do is convert it to absolute pressure.
- $\mathrm{P}_{\text {gage }}=\mathrm{P}_{\text {abs }}-\mathrm{P}_{\text {atm }}$
- $\mathrm{P}_{\text {vac }}=\mathrm{P}_{\text {atm }}-\mathrm{P}_{\text {abs }}$
- Remember that absolute pressure cannot be negative, but gage pressure can.
- Technically, vacuum pressure can be negative, but it is not usually expressed as vacuum pressure in that case.


## Manometers

- Barometer Eqn:

$$
\mathbf{P}_{2}=\mathbf{P}_{1}+\rho_{\mathrm{f}} \frac{\mathbf{g}}{\mathbf{g}_{\mathbf{c}}} \mathbf{h}
$$

- Manometer Eqn:

$$
\mathbf{P}_{\text {in }}=\mathbf{P}_{\text {out }}+\rho_{\mathrm{f}} \frac{\mathbf{g}}{\mathbf{g}_{\mathbf{c}}} \mathbf{h}
$$

- Differential

Manometer Eqn:

$$
\mathbf{P}_{\mathrm{up}}=\mathbf{P}_{\mathrm{down}}+\left(\rho_{\mathrm{m}}-\rho_{\mathrm{f}}\right) \frac{\mathbf{g}}{\mathbf{g}_{\mathbf{c}}} \mathbf{h}
$$

- The barometer eqn helps you calculate the pressure the bottom of a tank, P2, given the pressure at the top of the tank, P 1 , and the depth and density of the fluid.
- Remember that the pressure at the bottom of the tank is always greater than the pressure at the surface of the liquid.
- A manometer lets you calculate the difference between the pressure in two different locations, such as the difference between the pressure inside a tank and the ambient pressure.
- All you need to know is the density of the manometer fluid and the difference in the height of the manometer fluid in the two legs of the manometer. (assuming the density of the fluid in the tank is negligible, usually this means it is a gas).
- The differential manometer eqn lets you calculate the difference in pressure between two locations, even if the fluid density is similar to the density of the manometer fluid.
- This is especially useful for measuring the pressure drop that occurs as a fluid flows through a pipe.
- Engineers usually use thermocouples or other temperature measuring devices because they are well-suited to electronic data acquisition.
- Ideal Gas Thermometers provide some of the most accurate temperature measurements available.
- The downside is that several experiments must be run at decreasing pressure so the results can be extrapolated back to ZERO pressure.
- Why? Because only at zero pressure is any real gas actually ideal.
- Once this calibration is complete, the IG Thermometer is ready to measure the temperature of a sample of the same gas that was used in the calibration.
- In order to measure the temperature of a different gas, the IG Thermometer must be recalibrated.
- The IG thermometer is very accurate, but not practical for most applications.

1A-1
Kinetic and Potential Energy of an Airplane in Flight
6 pts
Gravitational acceleration is less at higher altitudes than at sea level. Assume gravitational acceleration as a function of altitude is described by $\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)=9.806-3.2 \times 10^{-6} \mathrm{~h} \mathrm{~h}$, where h is the altitude (relative to sea level).
Consider an aircraft flying at $750 \mathrm{~km} / \mathrm{h}$ at an altitude of 12 km . Before take-off, the aircraft weighed 50 kN at sea level. Determine its:
a.) kinetic energy
b.) potential energy relative to sea level.

Read: Since gravitational acceleration is LESS at higher altitude, the gravitational potential energy of the airplane will not be quite as great as you might ordinarily expect. We need the weight of the airplane at sea level in order to determine the mass of the airplane. We need ot know the mass in order to calculate both the kinetic and gravitation potential energies of the plane.

Given: $\quad \mathbf{g}\left(\mathrm{m} / \mathbf{s}^{2}\right)=\mathbf{a}-\mathbf{b}$ * $\mathbf{h}$

| a | $9.8066 \mathrm{~m} / \mathrm{s}^{2}$ |
| :--- | ---: |
| b | $3.20 \mathrm{E}-06 \mathrm{~s}^{-2}$ |


| v | $750 \mathrm{~km} / \mathrm{h}$ |
| :--- | ---: |
| h | 12000 m |
| $\mathbf{W}_{\text {sea level }}$ | 50 kN |
| g $_{\text {c }}$ | $1 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ |

Find:
a.) $\mathrm{E}_{\text {kin }} \quad$ ??? MJ

Assumptions: 1-Gravitational acceleration is a function of altitude only.

## Equations / Data / Solve :

Let's begin by determining the mass of the airplane from the weight at sea level.

Newton's 2nd Law of Motion:

$$
\mathbf{g}_{\mathbf{c}} \mathbf{F}=\mathbf{m} \mathbf{a}
$$

or
$\mathbf{g}_{\mathbf{c}} \mathbf{W}_{\text {sealevel }}=\mathbf{m g}$
Eqn 2
At sea level, according to the eqn given in the problem statement, the acceleration of gravity is :

Now, we can solve Eqn 1 for m and plug in values:
$\mathbf{m}=\mathbf{W}_{\text {sealevel }} \frac{\mathbf{g}_{\mathbf{c}}}{\mathbf{g}}$
g
$9.8066 \mathrm{~m} / \mathrm{s}^{2}$

Eqn 3
m
5099 kg
Now, we are ready to solve the rest of the problem.

Part a.) The definition of kinetic energy is :

$$
E_{K}=\frac{1}{2} m \frac{v^{2}}{g_{C}}
$$

| $E_{k}$ | $1.106 \mathrm{E}+08 \mathrm{~J}$ |
| :---: | :---: |
| $\mathrm{E}_{\mathrm{k}}$ | 111 |

Part b.) The definition of gravitational potential energy, relative to sea level, is :

$$
\mathbf{E}_{\mathbf{P}}=\mathbf{m} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}} \mathbf{h}
$$

Eqn 5

The problem is what value of $g$ do we use ? Do we simply use $\mathbf{g}$ at the altitude of the plane? Or do we use some sort of average value of $\mathbf{g}$ ?

Let's think about this part a bit more carefully. $\quad \mathbf{E}_{\mathbf{P}}=\mathbf{m} \frac{\overline{\mathbf{g}}}{\mathbf{g}_{\mathbf{C}}} \mathbf{h}$
Eqn 6

The differential increase in the potential energy of an object infinitessimally above sea level is:

$$
\mathbf{d E} E_{P}=\mathbf{m} \frac{\mathbf{g}}{g_{\mathrm{C}}} \mathbf{d x}
$$

So, the gravitational potential energy of an oject that is a distance $h$ above sea level is :

$$
E_{P}=\int_{0}^{E_{P}} d E_{P}=\int_{0}^{\mathbf{h}} \mathbf{m} \frac{\mathbf{g}}{g_{C}} d x
$$

Now, if $\mathbf{m}, \mathbf{g}$ and $\mathbf{g}_{\mathbf{c}}$ are all constants, Eqn 7 simply reduces to Eqn 5 because the integral of $\mathbf{d x}$ from $\mathbf{0}$ to $\mathbf{h}$ is just $\mathbf{h}$. In our problem, however, $\mathbf{g}$ is NOT a constant. Therefore :

|  | $\mathbf{E}_{\mathbf{P}}=\frac{\mathbf{m}}{\mathbf{g}_{\mathbf{C}}} \int_{\mathbf{0}}^{\mathbf{h}}(\mathbf{a}-\mathbf{b x}) \mathbf{d x}=\frac{\mathbf{m}}{\mathbf{g}_{\mathbf{C}}}\left[\mathbf{a x}-\mathbf{b} \frac{\mathbf{x}^{2}}{\mathbf{2}}\right]_{\mathbf{0}}^{\mathbf{h}}=\frac{\mathbf{m}}{\mathbf{g}_{\mathbf{C}}}\left[\mathbf{a h}-\mathbf{b} \frac{\mathbf{h}^{2}}{\mathbf{2}}\right]=\frac{\mathbf{m}}{\mathbf{g}_{\mathbf{C}}}\left[\mathbf{a}-\mathbf{b} \frac{\mathbf{h}}{\mathbf{2}}\right] \mathbf{h} \quad$ Eqn 9 |
| :--- | :--- |
| $\mathrm{E}_{\mathrm{pot}}$ | $5.988 \mathrm{E}+08 \mathrm{~J}$ |
| $\mathrm{E}_{\text {pot }}$ | 598.8 MJ |

So, what "average" value of g should we have used in Eqn 5 ? Let's combine Eqns 5 and 8 and see what we get.

$$
\mathbf{m} \frac{\overline{\mathbf{g}}}{\mathrm{g}_{\mathrm{g}}} \mathbf{k}=\frac{\mathbf{m}}{\mathrm{g}_{\mathrm{g}}}\left[\mathbf{a}-\mathbf{b} \frac{\mathbf{h}}{\mathbf{2}}\right] \boldsymbol{h} \quad \text { or : } \quad \overline{\mathbf{g}}=\left[\mathbf{a}-\mathbf{b} \frac{\mathbf{h}}{\mathbf{2}}\right]
$$

So, the average effective value of the gravitational acceleration for determining the potential energy of the airplane in this problem is equal to the gravitational acceleration at HALF of the actual altitude of the airplane. Would this be true if $\mathbf{g}=\mathbf{a}-\mathbf{b} \mathbf{x}-\mathbf{c} \mathbf{x}^{2}$ ?? Nope. What is special about the equation for $\mathbf{g}$ given in this problem that leads to the interesting result in Eqn 10 ?

Answers: a.)
$\mathrm{E}_{\mathrm{k}} \quad 111 \mathrm{MJ}$
b.)
$\mathrm{E}_{\mathrm{pot}} \quad 599 \mathrm{MJ}$

It takes energy to compress a spring. This energy is stored as spring potential energy, which can be calculated using: $\mathbf{E}_{\text {spring }}$ $=1 / 2 \mathrm{~K} \mathrm{x}^{2}$, where K is the spring constant and $\mathbf{x}$ is the distance the spring is compressed.
At a dock, a boat with a mass of $50,000 \mathrm{~kg}$ hits a bumper supported by two springs that stop the boat and absorb its kinetic energy.
Determine the spring constant of the springs that is required if the maximum compression is to be 60 cm for a boat speed of $2.4 \mathrm{~m} / \mathrm{s}$.

Read: It is important to note that two springs are used to stop the vehicle.
All of the initial kinetic energy of the vehicle must be absorbed by the springs and converted to spring potential energy.

Given:

$$
E_{\text {spring }}=\frac{1}{2} K x^{2}
$$

Eqn 1
$\mathbf{K}=$ spring constant
$\mathbf{x}=$ displacement of the spring, in this case compression.

| m | 50000 | $\mathbf{k g}$ |
| :--- | :---: | :--- |
| v | 2.4 | $\mathrm{~m} / \mathrm{s}$ |
| x | 0.6 | m |

$g_{c}$
$1 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$

Find: $\quad$ ? ??? $/ m$

Assumptions: 1 - The spring is a linear spring and therefore the given equation applies.
2- All of the kinetic energy of the boat is absorbed by the springs.

## Equations / Data / Solve:

The key to solving this problem is to recognize that the final potential energy of the two springs must be equal to the initial kinetic energy of the vehicle. So, we should begin by calculating the initial kinetic energy of the boat.

$$
\begin{equation*}
E_{\text {kin }}=\frac{1}{2 g_{c}} m v^{2} \tag{Eqn 2}
\end{equation*}
$$

Because there are two identical springs :

$$
\begin{equation*}
E_{\text {spring }}=\frac{E_{\text {kin }}}{2} \tag{Eqn 3}
\end{equation*}
$$

Plugging given values into Eqn 2 and Eqn 3 yields:

| $E_{\text {kin }}$ | 144000 | $J$ |
| :--- | :--- | :--- |
| $E_{\text {spring }}$ | 72000 | $J$ |

Next, we can solve Eqn 1 algebraically for the spring constant, K.

$$
K=\frac{2 E_{\text {spring }}}{x^{2}}
$$

First, let's work on the units.

$$
\mathbf{K}[=] \frac{\mathbf{J}}{\mathbf{m}^{2}}[=] \frac{\mathbf{N} \cdot \mathbf{m}}{\mathbf{m}^{2}}[=] \frac{\mathbf{N}}{\mathbf{m}}
$$

$\mathrm{K} \quad 4.00 \mathrm{E}+05 \mathrm{~N} / \mathrm{m}$

A curious astronaut took her bathroom scale (a spring scale) and a beam scale (compares masses) to the moon. On Earth, she determined that her mass was 124 lb . The gravitational acceleration on the moon is $\mathrm{a}=5.3 \mathrm{ft} / \mathrm{s}^{2}$.
When she reaches the moon...
a.) What will she weigh on the spring scale?
b.) What will the beam scale indicate for her mass?

Read: The key here is that a spring scale actually measures weight (which is a force) and not mass.
Use gc in Newton's 1st Law of Motion to answer this question.

Given:
m
$124 \mathrm{lb}_{\mathrm{m}}$
a
$5.3 \mathrm{ft} / \mathrm{s}^{2}$
Find:
a.)
$\mathrm{F}_{\mathrm{wt}}$
??? $\quad \mathrm{lb}_{\mathrm{f}}$
b.)
$m_{\text {beam }}$
???
$\mathbf{l b}_{\mathrm{m}}$
Assumptions:
Equations / Data / Solve:
Part a.) The key equation here is Newton's 1st Law of Motion :

$$
\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\mathrm{wt}}=\mathbf{m a}
$$

Because a spring scale measures weight, which is the force exerted by the astronaut on the scale, we need to solve Eqn 1 for $\mathbf{F}_{\text {wt }}$.
$\mathbf{F}_{\mathrm{wt}}=\frac{\mathbf{m a}}{\mathbf{g}_{\mathrm{C}}}$
Eqn 1

Eqn 2
Now, we can plug values into Eqn 2 :
$g_{c}$
$32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{b}_{\mathrm{t}}-\mathrm{s}^{2}$
$\mathrm{F}_{\mathrm{wt}}$
$20.43 \mathrm{lb}_{\mathrm{f}}$

Part b.) A beam balance is the kind of scale used in most medical and sports facilities.
Known masses are moved along the length of the beam until the net torque around the fulcrum is zero. That is the astronaut's weight multiplied by a fixed distance along the beam to fulcrum is equal to the weight of the masses hanging from the beam multiplied by their distance from the fulcrum.

Weight is still involved in a beam balance,but the key is that the local gravitational acceleration applies to BOTH the astronaut AND the masses on the beam balance. This scale will read the same on the moon as it would in the astronaut's bathroom! Therefore, it is actually measuring the astronaut's MASS (which is the same on the moon as in her or his bathroom.

$$
\begin{array}{lll}
\mathrm{m}_{\text {beam }} & 124 \quad \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

Answers: a.)
b.)

| $\mathrm{F}_{\mathrm{wt}}$ | 20.4 | $\mathrm{lb}_{\mathrm{f}}$ |
| :--- | :--- | :--- |
| $\mathrm{m}_{\text {beam }}$ | 124 | $\mathrm{lb}_{\mathrm{m}}$ |

# "The best way to Learn Thermodynamics" 

A strong boy throws a rock straight up with a force of 100 N . At what rate does the rock initially accelerate upwards, in $\mathbf{m} / \mathbf{s}^{2}$ ? Assume the mass of the rock is 2 kg and the local gravitational acceleration is $9.74 \mathrm{~m} / \mathrm{s}^{2}$.

Read: The key here is to recognize that two forces are acting on the rock: the 100 N and the weight of the rock (due to gravity). Then, the problem becomes an application of Newton's 1st Law of Motion.

Given:

| $m$ | 2 | kg |
| :--- | :---: | :--- |
| $\mathrm{~F}_{\text {throw }}$ | 100 | N |
| a |  | $? ? ?$ |
|  | $\mathrm{~m} / \mathrm{s}^{2}$ |  |

Find:
a

Assumptions: None.
Equations / Data / Solve:
The key equation here is Newton's 1st Law of Motion :

$$
\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\text {net }}=\mathbf{m} \mathbf{a}
$$

We can solve Eqn 1 for the rate at which the rock accelerates :

$$
\begin{equation*}
\mathbf{a}=\frac{\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\text {net }}}{\mathbf{m}} \tag{Eqn 2}
\end{equation*}
$$

We know that :
So, all we need to is determine the net force acting on the stone.

A free-body diagram might be helpful.
The net force acting on the rock in the upward direction is :
$\mathbf{F}_{\text {net }}=\mathbf{F}_{\text {throw }}-\mathbf{F}_{\mathrm{wt}}$
Eqn 3
We can apply Newton's 1st Law of Motion again to evaluate $F_{\mathrm{w} \text {. }}$.

$$
\begin{equation*}
\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\mathrm{wt}}=\mathbf{m g} \tag{Eqn 4}
\end{equation*}
$$

We can solve Eqn 4 for $F_{w t}$, as follows :

$$
F_{w t}=m \frac{g}{g_{C}}
$$

Eqn 5

Plugging values into Eqn 5, then Eqn 3 and, finally, Eqn 2 yields :

| $\mathrm{F}_{\mathrm{wt}}$ | 19.5 N |
| :--- | ---: |
| $\mathrm{~F}_{\text {net }}$ | 80.52 N |
| $\mathbf{a}$ | $\mathbf{4 0 . 2 6 ~ \mathbf { ~ m } / \mathbf { s } ^ { 2 }}$ |

Answers: a $40.3 \mathrm{~m} / \mathrm{s}^{2}$

A new, energy-efficient home refrigerator consumes about 350 kW -h of electricity per year. Assume the electricity is generated by burning fossil fuels. When fossil fuels like coal, oil, natural gas and gasoline are burned, most of the carbon in the fuel burns completely to form carbon dioxide $\left(\mathbf{C O}_{2}\right) . \mathbf{C O}_{2}$ is a greenhouse gas that contributes to global warming and that is undesirable. In a typical natural gas power plant, 0.5 kg of $\mathrm{CO}_{2}$ is produced for each $\mathbf{k W}$-h of electricity generated. Consider a city with $\mathbf{5 0 0 , 0 0 0}$ homes with one refrigerator in each home. How much $\mathbf{C O}_{2}$, in metric tons, is produced by the refrigerators in the city in one year?

Read: This problem is all about unit conversions.
Keep careful track of units and it will not be difficult.
A kW-h is unit of energy. A Watt is energy per time and when you multiply by hours (time) you are left with units of energy. A kW-h is $\mathbf{k W}$ times hours. It is the amount of energy consumed in an hour by a device that uses $\mathbf{1} \mathbf{~ k W}$ of power ( $\mathbf{1} \mathbf{~ k J} / \mathbf{s}$ for $\mathbf{3 6 0 0} \mathbf{~ s e c}$ ).

| Given: | $\mathrm{m}_{\mathrm{co2}}$ | 0.5 | $\mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kW}-\mathrm{h}$ | Power | 350 | $\mathrm{~kW}-\mathrm{h} /$ house/year |
| :--- | :--- | :---: | :--- | :---: | ---: | :--- |
|  | N | 500000 | houses |  |  |  |
| Find: | $\mathrm{M}_{\mathrm{CO} 2}$ | ??? | mton $\mathrm{CO}_{2} /$ year |  |  |  |
| Assumptions: | None. |  |  |  |  |  |

## Equations / Data / Solve:

The total mass of $\mathrm{CO}_{2}$ produced per year is the product of the rate of $\mathrm{CO}_{2}$ production per $\mathrm{kW}-\mathrm{h}$, the rate at which power is used by each house and the number of houses.

$$
\mathbf{M}_{\mathrm{CO} 2}=\text { Power } \cdot \mathbf{m}_{\mathrm{CO} 2} \cdot \mathbf{N}_{\mathrm{houses}}
$$

Check the units in this equation :

$$
\begin{equation*}
M_{\mathrm{CO} 2}=\left(\frac{\mathrm{kW} \cdot \mathrm{~h}}{\text { house } \cdot \text { year }}\right)\left(\frac{\mathrm{kg} \mathrm{CO}_{2}}{\mathrm{~kW} \cdot \mathrm{~h}}\right) \cdot(\text { house })=\left(\frac{\mathrm{kg} \mathrm{CO}_{2}}{\text { year }}\right) \tag{Eqn 2}
\end{equation*}
$$

Plug in the values :
$\mathrm{M}_{\mathrm{CO} 2} \quad 8.75 \mathrm{E}+07 \quad \mathrm{~kg} \mathrm{CO}_{2} /$ year
Unit conversion factor :

Therefore :

1 metric ton $=\quad 1000 \mathrm{~kg}$

| $\mathrm{M}_{\mathrm{CO} 2}$ | 87500 | mton $\mathrm{CO}_{2} /$ year |
| :--- | :--- | :--- |

Answers:

| $\mathrm{M}_{\mathrm{CO} 2}$ | 87500 | mton $\mathrm{CO}_{2} /$ year |
| :--- | :--- | :--- |

NASA would like a rocket to accelerate upward at a rate of $125 \mathrm{ft} / \mathrm{s}^{2}$. The mass of the rocket is $35,000 \mathrm{lb} \mathrm{m}_{\mathrm{m}}$. Determine the upward thrust force, in $\mathbf{I b}_{\mathbf{f}}$, that the rocket engine must produce.

Read: This is a direct application of Newton's 2nd Law of Motion in the AE System of units. The key to solving this problem is a clear understanding of $\mathbf{g}_{\mathrm{c}}$.

Given: m
m
a
$35000 \quad \mathrm{lb}_{\mathrm{m}}$
$125 \mathrm{ft} / \mathrm{s}^{2}$
Find: $\mathrm{F}_{\text {up }} \quad$ ??? $\quad \mathbf{l b}_{\mathrm{f}}$
$g_{c}$
32.174
$1 b_{m}-\mathrm{ft} / \mathrm{l} \mathrm{b}_{\mathrm{f}}-\mathrm{s}^{2}$
$32.174 \mathrm{ft} / \mathrm{s}^{2}$

## Equations / Data / Solve:

We begin with Newton's 2nd Law of Motion :

$$
\mathbf{g}_{\mathrm{c}} \mathbf{F}=\mathbf{m} \mathbf{a}
$$

The force required to lift the rocket and accelerate it upward depends on both the weight of the rocket (and therefore the g ) and the rate at which the rocket must be accelerated... $120 \mathrm{ft} / \mathrm{s}^{2}$. Therefore:

$$
\mathbf{F}_{\text {up }}=\mathbf{F}_{\text {weight }}+\mathbf{F}_{\text {accelerate }}
$$

We can now substitute Eqn 1 into Eqn 2 to get :

$$
F_{u p}=\frac{\mathbf{m g}}{\mathbf{g}_{c}}+\frac{\mathbf{m a}}{\mathbf{g}_{\mathrm{c}}}=\mathbf{m} \frac{(\mathbf{g}+\mathbf{a})}{\mathbf{g}_{\mathrm{c}}}=\mathbf{m} \frac{\mathbf{a}_{\text {total }}}{\mathbf{g}_{\mathrm{c}}}
$$

Eqn 3
Now, we can plug in the values :

| $\mathrm{a}_{\text {total }}$ | $157.174 \mathrm{ft} / \mathrm{s}^{2}$ |
| :--- | ---: |
| $\mathrm{~F}_{\text {wt }}$ | $35000 \mathrm{lb}_{\mathrm{f}}$ |
| $\mathrm{F}_{\text {acc }}$ | $135979 \mathrm{lb}_{\mathrm{f}}$ |
| $\mathrm{F}_{\text {total }}$ | $170979 \mathrm{lb}_{\mathrm{f}}$ |

Note, in the absence of gravity, weightlessness, it would still require a force of $F_{\text {acc }}=\mathbf{1 3 5}, \mathbf{9 7 9} \mathrm{lb}_{\mathrm{f}}$ to accelerate the rocket at a rate of $125 \mathrm{ft} / \mathrm{s}^{2}$.

Answers: |  | $\mathrm{F}_{\text {up }}$ | 171000 | $\mathrm{lb}_{\mathrm{f}}$ |
| :--- | :--- | :--- | :--- |

1B-5
Relationships between Different Types of Pressures
Fill in the blank values in the table below. Assume $P_{\text {atm }}=100 \mathrm{kPa}$ and the density of liquid mercury $(\mathrm{Hg})$ is $13,600 \mathrm{~kg} / \mathrm{m}^{3}$.

|  | $\mathrm{P}_{\text {gage }}(\mathrm{kPa})$ | $\mathrm{Pabs}^{\text {( }} \mathrm{kPa}$ ) | $\mathrm{P}_{\text {abs }}(\mathrm{mmHg})$ | $\mathrm{P}_{\text {gage }}\left(\mathrm{m} \mathrm{H}_{2} \mathrm{O}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| a.) | 17 |  |  |  |
| b.) |  | 225 |  |  |
| c.) |  |  | 55 |  |
| d.) |  |  |  | 32 |

Read: This problem requires an understanding of the relationship between absolute and gage pressure. It will also require the effective use of unit conversions.

Given:

| $P_{\text {atm }}$ | 100 | kPa |
| :--- | :---: | :--- |
| $\mathrm{g}_{\mathrm{c}}$ | 1 | $\mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ |
| $\mathrm{P}_{\text {gage }}$ |  |  |
| $\mathrm{P}_{\text {abs }}$ | 17 | kPa |
|  | 225 | kPa |


|  | $\rho_{\mathrm{H} 2 \mathrm{O}}$ <br> $\rho_{\mathrm{Hg}}$ | 1000 <br> 13600 | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| :--- | :--- | :---: | :---: |
|  | $\mathrm{~kg} / \mathrm{m}^{3}$ |  |  |
| c.) | $\mathrm{P}_{\text {abs }}$ | 55 | mmHg |
| d.) | $\mathrm{P}_{\text {gage }}$ | 32 | $\mathrm{~m} \mathrm{H}_{2} \mathrm{O}$ |

a.)
225
kPa
d.)
32
m $\mathrm{H}_{2} \mathrm{O}$
1- Assume:
g
$9.8066 \mathrm{~m} / \mathrm{s}^{2}$

| $\mathbf{P}_{\text {gauge }}$ | ??? | kPa |
| :--- | :--- | :--- |
| $\mathbf{P}_{\text {abs }}$ | ??? | kPa |


| $P_{\text {abs }}$ | ??? | mmHg |
| :--- | :--- | :--- |
| $\mathbf{P}_{\text {gauge }}$ | ??? | $\mathrm{mH}_{2} \mathrm{O}$ |

Assumptions:
Find:

## Equations / Data / Solve:

There are two key relationships in the solution to this problem.
The first is the relationship between absolute and gage pressure :

$$
\mathbf{P}_{\text {gage }}=\mathbf{P}_{\mathrm{abs}}-\mathbf{P}_{\mathrm{atm}}
$$

The second relationship is required in order to make sense of the units for pressure in the last two columns of the table in the problem statement. The 2nd relationship is the Manometer Equation.

$$
\begin{equation*}
\mathbf{P}_{\text {in }}=\mathbf{P}_{\text {out }}+\rho_{\mathrm{f}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h} \tag{Eqn 2}
\end{equation*}
$$

The reason we use the Manometer Equation is that when a pressure unit involves a length of a given fluid, as in the last two columns of the table given in this problem, it really means that this is the height that an open-ended manometer (for gage pressure) or a closed end manometer (for absolute pressure) would read if the given fluid were used as the manometer fluid.
Now, let's see how we use these 2 equations to complete the table.
Part a.) In order to fill in the 2nd column, we must solve Eqn 1 for the absolute pressure :

$$
\mathbf{P}_{\text {abs }}=\mathbf{P}_{\text {gage }}+\mathbf{P}_{\mathrm{atm}}
$$

To complete column 3, we must convert the units from our result for $\mathbf{P}_{\text {abs }}$ using Eqn 2.
In this case, $\mathbf{P}_{\text {in }}=\mathbf{P}_{\text {abs }}$ and $\mathbf{P}_{\text {out }}=\mathbf{0}$ (because it is a closed-end manometer).
Actually, $\mathbf{P}_{\text {out }}$ should be equal to the vapor pressure of the manometer fluid, but that is a topic for chapter 2.

Therefore, Eqn 2 becomes :

$$
\mathbf{P}_{\mathrm{abs}}=\rho_{\mathrm{Hg}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}
$$

Eqn 4

In this case, the answer for column 3 is actually the value of $\mathbf{h}$, so we need to solve Eqn $\mathbf{4}$ for $\mathbf{h}$ :

$$
\begin{equation*}
\mathbf{h}=\frac{\mathbf{P}_{\text {abs }}}{\rho_{\mathrm{Hg}}} \frac{\mathbf{g}_{\mathrm{c}}}{\mathbf{g}} \tag{Eqn 5}
\end{equation*}
$$

Be sure to convert $\mathbf{k P a}$ to $\mathbf{P a}=\mathbf{N} / \mathbf{m}^{2}$ when plugging values into Eqn 5.

$$
\mathbf{P}_{\mathrm{abs}}=\mathbf{h}=\quad 0.877 \mathrm{~m} \mathrm{Hg}
$$

Pabs $\quad 877 \mathrm{~mm} \mathrm{Hg}$

Column 4 requires a gage pressure, so the open-end form of the Manometer Equation is used :
In this case, $\mathbf{P}_{\text {in }}=\mathbf{P}_{\text {abs }}$ and $\mathbf{P}_{\text {out }}=\mathbf{P}_{\text {atm }}$ (because it is a closed-end manometer).

$$
\begin{equation*}
\mathbf{P}_{\mathrm{abs}}=\mathbf{P}_{\mathrm{atm}}+\rho_{\mathrm{H} 2 \mathrm{O}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h} \tag{Eqn 6}
\end{equation*}
$$

Next, we solve Eqn 6 for h and make use of Eqn 1 if we want to use the given value of the gage pressure.

$$
\mathbf{h}=\frac{\left(\mathbf{P}_{\text {abs }}-\mathbf{P}_{\mathrm{atm}}\right)}{\rho_{\mathrm{H} 2 \mathrm{O}}} \frac{\mathbf{g}_{\mathrm{c}}}{\mathbf{g}}=\frac{\mathbf{P}_{\text {gage }}}{\rho_{\mathrm{H} 2 \mathrm{O}}} \frac{\mathbf{g}_{\mathrm{c}}}{\mathbf{g}}
$$

$\mathbf{P}_{\text {gage }}=\mathbf{h}=$
$1.7335 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$

| gage | $1.734 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- |

Parts b-d) The solution of the remaining parts of this problem involve the algebraic manipulation of Eqns 1, 3, 5 and 7, but does not involve any additional concepts, techniques or data. The final answers to parts $b$ through $d$ are provided in the table below.

Answers:

|  | $\begin{aligned} & \mathbf{P}_{\text {gage }} \\ & (\mathbf{k P a}) \end{aligned}$ | $\begin{gathered} \mathbf{P}_{\text {abs }} \\ (\mathrm{kPa}) \end{gathered}$ | $\begin{gathered} \mathbf{P}_{\mathrm{abs}} \\ (\mathrm{mmHg}) \end{gathered}$ | $\begin{gathered} \mathbf{P}_{\text {gage }} \\ \left(\mathbf{m ~ H}_{2} \mathbf{O}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| a.) | 17 | 117 | 877 | 1.73 |
| b.) | 125 | 225 | 1690 | 22.9 |
| c.) | -92.7 | 7.34 | 55 | -0.909 |
| d.) | 314 | 414 | 3100 | 32 |

Notice that I chose to use 3 significant figures in my answers.
This is somewhat arbitrary since the problem statement does not make it very clear how many significant figures exist in the given information. When in doubt, 3 significant figures is a reasonable choice.

# "The best way to Learn Thermodynamics" 

## 1B-6

Force Required to Lift an Underwater Gate
5 pts
A steel plate rests on the horizontal bottom of a water tank that is 3 m deep. What upward force, in $\mathbf{N}$, must be applied to the steel plate to just barely lift it straight upward? The plate is 20 cm in diameter.
Assume the weight of the plate is negligible.

Read: The key to this problem is to recognize that the TOTAL force required to just barely lift the man-hole cover is equal to the force exerted on the top surface of the man-hole cover by both the atmosphere and the water. This force is equal to the absolute pressure at the bottom of the tank times the area of the man-hole cover. The force a man or machine would need to exert in order to lift the man-hole cover is less because atmospheric pressure is also acting on the outer or bottom surface of the man-hole cover.


Equations / Data / Solve:
The total force required to just barely lift the man-hole cover is:

$$
\mathbf{F}_{\text {bottom }}=\mathbf{P}_{\text {bottom }} \mathbf{A}_{\text {gate }}
$$

Eqn 1

The gate is circular, so :
$A_{\text {gate }}=\frac{\pi}{4} D^{2}$
Plug values into Eqn 2 :

$$
\mathrm{A}_{\text {gate }} \quad 0.03142 \mathrm{~m}^{2}
$$

Next, we can use the Barometer Equation to determine the pressure at the bottom of the tank.

$$
\begin{equation*}
\mathbf{P}_{\text {bottom }}=\mathbf{P}_{\text {surface }}+\rho_{\mathrm{H} 2 \mathrm{O}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}=\mathbf{P}_{\mathrm{atm}}+\rho_{\mathrm{H} 2 \mathrm{O}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h} \tag{Eqn 3}
\end{equation*}
$$

Finally, we substitute values into Eqn 1 to answer the question :
F
4066 N

This is the total force required to lift the man-hole cover. But atmospheric pressure is also acting on the outside or bottom surface of the manhole cover as well. So, since we want to determine how much additional force must be applied in order to lift the man-hole cover, we must subtract the upward force attributable to atmospheric pressure below the cover.

$$
\mathbf{F}_{\mathrm{atm}}=\mathbf{P}_{\mathrm{atm}} \quad \mathbf{A}_{\text {gate }}
$$

The additional force that must be exerted to lift the man-hole cover is the difference between the total force required and the force exerted by the atmosphere.

$$
\mathbf{F}_{\mathrm{up}}=\mathbf{F}_{\text {total }}-\mathbf{F}_{\mathrm{atm}}
$$

Eqn 5 $\square$

If the door had a hinge, the problem would be a bit more challenging because it would involve the computation of torques acting around the axis of the hinge. Torques and lever arms are not part of this thermodynamics course.

Answers: $\mathrm{Fup}_{\text {up }} \quad 924 \mathrm{~N}$
1B-7 Mass, Weight and Gravitational Acceleration: Keebos and Tweeks 5 pts

In the future, we may encounter a civilization from another planet. They will not use the SI or AE systems of units. Suppose we meet aliens who use the Zerf as a unit of mass and the Spund as a unit of force.
One Spund is the weight of a mass of one Zerf on the surface of Mars. The gravitational acceleration on Mars is 3.7 $\mathrm{m} / \mathrm{s}^{2}$.
a.) What is $\mathbf{g}_{\mathbf{c}}$ in the alien system of units? Be sure to include the numerical value and the units.
b.) How much would a 350 Zerf object weigh on the surface of Mars, in Spunds?
c.) How much would a 350 Zerf object weigh on the surface of the Earth, in Spunds?
d.) To which system of units is the Zerf-Spund system most similar, SI or AE?

Read: 1 Zerf exerts 1 Spund of force when $\mathbf{a}=\mathbf{3 . 7} \mathbf{~ m} / \mathrm{s}^{\mathbf{2}}$.
The key here is that Newton's 2nd Law of Motion applies regardless of where the system is located or what system of units is used.

Given:

| $\mathbf{a}_{\text {moon }}$ | 3.7 | $\mathrm{~m} / \mathrm{s}^{2}$ |
| :--- | :--- | :--- |
| m | 350 | Zerf |

Find:

| a.) | $\mathrm{g}_{\mathrm{c}}$ | ??? | m -Zerf/Spund-s ${ }^{2}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b.) | $\mathrm{F}_{\mathrm{wt}}$ | ??? | Spund | for | $\mathrm{m}_{\text {Mars }}$ | 350 | Zerf |
| c.) | $\mathrm{F}_{\mathrm{wt}}$ | ??? | Spund | for | $\mathrm{m}_{\text {Earth }}$ | 350 | Zerf |

d.) Is this $\mathrm{Z}-\mathrm{S}$ system similer to the SI or AE system?

Assumptions: 1 - The acceleration of gravity at the surfae of the Earth is: $a_{\text {Earth }} \quad 9.8066 \mathbf{m} / \mathrm{s}^{2}$
Equations / Data / Solve:

Newton's 2nd Law :

$$
\mathbf{g}_{\mathbf{c}} \mathbf{F}=\mathbf{m} \mathbf{a}
$$

$$
\mathbf{g}_{\mathrm{c}}=\frac{\mathrm{ma}}{\mathrm{~F}}
$$

$g_{c}=\frac{(1 \text { Zerf })\left(3.7 \mathrm{~m} / \mathrm{s}^{2}\right)}{1 \text { Spund }}$

Part b.) Solve Newton's 2nd Law for F :

$$
\mathbf{F}=\frac{\mathbf{m} \mathbf{a}}{\mathbf{g}_{\mathbf{c}}}
$$

$$
F=\frac{(350 \text { Zerf })\left(3.7 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.7 \mathrm{~m} \cdot \text { Zerf } / \text { Spund } \cdot \mathrm{s}^{2}}
$$

Part c.) Solve Newton's 2nd Law for F :

$$
\mathbf{F}=\frac{\mathbf{m} \mathbf{a}}{\mathbf{g}_{\mathrm{c}}}
$$

$$
F=\frac{(350 \text { Zerf })\left(9.8066 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.7 \mathrm{~m} \cdot \text { Zerf } / \text { Spund } \cdot \mathrm{s}^{2}}
$$

There are two important points to this problem:
1 - The value of $\mathbf{g}_{c}$ is the same everywhere in the universe.
2 - If a person weighs a certain amount more on the Earth than on Mars in one system of units, then he or she also weighs proportionally more on the Earth than on Mars in any other sytem of units as well!

Part d.) The Zerf-Spund system of units is analogous to the American Engineering System of units because $\mathbf{g}_{\mathbf{c}}$ is not equal to 1 and 1 unit of mass exerts 1 unit of force (on the Mars).

Answers: a.)

| $g_{c}$ | 3.70 | m -Zerf/Spund-s ${ }^{2}$ |
| :--- | :--- | :--- |

b.)
$F_{\text {wt }} \quad 350$ Spund
c.)
$\mathrm{F}_{\mathrm{wt}} \quad 930$ Spund
d.)

AE

# "The best way to Learn Thermodynamics" 

Consider the following equation. All three of the terms in parentheses are dimensionless groups. Because $\mathbf{k}_{\mathbf{c}}$ is difficult to determine directly, the other variables are measured and $\mathbf{k}_{\mathbf{c}}$ is calculated from the given equation.

$$
\left(\frac{k_{c} D}{D_{A B}}\right)=0.023\left(\frac{\mu}{\rho D_{A B}}\right)^{1 / 3}\left(\frac{d_{p} v \rho}{\mu}\right)^{0.8}
$$

What is the estimated value of $\mathbf{k}_{\mathrm{C}}$ ? What are the units of $\mathbf{k}_{\mathrm{C}}$ ? Show your work.
The following values were measured:
$\mathrm{D}=8.0 \mathrm{~mm}, \mathrm{D}_{\mathrm{AB}}=0.475 \mathrm{~cm}^{2} / \mathrm{s}, \mu=1.12 \times 10^{-3} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}, \rho=1.00 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{v}=18.3 \mathrm{~m} / \mathrm{s}$.

Read: The key here is that the equation and the groups in parentheses are dimensionless.
This tells us that the constant 0.023 is also dimensionless.
So, we can plug numbers and units into the right-hand side of the equation to determine the value of the dimensionless group on the left-hand side. Then, we use the values and units of $\mathbf{D}$ and $\mathbf{D}_{\mathbf{A B}}$ to determine the value and units of $\mathbf{k}_{\mathbf{c}}$.

It is probably wise to begin the problem by converting all of the given values to one consistent system of units. I chose the MKS system.

Given:
D
$D_{A B}$
$\begin{array}{cl}0.008 & \mathrm{~m} \\ 4.75 \mathrm{E}-05 & \mathrm{~m}^{2} / \mathrm{s}\end{array}$
$\mu$
$\rho$

| $1.12 \mathrm{E}-03$ | $\mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ |
| :---: | :--- |
| 1.000 | $\mathrm{~kg} / \mathrm{m}^{3}$ |
| 18.3 | $\mathrm{~m} / \mathrm{s}$ |

Find: $k_{c} \quad$ ??? ??? (units)
Assumptions: None.

## Equations / Data / Solve:

Once all the given values are in a consistent set of units, we can evaluate each of the dimensionless groups in Eqn 1.

$$
\left(\frac{\mathrm{Dv} \rho}{\mu}\right)=
$$

$$
\left(\frac{\mu}{\rho D_{A B}}\right)=
$$

Let's double check the units on these groups using the SI units.

$$
\begin{aligned}
& \left(\frac{D \mathbf{v} \rho}{\mu}\right)[=] \frac{\mathbf{m}(\mathbf{m} / \mathbf{s})\left(\mathbf{k g} / \mathbf{m}^{3}\right)}{\left(\mathbf{k g} \cdot \mathbf{m} / \mathbf{s}^{2}\right) \cdot \mathbf{s} / \mathbf{m}^{2}}[=] \frac{\mathbf{k g} / \mathbf{m} \cdot \mathbf{s}}{\mathbf{k g} / \mathbf{m} \cdot \mathbf{s}} \\
& \left(\frac{\mu}{\rho D_{A B}}\right)[=] \frac{\left(\mathbf{k g} \cdot \mathbf{m} / \mathbf{s}^{2}\right) \cdot \mathbf{s} / \mathbf{m}^{2}}{\left(\mathbf{k g} / \mathbf{m}^{3}\right)\left(\mathbf{m}^{2} / \mathbf{s}\right)}[=] \frac{\mathbf{k g} / \mathbf{m} \cdot \mathbf{s}}{\mathbf{k g} / \mathbf{m} \cdot \mathbf{s}}
\end{aligned}
$$

All the units cancel, so we can conclude that both of these groups are indeed dimensionless.

$$
\left(\frac{k_{c} D}{D_{A B}}\right)=0.023\left(\frac{\mu}{\rho D_{A B}}\right)^{1 / 3}\left(\frac{D v \rho}{\mu}\right)^{0.8}
$$

First, let's determine the units for $\mathbf{k}_{\mathbf{g}}$.

$$
\mathbf{k}_{\mathrm{c}}[=] \frac{\mathbf{D}_{\mathrm{AB}}}{\mathbf{D}}=\frac{\mathbf{m}^{2} / \mathbf{s}}{\mathbf{m}}[=] \mathbf{m} / \mathbf{s}
$$

$$
\mathrm{k}_{\mathrm{C}}=3.253 \frac{\mathrm{D}_{\mathrm{AB}}}{\mathrm{D}}=
$$

$$
0.0193
$$

Answers: $\begin{array}{ll}k_{C} & \begin{array}{r}0.0193 \mathrm{~m} / \mathrm{s} \\ 1.93 \mathrm{~cm} / \mathrm{s}\end{array}\end{array}$

State whether each of the following systems is an open system or a closed system. Explain the reasoning behind your answer. a.) human being, b.) a bicycle tire, c.) your refrigerator, d.) the planet Earth.

Read: Not much to say here.

## Given:

Find:
a.)
Human being
c.) A refrigerator
b.) Bicycle tire
d.) Planet Earth

Assumptions: Assumptions are part of the answers in this problem.
Equations / Data / Solve: None.

## Answers:

## a.) Human Being

If we assume the person is alive, then, under most circumstances she or he should be treated as an open system because air and other gases move in and out of the person's lungs when they breathe in and out. For a short period of time, a person might hold their breathe and you could make a case that a closed system would be a reasonable choice. Over a longer period of time, perhaps days or years, a person would be best described as an open system due to the consumption of food and water and the elimination of waste.
b.) Bicycle Tire

If the tire has no leaks and is not being filled over the time period of interest, the tire can be reasonably modeled as a closed system. If the tire has a leak or the filling process is being studied, then air does cross the system boundary and the tire is an open system.
c.) Refrigerator

There are a few subtleties here.
Some refrigerators have ice makers and water chillers. Water flows into the system in this case. But water only flows into the system when ice is being made or the water tap is being used to obtain a glass of cold water.
When water is flowing in and out of the system or ice is flowing out of the system, then the refrigerator can best be described as an open system.
When a person is putting groceries into the refrigerator or taking food out of the refrigerator, mass crosses the system boundary and the refrigerator is again best described as an open system.
Most of the hours in a given day, however, there is no mass crossing the system boundary and the refrigerator can be considered to be a closed system.
d.) Earth

This is a tricky one.
The general answer is that the Earth can be described as a closed system.
But this is not entirely true since meteors are routinely bombarding our atmosphere, if not the surface of the Earth. It is also true that molecules do leave our atmosphere and move off into space. Although these mass flow rates are very modest compared to the mass of the Earth and its atmosphere, under some circumstances, these factors are important and Earth must be considered to be an open system.

State whether each of the following properties is an intensive property or an extensive property. Explain the reasoning behind your answer.
a.) Density
b.) Internal energy
c.) Average molecular weight
d.) Molar volume
e.) Number of moles.

Read: Not much to say here.
Given:
Find: Intensive or Extensive ?
a.)
Density
d.) Molar volume
b.) Internal energy
e.) Number of moles
c.) Average molecular weight

Assumptions: None.
Equations / Data / Solve: None.
Answers:
a.) Density Intensive

Dividing in half a tank of water at a given T, P and density yields two smaller tanks containing water, but the density of the water in each new, smaller tank is the same as it was intially in the one big tank.
Density is the ratio of mass to volume. The ratio of two extensive properties is an intensive property.
b.)

Internal Energy

## Extensive

Dividing in half a tank of water at a given T, Pwith a given total internal energy yields two smaller tanks containing water at the same T \& P, but the internal energy of the water in each new, smaller tank is half as much as it was intially in the one big tank.
c.) Average Molcular Weight Intensive

Dividing in half a tank of air at a given T, P and average molecular weight yields two smaller tanks containing air, but the average molecular weight of the air in each new, smaller tank is the same as it was intially in the one big tank.
Average molecular weight is the ratio of mass to moles. The ratio of two extensive properties is an intensive property.
d.) Molar Volume Intensive

Dividing in half a tank of air at a given T, P and molar volume yields two smaller tanks containing air, but the molar volume of the air in each new, smaller tank is the same as it was intially in the one big tank.
Molar volume is the ratio of volume to moles. The ratio of two extensive properties is an intensive property.
e.) Number of moles Extensive

Dividing in half a tank of water at a given $\mathrm{T}, \mathrm{P}$ with a givennumber of moles inside yields two smaller tanks containing water at the same T \& P, but thenumber of moles of water in each new, smaller tank is half as much as it was intially in the one big tank.

1C-3 Intensive Properties and the State of a System
Can pure liquid water exist at $99^{\circ} \mathrm{C}$ and 1 atm with a density of $0.980 \mathrm{~g} / \mathrm{cm}^{3}$ ? Explain your reasoning.

Read: Not much to say here.

| Given: | $\mathbf{T}$ | 99 | ${ }^{\circ} \mathbf{C}$ | $\rho$ | 0.98 | $\mathbf{g} / \mathrm{cm}^{3}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}$ | 1 | $\mathbf{a t m}$ |  |  |  |

Find: Can pure liquid water exist under these conditions?
Assumptions: None.

## Equations / Data / Solve:

## Answers: No.

The state of a pure substance that exists in a single phase is uniquely determined when $\mathbf{2}$ intensive properties are known. Here, the values of $\mathbf{3}$ intensive properties are specified. Any one of the three could be considered too much, extraneous or redundant information. For example, at the given $\mathbf{T} \& \mathbf{P}$, the density of liquid water is 0.959 $\mathbf{g} / \mathrm{cm}^{3}$, not $0.980 \mathrm{~g} / \mathrm{cm}^{3}$. Similarly, liquid water at the given $\mathbf{T}$ \& density exists at a pressure of about $\mathbf{0 . 4 7 1} \mathbf{~ a t m}$, not 1 atm.

1D-1
Bomb Calorimeter
Propane and oxygen undergo a combustion reaction in a strong, rigid, stainless steel canister called a bomb calorimeter. Is this process an isothermal, isobaric or isochoric process? Explain your reasoning.

Read: Not much to say here.

Given:

Find:

## Assumptions:

Equations / Data / Solve:

Answers: Isochoric

The combustion of propane is exothermic so the temperature will increase. The reaction results in an increase in the number of moles as 1 molecule of propane combines with 5 molecules of oxygen to produce 3 molecules of $\mathrm{CO}_{2}$ and 4 molecules of water. As a result of the increase in $\mathbf{T}$ and the number of molecules in the system, the pressure will increase. So, the process is neither isothermal nor isobaric. The volume of the rigid bomb calorimeter remains constant throughout this process. Therefore, this process is an isochoric process.

1D-2 Thermodynamic Cycles in Normal Life 3 pts
List three common devices that make use of thermodynamic cycles and explain how you know they operate using a thermodynamic cycle.

Read: Not much to say here.

## Given:

Find:

## Assumptions:

## Equations / Data / Solve:

## Answers:

## 1- Refrigerator

Work and heat cross the system boundary, but mass does not. The refrigerant undergoes a cyclic process involving changes in both $\mathbf{T} \& \mathbf{P}$, but the refrigerant always returns to the same initial state to begin the cycle again.

2- $\quad$ Air conditioner
Work and heat cross the system boundary, but mass does not. The refrigerant undergoes a cyclic process involving changes in both $\mathbf{T} \& \mathbf{P}$, but the refrigerant always returns to the same initial state to begin the cycle again.

3- Automobile
This one is a bit trickier. Work and heat cross the system boundary. Heat enters the working fluid (air) from the heat source (burning gasoline) and work leaves the system in the form of a rotating drive shaft or gear train. It is not as clear that the air undergoes a cyclic process. It may help to consider all the air in the world as the working fluid for the cycle. The engine draws in air at ambient temperature. It undergoes changes in $\mathbf{T} \& \mathbf{P}$ inside the engine and is exhausted back into the environment at a higher temperature. Eventually, the exhausted air cools back down and returns to its initial state to complete the cycle.

1D-
Identifying Types of Equilibria
4 pts
State whether each of the following systems are in thermal equilibrium, chemical equilibrium, phase equilibrium or mechanical equilibrium.
Give all the correct answers for each system. a.) snow resting on the roof of my house on a very cold day, b.) a cup of coffee sitting on my desk, c.) a bicycle rolling along a level road, d.) a river flowing past your city.

Read: Not much to say here.
Given:
a.)
Snow
c.)
Bike
b.)
Coffee
d.)
River

Find: Is each system in thermal equilibrium, chemical equilibrium, phase equilibrium or mechanical equilibrium?

## Assumptions:

Equations / Data / Solve:
Answers:

|  |  | Thermal | Chemical | Phase | Mechanical |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a.) | Snow | No | Yes | No | Yes | The snow is melting due to heat transfer from my roof and may also be sublimating. |
| b.) | Coffee | No | Yes | No | Yes | Water and oils are evaporating while heat is being transferred to the surroundings. |
| c.) | Bike | Yes | Yes | Yes | No | Unbalanced forces cause the bike to roll. |
| d.) | River | No | Yes | No | No | The water is absorbing heat and evaporating. |

Which of the following processes could be reasonably described as a quasi-equilibrium process?
a.) a gas escaping from a high-pressure tank through a tiny pin hole into the surrounding air
b.) a boy jumping from a cliff into the ocean
c.) a woman blowing up a balloon
d.) water flowing from the bottom of a large tank through a hose and a shower-head.

Read: Not much to say here.

| Given: | a.) | Gas escaping from a tank | c.) | Woman blowing up a balloon |
| :--- | :--- | :--- | :--- | :--- |
|  | b.) | Boy jumping from a cliff | d.) | Water flowing from a tank |

Find: $\quad$ Can each process be considered to be a quasi-equilibrium process?

## Assumptions:

Equations / Data / Solve:

## Answers:

a.) No. The gas escapes from the high pressure tank very rapidly. The outward pressure force of the gas is not balanced by the pressure force of the surrounding atmosphere. This system deviates substantially from mechanical equilibrium.
b.) No. The boy accelerates as he falls because the force of gravity acting on him is not balanced. This system deviates substantially from mechanical equilibrium.
c.) Yes. The air from the woman's lungs enters the balloon slowly and steadily in each breath. Acceleration is very modest. Under most circumstances, it would be reasonable to describe this as a quasi-steadystate process.
d.) Yes. The tank drains slowly. The water flows slowly and nearly steadily. There are unbalanced forces causing the water to flow from the tank through the tube and the shower head, but the imbalance is modest and the acceleration of the water is very gradual. The pressure at the bottom of the tank decreases as the water level drops. But this occurs slowly. Under most circumstances, it would be reasonable to describe this as a quasi-steady-state process.

1E-1
Pressure Measurement Using a Multi-Fluid Manometer
A pressurized vessel contains water with some air above it, as shown below. A multi-fluid manometer system is used to determine the pressure at the air-water interface, point $F$. Determine the gage pressure at point $\mathbf{F}$ in $\mathbf{k P a}$ gage.


Data:
$h_{1}=0.24 \mathrm{~m}, \mathrm{~h}_{2}=0.35 \mathrm{~m}$ and $\mathrm{h}_{3}=0.52 \mathrm{~m}$
Assume the fluid densities are water: $1000 \mathrm{~kg} / \mathrm{m}^{3}$, oil: $790 \mathrm{~kg} / \mathrm{m}^{3}$ and mercury $(\mathrm{Hg}): 13,600 \mathrm{~kg} / \mathrm{m}^{3}$.

Read: Use the barometer equation to work your way through the different fluids from point 1 to point 2.
Remember that gage pressure is the difference between the absolute pressure and atmospheric pressure.

| Given: | $\mathrm{h}_{1}$ | 0.24 | m | $\rho_{\text {w }}$ | 1000 | $\mathrm{kg} / \mathrm{m}^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{h}_{2}$ | 0.35 | m | $\rho_{\text {oil }}$ | 790 | $\mathrm{kg} / \mathrm{m}^{3}$ |
|  | $\mathrm{h}_{3}$ | 0.52 | m | $\rho_{\mathrm{Hg}}$ | 13600 | $\mathrm{kg} / \mathrm{m}^{3}$ |
|  | $\mathrm{P}_{2}$ | 101. | kPa |  |  |  |
| Find: | $\mathbf{P}_{1, \text { gauge }}$ | ??? | kPa gauge |  |  |  |
| Assum |  | 1- The fluid 2- The den | in the system are com es of the liquids ar |  |  |  |
|  |  |  |  | g | 9.8066 | $\mathrm{m} / \mathrm{s}^{2}$ |
|  |  |  |  | gc | 1 | $\mathrm{kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ |

## Equations / Data / Solve:

Gage pressure is defined by : $\quad \mathbf{P}_{\text {gage }}=\mathbf{P}_{\text {abs }}-\mathbf{P}_{\text {atm }}$
Eqn 1
If we assume that $\mathbf{P}_{\mathbf{2}}$ is atmospheric pressure, then Eqn 1 becomes :

$$
\mathbf{P}_{1, \text { gage }}=\mathbf{P}_{1}-\mathbf{P}_{2}
$$

Eqn 2
The key equation is the Barometer Equation: $\quad \mathbf{P}_{\text {bottom }}=\mathbf{P}_{\text {top }}+\rho\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}$
Now, apply Eqn 1 repeatedly to work our way from point 1 to point 2 .

$$
\mathbf{P}_{\mathrm{A}}=\mathbf{P}_{\mathrm{B}}
$$

Eqn 4

Some key observations are:

$$
\mathbf{P}_{\mathrm{C}}=\mathbf{P}_{\mathrm{D}}=\mathbf{P}_{\mathrm{E}}
$$

These are true because the points are connected by open tubing, the fluid is not flowing in this system and no change in the composition of the fluid occurs between $\mathbf{A} \& \mathbf{B}$ or $\mathbf{C} \& \mathbf{D}$ or $\mathbf{D} \& \mathbf{E}$.
$\mathbf{P}_{\mathbf{A}}>\mathbf{P}_{\mathbf{2}}$, therefore :

$$
\mathbf{P}_{\mathrm{A}}=\mathbf{P}_{2}+\rho_{\mathrm{Hg}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{3}
$$

Eqn 6
$\mathbf{P}_{\mathrm{E}}>\mathbf{P}_{1}$, therefore :
$\mathbf{P}_{\mathrm{E}}=\mathbf{P}_{\mathbf{1}}+\rho_{\mathrm{w}}\left(\frac{\mathrm{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{\mathbf{1}}$
$\mathbf{P}_{\mathrm{B}}>\mathbf{P}_{\mathrm{C}}$, therefore :
$\mathbf{P}_{\mathrm{B}}=\mathbf{P}_{\mathrm{C}}+\rho_{\text {oil }}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{2}$
Eqn 8

Combine Eqns 2, 5 \& 6 to get :

$$
\mathbf{P}_{2}+\rho_{\mathrm{Hg}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{3}=\mathbf{P}_{\mathrm{C}}+\rho_{\text {oil }}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{2}
$$

Eqn 9

Use Eqns $\mathbf{3}$ \& 5 to eliminate $\mathbf{P}_{\mathrm{c}}$ from Eqn 7 :

$$
\mathbf{P}_{2}+\rho_{\mathrm{Hg}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{3}=\mathbf{P}_{1}+\rho_{\mathrm{w}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{1}+\rho_{\text {oil }}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{2}
$$

Now, solve for $\mathbf{P}_{\mathbf{1}}-\mathbf{P}_{\mathbf{2}}: \quad \mathbf{P}_{\mathbf{1}}-\mathbf{P}_{\mathbf{2}}=\rho_{\mathrm{Hg}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{\mathbf{3}}-\rho_{\mathrm{w}}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{\mathbf{1}}-\rho_{\text {oil }}\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{\mathbf{2}}$
Eqn 10

Combining Eqns 10 \& 2 yields :

$$
\mathbf{P}_{1, \text { gage }}=\left[\rho_{\mathrm{Hg}} \mathbf{h}_{3}-\rho_{\mathrm{w}} \mathbf{h}_{1}-\rho_{\text {oil }} \mathbf{h}_{2}\right]\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right)
$$

Eqn 12

Plugging values into Eqn 12 yields :

$$
\begin{align*}
& \mathrm{P}_{1, \text { gage }} \\
& \mathrm{D}
\end{align*}
$$

$$
64287
$$

Pa gage
kPa gage

Answers: $\mathrm{P}_{1, \text { gage }} \quad 64.3 \quad$ kPa gage

If you are curious :

$$
\begin{array}{lr}
\mathrm{P}_{1} & 165.61 \mathrm{kPa} \\
\mathrm{P}_{2} & 101.325 \mathrm{kPa}
\end{array}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =\mathrm{P}_{\mathrm{B}} & & 170.68 \mathrm{kPa} \\
\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}} & =\mathrm{P}_{\mathrm{E}} & & 167.97 \mathrm{kPa}
\end{aligned}
$$



1E-2
Pressure Gage and Manometer Readings
A cylindrical tank contains pressurized nitrogen gas. The gage on the tank reads 88 kPa . A manometer is attached to the tank to verify its pressure. Determine the manometer reading in $\mathbf{c m}$ if the manometer fluid is ...
a.) $\rho_{\text {mercury }}=13,600 \mathrm{~kg} / \mathrm{m}^{3}$, b.) $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Read: Remember that gage pressure is the difference between the absolute pressure and atmospheric pressure. Apply the Barometer Equation with a known gage pressure to determine the manometer reading, h.

Given:

| $\mathrm{P}_{\text {gage }}$ | 88 kPa |
| :--- | ---: |
| $\rho_{\mathrm{w}}$ | $1000 \mathrm{~kg} / \mathrm{m}^{3}$ |
| $\rho_{\mathrm{Hg}}$ | $13600 \mathrm{~kg} / \mathrm{m}^{3}$ |

Find: h ??? m

Assumptions: 1-The nitrogen and water in the system are completely static.
2- The densities of the nitrogen and water are uniform and constant.
$\begin{array}{llcl}3-\text { The acceleration of gravity is: } & \mathrm{g} & 9.8066 & \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{~g}_{\mathrm{c}} & 1 & \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}\end{array}$
Equations / Data / Solve:
Gage pressure is defined by :
$\mathbf{P}_{\text {gage }}=\mathbf{P}_{\text {abs }}-\mathbf{P}_{\text {atm }}$
Eqn 1

The Manometer Equation tells us that : $\quad \mathbf{P}_{\mathrm{abs}}=\mathbf{P}_{\mathrm{atm}}+\rho\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}$

Combining Eqns 1 \& 2 gives us:

$$
\mathbf{P}_{\text {gage }}=\rho\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}
$$

Now, we can solve Eqn 3 for $\mathbf{h}$ :

$$
\mathbf{h}=\frac{\mathbf{P}_{\mathrm{gage}}}{\rho\left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right)}
$$

Now, we can plug values into Eqn 4 :
a.)
h
0.660 m
b.)
8.974 m

Answers: a.)
b.)

| $h$ | 0.66 | $m$ |
| :--- | :--- | :--- |
| $h$ | 8.97 | $m$ |

1E-3
The pressure gauge on the air in the tank shown below reads 87 kPa . Determine the manometer reading, $\mathbf{h}_{\mathbf{2}}$, in $\mathbf{c m}$.


Data:
$\mathrm{h}_{1}=25 \mathrm{~cm}$ and $\mathrm{h}_{3}=65 \mathrm{~cm}$
$\mathrm{SG}_{\text {mercury }}=13.6, \mathrm{SG}_{\text {oil }}=0.75, \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Read: The density of the air is so much lover than the density of the liquids in this problem that the weight of the air can be considered negligible in the force balances we will write in this problem.

Given:

| $\mathbf{P}_{\text {gauge }}$ | 87 | kPa |
| :--- | :---: | :--- |
| $\mathbf{h}_{\text {oil }}$ | 0.65 | m |
| $\mathbf{h}_{\text {water }}$ | 0.25 | m |


| SG $_{\text {oil }}$ | 0.7 |
| :--- | :---: |
| SG $_{\mathrm{m}}$ | 13.6 |

Find: $\quad h_{\mathbf{2}}$
??? cm
Assumptions: 1 - The fluids in the system are completely static.
2 - The densities of the liquids are uniform and constant.
3 - The reference density of water used to determine specific gravity is:
4 - The acceleration of gravity is:
$\rho_{\text {wat }}$
$g$
$g_{c}$
$1000 \mathrm{~kg} / \mathrm{m}^{3}$
$9.8066 \mathrm{~m} / \mathrm{s}^{2}$
$1 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$

## Equations / Data / Solve:

Begin by writing the Manometer Equation for each interval between points A and Fon the diagram.

$$
\begin{array}{lll}
\mathbf{P}_{\mathrm{e}}=\mathbf{P}_{\mathrm{f}}+\rho_{\text {oil }} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}_{\text {oil }} & \text { Eqn 1 } & \mathbf{P}_{\mathrm{c}}=\mathbf{P}_{\mathrm{d}} \\
\mathbf{P}_{\mathrm{d}}=\mathbf{P}_{\mathrm{e}}+\rho_{\mathrm{m}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h} & \mathbf{P}_{\mathrm{b}}=\mathbf{P}_{\mathrm{c}}-\rho_{\mathrm{w}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}_{\text {water }} & \text { Eqn 3 } \\
& \mathbf{P}_{\mathrm{a}}=\mathbf{P}_{\mathrm{b}} & \text { Eqn 4 }
\end{array}
$$

If we add all 5 of these equations together we obtain :

$$
\begin{equation*}
\mathbf{P}_{\mathrm{a}}=\mathbf{P}_{\mathrm{f}}+\rho_{\text {oil }} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h o i l}+\rho_{\mathrm{m}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}-\boldsymbol{\rho}_{\mathrm{w}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{h}_{\text {water }} \tag{Eqn 6}
\end{equation*}
$$

The only unknown in this equation is $\mathbf{h}$. So, the next step is to solve the equation for $\mathbf{h}$.

$$
\begin{equation*}
h=\frac{\frac{g_{c}}{g}\left(P_{a}-P_{f}\right)-\rho_{\text {oil }} h_{\text {oil }}+\rho_{w} h_{\text {water }}}{\rho_{m}} \tag{Eqn 7}
\end{equation*}
$$

Also, because $\mathbf{P}_{\mathbf{f}}=\mathbf{P}_{\mathrm{atm}}$ and the definition of gauge pressure we can use:

$$
P_{\text {gauge }}=P_{a}-P_{a t m}=P_{a}-P_{f}
$$

$$
\text { Eqn } 8
$$

$$
\mathbf{P}_{\mathrm{a}}-\mathbf{P}_{\mathrm{f}}=\quad 87000 \mathrm{~N} / \mathrm{m}^{2}
$$

All we need to do is convert specific gravity into density and we are ready to plug values into Eqn 7.

The definition of specific gravity is :

$$
\mathbf{S G}=\frac{\rho}{\rho_{\mathrm{ref}}}=\frac{\rho}{\rho_{\mathbf{w}}}
$$

Eqn 9

This helps us simplify Eqn 7 to :

$$
\mathbf{h}=\frac{\mathbf{P}_{\text {gauge }}}{\rho_{\mathrm{m}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}}}+\frac{\mathbf{h}_{\text {water }}-\mathbf{S G}_{\text {oil }} \mathbf{h}_{\text {oil }}}{\mathbf{S G} \mathbf{m}_{\mathrm{m}}}
$$

From Eqn 9 :

$$
\mathbf{h}=\frac{\mathbf{P}_{\text {gauge }}}{\rho_{\mathrm{m}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}}}-\frac{\mathbf{S G}_{\text {oil }}}{S G_{\mathrm{m}}} \mathbf{h}_{\text {oil }}+\frac{\mathbf{h}_{\text {water }}}{S G_{\mathrm{m}}}
$$

$$
\rho=\mathbf{S G} \rho_{\mathbf{w}}
$$

Eqn 12

Plugging values into Eqn 11 yields :

$$
\rho_{\mathrm{m}}
$$

$13600 \mathrm{~kg} / \mathrm{m}^{3}$
h
0.652 m
65.2 cm

Answers: h
65.2 cm

1E-4
Temperature Unit Conversions
2 pts
The temperature on the surface of the radiator of an automobile is $134^{\circ} \mathrm{C}$. What is the temperature in ${ }^{\circ} \mathbf{R}, \mathbf{K}$, and ${ }^{\circ} \mathbf{F}$ ?

Read: Not much to read here.
Given: T $134{ }^{\circ} \mathrm{C}$

| Find: | $\mathbf{T}$ | ??? | ${ }^{\circ} \mathbf{R}$ |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{T}$ | ??? |  |

T ??? ${ }^{\circ} \mathrm{F}$

Assumptions: None.

## Equations / Data / Solve:

The relationship between Kelvin and Celsius is simplest, so let's begin there.

$$
\mathrm{T}(\mathrm{~K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15
$$

Therefore :
The relationship between Celsius and Fahrenheit is also fairly simple, so let's work on that next.

$$
\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)=1.8 \mathrm{~T}\left({ }^{\circ} \mathrm{C}\right)+32
$$

Therefore :
$273.20{ }^{\circ} \mathrm{F}$
There are two straightforward ways to determine $\mathbf{T}\left({ }^{\circ} \mathbf{R}\right)$ at this point.
We can either convert $\mathbf{T}(\mathbf{K})$ to $\mathbf{T}\left({ }^{\circ} \mathbf{R}\right)$ or we can convert $\mathbf{T}\left({ }^{\circ} \mathbf{F}\right)$ to $\mathbf{T}\left({ }^{\circ} \mathbf{R}\right)$.
Let's try both methods, just to be thorough.

$$
\mathbf{T}\left({ }^{\circ} \mathbf{R}\right)=1.8 \mathbf{T}(\mathbf{K}) \quad \text { Eqn } 3 \quad \mathbf{T}\left({ }^{\circ} \mathbf{R}\right) \quad 732.87{ }^{\circ} \mathbf{R}
$$

Alternatively :

$$
\mathbf{T}\left({ }^{\circ} \mathbf{R}\right)=\mathbf{T}\left({ }^{\circ} \mathbf{F}\right)+459.67
$$

Eqn 4
$\begin{array}{lll}\mathrm{T}\left({ }^{\circ} \mathrm{R}\right) & \mathbf{7 3 2 . 8 7} & { }^{\circ} \mathrm{R}\end{array}$

Answers: | $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | 733 | ${ }^{\circ} \mathrm{R}$ |
| ---: | :--- | ---: | :--- |
| $\mathrm{T}(\mathrm{K})$ | 407 | $\mathrm{~K}^{\mathrm{K}}$ |
| $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$ | 273 | ${ }^{\circ} \mathrm{F}$ |

The temperature of a glass of water is $27^{\circ} \mathbf{C}$. What is the temperature of the water in ${ }^{\circ} \mathbf{R}, \mathbf{K}$, and ${ }^{\circ} \mathbf{F}$ ?

Read: This one is a straightforward temperature conversion.

| Given: | $\mathbf{T}$ | 27 | ${ }^{\circ} \mathbf{C}$ |
| :--- | :--- | :--- | :--- |
| Find: | $\mathbf{T}$ | ??? | ${ }^{\circ} \mathbf{R}$ |
|  | $\mathbf{T}$ | $? ? ?$ | $\mathbf{K}^{\prime}$ |
|  | $\mathbf{T}$ | $? ? ?$ | ${ }^{\circ} \mathbf{F}$ |

Assumptions: None.

## Equations / Data / Solve:

The key equations are those that relate $\mathbf{T}$ in ${ }^{\circ} \mathbf{C}$ to the desired temperature units.

$$
T(K)=T\left({ }^{\circ} C\right)+273.15
$$

Eqn 1

| $T$ | 300.15 K |
| :---: | :---: |
|  | Eqn 2 |
| $T$ | $80.6^{\circ} \mathrm{F}$ |
|  |  |
|  | Eqn 3 |
|  | $540.27^{\circ} \mathrm{R}$ |

Alternatively, we could use :

$$
T\left({ }^{\circ} \mathbf{R}\right)=1.8 \cdot T(K)
$$

$T \quad 540.27^{\circ} \mathrm{R}$

Answers: | $\mathbf{T}$ | 540.27 | ${ }^{\circ} \mathrm{R}$ |
| :--- | :---: | :--- |
| T | 300.15 | K |
|  | T | 80.6 |${ }^{\circ} \mathrm{F}$

1E-6
Temperature Change \& Unit Conversions
2 pts
The temperature of a cup of water drops by $44^{\circ} \mathrm{F}$ when it is placed in a refrigerator for 45 minutes. How much did the temperature of the water change in $\mathbf{K},{ }^{\circ} \mathbf{R}$ and in ${ }^{\circ} \mathbf{C}$.

Read: The key to this problem is that we are considering a CHANGE in temperature and NOT a temperature of $27^{\circ} \mathrm{C}$.

| Given: | $\Delta \mathrm{T}$ | -44 | ${ }^{\circ} \mathrm{F}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Find: | $\Delta \mathbf{T}$ | $? ? ?$ | K | $\Delta \mathbf{T}$ | ??? |

Assumptions: None.

## Equations / Data / Solve:

Start with Rankine. The temperature increments for the Fahrenheit and Rankine scales are the same.

| $\Delta T$ | -44 | ${ }^{\circ} R$ |
| :--- | :--- | :--- |

Next, let's work on getting $\Delta T$ in the Kelvin scale.
This is straightforward because a temperature change of 1 K is equal to a temperature change of $1.8{ }^{\circ} \mathrm{R}$.

$$
\begin{equation*}
\Delta T(K)=\frac{\Delta T\left({ }^{\circ} R\right)}{1.8} \tag{Eqn 1}
\end{equation*}
$$

| $\Delta \mathrm{T}$ | -24.444 K |
| :--- | :--- |

Finally, the temperature increments for the Celsius and Kelvin scales are the same.

Therefore :

| $\Delta \mathrm{T}$ | -24.444 |
| :--- | :--- |
|  | ${ }^{\circ} \mathrm{C}$ |

Answers:

| $\Delta T$ | -24.4 | K |
| :--- | :---: | :--- |
| $\Delta T$ | -44 | ${ }^{\circ} \mathrm{R}$ |
| $\Delta T$ | -24.4 | ${ }^{\circ} \mathrm{C}$ |



## Properties of Pure Substances

In this chapter, you will learn to recognize a pure substance. This book focuses on the thermodynamics of pure substances. We will only consider the special case of systems that contain a mixture that consists of a single condensable species, such as the air-water system. The topic of vapor-liquid equilibrium is the central topic of this chapter and it is crucial that you understand this topic well. You will learn to obtain thermodynamic properties from the tables in the Appendices of this book. The chapter concludes with a discussion of equations of state. An equation of state is a relationship between pressure, volume and temperature. You should already be familiar with the Ideal Gas Equation of State. Here you will learn about its limitations and more accurate alternatives.

## Nomenclature

## - Pure Substance

Uniform chemical composition throughout the system

- Phases

| Liquids: | Multiple liquid phase |
| :--- | :--- |
| Solids: | Multiple solid phases |
| Gases: | Only ONE gas phase can exist |

- Phase Changes

Liquid » Gas: Boiling or Evaporating / Condensing
Liquid » Solid: Melting / Freezing
Gas » Solid: Sublimating / Desublimating

- Liquid» Gas : An Isobaric Process Path

Consider the isobaric process on the next slide in which energy is added to a closed system that initially contains liquid water at a T $<\mathrm{T}_{\text {sat }}$

- Pure Substance
$\diamond$ Dry air is a pure substance
$\diamond$ Humid air can be considered to be a pure substance
$\diamond$ A tank containing liquid water with humid air above it cannot be considered to be a pure substance !
- Phases
$\diamond$ Multiple liquid phases can exist in equilibrium: oil and water
$\diamond$ Multiple solid phases can exist in equilibrium: diamond and carbon, different types of ice crystals, different types of steels.
$\diamond$ Only ONE gas phase can exist at equilibrium. All the molecules always mix.
- Phase Changes
$\diamond$ What is the difference between boiling and evaporating?
$\diamond$ Sublimation: Did you ever notice that old ice cubes in your home freezer have shrunk ? Do you think they melted? No. They sublimated!
- Phase Diagrams
$\diamond$ An isobaric process path is a smooth way to introduce Phase Diagrams
- Phase Diagrams are our FRIENDS...they make any process a little easier to understand.

- Quality: $x=$ fraction of the mass in the system that exists in the gas or vapor phase.
- 1 - Subcooled Liquid
$\mathrm{T}<\mathrm{T}_{\text {sat }}$ and $\mathrm{P} *(\mathrm{~T})<\mathrm{P}$ and x is undefined
- 2 - Saturated Liquid
$\mathrm{T}=\mathrm{T}_{\text {sat }}$ and $\mathrm{P} *(\mathrm{~T})=\mathrm{P}$ and $\mathrm{x}=0$
- 3 - Saturated Mixture
$\mathrm{T}=\mathrm{T}_{\text {sat }}$ and $\mathrm{P} *(\mathrm{~T})=\mathrm{P}$ and $0<\mathrm{x}<1$
- 4 - Saturated Vapor
$\mathrm{T}=\mathrm{T}_{\text {sat }}$ and $\mathrm{P} *(\mathrm{~T})=\mathrm{P}$ and $\mathrm{x}=1$
- 5 - Superheated Vapor
$\mathrm{T}>\mathrm{T}_{\text {sat }}$ and P * $(\mathrm{T})>P$ and x is undefined


## Isobaric Heating Process Path on a TV Diagram



- Elements of the Vapor-Liquid region of a phase diagram
- Sat'd Liquid Curve
- Sat'd Vapor curve
- Critical Point
- Two Phase Envelope where vapor and liquid both exist within the system at equilibrium
$\diamond$ Subcooled liquid region
- Superheated vapor region
- Supercritical fluid region
- Isobaric Heating Process
- Slides up and to the left along an isobar
- This PV diagram extends down into the solid region
- We will focus on the vapor-liquid region in this course.
- Same elements in this diagram as in the TV Diagram, but they are located in slightly different positions.
- Isobaric Heating Process
- Slides to the left along a horizontal isobar


## Nomenclature

## - Latent Heat vs. Sensible Heat

$\bigcirc$ Liquids: Multiple liquid phase
$\bigcirc$ Liquids: Multiple liquid phase
$\checkmark$ Latent Heat: As heat is added, $T$ does not change

- Sensible Heat: As heat is added, $T$ does change
- Critical Point

Above $P_{c}$ or $T_{c}$ two phases cannot exist at equilibrium
$\diamond$ Only one phase exists: a supercritical fluid

- Triple Point
$\diamond$ Liquid $\leftrightarrow$ Gas $\leftrightarrow$ Solid : All exist in the system at equilibrium
- Water: $0.01^{\circ} \mathrm{C}$ and 0.612 kPa
- Latent Heat
$\checkmark$ Heats associated with phase changes
- Sensible Heat
$\diamond$ Heat flow which causes a change in temperature
- Critical Point
$\diamond$ Pc, Tc and critical molar volume
$\checkmark$ Above $P_{C}$ the substance is a supercritical fluid
$\diamond$ Above $\mathrm{T}_{\mathrm{C}}$ the substance is a supercritical fluid


## PT Diagrams

- Two Types for the Two Types of Substances
$\diamond$ Substances that contract when they freeze
- Most substances fall into this category
$\checkmark$ Substances that expand when they freeze
- There are very few of these.
- Most important one is WATER
- Ice floats
- Most solids sink because they are more dense than the saturated liquid with which they exist at equilibrium.


## Substances That Expand on Freezing



- Red lines are saturation curves
- Consider an increase in P at constant T for a system on a Saturation Curve
- VLE: Vapor condenses into a liquid
- Conclusion: liquid is more dense than vapor
$\checkmark$ SVE: Vapor desublimates into a solid
- Conclusion: solid is more dense than vapor
$\checkmark$ SLE: Solid melts into a liquid
- Conclusion: liquid is more dense than solid
- The solid is less dense than the liquid because this substance expands on freezing
- Example: Water


## Substances That Contract on Freezing



- SLE: Liquid fuses into a solid
- Conclusion: Solid is more dense than solid
$\diamond$ The solid is more dense than the liquid because this substance contracts on freezing
$\checkmark$ Example: Almost everything except water.


## Thermodynamic Data Tables

- Four Tables in a Complete Thermodynamic Data Table
- Saturation Temperature Table
- Saturation Pressure Table
- Subcooled Liquid Table
$\diamond$ Superheated Vapor Table
- Appendix
- Steam Tables, SI \& AE
$\bigcirc$ Appendix A
$\checkmark$ Ammonia Tables, SI \& AE
$\bigcirc$ Appendix B
- R-134a Tables, SI \& AE
- Appendix C
- Look at Appendices A, B and C.
- You will become very good at using these data tables to solve problems.

- Interpolation is about drawing a line between known two points.
- Then, determine the Y value for a given X value that falls between the two know points.
- $\mathrm{Y}=\mathrm{mX}+\mathrm{b}$
- Use the 2 known points to determine $m$ and b
- Use $m$ and $b$ to estimate $Y$ at some new value of X .


## Double Interpolation

What is the specific volume of
water at $\mathbf{0 . 0 2} \mathrm{MPa}$ and $\mathbf{6 2 5}{ }^{\circ} \mathrm{C}$ ?


We know the values at $\left(0.01 \mathrm{MPa}, 600^{\circ} \mathrm{C}\right) \sqrt{\square}$ $\left(0.01 \mathrm{MPa}, 650^{\circ} \mathrm{C}\right) \sqrt{\mathbf{V}}$ $\left(0.05 \mathrm{MPa}, 600^{\circ} \mathrm{C}\right) \overline{\mathrm{Va}}$ $\left(0.05 \mathrm{MPa}, 650^{\circ} \mathrm{C}\right) \bar{\nabla}$

- Double interpolation requires THREE single, linear interpolations.
- The only way to learn how to do double interpolation is to do a few of them.
- Unfortunately, they are pretty tedious.


## VLE Nomenclature

- Mole Fraction:
- Partial Pressure: $\mathbf{P}_{\mathrm{i}}$
$\diamond$ Ideal Gases:
$\mathbf{P}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mathbf{P}$
- Vapor Pressure: $\mathbf{P}_{\mathrm{i}}^{*}$
- Condensable and non-Condensable Species
$\diamond$ Water / Air
- Evaporation: $\quad \mathbf{P}_{\text {total }}>\mathbf{P}_{\mathbf{i}}^{*}\left(\mathbf{T}_{\text {liquid }}\right)>\mathbf{P}_{\mathrm{i}}$
- Boiling: $\quad \mathbf{P}_{\mathrm{i}}^{*}\left(\mathrm{~T}_{\text {liquid }}\right) \geq \mathbf{P}_{\text {total }}$
- Boiling
$\diamond$ Vapor bubbles of the condensable species form in the liquid phase
$\diamond$ Condensable species is pushing so hard to get into the gas phase, that it overcomes the total pressure and suddenly bursts into a vapor bubble.
$\diamond$ Boiling Point: $\mathrm{Pi}^{*}(\mathrm{TbP})=\mathrm{P}$
$\checkmark$ Normal Boiling Point: $\mathrm{Pi}^{*}\left(\mathrm{~T}_{\mathrm{NBP}}\right)=1 \mathrm{~atm}$
- Mole fraction is the fraction of all the molecules in a system that are chemical species " i "
- Partial pressure of species " $i$ " is the pressure that WOULD exist in the system if all of the other chemical species were removed.
- Vapor pressure
- Property of a pure species depends ONLY T
- Same as saturation pressure: pressure at which a pure substance would boil at any fixed $T$
$\checkmark$ Pressure that molecules in the liquid phase can overcome in order to enter the vapor phase by boiling.
- Condensable Species
$\checkmark$ Could exist in the liquid phase at the system pressure if the temperature dropped enough
$\checkmark$ This means they are not supercritical fluids.
$\diamond$ Water in the air is a condensable species
- Non-Condensable Species
- Cannot condense at the system pressure at any $\mathrm{T}_{\text {sys }}$ because they are supercritical fluids.
$\checkmark$ The $\mathrm{O}_{2}$ and $\mathrm{N}_{2}$ in air are non-condensable.
- Evaporation
$\checkmark$ Molecules move from the liquid phase to vapor phase without bubble formation (boiling)
- Vapor pressure is greater than the partial pressure of the condensable species in the gas phase, but less than the total pressure
- Evaporation occurs because the water molecules in the liquid phase are pushing harder to get into the gas phase $\left(\mathrm{P}_{\mathrm{i}}{ }^{*}\right)$ than the water molecules in the gas phase are pushing to get into the liquid phase $\left(\mathrm{P}_{\mathrm{i}}\right)$.


## Humidity and Saturation



Relative Humidity, $\mathbf{h}_{\mathbf{r}}$ or Relative Saturation, $\mathbf{s}_{\mathbf{r}}$ : $\mathbf{h}_{\mathrm{r}}=\mathbf{S}_{\mathrm{r}}=\frac{\mathbf{P}_{\mathrm{i}}}{\mathbf{P}_{\mathrm{i}}^{*}(\mathbf{T})} \times \mathbf{1 0 0 \%}$

Absolute Humidity, $\mathbf{h}_{\mathbf{a}}$
or Absolute Saturation, $\mathbf{s}_{\mathbf{a}}$ : $\quad \mathbf{h}_{\mathbf{a}}=\mathbf{s}_{\mathbf{a}}=\frac{\mathbf{P}_{\mathbf{i}} \mathbf{M} \mathbf{W}_{\mathbf{i}}}{\mathbf{P}_{\mathbf{j}} \mathbf{M} \mathbf{W}_{\mathbf{j}}} \quad$ (Ideal gas phase, ONLY)
Humidity refers to an air-water system.
$\mathbf{M W}_{\mathbf{i}}$ is the molecular weight of the condensable species $\mathbf{M} \mathbf{W}_{\mathbf{j}}$ is the molecular weight of the non-condensable species
Saturation refers to any gas-vapor system.

- Saturation is a general term that describes a relationship between the condensable and non-condensable species in a gas system.
- Humidity is the same as saturation except humidity only applies to a system that contains just air and water.
- Relative Humidity or Saturation
$\checkmark$ Presented in the daily weather report
$\diamond$ Dimensionless because $\mathrm{P}_{\mathrm{i}}$ and $\mathrm{P}_{\mathrm{i}}{ }^{*}$ have the same units !
- When $\mathrm{h}_{\mathrm{r}}=100 \%$, the gas is "full" or saturated. No more water can evaporate.
- Absolute Humidity
$\diamond$ Definition here only applies when the gas is an ideal gas
- At atmospheric conditions, humid air usually behaves as an ideal gas because the molar volume $>20 \mathrm{~L} /$ mole .
$\checkmark$ We will learn more about this criterion for ideal gas behavior in the next class.
$\diamond$ Units $=[\mathrm{kg}$ condensable $/ \mathrm{kg}$ noncondensable $]=[\mathrm{kg}$ Water $/ \mathrm{kg}$ Air $]$
$\diamond M W=$ molecular weight [g/mole or $\mathrm{lb}_{\mathrm{m}} /$ lbmole]


## Equations of State

- Relationship between
$\mathbf{P}, \tilde{\mathbf{V}}$ and $\mathrm{T}: \quad \mathbf{P}=\mathbf{f x n}(\tilde{\mathbf{V}}, \mathbf{T})$
- Ideal Gas EOS: $\mathbf{P} \tilde{\mathrm{V}}=\mathrm{RT}$
- Universal Gas Constant: R
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=0.082054 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=1.987$ Btu/lbmole $-{ }^{-} \mathrm{R}$
- When does the IG EOS apply ?
$\diamond$ When molecules interact very little with each other
- At high T and low P
$\checkmark$ Generally: $\quad \tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}>\mathbf{2 0} \mathbf{L} / \mathbf{m o l e}$
- Diatomic gases are especially unlikely to interact

$$
\tilde{\mathrm{V}}_{\text {diatomic }}=\frac{\mathrm{RT}}{\mathrm{P}}>5 \mathrm{~L} / \mathrm{mole}
$$

- The ideal gas equation is not a "Law" because it is generally NOT accurate !
- The ideal gas equation is an equation of state, a relationship between $\mathrm{P}, \mathrm{V}$ and T
- We like to write all EOS's in terms of molar volume instead of volume and number of moles in the system.
- In this way, our EOS only contains INTENSIVE variables and is therefore applicable to systems without consideration of their SIZE.
$\checkmark$ Remember that the values of intensive variables do not depend on the size of the system.
- Be careful, in some texts...
- They use a different value of R for each substance and use R -bar for the universal gas constant
- Their nomenclature is, $\mathrm{R}=\mathrm{R}$-bar / MW [=] J/g-K or kJ/kg-K
$\checkmark$ We will NOT follow this convention.


## Advanced Equations of State

- Compressibility Factor EOS (graphical)
- Virial EOS
- Van der Waals EOS
- Redlich-Kwong EOS
- Soave-Redlich-Kwong EOS


## Compressibility Factor EOS

- Compressibility Factor:

$$
Z=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R T}}=\frac{\tilde{\mathbf{V}}}{\mathbf{R T} / \mathbf{P}}=\frac{\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}_{\mathrm{IG}}}
$$

- Principle of Corresponding States
- Reduced Properties:

$$
\mathbf{T}_{\mathrm{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathrm{C}}} \quad \mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{C}}} \quad \tilde{\mathbf{V}}_{\mathrm{R}}^{\text {ideal }}=\frac{\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}_{\mathrm{C}}^{\text {ideal }}}=\frac{\tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}_{\mathrm{C}} / \mathbf{P}_{\mathrm{C}}}
$$

- Compressibility Charts
- $\mathbf{Z}$ vs $\mathbf{P}_{\mathbf{R}}$
- Curves of constant $\mathbf{T}_{\mathbf{R}}$
- Curves of constant $\quad \tilde{\mathbf{V}}_{\mathrm{R}}^{\text {ideal }}$
- There are MANY EOS's.
- In fact, the "data" in our thermodynamic tables are not really data at all!
- The numbers in the thermodynamic tables are the output of very sophisticated EOS's that we will not study.
- We will just consider the values in thermodynamic tables to be data.
- We will only gain a passing familiarity with the compressibility EOS because it is an old style graphical EOS.
$\checkmark$ That is not to say it is not accurate.
$\checkmark$ It just is not compatible with our modern computing environment
- Van der Waals was the $1_{\text {st }}$ cubic EOS
$\checkmark$ Very powerful
- Can predict properties of liquids, as well as gases
- RK EOS is a popular EOS that can predict liquid properties reasonably well.
- SRK is an improved version of RK.
- None of these cubic EOS's work well for water or other highly polar molecules or ionic solutions
- Specialized EOS's have been developed for water.
- Ionic solutions are more complicated and are modeled by specialized EOS's.
- For an IG, Z = 1
- The further Z is from 1 , the more non-ideal the behavior of the gas.
- Many properties of gases, including Z, depend primarily on how close the state of a system is to the critical state of the gas.
- Reduced properties are the ratio of the real system properties to the properties of the system at the critical point.
- Reduced ideal molar volume is more convenient because you can calculate it without knowing the critical molar volume.
- This is important, because the critical molar volume is not as frequently tabulated as the critical T and P .


## Virial EOS

- Uses a power series expansion to describe deviations of $Z$ from 1 , the $I G$ value

$$
\mathbf{Z}=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}}=\mathbf{1}+\frac{\mathbf{B}}{\tilde{\mathbf{V}}}+\frac{\mathbf{C}}{\tilde{\mathbf{V}}^{2}}+\frac{\mathbf{D}}{\tilde{\mathbf{V}}^{3}}+\frac{\mathbf{E}}{\tilde{\mathbf{V}}^{4}}+\ldots
$$

- B, C, D, etc are the Virial "constants"
$\checkmark$ Functions of T, only
$\diamond$ Determined experimentally
- Truncated Virial EOS: $Z=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R T}}=1+\frac{\mathbf{B}}{\tilde{\mathbf{V}}}$
$\diamond$ Estimating B:
$\mathbf{B}=\frac{\mathbf{R T}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{C}}}\left(\mathbf{B}_{0}+\omega \mathbf{B}_{1}\right)$
$B_{0}=0.083-\frac{0.422}{T_{R}^{1.6}}$
$B_{1}=0.139-\frac{0.172}{T_{R}^{4.2}}$
- The Virial EOS can be very very accurate if you keep enough terms in the series.
- The problem is that it is difficult to determine the values of $\mathrm{D}, \mathrm{E}$ etc.
- It is relatively easy to measure or look up values of the $1_{\mathrm{st}} 2$ Virial constants, B and C .
- If you cannot find values for B \& C, you can use the truncated Virial EOS and APPROXIMATE the value of $B$ using the equations given here.


## Van der Waals EOS

$$
\mathbf{P}=\frac{\mathbf{R T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}^{2}}
$$

- First cubic EOS
- Constants have physical interpretation

$$
\mathbf{a}=\frac{27}{64} \frac{\mathbf{R}^{2} \mathrm{~T}_{\mathrm{C}}^{2}}{\mathrm{P}_{\mathrm{C}}} \quad \mathrm{~b}=\frac{1}{8} \frac{\mathrm{R} \mathrm{~T}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}
$$

- This EOS was a big breakthrough in modeling PVT behavior.
- It is not used much anymore.
- The constant a represents a correction for inter-molecular forces called Van der Waals Forces.
- $\mathrm{a}>0$
- $B$ is the molar volume of the molecules themselves, with the absolute minimum amount of space between molecules
- This is the molar volume at $\mathrm{T}=0 \mathrm{~K}$


## RK \& SRK EOS's

- Redlich-

$$
\mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}(\tilde{\mathbf{V}}+\mathbf{b}) \mathbf{T}^{1 / 2}}
$$

$$
\mathbf{a}=0.42748 \frac{\mathbf{R}^{2} T_{\mathrm{C}}^{5 / 2}}{\mathbf{P}_{\mathrm{C}}}
$$

$$
b=0.08664 \frac{R_{C}}{P_{C}}
$$

- Soave-Redlich-Kwong : $\quad P=\frac{R T}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\alpha \mathbf{a}}{\tilde{\mathbf{V}}(\tilde{\mathbf{V}}+\mathbf{b})}$

$$
\begin{aligned}
& a=0.42748 \frac{\mathbf{R}^{2} T_{\mathrm{C}}^{2}}{\mathbf{P}_{\mathrm{C}}} \\
& \alpha=\left[1+m\left(1-\sqrt{T_{\mathrm{R}}}\right)\right]^{2} \\
& m=0.48508+\mathbf{1 . 5 5 1 7 1} \omega-\mathbf{0 . 1 5 6 1} \omega^{2}
\end{aligned}
$$

- These two EOS's are very popular choices, especially for hydrocarbon molecules.
- SRK is preferred to RK
- SRK modification tries to take polarity and molecular geometry into account
- It still doesn't work well for water or other highly polar molecules


## Application of EOS's

- Given any 2 of the $\mathbf{3}$ variables, $P, \tilde{\mathbf{V}}$ and T , determine the value of the unknown
- Cubic EOS's and other even more sophisticated EOS's can be used to...
$\diamond$ predict properties of liquids
$\diamond$ Estimate molar internal energies, enthalpies and entropies of gases and liquids
$\diamond$ In this way, sophisticated EOS's are used to generate the Thermodynamic "Data" Tables that we use

2A-1
Think About Tea
2 pts
Tea is a mixture of one or more tasty oils dissolved in hot water. Is this a heterogeneous or homogeneous mixture? Are there any conditions under which this tea can be considered to be a pure substance? Explain.

If the tea is well-mixed, perhaps by stirring, then the mixture can be adequately described as homogeneous.
As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

2A-2
Automobile Fuel
Automobile fuel, known as gasoline or petrol, is a mixture of many types of hydrocarbon molecules. Is the fuel a heterogeneous or homogeneous mixture?
Are there any conditions under which this fuel can be considered to be a pure substance? Explain.
If the fuel is well-mixed, then the mixture can be adequately described as homogeneous. The different types of hydrocarbon molecules in gasoline are miscible, so the fuel tends toward uniform composition because the molecules mix by a random, wandering motion called diffusion.

As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

2A-3 Think About Fog

Fog is very large number of liquid water droplets suspended in air. Can fog be considered to be a pure substance? Do you think fog is heterogeneous or homogeneous? Explain your answers.

As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

This is a tricky question. If you look very closely or only consider a small sample of fog, say $\mathbf{1} \mathbf{m m}^{\mathbf{3}}$, then you could see the water doplets and the air surrounding them. You would conclude that the fog sample is not homogeneous but heterogeneous because the composition is not everywhere the same.

If you consider a medium-sized sample of fog, perhaps $\mathbf{1} \mathbf{m}^{\mathbf{3}}$, and you did not look at it with a microscope, you would conclude that the composition is the same at all positions and the fog was homogeneous. This would depend on how big your sample was from diferent positions within the $\mathbf{1} \mathrm{m}^{\mathbf{3}}$ you were considering.

To make matters even more complex, if you considered a cubic kilometer of fog above your neighborhood, you might notice patches of dense fog with volumes of relatively clear air with few water droplets. In this case, you would conclude that fog is definitely heterogeneous.

From some perspective, the fog could be accurately described as homogeneous, but for most purposes, fog is heterogeneous.

## "The best way to Learn Thermodynamics"

A piston-and-cylinder device contains water vapor at $135^{\circ} \mathrm{C}$ and 1 atm in state 1 . The cylinder contains no air and no liquid water. The cylinder is surrounded by a water bath at $135^{\circ} \mathrm{C}$ that keeps the temperature of the contents of the cylinder constant. The piston is pushed slowly downward causing the pressure to increase steadily. Eventually, a small droplet of liquid water forms in state 2.
a.) Describe the state of the contents of the cylinder in state 1 and in state 2.
b.) Sketch the path of this process on a PV Diagram. Be sure to label all the regions on the diagram and include the twophase envelope and all relevant isotherms.

Read : The keys to this problem are...
1 - The process is isothermal because the constant temperature bath keeps the system at $135^{\circ} \mathrm{C}$ and
2 - The final state is saturated vapor because the 1 st micro-droplet of lquid water condenses.

| Given: | $T_{1}$ | 135 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{T}_{2}$ | 135 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{1}$ | 1 | atm | $\mathbf{P}_{2}>\mathbf{P}_{1}$ | $\mathbf{x}_{2}$ | $\mathbf{1}$ |

Find: a.) Describe states 1 \& 2
b.) Sketch process path on a PV Diagram

Assumptions: $\quad 1$ - The constant temperature bath is prefectly effective in keeping the contents of the cylinder at a constant and uniform temperature of $135^{\circ} \mathrm{C}$.

## Equations / Data / Solve:

Part a.) - In state 1, the cylinder contains all water vapor.

- The pressure must be increased on this vapor in order to cause any liquid water droplets to condense.
- We can conclude that $P_{1}=1 \mathrm{~atm}$ is lower than the vapor pressure (or saturation pressure) of water
at $\mathrm{T}_{1}=135^{\circ} \mathrm{C}$.
- Therefore the water vapor in state 1 is a superheated vapor.
- In state 1, the cylinder contains all water vapor.
- The pressure on this vapor is just exactly high enough to cause a micro-droplet of liquid water to condense.
- We can conclude that $\mathbf{P}_{2}=\mathbf{P}^{*}\left(135^{\circ} \mathrm{C}\right)$, the vapor pressure (or saturation pressure) of water at $\mathrm{T}_{1}=135^{\circ} \mathbf{C}$.
- Therefore the water vapor in state 1 is a saturated vapor.

Part b.)


Verify: This assumption cannot be veriefied without experimentation.
Answers: See above.

# "The best way to Learn Thermodynamics" 

Ammonia exists as a saturated mixture at 240.21 kPa and $-14.6^{\circ} \mathrm{C}$ in a rigid vessel with a volume of $1.0 \mathrm{~m}^{3}$. The specific volume of the saturated liquid and saturated vapor are $1.5195 \mathrm{~L} / \mathrm{kg}$ and $0.50063 \mathrm{~m}^{3} / \mathrm{kg}$, respectively.
The quality of the ammonia is 0.275 kg vap/kg. What is the total mass of Ammonia inside the vessel in $\mathbf{k g}$ ?

Read : There are two keys to this problem. The first is the relationship between the total mass, the total volume and the overall, average or mixture specific volume. The other key is how to use quality and specific properties of saturated liquid and saturated vapor to determine a specific property of a saturated mixture.

| Given: | $\mathbf{P}$ | 240.21 | $\mathbf{k P a}$ | $\mathbf{V}_{\text {sat liq }}$ | 1.5195 | $\mathbf{L}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}$ | -14.6 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{V}_{\text {sat vap }}$ | 0.50063 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
|  | $\mathbf{V}_{\text {total }}$ | 1 | $\mathrm{~m}^{3}$ | $\mathbf{x}$ | 0.275 | $\mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ |
| Find: | $\mathbf{M}_{\text {total }}$ | $? ? ?$ | $\mathbf{k g}$ |  |  |  |
| Assumptions: | None. |  |  |  |  |  |

## Equations / Data / Solve:

Let's begin with the relationship between mass, volume and specific volume for the entire system.

$$
\begin{equation*}
\mathbf{M}_{\text {total }}=\frac{\mathbf{V}_{\text {total }}}{\hat{\mathbf{V}}_{\text {mix }}} \tag{Eqn 1}
\end{equation*}
$$

We want to determine $\mathbf{M}_{\text {total }}$ and we know $\mathbf{V}_{\text {total, }}$, so all we need to do is determine $\mathbf{V}_{\text {mix }}$ and we will be able to use Eqn 1 to solve this problem.

The specific volume of the two-phase mixture is related to the quality and the specific volumes of the saturated liquid and saturated vapor by the following equation.

$$
\begin{equation*}
\hat{\mathbf{V}}_{\text {mix }}=\mathbf{x} \hat{\mathbf{V}}_{\text {sat vap }}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{V}}_{\text {satliq }} \tag{Eqn 2}
\end{equation*}
$$

We know the values of all of the variables on the right-hand side of Eqn 2, so we can plug-in values to determine $\mathbf{V}_{\text {mix }}$.

$$
\begin{array}{lll}
V_{\text {mix }} & 1.1373 \quad \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

Be careful with the units in Eqn 2. You must convert $\mathbf{L}$ to $\mathbf{m}^{\mathbf{3}}$ in $\mathbf{V}_{\text {sat liq }}$ to make all of the units work out properly. Now, we can plug values into Eqn 1 to complete this problem.
$M_{\text {total }} \quad 0.8793 \quad \mathbf{k g}$

Verify: There are no assumptions to verify in this problem.

Answers : |  | $M_{\text {total }}$ | 0.879 | $\mathbf{k g}$ |
| :--- | :--- | :--- | :--- |

Calculate the specific volume for the following situations:
a.) Water at $300^{\circ} \mathrm{C}$ and $72 \%$ quality
b.) R-134a at $-50^{\circ} \mathrm{C}$ and $83 \%$ quality
c.) Ammonia at 750 kPa and $48 \%$ quality

Read : This is an exercise designed to drive home the meaning and use of the new concept of the quality of a saturated mixture. It is crucial to remember that if a quality is given, then the system contains a saturated mixture and you probably need to look up properties of both the saturated liquid and the saturated vapor.

Given:

| a.) | Water | $\mathbf{T}$ | 300 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{x}$ | 0.72 | kg vap $/ \mathrm{kg}$ tot |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b.) | R134a | T | -50 | ${ }^{\circ} \mathrm{C}$ | x | 0.83 | kg vap $/ \mathrm{kg}$ tot |
| c.) | Ammonia | P | 750 | kPa | x | 0.48 | kg vap $/ \mathrm{kg}$ tot |

Find: $V$ ??? $\mathbf{m}^{3} / \mathbf{k g}$ for each of the three parts of this problem.
Assumptions: None.

## Equations / Data / Solve:

Part a.) Data from the Saturation Temperature Table of the Steam Tables at $300^{\circ} \mathrm{C}$ :

| $\mathrm{V}_{\text {sat liq }}$ | 0.0014042 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :---: | :--- |
| $\mathrm{V}_{\text {sat vap }}$ | 0.02166 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| $\mathrm{P}^{*}$ | 8587.9 | kPa |

The key equation for this problem is the relationship between the properties of a saturated mixture and the properties of saturated liquid and vapor and the quality.

$$
\hat{\mathbf{V}}=\mathbf{x} \hat{\mathbf{V}}_{\text {sat vap }}+(\mathbf{1}-\mathbf{x}) \hat{\mathbf{V}}_{\text {satliq }}
$$

Now, we can plug numbers into Eqn 1 to answer this part of the question.

| V | 0.01599 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Notice that I kept 4 significan figures in this answer istead of the usual 2 or 3 because there are 4 significant digits in the sat'd liquid and sat'd vapor values. Perhaps I should have only retained 2 significant digits because there only appear to be 2 significant digits in the quality. I have assumed that there are more than 2 , really 4 or more, digits in the quality. This may not be a good assumption.

Part b.) Data from the Saturation Temperature Table of the R-134a Tables at $-50^{\circ} \mathrm{C}$ :

Now, we can plug numbers into Eqn 1 to answer this part of the question.

Significant figures are a bit tricky here.
Part c.) Data from the Saturation Pressure Table of the Ammonia Tables at 400 kPa :

Now, we can plug numbers into Eqn 1 to answer this part of the question.

Significant figures are a bit tricky here as well.
Verify: No assumptions to verify.
Answers: a.)

| V | 0.015988 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :---: | :---: | :---: |
| V | 7.7095 | $\mathrm{~m}^{3} / \mathrm{kg}$ |

c.)

Ammonia exists in a sealed tank at each of the following temperatures and pressures. In each case, what phase or phases could exist in the system? Show your work and explain your reasoning.
a.) $25^{\circ} \mathrm{C}, 114.7 \mathrm{kPa}$
b.) $-31.59^{\circ} \mathrm{C}, 50 \mathrm{kPa}$
c.) $-18.85^{\circ} \mathrm{C}, 200 \mathrm{kPa}$
d.) $-37.41^{\circ} \mathrm{C}, 100 \mathrm{kPa}$

Read : At these temperatures and pressures, it is safe to assume that no solid water, or ice, exists in the system. So, the question becomes whether the system contains superheated vapor or subcooled liquid or whether the system is in VLE. If the system is in VLE, then $\mathbf{P}=\mathbf{P}^{*}(\mathbf{T})$. Another way to look at this is that $\mathbf{T}=\mathbf{T}_{\text {sat }}(\mathbf{P})$. At saturation, it is not possible to determine the quality of the system without knowing the value of another intensive variable, such as $v, u$ or $h$. So, we are not able to state whether both vapor and liquid exist, but we can say that both could exist under these conditions. Fortunately, that is exactly what we are asked to determine in this problem.

| Given: | Part a.) | $\mathbf{T}$ | 25 | ${ }^{\circ} \mathbf{C}$ | $\mathbf{P}$ | 114.7 | $\mathbf{~ k P a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  | Part b.) | $\mathbf{T}$ | -31.59 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{P}$ | 50 | $\mathbf{k P a}$ |
|  | Part c.) | $\mathbf{T}$ | -18.85 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{P}$ | 200 | $\mathbf{k P a}$ |
|  | Part d.) | $\mathbf{T}$ | -37.41 | ${ }^{\circ} \mathbf{C}$ | $\mathbf{P}$ | 100 | $\mathbf{k P a}$ |

Find: What phase or phases could exist in the system? Explain.
Assumptions: $\quad 1$ - No solid water, or ice, exists in the system.

## Equations / Data / Solve:

In each part of this problem, we need to determine the saturation temperature associated with the system

| If : | $\mathbf{T}_{\text {sys }}>\mathbf{T}_{\text {sat }}$ | Then: | The system contains a superheated vapor. |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| If : | $\mathbf{T}_{\text {sys }}<\mathbf{T}_{\text {sat }}$ | Then: | The system contains a subcooled liquid. |
| If : | $\mathbf{T}_{\text {sys }}=\mathbf{T}_{\text {sat }}$ | Then: | The system could contain an equilibrium mixture of saturated |

This is not always the easiest approach and for this part of the problem, there is an easier approach.
Another way to solve this problem is to determine the vapor pressure of water at the actual system temperature.

| If : | $\mathbf{P}_{\text {sys }}<\mathbf{P}^{*}\left(\mathbf{T}_{\text {sys }}\right)$ | Then: | The system contains a superheated vapor. |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{\text {sys }}>\mathbf{P}^{*}\left(\mathbf{T}_{\text {sys }}\right)$ |  |  |
| If : |  | Then : | The system contains a subcooled liquid. |
| If : | $\mathbf{P}_{\text {svs }}=\mathbf{P}^{*}\left(\mathbf{T}_{\text {svs }}\right)$ | Then: | The system could contain an equilibrium mixture of saturated |

Part a.) The second method is easier for part (a) because $\mathbf{T}_{\text {sys }}=25^{\circ} \mathrm{C}$ is listed in the Saturated Temperature Table while $\mathbf{P}_{\text {sys }}=114.7 \mathrm{kPa}$ is not listed in the Saturation Pressure Table. So, let's use the 2nd method!

From the Saturation Temperature Table of the Ammonia Tables: $\quad \mathbf{P}^{*}\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right) \quad \mathbf{1 0 0 3 . 2} \quad \mathbf{k P a}$
Since $P_{\text {sys }}<P^{*}\left(T_{\text {sys }}\right)$, we conclude : The system contains superheated ammonia vapor.

Part b.) In this part of the problem, it is easier to use method 1, described in part (a), because $\mathbf{P}_{\text {svs }}$ appears in the From the Saturation Pressure Table of the Ammonia Tables : $\quad \mathbf{T}_{\text {sat }}(50 \mathrm{kPa}) \quad-\mathbf{- 4 6 . 5 2} \quad{ }^{\circ} \mathrm{C}$

Since $T_{\text {sys }}>T_{\text {sat }}\left(P_{\text {sys }}\right)$, we conclude :
The system contains superheated ammonia vapor.
Part c.) In this part of the problem, it is easier to use method 1, described in part (a), because $\mathbf{P}_{\text {sys }}$ appears in the saturation tables, while $T_{\text {sys }}$ does not.

From the Saturation Pressure Table of the Steam Tables : $\quad \mathbf{T}_{\text {sat }}(\mathbf{2 0 0 ~ k P a}) \quad-\mathbf{1 8 . 8 5} \quad{ }^{\circ} \mathbf{C}$
Since $T_{\text {sys }}=T_{\text {sat }}\left(\mathbf{P}_{\text {sys }}\right)$, we conclude :
The system could contain an equilibrium mixture of saturated liquid and saturated vapor.

Part d.) In this part of the problem, it is easier to use method 1, described in part a, because $\mathbf{P}_{\text {sys }}$ appears in the saturation tables, while $\mathbf{T}_{\text {sys }}$ does not.

From the Saturation Pressure Table of the Ammonia Tables : $\quad \mathbf{T}_{\text {sat }}(\mathbf{1 0 0 ~ k P a}) \quad-\mathbf{- 3 3 . 5 9} \quad{ }^{\circ} \mathbf{C}$
Since $T_{\text {sys }}<T_{\text {sat }}\left(P_{\text {sys }}\right)$, we conclude :
The system contains subcooled liquid ammonia.

Verify: Since all of the temperature and pressure combination in this problm appear in the ammonia tables for vapor-liquid equilibrium, no solid ammonia, or ammonia ice, is present in any of the four systems considered.


[^0]Read : $\quad$ The key to this problem is to recognize that the total pressure at the surface of the liquid water must be greater than $\mathbf{1 0 1} \mathbf{~ k P a}$ before the water can boil because of the weight of the lid. This is true whether there is an air space between the liquid water and the lid or not. As the temperature of the contents of the pot rises, the pressure will increase. When the 1st bubble of water vapor forms, it will displace some air. The displaced air will escape by lifting the lid.

| Given: | D | 0.14 | m | $\mathrm{Patm}_{\text {at }}$ | 101.325 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{m}_{\text {lid }}$ | 3.7 | kg |  |  |
| Find: | $\mathrm{T}_{\text {boil }}$ | ??? | ${ }^{\circ} \mathrm{C}$ |  |  |

## Equations / Data / Solve:

The liquid water will boil when it reaches the temperature at which the vapor pressure of the water is equal to the pressure required to lift the lid and let some air escape.

Let's begin by determining the pressure within the pot required to lift the lid. This can be accomplished by writing a force balance on the lid. See the diagram.


The lid will lift slightly and let some air escape when the upward force exerted by the gas inside the pot just balances the sum of the weight of the lid and the downward force due to atmospheric pressure on the outside of the lid.

$$
\begin{equation*}
F_{P, \text { in }}=F_{P, \text { out }}+F_{w t} \tag{Eqn 1}
\end{equation*}
$$

The fact that the lid is not flat on top does not affect the solution of this problem, as long as the lid is axially symmetric about its centerline.

All of the horizontal components of the forces acting on the lid cancel each other out (vector sum is zero). The downward force is the same regardless of the shape of the top of the lid. Remember that pressure always acts in the direction perpendicular or normal to a surface. So as the lid surface curves, the downward component of the pressure force decreases. But the total surface area of the pot increases. These two factors are equal and opposite. The result is that the force exerted by the outside atmosphere on the pot lid is the same as if the lid were flat. The area of an equivalent flat surface is called the projected area (I use the symbol Aproj).

$$
F_{P, \text { out }}=P_{\text {atm }} A_{\text {proj }}
$$

Following the same logic, the upward force exerted by the air in the pot on the lid can be determined using :

$$
F_{P, \text { in }}=P_{i n} \quad A_{\text {proj }}
$$

The only term left is the weight of the pot lid. This is an application of Newton's 2nd Law.

$$
\begin{equation*}
F_{w t}=\mathbf{m}_{\text {lid }} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \tag{Eqn 4}
\end{equation*}
$$

Now, we can substitute Eqns 2, 3 \& 4 into Eqn 1 :

$$
\begin{equation*}
\mathbf{P}_{\mathrm{in}} \mathbf{A}_{\text {proj }}=\mathbf{P}_{\mathrm{atm}} \mathbf{A}_{\text {proj }}+\mathbf{m}_{\text {lid }} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \tag{Eqn 5}
\end{equation*}
$$

The goal is to determine the pressure inside the pot when the lid lifts and the water boils, so let's solve Eqn 5 for the unknown $\mathrm{P}_{\text {in }}$.

$$
\begin{equation*}
\mathbf{P}_{\mathrm{in}}=\mathbf{P}_{\mathrm{atm}}+\frac{\mathbf{m}_{\text {lid }}}{\mathbf{A}_{\text {proj }}} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \tag{Eqn 6}
\end{equation*}
$$

The only unknown quantity on the right-hand side of Eqn 6 is the projected area. We can calculate its value using :

$$
A_{\text {proj }}=\frac{\pi}{4} D^{2} \quad \text { Eqn 7 } \quad \text { A proj }^{0.015394 \mathrm{~m}^{2}}
$$

At last, we can plug numbers into Eqn 6 and evaluate the pressure in the pot when the water boils. Just be sure to use the unit conversion :

|  |  | 1 kPa | 1000 | $\mathrm{~N} / \mathrm{m}^{2}$ |  |
| :--- | :---: | :--- | :--- | :---: | :--- |
| g | 9.8066 | $\mathrm{~m} / \mathrm{s}^{2}$ |  |  |  |
| $g_{\mathrm{c}}$ | 1 | $\mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ | $\mathrm{P}_{\text {in }}$ | 103.68 | kPa |

Finally, we can go to the Saturation Pressure Table in the Steam Tables to determine the saturation pressure at $\mathbf{P}_{\text {in }}$. This is the temperature at which the water in the pot will boil.
Because $\mathbf{1 0 2 . 2 5} \mathbf{~ k P a}$ is not an entry in the Saturation Pressure Table, an interpolation is required.

| $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{P}_{\text {sat }}(\mathrm{kPa})$ |
| :---: | :---: |
| 100.00 | 101.42 |
| $\mathrm{~T}_{\text {boil }}$ | 103.68 |
| 105.00 | 120.90 |

Interpolation yields: $\quad \mathbf{T}_{\text {boil }}$
$100.5810{ }^{\circ} \mathrm{C}$

## Verify: None.

Answers : $\mathrm{T}_{\text {boil }} \quad 100.6{ }^{\circ} \mathrm{C}$


2D-1
Isothermal Vaporization of Water
A piston-and-cylinder device contains $25 \mathrm{lb}_{\mathrm{m}}$ of water at $195^{\circ} \mathrm{F}$. The cylinder rests in a constant temperature bath that keeps the temperature of the water in the cylinder at $195^{\circ} \mathrm{F}$.
Weights are removed one at a time from the back of the piston causing the pressure inside the cylinder to drop from a very high value until the water inside begins to boil.
Eventually, the last drop of water in the cylinder vaporizes. Determine the total volume of the steam in the cylinder at this point, in $\mathrm{ft}^{3}$.

Read: The initial state of the water is probably a subcooled liquid (or even a supercritical fluid), since the pressure is "very high". The final state of the water is a saturated vapor because the vaporization of the water is just barely complete. The temperature of the final saturated vapor is the same as the initial temperature: $205^{\circ} \mathrm{F}$. This is an isothermal process !

| Given: | $\mathbf{m}$ | 25 | $\mathbf{l b}$ | T | 195 | ${ }^{\circ} \mathrm{F}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Find:

$$
V_{\text {final }}
$$

???
ft ${ }^{3}$

Assumptions: 1- The initial and final states are equilibrium states.
2 - In the initial state, the system contains subcooled liquid water.
3 - In the final state, the system contains saturated water vapor.

$$
\begin{array}{lll}
\mathbf{x}_{\text {final }} & 1 & \mathrm{lb}_{\mathrm{m}} \mathrm{vap} / \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

Equations / Data / Solve:
We need to determine the volume of the system and we are given the mass of water in the system.
We need to determine the specific volume of the system because :

$$
\mathbf{V}=\mathbf{m}\left(\mathbf{l} \mathbf{b}_{\mathrm{m}}\right) \hat{\mathbf{V}}\left(\mathbf{f t}^{3} / \mathbf{l} \mathbf{b}_{\mathrm{m}}\right)
$$

Because we know that the water in the final state is a saturated vapor, we can look up its specific volume in the Saturated Temperature Table of the Steam Tables at $195^{\circ} \mathrm{F}$.

The problem is that a temperature of $195^{\circ} \mathrm{F}$ is not listed in the Saturation Temperature Table. So, we must interpolate to determine the value :

| $\mathrm{T}_{\text {sat }}$ | $\mathrm{V}_{\text {sat vap }}$ |
| :---: | :---: |
| $\left({ }^{\circ} \mathrm{F}\right)$ | $\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right)$ |
| 190 | 40.916 |
| 195 | $? ? ?$ |
| 200 | 33.609 |

$$
V(195)=\text { slope } \cdot(195-190)+40.916
$$

slope $=\frac{33.609-40.916}{200-190}$
Eqn 3
slope $\quad-0.73071 \quad\left(\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}\right)^{\circ}{ }^{\circ} \mathrm{F} \quad \mathrm{V}_{\text {sat vap }} \quad 37.263 \quad \mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}$
Now that we know the value of the specific volume of the saturated vapor, and the system contains ALL saturated vapor ( $x=1$ ), we can plug values into Eqn 1 and answer the question.
$V_{\text {final }}$
$931.6 \quad \mathrm{ft}^{\mathbf{3}}$
Verify: None of these assumptions can be verified.

Answers : |  | $\mathrm{V}_{\text {final }}$ | 932 | $\mathrm{ft}^{3}$ |
| :--- | :--- | :--- | :--- |

Ammonia is contained in sealed test tube at $25^{\circ} \mathrm{C}$. The test tube is slowly cooled until liquid ammonia droplets condense on the inside of the test tube. At this point, the temperature of the ammonia is $-20^{\circ} \mathrm{C}$.
Determine the initial pressure in the test tube, before the cooling process began.

Read : We know the initial temperature of the ammonia. If we knew the intial temperature, we could look up the specific volume in the Superheated Vapor Tables for ammonia. There is only one pressure that yields this value of the specific volume when the system is at $25^{\circ} \mathrm{C}$. Therefore, we could also look at the problem in the following way. We know the intitial temperature of the ammonia and IF we also knew the specific volume of the ammonia, we could use the Superheated Vapor Tables to work backwards and determine the initial pressure! That is what we are going to need to do in this problem.

When the 1st droplet of liquid appears on the wall of the glass vessel, the vapor inside the vessel is a satuated vapor. We can look up the properties of this saturated vapor in the Ammonia Tables. Since the vapor is saturated at $-20^{\circ} \mathrm{C}$, it must be superheated at $25^{\circ} \mathrm{C}$. But at both the initial and final state the specific volume must be the same because neither the mass nor the volume of the system changed! This is the key to the problem. Because we know the values of 2 intensive variables at the initial state, specific volume and temperature, and the initial state is a pure substance in a single phase, we can determine the values of ALL other properties! In this case we need to determine the pressure.

| Given: | $\mathrm{T}_{1}$ | 25 | ${ }^{\circ} \mathrm{C}$ | Find: | $\mathbf{P}_{1}$ | ??? | kPA |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{T}_{2}$ | -20 | ${ }^{\circ} \mathrm{C}$ |  |  |  |  |
|  | $\mathrm{x}_{2}$ | 1 | kg vap/kg |  |  |  |  |

Assumptions: $\quad 1$ - The system contains saturated vapor in the final state.

## Equations / Data / Solve:

The specific volume of the system is equal to the specific volume of saturated ammonia vapor at $\mathbf{T}_{2}$.
We can look up this value in the Saturated Temperature table of the Ammonia Tables at $-20^{\circ} \mathrm{C}$ :

$$
\begin{array}{lll}
\mathrm{V}_{\text {sat vap }} & 0.62373 & \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

Next, we scan the Superheated R-134a Tables to determine the 2 pressures between which this value of specific volume falls, at the given temperature of $25^{\circ} \mathrm{C}$.

Here are the data at $25^{\circ} \mathrm{C}$ :

| $\mathbf{P}(\mathbf{k P a})$ | $\mathbf{V}\left(\mathbf{m}^{\mathbf{3}} \mathbf{k g}\right)$ |
| :---: | ---: |
| 100 | 1.1381 |
| 200 | 0.59465 |
| 400 | 0.30941 |
| 500 | 0.25032 |
| 600 | 0.21035 |
| 700 | 0.18145 |

We need to interpolate between $\mathbf{1 0 0} \mathbf{~ k P a}$ and $\mathbf{2 0 0} \mathbf{k P a}$ to determine the system pressure that corresponds to our value of specific volume at a temperature of $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathbf{P}(\mathbf{0 . 6 2 3 7 3})=\text { slope } \cdot(\mathbf{0 . 6 2 3 7 3 - 1 . 1 3 8 1 ) + 1 0 0} \\
& \text { slope }=\frac{200-100}{0.59465-1.1381} \\
& \text { slope } \quad-184.0134 \quad \mathrm{kPa} /\left(\mathrm{m}^{3} / \mathrm{kg}\right)
\end{aligned}
$$

Verify: The assumption cannot be verified.
Answers : $\quad \mathrm{P}_{1} \quad 195 \mathrm{kPa}$

## "The best way to Learn Thermodynamics"

Determine the volume occupied by 25 kg of $\mathrm{R}-134 \mathrm{a}$ at a pressure of 800 kPa and the following temperatures:
a.) $-12^{\circ} \mathrm{C}$, b.) $-40^{\circ} \mathrm{C}$,
c.) $70^{\circ} \mathrm{C}$,
d.) $160^{\circ} \mathrm{C}$, e.) $325^{\circ} \mathrm{C}$

Read : This problem is an exercise in how to read and interpolate values from the Steam Tables.
It covers the use of the Subcooled Liquid Tables and the Superheated Vapor Tables, but does not involve double interpolation because the pressure value, 800 kPa does appear explicitly in both the Subcooled Liquid and Superheated Vapor Tables.

| Given: | $\mathbf{m}$ | 25 | $\mathbf{k g}$ | $\mathbf{P}$ | 800 | $\mathbf{k P a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}_{\mathbf{a}}$ | -12 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{d}}$ | 160 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathbf{T}_{\mathrm{b}}$ | -40 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{e}}$ | 325 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{T}_{\mathbf{c}}$ | 70 | ${ }^{\circ} \mathrm{C}$ |  |  |  |

Find: $V$ ??? $\mathrm{m}^{3}$
Assumptions: None.

## Equations / Data / Solve:

We need to determine the volume of the system and we are given the mass of water in the system.
We need to determine the specific volume of the system because :

$$
\mathbf{V}=\mathbf{m}(\mathbf{k g}) \hat{\mathbf{V}}\left(\mathbf{m}^{3} / \mathbf{k g}\right)
$$

So, for each part of this problem, we must evaluate the specific volume and plug this into Eqn 1 to determine the total volume of the system.

The first step in determining the specific volume is to determine the phase or phases present in the system. From the R-134a Tables, we can obtain the saturation temperature associated with 800 kPa .

$$
\begin{array}{lll}
\mathrm{T}_{\text {sat }} & 31.33 & { }^{\circ} \mathrm{C}
\end{array}
$$

This makes it easy to determine the phase or phases in the system for each part of the problem.

| If : | $\mathbf{T}_{\text {sys }}>\mathbf{T}_{\text {sat }}$ | Then: | The system contains a superheated vapor. |
| :--- | :--- | :--- | :--- |
| If : | $\mathbf{T}_{\text {sys }}<\mathbf{T}_{\text {sat }}$ | Then: | The system contains a subcooled liquid. |
| If : | $\mathbf{T}_{\text {sys }}=\mathbf{T}_{\text {sat }}$ | Then: | The systemcould contain an equilibrium mixture of saturated <br> liquid and saturated vapor. |

Part a.) The system contains a subcooled liquid. Here are the key data values from the Subcooled Liquid Table of the R134a Tables :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |
| :---: | :---: |
| -10 | 0.00075236 |
| -12 | $\mathrm{~V}_{\mathrm{a}}$ |
| -20 | 0.00073517 |

$V(5)=$ slope $\cdot(5-0)+0.0009952$
slope $=\frac{0.00099731-0.0009952}{5-0}$
slope $\left.\quad 1.7191 \mathrm{E}-06\left(\mathrm{~m}^{3} / \mathrm{kg}\right)\right)^{\circ} \mathrm{C}$
V $0.00074892 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{V} \quad 0.018723 \mathrm{~m}^{3}$
18.723 L

Part b.) The system contains a subcooled liquid. Here are the key data values from the Subcooled Liquid Table of the R-134a Tables:

| $\mathrm{T}_{\mathrm{b}}$ | -40 | ${ }^{\circ} \mathrm{C}$ | No interpolation required! | V |
| :--- | :--- | :--- | :--- | :--- |
|  |  | V | $0.00070451 \mathrm{~m}^{3} / \mathrm{kg}$ |  |
|  |  |  | $0.017613 \mathrm{~m}^{3}$ |  |
|  |  |  |  |  |

Part c.) The system contains a superheated vapor. Here are the key data values from the Superheated Vapor Table of the R-134a Tables :

| $\mathbf{T}_{\mathbf{c}} 70$ | ${ }^{\circ} \mathrm{C}$ | No interpolation required! | V | 0.031340 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | V | 0.78350 | $\mathrm{~m}^{3}$ |  |
|  |  |  | 783.50 | L |  |

Part d.) The system contains a superheated vapor. Here are the key data values from the Superheated Vapor Table of the R-134a Tables :

| $T_{d} 160$ | ${ }^{\circ} \mathrm{C}$ | No interpolation required! | V | 0.042291 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | V | 1.05726 | $\mathrm{~m}^{3}$ |  |
|  |  | 1057.26 | L |  |  |

Part e.) $\quad \mathrm{T}_{\mathrm{e}} \quad 325 \quad{ }^{\circ} \mathrm{C}$
This temperature is too high for our steam tables!
At very high temperatures, most gases behave as Ideal Gases.
The criterion by which we know whether it is reasonable to approximate real gases as ideal gases is :

$$
\tilde{\mathbf{V}}>20 \mathrm{~L} / \text { mole }
$$

The Ideal Gas EOS is :

$$
\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}
$$

or :

$$
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Eqn 6

| 8.314 | $\mathrm{~J} /$ mole-K | V | 0.006216 | $\mathrm{~m} / \mathrm{mole}$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 6.216 | $\mathrm{~L} / \mathrm{mole}$ |  |

The Ideal Gas EOS does NOT apply because V $\ll \mathbf{2 0}$ L/mole !
Our only choice is to EXTRAPOLATE from the data in the steam tables.
That is not very safe and I do not want to encourage you to do this, so I will not do it here.
The best course of action is to find another data source.
The NIST Webbook yields:

| V | 0.060298 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| V | 1.50744 | $\mathrm{~m}^{3}$ |
|  | 1507.4 | L |

Verify: No assumptions to verify.

| Answers : | $\mathrm{V}_{\mathrm{a}}$ | 18.7 | L |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{~V}_{\mathrm{b}}$ | 17.6 | L |
|  | $\mathrm{~V}_{\mathrm{c}}$ | 783 | L |
|  |  |  |  |


| $\mathrm{V}_{\mathrm{d}}$ | 1060 | L |
| :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{e}}$ | 1510 | L |

Complete the following table by determining the values of all the blank entries. The system contains only $\mathbf{H}_{2} \mathbf{O}$.

| T <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{P}$ <br> $(\mathbf{k P a})$ | $\mathbf{V}$ <br> $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{u}$ <br> $(\mathbf{k J / k g})$ | $\mathbf{h}$ <br> $(\mathbf{k J / k g})$ | $\mathbf{x}$ <br> (kg vap/kg tot) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a.) | 50 | 12.35 |  |  | 2125 |
| 273 | 187 |  |  |  |  |

Read : The key to this problem is to recognize that all of the variables in the table are state variables (except maybe $\mathbf{x}$ ), or properties, and that they are all intensive properties. It is also important to assume that either one or two phases exist. The triple point of water does not appear in this table. Also, since we have no data availabe about solid water, we can assume that we have either a subcooled liquid, a superheated vapor or an equilibrium mixture of saturated vapor and saturated liquid in the system. Gibbs Phase Rule tells us that for a pure substance in a single phase there are 2 degrees of freedom. If two phases are present, then there is just 1 degree of freedom. In either case, the two values of intensive properties given in each part of this problem will be sufficient to completely determine the values of all of the other intensive properties of the system. So, we are in good shape to move forward on solving this problem.

Given:
a.)
b.)

| T <br> $\left({ }^{\circ} \mathrm{C}\right)$ | P <br> $(\mathrm{kPa})$ | V <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | U <br> $(\mathrm{kJ} / \mathrm{kg})$ | H <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{x}$ <br> $(\mathrm{kg}$ vap/kg tot) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 12.35 |  |  | 2125 |  |
| 273 | 187 |  |  |  |  |

Find:
a.)
???
$\mathrm{m}^{3} / \mathrm{kg}$
b.)
???
??? $\quad \mathrm{kJ} / \mathrm{kg}$
$\mathrm{U} \quad$ ??? $\mathrm{kJ} / \mathrm{kg}$
??? $\quad \mathrm{kJ} / \mathrm{kg}$
??? $\quad \mathrm{kg}$ vap/kg

Assumptions: 1 - No ice exists in the system in either part of the problem.
Equations / Data / Solve:
Part a.) Given: T
$\begin{array}{cc}50 & { }^{\circ} \mathrm{C} \\ 12.35 & \mathrm{kPa}\end{array}$
The first step in solving each part of this problem is to determine the state of the system. Is it subcooled liquid, superheated vapor or a two-phase VLE mixture.

We could do this by determining the boiling point or saturation temperature at the system pressure. But, since 12.35 kPa does not appear in the Saturation Pressure Table for water, this would require an interpolation. It is easier to determine the saturation pressure or vapor pressure based on the system temperature because $50^{\circ} \mathrm{C}$ does appear in the Saturation Temperature Table and therefore does not require an interpolation.

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12.352 | 50 | 0.0010121 | 12.027 | 209.33 | 2442.7 | 209.34 | 2591.3 |

$\mathrm{P}^{*}\left(50^{\circ} \mathrm{C}\right) \quad 12.352 \mathrm{kPa}$

Since the actual system pressure is EQUAL TO the vapor pressure, the system is at saturation.
In order to determine the values of the other properties of the system using the following equation, we will need to know the quality, $\mathbf{x}$.

$$
\begin{equation*}
\mathbf{M}_{\mathrm{vLE}}=\mathbf{M}_{\text {sat liq }}+\mathbf{x}\left(\mathbf{M}_{\text {sat vap }}-\mathbf{M}_{\text {sat liq }}\right) \tag{Eqn 1}
\end{equation*}
$$

We can determine x from the saturation data and the known value of u for the system using :

$$
\mathbf{x}=\frac{\mathbf{v}-\mathbf{v}_{\text {satliq }}}{\mathbf{v}_{\text {sat vap }}-\mathbf{v}_{\text {sat liq }}}
$$

## Eqn 2

x
0.804 kg vap/kg

Now, we can plug $\mathbf{x}$ back into Eqn 1 and apply it to the unknown properties, $\mathbf{V}$ and $\mathbf{U}$.

|  | $V$ | 9.673 | $\mathrm{~m}^{3} / \mathrm{kg}$ | U | 2005.5 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Part b.) | Given : T | 273 | ${ }^{\circ} \mathrm{C}$ | P | 187 | kPa |

We again begin by determining the state of the system. Unfortunately the system temperature is not listed in the Saturation Temperature Table and the system pressure is is not listed in the Saturation Pressure Table. Either way we go, interpolation is required.

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{U}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5503.0 | 270 | 0.0013030 | 0.035621 | 1178.1 | 2593.7 | 1185.3 | 2789.7 |
| 5946.4 | 275 | 0.0013175 | 0.032766 | 1203.1 | 2590.3 | 1210.9 | 2785.2 |
| 175 | 116.0 | 0.0010568 | 1.0036 | 486.82 | 2524.5 | 239.42 | 2700.1 |
| 200 | 120.2 | 0.0010605 | 0.88568 | 504.49 | 2529.1 | 251.38 | 2706.2 |

We could interpolate to determine the saturation properties at 187 kPa , but there isn't much point! Since the system temperature is higher than the saturation temperature at EITHER $\mathbf{1 7 5} \mathbf{~ k P a}$ or $\mathbf{2 0 0} \mathbf{~ k P a}$, the system temperature must also be higher than the interpolated value of $\mathrm{T}_{\text {sat }}(187 \mathrm{kPa})$.

Since the system temperature is greater than the saturation temperature at the system pressure, the system contains a superheated vapor. Therefore, we must use data from the Superheated Vapor Table to determine the unknown properties of the system.

X N/A - Superheated
The Superheated Vapor Table includes tables for pressure of $\mathbf{1 0 0}$ and $\mathbf{2 0 0} \mathbf{~ k P a}$, but not $\mathbf{1 8 7} \mathbf{~ k P a}$. These two tables include rows for $\mathbf{2 5 0 ^ { \circ }} \mathbf{C}$ and $\mathbf{3 0 0 ^ { \circ }} \mathbf{C}$, but not for $273^{\circ} \mathrm{C}$. Consequently a double interpolation is required for each unknown system propert, $\mathbf{V}, \mathbf{U}$ and $\mathbf{H}$.

The double interpolation can be done with the aid of tables like the ones developed in Lesson 2C on page 18. The data required for the double interpolation tables are :

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathbf{k g}\right)$ | $\mathrm{U}(\mathbf{k J} / \mathbf{k g})$ | $\mathrm{H}(\mathrm{kJ} / \mathbf{k g})$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 | 250 | 2.4062 | 2733.9 | 2974.5 |
| 100 | 300 | 2.6388 | 2810.6 | 3074.5 |
| 200 | 250 | 1.1989 | 2731.4 | 2971.2 |
| 200 | 300 | 1.3162 | 2808.8 | 3072.1 |

Here is the double interpolation table for $\mathbf{V}$ :

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 100 | 187 | 200 |
| 250 | 2.4062 | 1.3558 | 1.1989 |
| 273 | 2.5132 | 1.4167 | 1.2529 |
| 300 | 2.6388 | 1.4882 | 1.3162 |

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

$$
\mathrm{V} \quad 1.417 \quad \mathrm{~m}^{3} / \mathrm{kg}
$$

Here is the double interpolation table for $\mathbf{U}$ :

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 100 | 187 | 200 |
| 250 | 2733.9 | 2731.8 | 2731.4 |
| 273 | 2769.2 | 2767.3 | 2767.0 |
| 300 | 2810.6 | 2809.1 | 2808.8 |

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

U $\quad \mathbf{2 7 6 7 . 3} \quad \mathrm{kJ} / \mathrm{kg}$
Here is the double interpolation table for $\mathbf{H}$ :

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 100 | 187 | 200 |
| 250 | 2974.5 | 2971.6 | 2971.2 |
| 273 | 3020.5 | 3018.0 | 3017.6 |
| 300 | 3074.5 | 3072.4 | 3072.1 |

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

$$
\begin{array}{lll}
\mathrm{H} & 3018.0 \quad \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Verify: The assumption that there is no ice in the is confirmed by the fact that the the states in part (a) and part (b) are both located in the Steam Tables. The Steam Tables only consider states in which no ice can exist at equilibrium.

## Answers :

a.)
b.)

| T <br> $\left({ }^{\circ} \mathrm{C}\right)$ | P <br> $(\mathrm{kPa})$ | V <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | U <br> $(\mathrm{kJ} / \mathrm{kg})$ | H <br> $(\mathrm{kJ} / \mathrm{kg})$ | X <br> $(\mathrm{kg} \mathrm{vap} / \mathrm{kg}$ tot $)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 12.35 | 9.673 | 2005.5 | 2125 | 0.804 |
| 273 | 187 | 1.417 | 2767.3 | 3018.0 | N/A - Superheated |

A pressure gauge on a rigid steel tank reads 50 kPa . The tank holds 2.1 kg of air and 0.250 kg of water vapor at $70^{\circ} \mathrm{C}$. Calculate the relative humidity of the air in the tank.


Read : The keys here are the definition of relative humidity and the relationships between mass, moles, molecular weight, mole fraction and partial pressure.

We need to assume the humid air behaves as an ideal gas in order to determine the partial pressures from the given $\mathbf{m}_{\text {water }}$ and $\mathbf{m}_{\text {BDA }}$.

| Given: | $\mathbf{T}$ | 70 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{m}_{\text {tot }}$ | 2.100 | kg wet air |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{\text {tot }}$ | 50 | $\mathbf{k P a}$ | $\mathbf{m}_{\mathrm{H} 2 \mathrm{O}}$ | 0.250 | $\mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ |

Find: $\quad h_{r}=$
??? \%
Assumptions: 1 - Air is a non-condensable gas.
2- Humid air behaves as an ideal gas.

## Equations / Data / Solve:

Let's begin with the definition of relative humidity:

$$
\mathbf{h}_{\mathrm{r}}=\frac{\mathbf{P}_{\mathrm{H} 20}}{\mathbf{P}_{\mathrm{H} 20}^{*}}
$$

The vapor pressure is equal to the saturation pressure at the system temperature.
We can find this in the saturation
temperature section of the steam tables:

$$
\mathrm{P}^{*}\left(80^{\circ} \mathrm{C}\right)=47.39 \mathrm{kPa}
$$

For an ideal gas:
$\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}=\mathbf{y}_{\mathrm{H} 2 \mathrm{O}} \mathbf{P}_{\text {tot }}$
Test if ideal:
Ideal Gas EOS :
$\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}$

Solve for the molar volume :

$$
\tilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}
$$

Therefore, since V > 20 L/mole, we can treat the wet gas as an ideal gas.
For all gases, mole fraction is defined as :

$$
\begin{equation*}
\mathbf{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{n}_{\text {wetgas }}}=\frac{\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}}{\left(\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}+\mathbf{n}_{\mathrm{BDA}}\right)} \tag{Eqn 5}
\end{equation*}
$$

Where :
$\mathbf{n}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} / \mathrm{MW}_{\mathrm{i}}$
Eqn 6

Data: $\quad$|  | $\mathrm{MW}_{\mathrm{H} 2 \mathrm{O}}=$ | 18.016 |
| :--- | :--- | :--- |
|  | $\mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$ |  |
|  | $\mathrm{MW}_{\mathrm{BDA}}=$ | 28.96 |
| g bone-dry air $/ \mathrm{mol}$ bone-dry air |  |  |

Since we know the mass of water and bone-dry air in the tank, as well as their molecular weights, we can calculate the number of moles of water and BDA in the tank using Eqn 6.

Then, we can calculate the mole fraction of water in the gas in the tank, using Eqn 5 . Next, we can use the given total pressure to calculate the partial pressure of water in the gas using Eqn 2.

Here are the numerical results:

| $\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}$ | 13.88 | $\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ |
| :--- | :---: | :--- |
| $\mathrm{m}_{\mathrm{BDA}}$ | 1.850 | kg BDA |
| $\mathrm{n}_{\mathrm{BDA}}$ | 63.88 | mol BDA |
| $\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}$ | 0.178 | mol H |
| $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ | mol wet gas |  |
|  | 8.92 | kPa |

Finally, we can calculate the relative humidity using Eqn 1:
$h_{r}=\quad 18.8 \%$

Verify: $\quad 1$ - The assumption is sound since the normal boiling points of oxygen and nitrogen are 68 K and 70 K and our system is at 343 K .
2 - The ideal gas assumption was verified above because $\mathrm{V}=57 \mathrm{~L} / \mathrm{mol}$ which is greater than $\mathbf{2 0} \mathrm{L} / \mathrm{mole}$. The limit for non-diatomic gases applies because of the water in the air.

Answers : $\mathrm{h}_{\mathrm{r}}=19 \%$ \%

The rigid tank shown below contains 5 kg of a non-condensable gas with a molecular weight of $44.1 \mathrm{~g} / \mathrm{mol}$. The tank also contains water vapor. The gas in the tank is at 140 kPa and $80^{\circ} \mathrm{C}$ and the relative humidity is $72 \%$.


Assuming the gas in the tank behaves as an ideal gas, calculate the mass of water vapor in the tank.

Read : The keys here are the definition of relative humidity and the relationship between mole fraction and partial pressure.
We need to assume the humid air behaves as an ideal gas in order to determine the partial pressure of water from the given $\mathbf{h}_{\mathbf{r}}$. We can use the mole fraction of water in the gas to determine the mass of water in the gas.

| Given: | $m_{\text {NCG }}=$ | 5 | kg NCG | $\mathbf{P}_{\text {tot }}=$ | 140 | kPa |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathrm{MW}_{\text {NCG }}=$ | 44.1 | $\mathrm{~g} \mathrm{NCG} /$ mole NCG | $\mathrm{h}_{\mathrm{r}}=$ | $72 \%$ |  |
|  | $\mathrm{~T}=$ | 80 | ${ }^{\circ} \mathrm{C}$ |  |  |  |
| Find: | $\mathrm{m}_{\mathrm{H} 2 \mathrm{O}}=$ | $? ? ?$ | kg |  |  |  |

Assumptions: 1-The gas in the tank behaves as an ideal gas. This must be verified.
Equations / Data / Solve:
Let's begin with the definition of relative humidity: $\quad \mathbf{h}_{\mathrm{r}}=\frac{\mathbf{P}_{\mathbf{H 2 0}}}{\mathbf{P}_{\mathbf{H 2 0}}^{*}}$
Eqn 1

The vapor pressure is equal to the saturation pressure at the system temperature.
We can find this in the saturation temperature section of the steam $\quad \mathbf{P}^{*}{ }_{\mathbf{H} 2 \mathrm{O}}\left(70^{\circ} \mathrm{C}\right) \quad \mathbf{4 7 . 4 1} \quad \mathbf{~ k P a}$
Plug $\mathbf{P}^{*}{ }_{\mathbf{H} 2 \mathrm{O}}$ and $\mathbf{h}_{\mathbf{r}}$ into Eqn 1 to get the partial pressure of water from the definition of relative humidity.
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} \quad 34.138 \mathrm{kPa}$

For an ideal gas:
$\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}=\mathbf{y H}_{\mathrm{H} 2 \mathrm{O}} \mathbf{P}_{\text {tot }}$
Eqn 2
or:

$$
\mathbf{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{tot}}}
$$

Eqn 3

Plugging values into Eqn 3 yields: $\quad \mathrm{yH}_{\mathrm{H} 2 \mathrm{O}}=\quad 0.244 \quad \mathbf{m o l ~} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol}$ wet gas

For all gases, mole fraction is defined as: $\quad \mathbf{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{n}_{\mathrm{gas}}}=\frac{\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}}{\left(\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}+\mathbf{n}_{\mathrm{NCG}}\right)}$
Eqn 4

Where :

$$
n_{i}=m_{i} / M W_{i}
$$

Eqn 5

Now, we solve Eqn 4 for $\mathbf{n}_{\mathbf{H} 2 \mathrm{O}}$ :

$$
\begin{aligned}
& n_{H 2 O}=y_{H 2 O}\left(n_{H 2 O}+n_{N C G}\right) \\
& n_{H 2 O}=n_{N C G} \frac{y_{H 2 O}}{1-y_{H 2 O}}
\end{aligned}
$$

Now, we can plug the numbers into equations...

$$
\begin{array}{llr}
\text { Eqn } 5 \text { yields : } & n_{\mathrm{NCG}}= & 113.38 \text { moles NCG } \\
\text { Eqn } 7 \text { yields : } & \mathrm{n}_{\mathrm{H} 2 \mathrm{O}}= & 36.56 \text { moles } \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Finally, Eqn 5 can be rewritten as :

$$
m_{i}=n_{i} M W_{i}
$$

We can answer the question posed by plugging numbers into Eqn 8 :
Data: $\mathrm{MW}_{\mathrm{H} 2 \mathrm{O}}=18.016 \quad \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{m}_{\mathrm{H} 2 \mathrm{O}}=\quad 658.7 \quad \mathrm{~g} \mathrm{H} \mathbf{2}$

Verify:
$\begin{array}{ll}\text { Test if ideal: Ideal Gas EOS : } & \mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T} \\ \text { Solve for the molar volume : } & \tilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}\end{array}$

$$
\tilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}
$$

Therefore, since $\mathbf{V} \boldsymbol{>} \mathbf{2 0} \mathbf{L} /$ mole, we can treat the wet gas as an ideal gas.
Answers : $\mathrm{m}_{\mathrm{H} 2 \mathrm{O}}=6699 \quad \mathrm{gH}_{2} \mathrm{O}$

Air is fed to a furnace at a volumetric flow rate of $745 \mathrm{~m}^{3} / \mathrm{h}$. The air is at $50^{\circ} \mathrm{C}, 100 \mathrm{kPa}$ and has a relative humidity of 37\%.
a.) Calculate the molar flow rate of bone dry air (BDA) into the furnace in mole/h.
b.) Calculate the molar flow rate of water (within the humid air) into the furnace in mole/h.

Read: The two keys to this problem is that the humid air behaves as an ideal gas and the definition of relative humidity. You can determine the mole fraction of water in humid air from the relative humidity. You can use the Ideal Gas EOS to determine the total molar flow rate from the volumetric flow rate. The product of the mole fraction of water and the total molar flow rate is the molar flow rate of water. Finally, the molar flow rate of BDA is just the difference between the total molar flow rate and molar flow rate of water.

| Given: | $\mathbf{T}$ | 50 | ${ }^{\circ} \mathrm{C}$ | Find : | $\mathbf{n}_{\text {H2O }}$ | ??? | $\mathrm{mol} \mathrm{H}_{\mathbf{2}} \mathrm{O} / \mathrm{h}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}$ | 100 | $\mathbf{k P a}$ |  | $\mathbf{n}_{\text {BDA }}$ | ??? | $\mathrm{mol} \mathrm{BDA} / \mathrm{h}$ |
|  | $\mathbf{h}_{\mathrm{R}}$ | $37 \%$ |  |  |  |  |  |
|  | $\mathrm{~V}_{\text {dot }}$ | 745 | $\mathrm{~m}^{3} / \mathrm{h}$ |  |  |  |  |

Diagram: None for this problem.
Assumptions: 1 - Humid air behaves as an ideal gas. This allows us to use the Ideal Gas EOS and tells us that the partial pressure is equal to the product of the mole fraction and the total pressure.

## Equations / Data / Solve :

The molar flow rates of BDA and water are related to the total molar flow rate of humid air by the mole fractions. The equations are :

$$
\dot{\mathrm{n}}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{y}_{\mathrm{H} 2 \mathrm{O}} \dot{\mathrm{n}}_{\text {total }} \quad \text { Eqn } 1 \quad \dot{\mathrm{n}}_{\mathrm{BDA}}=\mathrm{y}_{\mathrm{BDA}} \dot{\mathrm{n}}_{\text {total }} \quad \text { Eqn } 2
$$

Because humid air is made up of bone dry air (BDA) and water, only :
$\mathbf{y}_{\mathrm{BDA}}+\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=\mathbf{1}$
Eqn 3

Solve Eqn 3 for $y_{b D A}$.
$y_{\text {BDA }}=1-y_{\text {H2O }}$
So, we need to determine $\mathbf{n}_{\text {total }}$ and $\mathbf{y}_{\mathbf{H} 2 \mathrm{O}}$ before we can use Eqns $\mathbf{1 , 2} \mathbf{2} \mathbf{4}$ to answer this question.
Let's begin by evaluating the total molar flow
For this, we can use the rate version of the Ideal Gas EOS: $\quad \mathbf{P} \dot{\mathbf{V}}_{\text {total }}=\dot{\mathbf{n}}_{\text {total }} \mathbf{R} \mathbf{T}$
Eqn 5

Solve Eqn 5 for the total molar flow rate.

$$
\dot{\mathbf{n}}_{\text {total }}=\frac{\mathbf{P} \dot{\mathbf{V}}_{\text {total }}}{\mathbf{R T}}
$$

The key to solving this problem is using the definition of relative humidity to determine the mole fraction of water in the humid air.

$$
\begin{equation*}
\mathbf{h}_{\mathrm{R}}=\frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}^{*}}=\frac{\mathbf{y}_{\mathrm{H} 2 \mathrm{O}} \mathbf{P}}{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}^{*}} \tag{Eqn 7}
\end{equation*}
$$

We can now solve Eqn 7 for the mole fraction of water in the humid air.

$$
\mathbf{y}_{\mathrm{H} 2 \mathrm{O}}=\mathbf{h}_{\mathrm{R}} \frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}^{*}}{\mathbf{P}}
$$

We can look up the vapor pressure of water at $50^{\circ} \mathrm{C}$ in the Saturated Temperature Table of the Steam Tables.

| $\mathbf{P}^{\star}{ }_{\mathrm{H} 2 \mathrm{O}}$ | 38.595 | kPa |
| :--- | :---: | :--- |
| $\mathrm{Y}_{\mathrm{H} 2 \mathrm{O}}$ | 0.1428 | mol H |
|  |  | $\mathrm{O} / \mathrm{mol}$ |
| $\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}$ | 3960 | $\mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / \mathrm{h}$ |
| $\mathrm{Y}_{\mathrm{BDA}}$ | 0.8572 | $\mathrm{~mol} \mathrm{BDA} / \mathrm{mol}$ |
| $\mathrm{n}_{\mathrm{BDA}}$ | 23770 | $\mathrm{~mol} \mathrm{BDA} / \mathrm{h}$ |

Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume and check if :

$$
\begin{aligned}
& \widetilde{V}>20 \mathrm{~L} / \mathrm{mol} \\
& \widetilde{\mathrm{~V}}_{\text {out }}=\frac{R T_{\text {out }}}{P_{\text {out }}}
\end{aligned}
$$

V $\quad 26.87$ L/mol

Answers: $\square$
$\mathbf{n}_{\mathrm{H} 2 \mathrm{O}}$
$3960 \mathrm{~mol} \mathrm{H} \mathbf{2} / \mathrm{h}$

The ideal gas assumption is valid because $\mathrm{V}>\mathbf{2 0} \mathbf{L} /$ mole.

| $n_{\text {BDA }}$ | 23800 | $\mathrm{~mol} \mathrm{BDA} / \mathrm{h}$ |
| :--- | :--- | :--- |

Complete the following table by determining the values of all the blank entries. The system contains only R-134a.
a.)
b.)
c.)
d.)
e.)

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{P}(\mathrm{kPa})$ | $\mathrm{v}\left(\mathrm{m}^{3} / \mathbf{k g}\right)$ | $\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{x}(\mathrm{kg}$ vap/kg tot) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -15 |  |  | 369.85 |  |  |
| 43 | 728 |  |  |  |  |
|  | 250 | 0.049 |  |  |  |
| 50 | 1547 |  |  |  |  |
|  | 976 |  |  | 318.7 |  |

Read : The key to this problem is to recognize that all of the variables in the table are state variables, or properties, and that they are all intensive properties. It is also important to assume that either one or two phases exist. The triple point of R-134a is not common knowledge, but it is pretty safe to assume that it does not appear in this table. We can verify this assumption later. Also, since we have no data availabe about solid R-134a, we can assume that we have either a subcooled liquid, a superheated vapor or an equilibrium mixture of saturated vapor and saturated liquid in the system. Gibbs Phase Rule tells us that for a pure substance in a single phase there are 2 degrees of freedom. If two phases are present, then there is just 1 degree of freedom. In either case, the two values of intensive properties given in each part of this problem will be sufficient to completely determine the values of all of the other intensive properties of the system. So, we are in good shape to move forward on solving this problem.

Given:
a.)
b.)
c.)
d.)
e.)

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{P}(\mathbf{k P a})$ | $\mathrm{v}\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathrm{u}(\mathbf{k J} / \mathrm{kg})$ | $\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{x}(\mathrm{kg}$ vap/kg tot) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -15 |  |  | 369.85 |  |  |
| 43 | 728 |  |  |  |  |
|  | 250 | 0.049 |  |  |  |
| 50 | 1547 |  |  |  |  |
|  | 976 |  |  | 318.7 |  |

Find: $\quad$ Fill in all the blank values in the table, above.
Assumptions: - No solid phase exists in any of these 5 systems
Equations / Data / Solve:
$\begin{array}{lllllll} & \text { Part a.) Given: } \mathbf{T} & -15 & \mathbf{C} & \mathbf{U} & 369.85 & \text { kJ/kg }\end{array}$
We again begin by determining the state of the system. In this case, it would be easiest to lookup the $\mathbf{U}_{\text {sat vap }}$ and

| If: | $\mathbf{U}>\mathbf{U}_{\text {sat vap }}$ | Then: | The system contains a superheated vapor. |
| :--- | :--- | :--- | :--- |
| If : | $\mathbf{U}<\mathbf{U}_{\text {sat liq }}$ | Then: | The system contains a subcooled liquid. |
| If: | $\mathbf{U}_{\text {sat vap }}>\mathbf{U}>\mathbf{U}_{\text {sat liq }}$ | Then: | The system contains an equilibrium mixture of saturated <br> liquid and saturated vapor. |

Data :

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{U}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathbf{k J} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 163.94 | -15 | $7.4469 \mathrm{E}-04$ | 0.12067 | 180.02 | 369.85 | 180.14 | 389.63 |

Because $\mathbf{U}=\mathbf{U}_{\text {sat vap }}$, our system contains a saturated vapor. The bonus here is that the quality is $\mathbf{1}$ and all the

| $\mathbf{X}$ <br> $\mathbf{P}$ | 1 <br> 163.94 | $\mathrm{kg} \mathrm{vap} / \mathrm{kg}$ <br> kPa |
| :--- | :---: | :---: | :---: | :---: | :---: |

We again begin by determining the state of the system. Unfortunately the system temperature is not listed in the

| P*(kPa) | $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \hline V_{\text {sat liq }} \\ & \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{aligned}$ | $\begin{aligned} & \hline V_{\text {sat vap }} \\ & \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{aligned}$ | $\begin{gathered} \hline \mathrm{U}_{\text {sat liq }} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{aligned} & \hline \mathrm{U}_{\text {sat vap }} \\ & (\mathrm{kJ} / \mathrm{kg}) \end{aligned}$ | $\begin{gathered} \hline \mathrm{H}_{\text {sat liq }} \\ (\mathrm{kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{aligned} & \hline \mathrm{H}_{\text {sat vap }} \\ & (\mathrm{kJ} / \mathrm{kg}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1016.6 | 40 | $8.7204 \mathrm{E}-04$ | 0.019966 | 255.52 | 399.13 | 256.41 | 419.43 |
| 1159.9 | 45 | 8.8885E-04 | 0.0173439 | 262.91 | 401.40 | 263.94 | 421.52 |
| 700 | 26.71 | 8.3320E-04 | 0.0293654 | 236.41 | 392.64 | 236.99 | 413.20 |
| 750 | 29.08 | 8.3959E-04 | 0.027375 | 239.76 | 393.84 | 240.39 | 414.37 |

We could interpolate to determine the saturation properties at 728 kPa , but there isn't much point! Since the Since the system temperature is greater than the saturation temperature at the system pressure, the system

> | $\mathbf{x}$ | N $/$ - Superheated |
| :--- | :--- |

The Superheated Vapor Table includes tables for pressure of 700 and 800 kPa , but not 728 kPa . These two The double interpolation can be done with the aid of tables like the ones developed in Lesson 2C on page 18. The data required for the double interpolation tables are :

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: |
| 700 | 40 | 0.031696 | 404.53 | 426.72 |
| 700 | 50 | 0.033322 | 413.35 | 436.67 |
| 800 | 40 | 0.027036 | 402.97 | 424.59 |
| 800 | 50 | 0.028547 | 412.00 | 434.84 |

Here is the double interpolation table for $\mathbf{V}$ : I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 700 | 728 | 800 |
| 40 | 0.031696 | 0.030391 | 0.0270357 |
| 43 | 0.032184 | 0.030869 | 0.027489 |
| 50 | 0.033322 | 0.031985 | 0.028547 |


| V | 0.030869 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Here is the double interpolation table for $\mathbf{U}$ :
I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 700 | 728 | 800 |
| 40 | 404.53 | 404.09 | 402.97 |
| 43 | 407.18 | 406.76 | 405.68 |
| 50 | 413.35 | 412.97 | 412.00 |


| $\mathbf{U}$ | 406.76 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Here is the double interpolation table for $\mathbf{H}$ :
I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

|  | Pressure (kPa) |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | 700 | 728 | 800 |
| 40 | 426.72 | 426.13 | 424.59 |
| 43 | 429.71 | 429.14 | 427.67 |
| 50 | 436.67 | 436.16 | 434.84 |


| H | 429.14 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Part c.)
Given :
P

We again begin by determining the state of the system. In this case, it would be easiest to lookup the $\mathbf{V}_{\text {sat vap }}$ and

If: $\quad V>V_{\text {sat vap }} \quad$ Then: The system contains a superheated vapor.
If: $\quad V<V_{\text {sat liq }}$
If : $\quad V_{\text {sat vap }}>V>V_{\text {sat liq }}$

Then : The system contains a subcooled liquid.
Then : The system contains an equilibrium mixture of saturated liquid and saturated vapor.

Data :

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathbf{U}_{\text {sat liq }}$ <br> $(\mathbf{k J / k g})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathbf{k J} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 250 | -4.28 | $7.6406 \mathrm{E}-04$ | 0.080685 | 194.08 | 375.91 | 194.27 | 396.08 |

Because $\mathbf{V}$ lies between $\mathbf{V}_{\text {sat liq }}$ and $\mathbf{V}_{\text {sat vap }}$, the system is the two-phase envelope and $\mathbf{T}=\mathbf{T}_{\text {sat }}$.

| T | -4.284 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |

In order to determine the values of the other properties of the system using the following equation, we will need to

$$
\begin{equation*}
\mathbf{M}_{\text {VLE }}=\mathbf{M}_{\text {sat liq }}+\mathbf{x}\left(\mathbf{M}_{\text {sat vap }}-\mathbf{M}_{\text {sat iq }}\right) \tag{Eqn 1}
\end{equation*}
$$

We can determine $\mathbf{x}$ from the saturation data and the known value of $u$ for the system using :

$$
\mathbf{x}=\frac{\mathbf{v}-\mathbf{v}_{\text {sat liq }}}{\mathbf{v}_{\text {sat vap }}-\mathbf{v}_{\text {sat liq }}}
$$

Eqn 2
$\begin{array}{lll}\mathrm{x} & 0.604 \quad \mathrm{~kg} \mathrm{vap} / \mathrm{kg}\end{array}$
Now, we can plug $\mathbf{x}$ back into Eqn 1 and apply it to the unknown properties, $\mathbf{U}$ and $\mathbf{H}$.


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Part d.) | Given: | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{P}$ | 1547 | kPa |

The first step in solving each part of this problem is to determine the state of the system. Is it subcooled liquid, superheated vapor or a two-phase VLE mixture.

We could do this by determining the boiling point or saturation temperature at the system pressure. But, since 1547 kPa does not appear in the Saturation Pressure Table for R-134a, this would require an interpolation. It is easier to determine the saturation pressure or vapor pressure based on the system temperature because $50^{\circ} \mathrm{C}$ does appear in the Saturation Temperature Table and therefore does not require an interpolation.

$$
\mathrm{P}^{*}\left(50^{\circ} \mathrm{C}\right) \quad 1317.9 \quad \mathrm{kPa}
$$

Since the actual system pressure is ABOVE the vapor pressure, the system contains a subcooled liquid.
The quality of a subcooled liquid is undefined. Therefore :
$\mathrm{x}=$
N/A - Subcooled
The Subcooled Liquid Table for R-134 includes data fo $50^{\circ} \mathrm{C}$ at both 1400 kPa and 1600 kPa .
Therefore, a single-interpolation is required for each unknown property in the problem statement.

| $\mathbf{P}^{\star}(\mathbf{k P a})$ | $\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{H}(\mathbf{k J} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: |
| 1400 | 50 | $9.0646 \mathrm{E}-04$ | 270.32 | 271.59 |
| 1547 | 50 | $9.0517 \mathrm{E}-04$ | 270.13 | 271.53 |
| 1600 | 50 | $9.0470 \mathrm{E}-04$ | 270.06 | 271.51 |


| $V$ | $9.0517 \mathrm{E}-04$ | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :---: | :---: |
| U | 270.13 | $\mathrm{~kJ} / \mathrm{kg}$ |
| H | 271.53 | $\mathrm{~kJ} / \mathrm{kg}$ |

Part e.) Given: $\quad \mathbf{P}$
976 kPa
H
kJ/kg
This part of the problem is very similar to part a.
We again begin by determining the state of the system. In this case, it would be easiest to lookup the $\mathbf{H}_{\text {sat vap }}$ and $\mathbf{H}_{\text {sat liq }}$ at the given temperature.

| If : | $\mathbf{H}>\mathbf{H}_{\text {sat vap }}$ | Then : | The system contains a superheated vapor. |
| :--- | :--- | :--- | :--- |
| If : | $\mathbf{H}<\mathbf{H}_{\text {sat liq }}$ | Then : | The system contains a subcooled liquid. |
| If : | $\mathbf{H}_{\text {sat vap }}>\mathbf{H}>\mathbf{H}_{\text {sat liq }}$ | Then: | The system contains an equilibrium mixture of saturated <br> liquid and saturated vapor. |

Data :

| $\mathbf{P}^{\star}(\mathrm{kPa})$ | $\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $H_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 950 | 37.50 | $8.6412 \mathrm{E}-04$ | 0.0214415 | 251.86 | 397.95 | 252.69 | 418.32 |
| 1000 | 39.39 | $8.7007 \mathrm{E}-04$ | 0.020316 | 254.63 | 398.85 | 255.50 | 419.16 |

Unfortunately, the system pressure of 976 kPa does not appear in the Saturation Pressure Table.
So, we will have to interpolate between the two rows in the table shown here to determine the saturation properties at 976 kPa .

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathbf{T}_{\text {sat }}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{V}_{\text {sat liq }}$ <br> $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{V}_{\text {sat vap }}$ <br> $\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{U}_{\text {sat liq }}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{U}_{\text {sat vap }}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{H}_{\text {sat liq }}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{H}_{\text {sat vap }}$ <br> $(\mathbf{k J} / \mathbf{k g})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 976 | 38.479 | $8.6721 \mathrm{E}-04$ | 0.0208563 | 253.30 | 398.42 | 254.15 | 418.76 |

Because $\mathbf{H}$ lies between $\mathbf{H}_{\text {sat liq }}$ and $\mathbf{H}_{\text {sat vap }}$, the system is the two-phase envelope and $\mathbf{T}=\mathbf{T}_{\text {sat }}$.

| T | 38.5 |
| :--- | :--- |

38.5
${ }^{\circ} \mathrm{C}$
In order to determine the values of the other properties of the system using the following equation, we will need to know the quality, $\mathbf{x}$.

$$
\begin{equation*}
\mathbf{M}_{\text {VLE }}=\mathbf{M}_{\text {sat liq }}+\mathbf{x}\left(\mathbf{M}_{\text {sat vap }}-\mathbf{M}_{\text {sat liq }}\right) \tag{Eqn 3}
\end{equation*}
$$

We can determine $\mathbf{x}$ from the saturation data and the known value of $\mathbf{U}$ for the system using :

$$
\mathbf{x}=\frac{\mathbf{h}-\mathbf{h}_{\text {sat liq }}}{\mathbf{h}_{\text {sat vap }}-\mathbf{h}_{\text {sat liq }}}
$$

## Eqn 4

| x | 0.392 | kg vap/kg |
| :---: | :---: | :---: |

Now, we can plug $\mathbf{x}$ back into Eqn 1 and apply it to the unknown properties, $\mathbf{V}$ and $\mathbf{U}$.

| $V$ | $8.6721 E-04$ | $\mathrm{~m}^{3} / \mathrm{kg}$ | $\mathbf{U}$ | $253.30 \quad \mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Verify: The assumption that there is no ice in the is confirmed by the fact that the the states in part (a) and part (b) are both located in the R-134a Tables. The R-134a Tables only consider states in which no solid R-134a can exist at equilibrium.

Answers :
a.)
b.)
c.)
d.)
e.)

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{P}(\mathrm{kPa})$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{x}(\mathrm{kg}$ vap/kg tot) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -15 | 163.9 | 0.120671 | 369.85 | 389.63 | 1 |
| 43 | 728 | 0.030869 | 406.76 | 429.14 | $\mathrm{~N} / \mathrm{A}-$ Superheated |
| -4.284 | 250 | 0.049 | 303.82 | 316.07 | 0.604 |
| 50 | 1547 | $9.0517 \mathrm{E}-04$ | 270.13 | 271.53 | $\mathrm{~N} / \mathrm{A}-$ Subcooled |
| 0 | 976 | $8.6721 \mathrm{E}-04$ | 253.30 | 318.70 | 0.392 |

My classroom contains $250 \mathrm{~m}^{3}$ of humid air at $26^{\circ} \mathrm{C}$ and $44 \%$ relative humidity. Calculate the mass of dry air (BDA) and the mass of water vapor in the room.

Read : The key to this problem is the definition of relative humidity. When the relative humidity and temperature are given, we can use data from the Steam Tables to determine the partial pressure and mole fraction of water in the gas phase. We can convert the mole fraction into a mass fraction. Then, by assuming the gas phase is an ideal gas, we can determine the total mass of air in the room. And, finally we can determine the mass of BDA and water in the gas in the room.

| Given: | $\mathbf{V}_{\text {tot }}$ | 250 | $\mathrm{~m}^{3}$ | $\mathbf{T}$ | 26 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{\text {tot }}$ | 105 | $\mathbf{k P a}$ | $\mathbf{h}_{\mathbf{r}}$ | $44 \%$ |  |
| Find: | $\mathrm{m}_{\mathrm{H} 2 \mathrm{O}}$ | ??? | $\mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{m}_{\text {BDA }}$ | ??? | kg BDA |

Assumptions: - The air-water gas mixture behaves as an ideal gas. At the end of the problem we will be able to determine the molar volume of the air-water gas mixture so we can verify this assumption.

Equations / Data / Solve:
Using the IG EOS and the known $\mathbf{P}, \mathbf{T}$ and $\mathbf{V}$ of the room, we can determine the mass of air-water gas mixture in the room.

Ideal Gas EOS :

$$
\mathbf{P} \mathbf{V}=\mathbf{n} \mathbf{R T}=\frac{\mathbf{m}}{\mathbf{M W}} \mathbf{R} \mathbf{T}
$$

$$
\begin{equation*}
\mathrm{m}_{\mathrm{gas}}=\mathrm{MW}_{\mathrm{gas}} \frac{\mathrm{PV}}{R T} \tag{Eqn 2}
\end{equation*}
$$

The following equation allows us to calculate the average molecular weight of a gas mixture using the mole fractions and molecular weights of its constituents.


For our system, Eqn 3 becomes : $\quad \overline{\mathbf{M W}}_{\text {gas }}=\mathbf{y}_{\mathrm{BDA}} \mathbf{M W}_{\mathrm{BDA}}+\mathbf{y}_{\mathbf{H} 2 \mathrm{O}} \mathbf{M W}_{\mathbf{H} 2 \mathrm{O}}$
$\begin{array}{llllll}M_{B D A} & 29 & \mathrm{~g} \mathrm{BDA} / \mathrm{mole} \text { BDA } & \mathrm{MW}_{\mathrm{H} 2 \mathrm{O}} 18.016 \quad \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mole} \mathrm{H}_{2} \mathrm{O}\end{array}$
So, in order to determine the average molecular weight of the gas, we need to know the composition of the gas. That is, we need to know the mole fractions of BDA and water in the gas mixture. Given the relative humidity and the temperature of an ideal gas mixture of air and water, we can determine the composition.

Begin with the definition of relative humidity :

$$
\begin{equation*}
h_{r}=\frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}^{*}} \tag{Eqn 5}
\end{equation*}
$$

Since we know the temperature of the system is $26^{\circ} \mathrm{C}$, we can look up the vapor pressure of water at this temperature in the Saturation Temperature Table in the Steam Tables. Unfortunately, because $\mathbf{2 6}{ }^{\circ} \mathrm{C}$ is not listed in the Saturation Temperature Table, interpolation is required.

| $\mathrm{T}_{\text {sat }}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{P}_{\text {sat }}(\mathbf{k P a})$ |
| :---: | :---: |
| 25 | $\mathbf{3 . 1 7 0}$ |
| 26 | $? ? ?$ |
| 30 | 4.247 |

Interpolation yields : $\quad \mathbf{P}^{*}{ }_{\mathrm{H} 2 \mathrm{O}}\left(26^{\circ} \mathrm{C}\right) \quad 3.385 \mathrm{kPa}$
We can plug the vapor pressure, along with the given value of the relative humidity into Eqn 5 to determine the partial pressure of water in the gas.

| $\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}$ | 1.490 kPa |
| :--- | :--- |
| $\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}=\mathbf{y}_{\mathrm{H} 2 \mathrm{O}} \mathbf{P}_{\mathrm{tot}}$ | Eqn 6 |
| $\mathbf{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{tot}}}$ | Eqn 7 |

Plugging numbers into Eqn 7 yields :

| $\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}$ |
| :--- |
|  |

We can calculate $y_{\text {BDA }}$ because $\Sigma \mathbf{y}_{\mathbf{i}}=1$ :
0.986 mol BDA / mol gas

At last, we can use these mole fractions in Eqn 4 to determine the value of $\mathbf{M W}_{\text {gas }}$ and then use that in Eqn 2 to determine the total mass of gas in the room.
$\mathbf{M W}_{\text {gas }}$
28.844 g gas / mol gas
$\mathbf{m}_{\text {gas }}$
304.43 kg gas

Here we can either determine the mass fractions of BDA and water in the gas or we can determine the number of moles of BDA and water in the room. I will use both methods here.

$$
\mathbf{n}_{\mathrm{gas}}=\frac{\mathrm{m}_{\mathrm{gas}}}{M W_{\mathrm{gas}}}
$$

Eqn 8
$\mathbf{n}_{\mathbf{i}}=\mathbf{y}_{\mathbf{i}} \mathbf{n}_{\mathrm{gas}}$
Eqn 9

| $n_{\text {gas }}$ | 10.554 | mol gas |
| :--- | :---: | :--- |
| $\mathbf{n}_{\text {H2O }}$ | 0.150 | mol H$_{2} \mathrm{O}$ |
| $\mathbf{n}_{\text {BDA }}$ | 10.405 | mol BDA |

$$
\mathbf{m}_{\mathrm{gas}}=\mathbf{n}_{\mathrm{gas}} \mathbf{M} \mathbf{W}_{\mathrm{gas}}
$$

Eqn 10

| $\mathbf{m}_{\mathrm{H} 2 \mathrm{O}}$ | 2.70 | $\mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- |


| $m_{\text {BDA }}$ | 302 | kg BDA |
| :--- | :--- | :--- |

Convert mole fractions into mass fractions :

$$
\mathbf{x}_{\mathrm{i}}=\mathbf{y}_{\mathrm{i}} \frac{\mathbf{M W}_{\mathrm{i}}}{\mathbf{M W} \mathrm{gas}}
$$

The following unit analysis shows why Eqn 11 is true.

| $\underline{g}$ of species i |  | g of species i |
| :---: | :---: | :---: |
|  | mol-ofspeoies-i | mol-ofspecies i |
| g of gas | molofgas | g of gas |
|  |  | molofgas |

Now, we can determine the mass of each species in the gas by multiplying the total mass by the mass fraction.

$$
m_{i}=x_{i} m_{\text {gas }}
$$

Eqn 13
$\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} \quad 2.70 \quad \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{m}_{\text {BD }}$
302 kg BDA

Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume and check if: $\quad \widetilde{\mathbf{V}}>\mathbf{2 0 L} / \mathbf{m o l}$
$\widetilde{\mathbf{V}}_{\text {out }}=\frac{\mathbf{R} \mathbf{T}_{\text {out }}}{\mathbf{P}_{\text {out }}}$
R
$8.134 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
V
23.17 L/mol

The ideal gas assumption is valid because $\mathbf{V}>\mathbf{2 0} \mathbf{L} /$ mole.
Answers :
$\mathrm{m}_{\mathrm{H} 2 \mathrm{O}}$
$2.70 \quad \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$

| $\mathrm{m}_{\text {BDA }}$ | 302 | kg BDA |
| :--- | :--- | :--- |



Determine the mass of propane in a 10 L tank if a temperature gauge on the tank reads $-20^{\circ} \mathrm{C}$ and a pressure gauge on the tank reads 10 kPa . Assume propane behaves as an ideal gas, but verify this assumption.

Read: Apply the Ideal Gas EOS to determine the molar volume of the propane in the tank. If this value is greater than $20 \mathrm{~L} / \mathrm{mol}$, the IG EOS is accurate to within $1 \%$.
Use the molar volume, the molecular weight and the volume of the tank to determine the mass of propane in the tank.

| Given: | V | 10 | $\mathbf{L}$ | $\mathbf{P}_{\text {gauge }}$ | 10 | $\mathbf{k P a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}$ | -20 | ${ }^{\circ} \mathrm{C}$ |  |  |  |
| Find: | $\mathbf{M}_{\mathrm{C} 3}$ | ??? | $\mathbf{g}$ |  |  |  |

Assumptions: 1-Assume the propane behaves as an ideal gas. Be sure to verify this assumption.
Equations / Data / Solve:
We could use the following equation to determine the mass of propane in the tank if we knew the specific volume.

$$
\mathbf{M}=\frac{\mathbf{V}}{\hat{\mathbf{V}}}
$$

Equations of state are written in terms of the molar volume. So we need the following equation to get from molar volume to the specific volume that we need to make use of Eqn 1.

$$
\begin{equation*}
\hat{\mathbf{V}}=\frac{\tilde{\mathbf{V}}}{\mathbf{M W}} \tag{Eqn 2}
\end{equation*}
$$

Now, we need to us the Ideal Gas EOS to determine the molar volume.

## Ideal Gas EOS :

$\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}$
Eqn 3
Let's solve for the molar volume because we know we will need this value to test whether the Ideal Gas EOS is applicable.

$$
\begin{equation*}
\tilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}} \tag{Eqn 4}
\end{equation*}
$$

We need to be careful with our units in Eqn 2. Let's begin by looking up the Universal Gas Constant in my favorite units, $\mathbf{J} / \mathrm{mol}-\mathrm{K}$.

$$
\begin{array}{lll}
\text { R } & 8.314 & \mathrm{~J} / \mathrm{mol}-\mathrm{K}
\end{array}
$$

Next we need to convert the temperature to Kelvins and the gauge pressure to absolute pressure in Pascals.

| $\mathbf{T}(\mathrm{K})=\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)+273.15$ |  | T | 253.15 | K |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{P}_{\text {abs }}=\mathbf{P}_{\text {gauge }}+\mathbf{P}_{\text {atm }}$ | Assume: | $\mathrm{Patm}^{\text {a }}$ | 101.325 | kPa |
|  |  | Pabs | $111.325$ $111,325$ | $\mathrm{kPa}$ |
|  |  |  | 111,325 | Pa |
| Plugging values into Eqn 2 yields: |  | v | $\begin{gathered} 0.018906 \\ 18.91 \end{gathered}$ | $\mathrm{m}^{3} / \mathrm{mol}$ <br> L/mol |
| We can now look up the molecular weight of propane: |  | MW | 44.1 | $\mathrm{g} / \mathrm{mol}$ |

Now, we can plug values into Eqn 2 and then Eqn 1 to complete this solution.

| ( Watch the units here!) | $\mathbf{V}$ |
| :--- | :--- |
|  | $\mathbf{M}_{\mathbf{C 3}}$ |


| 0.42870 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- |
| 0.02333 | kg |
| 23.33 | g |

Verify: Propane is not a diatomic molecule. Therefore, it cannot be accurately treated as an ideal gas unless its molar volume is greater than $20 \mathrm{~L} / \mathrm{mol}$.

Above, we found the molar volume of propane under the conditions in this problem is $18.91 \mathrm{~L} / \mathrm{mol}$.
Therefore we conclude that it may not be accurate to use the Ideal Gas EOS to solve this problem.
You should probably try a more sophisticated EOS such as the Generalized Compresibility EOS in this lesson or one of the equations of state in the next lesson.

Answers:

| $\mathrm{M}_{\mathrm{C} 3}$ | 23.33 | $\mathbf{g}$ |
| :--- | :--- | :--- |

(But this result is not reliable because the Ideal Gas assumption is not valid. A more accurate analysis yields $\mathrm{M}_{\mathrm{C} 3}=\mathbf{2 4 . 1} \mathrm{g}$.)

## "The best way to Learn Thermodynamics"

2E-2
Ideal Gas or Not: Dioxide An Ideal Gas?
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ gas is held in a tank at 225 kPa and 240 K . Can the carbon dioxide be treated as an ideal gas with less than $\mathbf{1 \%}$ error?

Read : Apply the Ideal Gas EOS to determine the molar volume of the $\mathbf{C O}_{2}$ in the tank. If this value is greater than $\mathbf{2 0}$ $\mathrm{L} / \mathrm{mol}$, the IG EOS is accurate to within $1 \%$.

| Given: | $\mathbf{T}$ | 240 | K | $\mathbf{P}$ | 225 | kPa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Find: $\quad \mathrm{Can} \mathrm{CO}_{2}$ be accurate treated as an ideal gas?
Assumptions: 1 - Assume the $\mathbf{C O}_{\mathbf{2}}$ behaves as an ideal gas. Be sure to verify this assumption.
Equations / Data / Solve:
Ideal Gas EOS :

$$
\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}
$$

Eqn 1
Let's solve for the molar volume because we know we will need this value to test whether the Ideal Gas EOS is applicable.

$$
\begin{equation*}
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}} \tag{Eqn 2}
\end{equation*}
$$

We need to be careful with our units in Eqn 2. Let's begin by looking up the Universal Gas Constant in my favorite units, J/mol-K.

|  | R | 8.314 | J/mol-K |
| :---: | :---: | :---: | :---: |
| Next we need to convert the pressure from kPa to Pascals. | P | 225,000 | Pa |
| Plugging values into Eqn 2 yields: | V | $0.0088683$ | $\mathrm{m}^{3} / \mathrm{mol}$ |

Verify: $\quad \mathbf{C O}_{2}$ is not a diatomic molecule. Therefore, it cannot be accurately treated as an ideal gas unless its molar volume is greater than $20 \mathrm{~L} / \mathrm{mol}$.

Above, we found the molar volume of propane under the conditions in this problem is $8.87 \mathrm{~L} / \mathrm{mol}$.
Therefore, we conclude that it may not be accurate to use the Ideal Gas EOS to solve this problem.
You should probably try a more sophisticated EOS such as the Generalized Compresibility EOS in this lesson or one of the equations of state in the next lesson.

Answers:
No. Under these conditions, $\mathrm{CO}_{2}$ cannot be accurately treated as an ideal gas.

## "The best way to Learn Thermodynamics"

Read: $\quad$ We can use $\mathbf{T} \& \mathbf{P}$ to calculate $\mathbf{T}_{\mathbf{R}}$ and $\mathbf{P}_{\mathbf{R}}$ and use the Generalized Compressibility Charts to determine $\mathbf{Z}$ \& $\mathbf{V}_{\mathbf{R}}{ }^{\text {ideal }}$. Then, we can use either $\mathbf{Z}$ or $\mathbf{V}_{\mathbf{R}}{ }^{\text {ideal }}$ to determine the molar volume. The values we get for the molar volume should agree within about $5 \%$.
Given:

| 725 | K |
| :---: | :--- |
| 27 | MPa |

Find: V
???
L/mol
P $27 \quad \mathrm{MPa}$

Assumptions: None.

## Equations / Data / Solve:

Begin by collecting all of the constants needed for all Generalized Compressibility Equation of State.

| $\mathbf{R}$ | 8.314 | $\mathrm{~J} / \mathrm{mol}^{-K}$ | $\mathbf{T}_{\mathbf{c}}$ | 513.38 | $\mathbf{K}$ |
| :--- | :---: | :--- | :--- | :--- | :--- |
| MW | 32.042 | $\mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}$ | $\mathbf{P}_{\mathbf{c}}$ | 8.216 | MPa |

Compressibility EOS :
Given $\mathbf{T}_{\mathbf{R}}$ and the ideal reduced molar volume, use the compressibility charts to evaluate either $\mathbf{P}_{\mathbf{R}}$ or the compressibility, $\mathbf{Z}$. $\mathbf{T}_{\mathbf{R}}, \mathbf{P}_{\mathbf{R}}$ and $\mathbf{Z}$ are defined as follows.

$$
\begin{equation*}
\mathbf{T}_{\mathbf{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathbf{c}}} \quad \text { Eqn 1 } \quad \mathbf{P}_{\mathbf{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{c}}} \quad \text { Eqn 2 } \quad \mathbf{Z}=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}} \quad \text { Eqn 3 } \tag{Eqn 1}
\end{equation*}
$$

Because we know both $\mathbf{T}$ and $\mathbf{P}$, we can immediately plug values into Eqns 1 \& 2.
$\mathrm{T}_{\mathrm{R}}$
1.412
$\mathrm{P}_{\mathrm{R}}$
3.286
Read the Generalized Compressibility
Chart for $\mathbf{P}_{\mathbf{R}}=\mathbf{0}$ to 7 :
Z
0.74
$V_{R}{ }^{\text {ideal }}$
0.325

We can solve Eqn 3 for the molar volume and use the value of $\mathbf{Z}$ we just found to evaluate $\mathbf{V}$.

$$
\begin{equation*}
\tilde{\mathbf{V}}=\frac{\mathbf{Z R T}}{\mathbf{P}} \tag{Eqn 4}
\end{equation*}
$$

Plugging values into Eqn 4 yields:
V
$0.0001652 \mathrm{~m}^{3} / \mathrm{mol}$ $0.165 \mathrm{~L} / \mathrm{mol}$

Alternatively, we could us the ideal reduced molar volume that we found on the Generalized Compressibility Chart to determine the molar volume.

$$
\tilde{\mathbf{V}}_{\mathrm{R}}^{\text {ideal }}=\frac{\tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}_{\mathrm{c}} / \mathbf{P}_{\mathrm{c}}}
$$

Now, we can solve Eqn 5 and plug in values to determine $\mathbf{V}$.

$$
\begin{aligned}
& \tilde{\mathbf{V}}=\tilde{\mathrm{V}}_{\mathrm{R}}^{\text {ideal }} \cdot \frac{\mathrm{R} \mathrm{~T}_{\mathrm{c}}}{\mathbf{P}_{\mathrm{c}}} \quad \text { Eqn 6 } \\
& \mathrm{V} \\
& \begin{array}{l}
0.0001688 \mathrm{~m}^{3} / \mathrm{mol} \\
0.169 \mathrm{~L} / \mathrm{mol}
\end{array}
\end{aligned}
$$

Verify: There are no assumptions to verify.

|  | Answers : Z: | $\mathbf{V}$ | 0.165 | $\mathrm{~L} / \mathrm{mol}$ | $\mathrm{V}_{\mathrm{r}}^{\text {ideal }}:$ | V | 0.169 | $\mathrm{~L} / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

These values differ by less than $3 \%$. If you read the chart correctly, they should agree to within about $5 \%$.

2E-4
Equilibrium Pressure When Two Gases Are Mixed
Two rigid tanks are connected by a large duct, as shown below. Tank A initially contains 3 kg of hydrogen gas at $125^{\circ} \mathrm{C}$ and 175 KPa . Tank B initially contains 5 kg of methane gas at $85^{\circ} \mathrm{C}$ and 65 KPa .

a.) Can either gas be treated as an ideal gas?
b.) The valve in the duct is opened and the gases in the tanks mix. If both tanks eventually cool to room temperature $\left(25^{\circ} \mathrm{C}\right)$ after mixing, what will the final pressure be at equilibrium?

Read : The key here is to assume that both the pure gases and the final mixture of gases behave as ideal gases. We can immediately verify that the pure gases in their initial state are ideal gases, but we cannot verify that the final mixture of gases is ideal until we solve the problem and determine the final pressure.

Choose the contents of both tanks as the system. The fact that links the initial and final states of this system is that the total number of moles in the system does not change. This is a closed system.

| Given: | $\mathrm{m}_{\mathrm{H} 2}=$ | 3 | kg | $\mathrm{T}_{\mathrm{B}}=$ | 85 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\mathrm{A}}=$ | 125 | ${ }^{\circ} \mathrm{C}$ |  | 358.15 | K |
|  |  | 398.15 | K | $\mathrm{P}_{\mathrm{B}}=$ | 65 | KPa |
|  | $\mathrm{P}_{\mathrm{A}}=$ | 175 | KPa | $\mathrm{T}_{\text {equ }}=$ | 25 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{m}_{\text {CH4 }}=$ | 5 | kg |  | 298.15 | K |
| Find: | $\mathrm{P}_{\text {equ }}=$ | ??? | kPa |  |  |  |

Assumptions: - Both pure gases, as well as the final mixture, behave as ideal gases.
Equations / Data / Solve:

Part a.)
A diatomic gas can be considered ideal when the following criterion is satisfied:

$$
\begin{equation*}
\widetilde{\mathrm{V}}=\frac{\mathrm{RT}}{\mathrm{P}}>5 \frac{\mathrm{~L}}{\mathrm{~mol}} \tag{Eqn 1}
\end{equation*}
$$

$\begin{array}{llllll}\mathrm{V}_{\mathrm{N} 2}= & 18.92 & \mathrm{~L} / \mathrm{mol} & \text { Where: } & \mathrm{R} & 8.314 \\ \mathrm{~V}_{\mathrm{O} 2}= & 45.81 & \mathrm{~L} / \mathrm{mol} & \mathrm{J} / \mathrm{mol} \mathrm{K}\end{array}$
Since both molar volumes are much greater than $\mathbf{5 L} /$ mole, it is safe to consider both gases to be ideal gases.

## Part b.)

The key to solving the problem is to ASSUME that the equilibrium mixture will be an ideal gas:

$$
\begin{equation*}
\mathbf{P}_{\mathrm{eq}}=\frac{\mathbf{n}_{\mathrm{tot}} R \mathbf{T}_{\mathrm{eq}}}{\mathbf{V}_{\mathrm{tot}}} \tag{Eqn 2}
\end{equation*}
$$

Let's begin by determining how many moles of gas are initially in each tank.

$$
\begin{equation*}
\mathbf{n}_{\mathbf{i}}=\frac{\mathbf{m}_{\mathbf{i}}}{M W_{i}} \tag{Eqn 3}
\end{equation*}
$$

Then we can determine the total moles of gas in the system :

| $\mathbf{n}_{\text {tot }}=\mathbf{n}_{\mathrm{O}_{2}}+\mathbf{n}_{\mathrm{N}_{2}}$ | Eqn 4 |  |
| :--- | :--- | :--- |
| $\mathbf{n}_{\mathrm{N} 2}=$ | 107.1 | mole $^{2} \mathrm{~N}_{2}$ |
| $\mathbf{n}_{\mathrm{O} 2}=$ | 156.3 | mole $\mathrm{O}_{2}$ |
| $\mathbf{n}_{\text {total }}=$ | 263.4 | mole total |

The total number of moles in the system does not changes as the gases mix!
The system, consisting of both tanks, is closed.
Next, we can use the IG EOS to determine the volume of each tank and then the total volume of the system.

$$
\mathbf{V}_{\text {tot }}=\mathbf{V}_{\mathbf{A}}+\mathbf{V}_{\mathbf{B}} \quad \text { Eqn } 5 \quad \text { Where (for ideal gases) : } \quad \mathbf{V}_{\mathbf{A}}=\mathbf{n}_{\mathrm{N} 2} \tilde{\mathbf{V}}_{\mathrm{N} 2} \quad \text { Eqn } 6
$$

and

$$
\begin{equation*}
\mathbf{V}_{\mathrm{B}}=\mathbf{n}_{\mathrm{O} 2} \tilde{\mathbf{V}}_{\mathrm{O} 2} \tag{Eqn 7}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{A}}=$
$\mathrm{V}_{\mathrm{B}}=$
2.03
7.16
9.18
$\mathrm{m}^{3}$
$V_{\text {tot }}=$
From the IG EOS we derive the following equation for the equilibrium pressure :

| $\mathbf{P}_{\text {eq }}=\frac{n_{\text {tot }} R T_{\text {eq }}}{V_{\text {tot }}}$ | Eqn 8 |  |
| :---: | ---: | ---: |
| $P_{\text {eq }}$ | 71.08 | kPa |

Verify: Now, calculate the molar volume at the equilibrium state, just to be sure it is still safe to treat the gas as an ideal gas!

$$
\mathrm{V}_{\mathrm{eq}}=\quad 34.87 \mathrm{~L} / \mathrm{mol}
$$

Since $\mathbf{V}_{\text {eq }}$ is greater than $\mathbf{5} \mathbf{L} /$ mole, we were justified in using the Ideal Gas EOS for the equilibrium state as well.

Answers : a.) Since both molar volumes are much greater than $5 \mathrm{~L} / \mathrm{mole}$, it is safe to consider both gases to be ideal gases.
b.) $\quad \mathrm{P}_{\mathrm{eq}}=\quad 71.1 \mathrm{kPa}$

Estimate the pressure of ammonia at a temperature of $27^{\circ} \mathrm{C}$ and a specific volume of $0.526 \mathrm{~m}^{3} / \mathrm{kg}$.
a.) Ideal Gas EOS
b.) Virial EOS
c.) van der Waal EOS
d.) Soave-Redlich-Kwong EOS
e.) Compressibility Factor EOS
f.) Steam Tables.

Read: Not much to say here.

| Given: | $\mathbf{T}$ | 27 | ${ }^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{V}$ | 0.526 | $\mathrm{~m}^{3} / \mathbf{k g}$ |

Find: P ??? kPa

Assumptions: None.
Equations / Data / Solve:
Begin by collecting all of the constants needed for all the Equations of State in this problem.

| R | 8.314 | $\mathrm{~J} / \mathrm{mol}^{-K}$ | $\mathrm{~T}_{\mathrm{c}}$ | 405.55 | K |
| :--- | :--- | :--- | :--- | ---: | :--- |
| MW | 17.03 | $\mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}$ | $\mathbf{P}_{\mathrm{c}}$ | $1.128 \mathrm{E}+07$ | Pa |
|  |  |  | $\omega$ | 0.250 |  |

Part a.) Ideal Gas EOS :

$$
\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}
$$

Solve for pressure :

$$
\mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}
$$

Eqn 2

We must determine the molar volume before we can use Eqn 2 to answer the question.
Use the definition of molar volume: $\quad \tilde{\mathbf{V}}=\frac{\mathbf{V}}{\mathbf{n}}$
Eqn 3

Where :

$$
\mathbf{n}=\frac{\mathbf{m}}{\mathbf{M W}}
$$

Eqn 4

Therefore :

$$
\tilde{\mathbf{V}}=\frac{\mathbf{V}}{\mathbf{m} / \mathbf{M W}}=\hat{\mathbf{V}} \cdot \mathbf{M W}
$$

|  | V | $8.958 \mathrm{E}-03 \mathrm{~m}^{3} / \mathrm{mol}$ |  |
| :--- | :---: | :---: | :---: |
| Now, plug values back into Eqn 2. | T | $300.15 \quad \mathrm{~K}$ |  |
|  | P | $2.786 \mathrm{E}+05 \mathrm{~Pa}$ |  |
| Be careful with the units. | P | $\mathbf{2 7 8 . 6}$ | kPa |

Part b.) Truncated Virial EOS :

$$
Z=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R T}}=1+\frac{\mathbf{B}}{\tilde{\mathbf{V}}}
$$

We can estimate B using :

$$
\mathbf{B}=\frac{\mathbf{R} \mathbf{T}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{C}}}\left(\mathbf{B}_{0}+\omega \mathbf{B}_{1}\right)
$$

Eqn 7

$$
B_{0}=0.083-\frac{0.422}{T_{R}^{1.6}}
$$

$$
B_{1}=0.139-\frac{0.172}{T_{R}^{4.2}}
$$

Where :

$$
T_{R}=\frac{T}{T_{c}}
$$

We can solve Eqn 6 for $P: \quad \quad \mathbf{P}=\mathbf{Z} \frac{\mathbf{R T}}{\tilde{\mathbf{V}}}$
Eqn 11
Plugging numbers into Eqns 10, 8, 9, 7 and 11 (in that order) yields:

| TR | 0.740 | B |  | $-2.14 \mathrm{E}-04 \mathrm{~m}^{3} / \mathrm{mol}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | -0.6000 | Z |  | $9.76 \mathrm{E}-$ |  |
| $\mathrm{B}_{1}$ | -0.4698 |  | P | 271.9 | kPa |

Part c.) van der Waal EOS :

$$
\mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}^{2}}
$$

Eqn 12

We can determine the values of $\mathbf{a}$ and $\mathbf{b}$, which are constants that depend only on the chemical species in the system, from the following equations.

$$
\begin{equation*}
\mathbf{a}=\frac{\mathbf{2 7} \mathbf{R}^{2} \mathbf{T}_{\mathbf{c}}^{2}}{\mathbf{6 4} \mathbf{P}_{\mathbf{c}}} \quad \text { Eqn } 13 \quad \mathbf{b}=\frac{\mathbf{R} \mathbf{T}_{\mathbf{c}}}{\mathbf{8} \mathbf{P}_{\mathbf{c}}} \tag{Eqn 14}
\end{equation*}
$$

| $\mathrm{T}_{\mathrm{c}}$ | 405.55 | K | a | 0.4252 | $\mathrm{Pa-mol}{ }^{2} / \mathrm{m}^{6}$ |
| :--- | :---: | :--- | :--- | ---: | :--- |
| $\mathrm{P}_{\mathrm{c}}$ | $1.128 \mathrm{E}+07$ | Pa | b | $3.74 \mathrm{E}-05$ | $\mathrm{~m}^{3} / \mathrm{mol}^{2}$ |

Now, we can plug the constants a and b into Eqn 12 to determine the pressure.

| P | 274.4 | kPa |
| :--- | :--- | :--- |

## Part d.) Soave-Redlich-Kwong EOS :

$$
\mathbf{P}=\frac{\mathbf{R T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\alpha \mathbf{a}}{\tilde{\mathbf{V}}(\tilde{\mathbf{V}}+\mathbf{b})}
$$

We can determine the values of $\mathbf{a}, \mathbf{b}$ and $\boldsymbol{\alpha}$, which are constants that depend only on the chemical species in the system, from the following equations.

$$
\begin{array}{lll}
\mathbf{a}=\mathbf{0 . 4 2 7 4 8} \frac{\mathbf{R}^{2} \mathbf{T}_{c}^{2}}{\mathbf{P}_{\mathrm{c}}} & \text { Eqn 16 } & \mathbf{b}=\mathbf{0 . 0 8 6 6 4} \frac{\mathbf{R ~ T}_{\mathrm{c}}}{\mathbf{P}_{\mathrm{c}}} \\
\alpha=\left[1+\mathbf{m}\left(1-\sqrt{\mathbf{T}_{\mathrm{R}}}\right)\right]^{2} & \text { Eqn 18 } & \mathrm{T}_{\mathrm{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathrm{c}}}
\end{array}
$$

Eqn 17

Eqn 19

$$
m=0.48508+1.55171 \omega-0.1561 \omega^{2}
$$

Eqn 20
Where:
$\omega$
0.250

Now, plug values into Eqns 15-20 :

| $\mathrm{T}_{\mathrm{R}}$ | 0.7401 | a | $0.43084 \mathrm{Pa-mol}^{2} / \mathrm{m}^{6}$ <br> m |
| :--- | ---: | :---: | ---: |
| $\alpha$ | 0.8633 | b | $2.590 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{mol}$ |

## Part e.) Compressibility EOS :

Given $\mathbf{T}_{\mathbf{R}}$ and the ideal reduced molar volume, use the compressibility charts to evaluate either $\mathbf{P}_{\mathbf{R}}$ or the compressibility, Z
$Z=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R T}}$
Eqn 21
From part c : $\mathbf{T}_{\mathbf{R}}$
0.7401
$\tilde{\mathbf{V}}_{\mathbf{R}}^{\text {ideal }}=\frac{\tilde{\mathbf{V}}}{\mathbf{R T}_{\mathbf{c}} / \mathbf{P}_{\mathbf{c}}}$
Eqn 22
Defiition of the ideal reduced molar volume :

| $\mathrm{V}_{\mathrm{R}}{ }^{\text {ideal }}$ | 29.97 |
| :--- | ---: |
| $\mathrm{P}_{\mathrm{R}}$ | 0.0228 |
| Z | 0.957 |

We can use the definition of $P_{R}$ to calculate $P$ :

$$
\mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{c}}}
$$

Eqn 23

$$
\mathbf{P}=\mathbf{P}_{\mathbf{R}} \mathbf{P}_{\mathbf{c}}
$$

Eqn 24
Read the Generalized Compressibility
Chart for $\mathbf{P}_{\mathrm{R}}=\mathbf{0}$ to $\mathbf{1}$ :
$\mathrm{P}_{\mathrm{R}}$
0.957

| $\mathbf{P}$ | 257.2 | kPa |
| :--- | :--- | :--- |

Or, we can use $Z$ and its definition to determine $P$ :

$$
\begin{equation*}
\mathbf{P}=\mathbf{Z} \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}=\mathbf{Z} \cdot \mathbf{P}^{\mathbf{I G}} \tag{Eqn 25}
\end{equation*}
$$

| $P$ | 266.6 | kPa |
| :--- | :--- | :--- |

Part f.) The Ammonia Tables provide the best available estimate of the pressure.
We begin by determining the state of the system. In this case, it would be easiest to lookup the $\mathbf{V}_{\text {sat vap }}$ and $\mathbf{V}_{\text {sat }}$ liq at the given temperature.

If : $\quad \mathbf{V}>\mathbf{V}_{\text {sat vap }} \quad$ Then : The system contains a superheated vapor.
If : $\quad \mathbf{V}<\mathrm{V}_{\text {sat liq }} \quad$ Then: $\quad$ The system contains a subcooled liquid.
If : $\quad V_{\text {sat vap }}>V>V_{\text {sat liq }}$
Then: The system contains an equilibrium mixture of saturated liquid and saturated vapor.

Data :

| $\mathrm{P}^{*}(\mathrm{kPa})$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}_{\text {sat liq }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{V}_{\text {sat vap }}$ <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{H}_{\text {sat liq }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{H}_{\text {sat vap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1066.56 | 27 | $1.67 \mathrm{E}-03$ | 0.12066 | 308.11 | 1465.42 |

Because $\mathbf{V}>\mathbf{V}_{\text {sat vap }}$, the ammonia is superheated in this system.
At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the superheated vapor tables to determine which two pressures bracket our known value of the specific volume. The given specific volume of $0.640 \mathrm{~m}^{3} / \mathrm{kg}$ lies between $\mathbf{2 0 0} \mathbf{~ k P a}$ and 250 kPa and $\mathrm{T}=27^{\circ} \mathrm{C}$ lies between $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. This is a tricky multiple interpolation problem !
The Superheated Ammonia Table gives us :

| $\mathbf{P}^{*}(\mathbf{k P a})$ | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{V}\left(\mathbf{m}^{3} / \mathbf{k g}\right)$ | $\mathbf{H}(\mathbf{k J} / \mathbf{k g})$ |
| :---: | :---: | :---: | :---: |
| 200 | 20 | 0.6995 | 1510.1 |
| 200 | 30 | 0.7255 | 1532.5 |
| 250 | 25 | 0.5668 | 1518.2 |
| 250 | 50 | 0.6190 | 1574.7 |

We can now interpolate on this data to determine values of the specific volume at $\mathrm{T}=2 \mathbf{7}^{\circ} \mathrm{C}$ at BOTH 200 kPa and $\mathbf{2 5 0} \mathbf{~ k P a}$. This will help us setup a second interpolation to determine the pressure that corresponds to $\mathrm{T}=$ $27^{\circ} \mathrm{C}$ and $\mathrm{V}=0.640 \mathrm{~m}^{3} / \mathrm{kg}$.
At 200 kPa :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{\mathbf{3}} / \mathrm{kg}\right)$ |
| :---: | :---: |
| 20 | 0.6995 |
| 30 | 0.7255 |

$V(27)=$ slope $\cdot(27-20)+0.6995$
Eqn 26
slope $=\frac{0.7255-0.6995}{30-20}$
Eqn 27
slope $\quad 2.600 \mathrm{E}-03 \quad\left(\mathrm{~m}^{3} / \mathrm{kg}\right) /{ }^{\circ} \mathrm{C}$
V
$0.71766 \mathrm{~m}^{3} / \mathrm{kg}$

At 300 kPa :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |
| :---: | :---: |
| 25 | 0.5668 |
| 50 | 0.6190 |

$$
\begin{aligned}
& \mathrm{V}(27)=\text { slope } \cdot(27-25)+0.5668 \\
& \text { slope }=\frac{0.6190-0.5668}{50-25} \\
& \text { slope } 2.085 \mathrm{E}-03 \quad\left(\mathrm{~m}^{3} / \mathrm{kg}\right) /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\text { Eqn } 28
$$

$$
\text { Eqn } 29
$$

Now, we must interpolate one more time to determine the pressure which, at $27^{\circ} \mathrm{C}$, yields a spoecific volume of $0.640 \mathrm{~m}^{3} / \mathrm{kg}$ :
At $27^{\circ} \mathrm{C}$ :

| $\mathbf{P}(\mathbf{k P a})$ | $\mathrm{V}\left(\mathbf{m}^{3} / \mathrm{kg}\right)$ |
| :---: | :---: |
| 200 | 0.7177 |
| 250 | 0.5710 |

$P(0.640)=$ slope $\cdot(0.640-0.7177)+200$
slope $=\frac{250-200}{0.5710-0.7177}$
slope $\quad-340.96 \quad\left(\mathrm{~m}^{3} / \mathrm{kg}\right) / \mathrm{kPa}$
Eqn 30

Eqn 31

| $\mathbf{P}$ | 265.4 | kPa |
| :--- | :--- | :--- |

Verify: No assumptions to verify.
Answers: a.)
b.)
c.)

| $\mathbf{P}$ | 278.6 | kPa |
| :---: | :---: | :---: |
| $\mathbf{P}$ | 271.9 | kPa |
| $\mathbf{P}$ | 274.4 | kPa |

d.)
e.)

| $\mathbf{P}$ | 272.7 | kPa |
| :---: | :---: | :---: |
| $\mathbf{P}$ | 266.6 | kPa |
| $\mathbf{P}$ | 265.4 | kPa |

2F-2
An Application of Equations of State
Steam is contained in a 203 L tank at $600^{\circ} \mathrm{C}$. The mass of steam in the tank is 12.4 kg . Determine the pressure in the tank using:
a.) Ideal Gas EOS
b.) Virial EOS
c.) van der Waal EOS
d.) Redlich-Kwong EOS
e.) Compressibility Factor EOS
f.) Steam Tables.

Read : Not much to say here.

| Given: | $\mathbf{m}$ | 12.4 | $\mathbf{k g}$ | $\mathbf{V}$ | 203 | $\mathbf{L}$ |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
|  | $\mathbf{T}$ | 500 | ${ }^{\circ} \mathrm{C}$ | 0.203 | $\mathbf{m}^{3}$ |  |
| Find: | $\mathbf{P}$ | ??? | $\mathbf{k P a}$ |  |  |  |
| Assumptions: | None. |  |  |  |  |  |

Equations / Data / Solve:
Begin by collecting all of the constants needed for all the Equations of State in this problem.

| R | 8.314 | $\mathrm{~J} / \mathrm{mol}^{-K}$ | $\mathrm{~T}_{\mathrm{c}}$ | 647.4 | K |
| :--- | :---: | :--- | :--- | :--- | :--- |
| MW | 18.016 | $\mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}$ | $\mathbf{P}_{\mathrm{c}}$ | $2.21 \mathrm{E}+07$ | Pa |

Part a.) Ideal Gas EOS : $\quad \mathbf{P} \tilde{\mathbf{V}}=\mathbf{R T} \quad$ Eqn $1 \quad \begin{aligned} & \text { polve for } \\ & \text { pressure : } \quad \mathbf{P}=\frac{\mathbf{R T}}{\tilde{\mathbf{V}}}, ~\end{aligned}$
Eqn 2
We must determine the molar volume before we can use Eqn 2 to answer the question.
Use the definition of molar volume:

$$
\tilde{\mathbf{V}}=\frac{\mathbf{V}}{\mathbf{n}}
$$

Eqn 3

Where :

MW $\quad 18.016 \quad \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$

$$
\mathbf{n}=\frac{\mathbf{m}}{\mathbf{M W}}
$$

Eqn 4

Now, plug values back into Eqn 2.
$\begin{array}{lll}R & 8.314 & \mathrm{~J} / \mathrm{mol}-\mathrm{K}\end{array}$
Be careful with the units.
T
773.15 K
$2.18 \mathrm{E}+07 \mathrm{~Pa}$

| $P$ | 21.8 | MPa |
| :--- | :--- | :--- |

Part b.) van der Waal EOS : $\quad \mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}^{2}}$
We can determine the values of $\mathbf{a}$ and $\mathbf{b}$, which are constants that depend only on the chemical species in the system, from the following equations.

$$
\begin{aligned}
& a=\frac{27 R^{2} T_{c}^{2}}{64 P_{c}} \\
& \text { Eqn } 6 \\
& \mathrm{P}_{\mathrm{c}} \quad 2.21 \mathrm{E}+07 \mathrm{~Pa} \\
& \text { a } \\
& 0.5530 \mathrm{~Pa}-\mathrm{mol}^{2} / \mathrm{m}^{6} \\
& b=\frac{R T_{c}}{8 P_{c}} \\
& \text { Eqn } 7 \\
& \text { b } \\
& 3.04 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{mol}
\end{aligned}
$$

Now, we can plug the constants $\mathbf{a}$ and $\mathbf{b}$ into Eqn 5 to determine the pressure.

| $\mathbf{P}$ | 17.9 | MPa |
| :--- | :--- | :--- |

Part c.) $\quad$ Redlich-Kwong EOS : $\quad \mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}(\tilde{\mathbf{V}}+\mathbf{b}) \mathbf{T}^{\mathbf{1 / 2}}}$
We can determine the values of $\mathbf{a}, \mathbf{b}$ and $\boldsymbol{\alpha}$, which are constants that depend only on the chemical species in the system, from the following equations.

$$
a=0.42748 \frac{R^{2} T_{c}^{5 / 2}}{P_{c}} \quad \text { Eqn } 9 \quad b=0.08664 \frac{R T_{c}}{P_{c}}
$$

Eqn 10

Now, plug values into Eqns 8-10:

| a | 14.25855 | $\mathrm{~Pa}-\mathrm{m}^{6}-\mathrm{K}^{1 / 2} / \mathrm{mol}^{2}$ |
| :--- | :--- | :--- |
| b | $2.110 \mathrm{E}-05$ | $\mathrm{~m}^{3} / \mathrm{mol}$ |


| $P$ | 18.0 | MPa |
| :---: | :---: | :---: |

Part d.) Compressibility EOS :
Given $\mathbf{T}_{\mathbf{R}}$ and the ideal reduced molar volume, use the compressibility charts to evaluate either $\mathbf{P}_{\mathbf{R}}$ or the compressibility, $\mathbf{Z}$

$$
\mathbf{Z}=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R T}}
$$

Eqn 11

$$
\mathbf{T}_{\mathbf{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathrm{c}}}
$$

Eqn 12

Defiition of the ideal reduced molar volume :

$$
\tilde{\mathbf{V}}_{\mathrm{R}}^{\text {ideal }}=\frac{\mathrm{T}_{\mathrm{R}}}{\mathbf{R} \mathbf{T}_{\mathrm{c}} / \mathbf{P}_{\mathrm{c}}}
$$

1.1942

Eqn 13

|  | $V_{R}{ }^{\text {ideal }}$ | 1.2110 |
| :--- | :--- | :---: |
| Read the Generalized Compressibility Chart for $\mathrm{P}_{\mathrm{R}}=0$ to 1: | $\mathrm{P}_{\mathrm{R}}$ | 0.88 |
| Z | 0.885 |  |

We can use the definition of $\mathbf{P}_{\mathbf{R}}$ to calculate $\mathbf{P}$ :

$$
\begin{array}{rlr}
\mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{c}}} & \text { Eqn 14 }  \tag{Eqn 14}\\
\mathbf{P}=\mathbf{P}_{\mathrm{R}} \mathbf{P}_{\mathbf{c}} & \text { Eqn 15 } \\
& \mathbf{P} & \mathbf{1 9 . 4} \\
\hline
\end{array}
$$

Or, we can use $\mathbf{Z}$ and its definition to determine $\mathbf{P}$ :

$$
\begin{equation*}
\mathbf{P}=\mathbf{Z} \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}=\mathbf{Z} \tilde{\mathbf{V}}^{1 \mathrm{G}} \tag{Eqn 16}
\end{equation*}
$$

| $P$ | 19.3 | MPa |
| :--- | :--- | :--- |

Part e.) The Steam Tables provide the best available estimate of the pressure in the tank.
Because $\mathbf{T}>\mathbf{T}_{\mathrm{c}}$, the properties of the water in the tank must be obtained from the superheated vapor table, even though the water is actually a supercritical fluid in this system.
At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the spuerheated vapor tables to determine which two pressures bracket our known value of the specific volume.
In either case, we begin by converting the molar volume into a specific volume :

$$
\begin{equation*}
\hat{\mathbf{V}}=\frac{\tilde{\mathbf{V}}}{\mathbf{M} \mathbf{W}} \tag{Eqn 17}
\end{equation*}
$$

Using the MW of water from part (a) yields :

$$
\begin{array}{ll}
\mathrm{v} & 1.637 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{g} \\
\mathrm{v} & 0.016371 \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

The Superheated Steam Table gives us :

| $\begin{aligned} & \text { At } \mathbf{P}= \\ & \mathbf{v}= \end{aligned}$ | $\begin{gathered} 20 \\ 0.014793 \end{gathered}$ | MPa <br> $\mathrm{m}^{3} / \mathrm{kg}$ | and | $\begin{aligned} & \text { At } \mathbf{P}= \\ & \mathbf{v}= \end{aligned}$ | $\begin{gathered} 40 \\ 0.005623 \end{gathered}$ | $\begin{aligned} & \mathrm{MPa} \\ & \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| We can determine the pressure in our tank by interpolation |  |  |  | P | 16.56 | MPa |
|  |  |  |  | P | 16.6 | MPa |

Verify: No assumptions to verify.
Answers: a.)
b.)

| $\mathbf{P}$ | 21.8 | $\mathbf{k P a}$ |
| :---: | :---: | :---: |
| $\mathbf{P}$ | 17.9 | kPa |
| $\mathbf{P}$ | 18.0 | kPa |


| d.) | $\mathbf{P}$ | 19.3 | kPa |
| :--- | ---: | ---: | ---: |
|  | P | P | 16.6 |
|  |  |  |  |

c.)

None of these Equations of State did very well because steam at high pressure behaves in a very non-ideal manner due to the high polarity of the molecules and the resulting stron electrostatic interactions.

Ammonia at $150^{\circ} \mathrm{C}$ is contained in a tank with a volume of 137 L ．The mass of the ammonia in the tank is 7.4 kg ． Determine the pressure in the tank by each of the following methods：
a．）Ideal Gas EOS
b．）Virial EOS
c．）van der Waal EOS
d．）Soave－Redlich－Kwong EOS
e．）Compressibility Factor EOS
f．）Ammonia Tables．
Data： $\mathrm{T}_{\mathrm{c}}=405.55 \mathrm{~K}, \mathrm{P}_{\mathrm{c}}=11,280 \mathrm{kPa}, \mathrm{MW}=17.03 \mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}$ ，Pitzer accentric factor $=0.256$ ．

Read ：$\quad$ Not much to say here．

| Given： | $\mathbf{m}$ | 7.4 | $\mathbf{k g}$ | V | 137 | L |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: |
|  | $\mathbf{T}$ | 150 | ${ }^{\circ} \mathrm{C}$ | 0.137 | $\mathrm{~m}^{3}$ |  |
|  |  | 423.15 | K |  |  |  |
| Find： | $\mathbf{P}$ | $? ? ?$ | kPa |  |  |  |

Assumptions：None．

## Equations／Data／Solve：

Begin by collecting all of the constants needed for all the Equations of State in this problem．
R
$8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
MW
$17.03 \mathrm{~g} \mathrm{NH} / \mathrm{mol} \mathrm{NH}_{3}$
T
$\mathrm{P}_{\mathrm{c}} \quad 1.128 \mathrm{E}+07 \mathrm{~Pa}$
$\omega$
0.256

Part a．）
Ideal Gas EOS ：$\quad \mathbf{P} \tilde{\mathbf{V}}=\mathbf{R T} \quad$ Eqn $1 \quad$ Solve for pressure ：$\quad \mathbf{P}=\frac{\mathbf{R T}}{\tilde{\mathbf{V}}}$
We must determine the molar volume before we can use Eqn 2 to answer the question．


However，since the molar volume is FAR less than $\mathbf{2 0}$ L／mole，the Ideal Gas EOS is not applicable． Choose any one of the following more sophisticated EOS＇s to solve the problem．

Part b.)

Truncated Virial EOS :

$$
Z=\frac{P \tilde{V}}{R T}=1+\frac{B}{\tilde{V}}
$$

Eqn 5

We can estimate $\mathbf{B}$ using :

$$
\mathbf{B}=\frac{\mathbf{R} \mathbf{T}_{\mathbf{C}}}{\mathbf{P}_{\mathbf{C}}}\left(\mathbf{B}_{0}+\omega \mathbf{B}_{1}\right)
$$

Eqn 6
$B_{0}=0.083-\frac{0.422}{T_{R}^{1.6}}$
Eqn 7
$B_{1}=0.139-\frac{0.172}{T_{R}^{4.2}}$
Eqn 8
Where : $\quad \mathbf{T}_{\mathbf{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathbf{c}}}$
We can solve Eqn 5 for $\mathbf{P}: \quad \mathbf{P}=\mathbf{Z} \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}$
Eqn 9

Eqn 10
Plugging numbers into Eqns 9, 7, 8, 6, 5 and 10 (in that order) yields :

| $\mathrm{T}_{\mathrm{R}}$ | 1.043 | B | $-9.34 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{mol}$ |  |
| :--- | ---: | :---: | :---: | :---: |
| $\mathrm{B}_{0}$ | -0.3113 | Z | $7.04 \mathrm{E}-01$ |  |
| $\mathrm{~B}_{1}$ | -0.0049 | P | $\mathbf{7 . 8 5}$ | MPa |

Part c.)
van der Waal EOS :

$$
\begin{equation*}
\mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}^{2}} \tag{Eqn 11}
\end{equation*}
$$

We can determine the values of $\mathbf{a}$ and $\mathbf{b}$, which are constants that depend only on the chemical species in the system, from the following equations.
$\mathrm{a}=\frac{27 \mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2}}{64 \mathrm{P}_{\mathrm{c}}}$
Eqn 12
$b=\frac{R T_{c}}{8 P_{c}}$

Eqn 13
a
0.4252
Pa-mol ${ }^{2} / \mathrm{m}^{6}$
b
$3.74 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{mol}$

Now, we can plug the constants $\mathbf{a}$ and $\mathbf{b}$ into Eqn 11 to determine the pressure.

| P | 8.4 | MPa |
| :--- | :--- | :--- |

## Part d.)

Redlich-Kwong EOS :

$$
\mathbf{P}=\frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}-\mathbf{b}}-\frac{\mathbf{a}}{\tilde{\mathbf{V}}(\tilde{\mathbf{V}}+\mathbf{b}) \mathbf{T}^{1 / 2}}
$$

Eqn 14

We can determine the values of $\mathbf{a}, \mathbf{b}$ and $\boldsymbol{\alpha}$, which are constants that depend only on the chemical species in the system, from the following equations.

$$
\mathbf{a}=0.42748 \frac{\mathbf{R}^{2} \mathbf{T}_{c}^{5 / 2}}{\mathbf{P}_{\mathrm{c}}} \quad \text { Eqn 15 } \quad \mathbf{b}=0.08664 \frac{\mathbf{R ~}_{\mathrm{c}}}{\mathbf{P}_{\mathrm{c}}}
$$

Eqn 16
Now, plug values into Eqns 14-16:
a
$8.67636 \mathrm{~Pa}-\mathrm{m}^{6}-\mathrm{K}^{1 / 2} / \mathrm{mol}^{2}$
b

$$
2.590 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{mol}
$$

| $\mathbf{P}$ | 8.2 | MPa |
| :---: | :---: | :---: |

Part e.)
Compressibility EOS: Given $\mathbf{T}_{\mathbf{R}}$ and the ideal reduced molar volume, use the compressibility charts to evaluate either $\mathbf{P}_{\mathbf{R}}$ or the compressibility, $\mathbf{Z}$

$$
\mathbf{Z}=\frac{\mathbf{P} \tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}} \quad \text { Eqn } 17 \quad \mathbf{T}_{\mathbf{R}}=\frac{\mathbf{T}}{\mathbf{T}_{\mathbf{c}}}
$$

Eqn 9
$\mathrm{T}_{\mathrm{R}}$
1.0434

Defiition of the ideal reduced molar volume :

$$
\tilde{\mathbf{V}}_{\mathrm{R}}^{\text {ideal }}=\frac{\tilde{\mathbf{V}}}{\mathbf{R} \mathbf{T}_{\mathrm{c}} / \mathbf{P}_{\mathrm{c}}}
$$

Eqn 18

|  | $V_{R}^{\text {ideal }}$ | 1.055 |
| :--- | :--- | ---: |
| Read the Generalized Compressibility Chart for $P_{R}=0$ to 1: | $P_{R}$ | 0.70 |
|  | $Z$ | 0.73 |

We can use the definition of $\mathbf{P}_{\mathbf{R}}$ to calculate $\mathbf{P}$ :

$$
\begin{equation*}
\mathbf{P}_{\mathbf{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{c}}} \quad \text { Eqn 19 } \quad \mathbf{P}=\mathbf{P}_{\mathrm{R}} \mathbf{P}_{\mathrm{c}} \tag{Eqn 19}
\end{equation*}
$$

Eqn 20

> | $\mathbf{P}$ | 7.9 MPa |
| :--- | :--- |

Or, we can use $\mathbf{Z}$ and its definition to determine $\mathbf{P}: \quad \mathbf{P}=\mathbf{Z} \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}=\mathbf{Z} \tilde{\mathbf{V}}^{\text {IG }}$
Eqn 21
P 8.1 MPa

## Part f.) The Ammonia Tables provide the best available estimate of the pressure in the tank.

Because $\mathbf{T}>\mathbf{T}_{\mathbf{c}}$, the properties of the ammonia in the tank must be obtained from the superheated vapor table, even though the it is actually a supercritical fluid in this system.

At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the spuerheated vapor tables to determine which two pressures bracket our known value of the specific volume.

In either case, we begin by converting the molar volume into a specific volume :

$$
\hat{\mathbf{V}}=\frac{\tilde{\mathbf{V}}}{\mathbf{M W}}
$$

Using the MW of ammonia from part (a) yields :

$$
\begin{array}{lll}
\mathrm{V} & 1.85 \mathrm{E}-05 \mathrm{~m}^{3} / \mathrm{g} \\
\mathrm{~V} & 0.018514 \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

The Superheated Ammonia Table gives us :

| $\begin{aligned} & \text { At } \mathbf{P}= \\ & \mathbf{v}= \end{aligned}$ | $\begin{gathered} 7.5 \\ 0.020803 \end{gathered}$ | $\begin{aligned} & \mathrm{MPa} \\ & \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$ | and | $\begin{aligned} & \text { At } \mathbf{P}= \\ & \mathbf{v}= \end{aligned}$ | $\begin{gathered} 10 \\ 0.013381 \end{gathered}$ | $\begin{aligned} & \mathrm{MPa} \\ & \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| We can | mine the p | ssure in | polatio | P | 8.3 | MPa |

Verify: No assumptions to verify.
Answers: a.)

| a.) | $\mathbf{P}$ | $\mathbf{1 1 . 2}$ | kPa |
| :--- | ---: | :---: | ---: |
| b.) | P | 7.9 | kPa |
| c.) | P | 8.4 | kPa |


| d.) | P | 8.2 | kPa |
| :---: | :---: | :---: | :---: |
| e.) | P | 8.1 | kPa |
| f.) | P | 8.3 | kPa |



## Heat Effects

In this chapter, you will learn about internal energy and enthalpy and how they depend on temperature and pressure, for real substances, ideal gases and incompressible substances. You will learn to obtain thermodynamic property data from the NIST Webbook. You will learn to work with tconstant volume and constant pressure heat capacities which relate changes in internal energy and enthalpy to changes in temperature. The chapter concludes with a discussion of hypothetical process paths (HPPs). HPPs allow you to determine the change in the value of a thermodynamic property using a convenient path instead of the actual path that a process follows. Phase changes are often key steps in HPPs because energy must be added or removed from a system to cause a phase change occur.

## Internal Energy and Enthalpy

## - Internal Energy

$\diamond$ Isobaric - constant pressure
$\diamond$ Non-nuclear energy stored within molecules
$\diamond$ Sum of the vibrational, translational and rotational kinetic energies
$\diamond U=$ strong fxn of $T$ and a weak fxn of $P$
$\diamond U \uparrow$ sharply as $T \uparrow$ but $U \downarrow$ slightly as $P \uparrow$.
$\diamond$ Ideal Gas, Incompressible Liquids, Solids
$\diamond U=f x n(T)$ only
$\diamond U \neq \mathrm{fxn}(\mathrm{P})$

- Enthalpy

| $\diamond$ | $\mathbf{H}=\mathbf{U}+\mathbf{P} \mathbf{V} \quad \mathbf{d H}=\mathbf{d H}+\mathbf{d}(\mathbf{P V}) \quad \Delta \mathbf{H}=\Delta \mathbf{U}+\Delta(\mathbf{P V})$ |
| :--- | :--- | :--- |
| $\diamond$ | $H=\operatorname{strong} \operatorname{fxn}(\mathrm{T})$ |
| $\diamond$ | $H=\operatorname{moderate} \operatorname{fxn}(\mathrm{P})$ |
| $\diamond$ | Ideal Gas: $\mathrm{H} \neq \operatorname{fxn}(\mathrm{P}) \mathrm{S}$ |

$\diamond H=$ strong fxn(T)
$\diamond \mathrm{H}=$ moderate $\mathrm{fxn}(\mathrm{P})$
$\diamond$ Ideal Gas: $H \neq \mathrm{fxn}(\mathrm{P}) \mathrm{S}$

- Atoms are in motion in all phases, even solids
- They vibrate, rotate and translate.
- This behavior is a strong function of temperature
- Internal energy is a weak function of $\mathrm{P} . \mathrm{U}$ decreases slightly as P increases.
- At the same Temperature, $\mathrm{U}_{\text {gas }}>\mathrm{U}_{\text {liq }}>\mathrm{U}_{\text {solid }}$
- Special Cases
- Ideal Gases: $\mathrm{U}=\mathrm{fxn}(\mathrm{T})$ only. $\mathrm{U} \neq \mathrm{fxn}(\mathrm{P})$
$\diamond$ Incompressible Liquids: $U=f x n(T)$ only. $\mathrm{U} \neq \mathrm{fxn}(\mathrm{P})$
$\diamond$ Solids: $U=f x n(T)$ only. $U \neq \operatorname{fxn}(P)$
- Enthalpy
$\diamond \mathrm{H}=\mathrm{U}+\mathrm{P}$ V
$\diamond \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})$ is NOT always the same as $\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V}$
$\diamond$ Specific and Molar forms of this equation are valid.
$\diamond$ For ideal gases, $H \neq \mathrm{fxn}(\mathrm{P})$
$\diamond$ For solids and incompressible liquids, H is a $\operatorname{fxn}(\mathrm{P})$
- $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})=\Delta(\mathrm{PV})=\mathrm{V} \Delta(\mathrm{P})$ because V is constant !

- Item 4 is VERY important !
- We will always use the "Default for Fluid" setting, unless I ask you to do otherwise.
- But, what is a "Standard State Convention"?
- I call it a Reference State.


## Reference State

- We cannot determine an absolute $U$ or $H$ in the way we can determine an absolute $T$.
- We must choose a reference state and assign $\tilde{\mathbf{U}}=0$ or $\tilde{\mathbf{H}}=0$ at that state.
- Calculate all other values of $\tilde{\mathbf{U}}$ and $\tilde{\mathbf{H}}$ relative to the reference state.
- You cannot use thermodynamic data from different sources that are based on different reference states without correcting for the difference in reference state !!
- A reference state requires the specification of two intensive variables (usually T and P ) and the PHASE.
- The default reference state for water in the NIST Webbook is $U=0$ for saturated liquid water at the triple point, $0.01{ }^{\circ} \mathrm{C}$ or 273.16 K .
- Try the NBP convention in the NIST Webbook and see what the reference state is.
- Very important point: we cannot assign BOTH $\mathrm{U}=0$ and $\mathrm{H}=0$ at the reference state!
- Because $\mathrm{H}=\mathrm{U}+\mathrm{PV}$
$\diamond$ If BOTH $\mathrm{U}=0$ and $\mathrm{H}=0$ at the reference state, then either P or would need to be zero.
$\checkmark \mathrm{V}$ is never zero.
- So, $\mathrm{P}=0$
$\checkmark$ So, technically, if you choose a reference state at $\mathrm{P}=0$, then both U and H could be zero.
- $\mathrm{P}=0$ is not a very practical reference state!


## Generating a Saturated Temperature table

## Saturation Properties for Water -- Temperature Increments

This option will supply data on the saturation curve over the specified temperature range. The range should not extend extend outside the minimum and maximum values given. Calculations are limited to a mavoum of 201 data points, increments resulting in a larger number of points will be adjusted upward to limit the number of points computed.

1. Enter temperature range and increment in selected units:

## $\mathrm{T}_{\text {Low }} \square$ ( $\min$ value: 273.16 K ) <br> $\mathrm{T}_{\text {Hich }} \square$ (max value: 647.096 K )

$\mathrm{T}_{\text {Increment }}$
2. Check here if you want to use the display applet (requires Java capable brow er)
3. Press for Dato

Un-check this box !

- So, given any T and P you can get properties without interpolating!
- But you still need to interpolate if you are given values of other intensive properties.
- Example:
- What is the temperature water at 50 kPa that has a specific volume of $4.00 \mathrm{~m}_{3} / \mathrm{kg}$ ?
- So, the NIST Webbook is very helpful, but it doesn't completely eliminate the need to interpolate.


## Saturated Liquid Properties

## Liquid Phase Data

## Data on Saturation Curve

| $\begin{gathered} \text { Temperature } \\ \text { (K) } \end{gathered}$ | Pressure (MPa) | $\binom{\text { Density }}{(\text { molf })}$ | Volume $(1 / \mathrm{mol})$ | Internal Energy (kJ/mol) | Enthalpy (kJ/mol) | $\left(\begin{array}{c} \text { Entropy } \\ \left(\mathrm{J} / \mathrm{mol}^{\star} \mathrm{K}\right) \end{array}\right.$ | $\underset{\left(\mathrm{J} / \mathrm{mol}^{\star} \mathrm{K}\right)}{\mathrm{Cv}}$ | $\underset{\left(\mathrm{J} / \mathrm{mol}^{\star} \mathrm{K}\right)}{\mathrm{Cp}_{\mathrm{p}}}$ | $\begin{gathered} \text { Sound } \\ \text { Spd. } \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$ | Joule-Thomson (K/MPa) | Viscosity (uPa ${ }^{+s}$ ) | $\begin{array}{\|c\|} \hline \text { Therm. } \\ \text { Cond. } \\ \left(W / m^{*} \mathrm{~K}\right) \end{array}$ | Surf. <br> Tension <br> $(\mathrm{N} / \mathrm{m})$ | Phas |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300.00 | 0.00353 | 55.315 | 0.018078 | 2.0278 | 2.0279 | 7.0816 | 74.412 | 75.320 | 1.4 | 2024 | 3.84 | . 61028 | 0.071686 | liquid |
| 320.00 | 0.010546 | 4,919 | 0.01820 | 3.5339 | 3.5340 | 94 | 72.81 | 75.31 | 1538. | -0.2080 | 577.02 | 0.63971 | 0.068470 | uid |
| 340.00 | 0.027188 | 54.371 | 0.018392 | 5.0414 | 5.0419 | 16.511 | 71.008 | 75.456 | 1553.9 | -0.19690 | 421.9 | 660 | 0.065040 | uid |
| 360.00 | 0.062194 | 53.698 | 0.018623 | 6.5526 | 6.553 | 20.830 | 69.124 | 75.708 | 1552.0 | -0.1858 | 326.10 | 0.67376 | 0.061406 | liquid |
| 380.00 | 0.12885 | 52.918 | 0.018897 | 8.0701 | 8.072 | 24.932 | 67.247 | 76.098 | 1536. | -0.17404 | 262.6 | 0.68100 | 0.057581 | iquid |
| 400.00 | 0.24577 | 52.038 | 0.019217 | 9.5966 | 9.6013 | 28.84 | 65.438 | 76.664 | 1509. | -0.16092 | 218.6 | 0.68364 | 0.053578 | liquid |
| 420.00 | 0.43730 | . 06 | 0.019583 | 11.136 | 11.14 | 32.60 | 63.731 | 77.447 | 1472. | -0.14581 | 186.6 | 0.68253 | 0.049411 | liquid |
| 440.00 | 0.7336 | 49.9 | 0.020003 | 12.692 | 12.700 | 36.222 | 62.140 | 78.495 | 1426.3 | -0.12794 | 162.7 | 0.6780 | 0.045098 | liquid |
| 460.00 | 1.170 | 48.824 | 0.020482 | 14.269 | 14.293 | 39.729 | 60.671 | 79.869 | 1372.2 | -0.10631 | 144.31 | 0.670 | 0.040655 | liquid |
| 480.00 | 1.7905 | 47.545 | 0.021033 | 15.875 | 15.913 | 43.147 | 59.327 | 81.662 | 1309.8 | -0.079585 | 129.64 | 0.6590 | 0.036105 | liquid |
| 500.00 | 2.6392 | 46.145 | 0.021671 | 17.515 | 17.573 | 46.498 | 58.109 | 84.013 | 1239.6 | -0.045781 | 117.66 | 0.64405 | 0.031472 | liquid |

## Saturated Vapor Properties

## Vapor Phase Data

Data on Saturation Curve

| $\begin{gathered} \text { Temperature } \\ \text { (K) } \end{gathered}$ | Pressure (MPa) | $\begin{array}{\|l\|l} \hline \text { Density } \\ (\text { mol/l }) \end{array}$ | $\begin{aligned} & \text { Volume } \\ & (1 / \mathrm{mol}) \end{aligned}$ | Internal Energy ( $\mathrm{kJ} / \mathrm{mol}$ ) | Enthalpy ( $\mathrm{kJ} / \mathrm{mol}$ ) | $\underset{\left(\mathrm{J} / \mathrm{mol}^{\star}{ }^{\text {Ent }}\right)}{ }$ | $\left\|\begin{array}{c} \mathrm{Cv} \\ \left(\mathrm{~J} / \mathrm{mol}^{\star} \mathrm{K}\right) \end{array}\right\|$ | $\underset{\left(\mathrm{J} / \mathrm{mol}^{\star}{ }^{\mathrm{Cp})}\right.}{\mathrm{CP}^{2}}$ | $\begin{gathered} \begin{array}{c} \text { Sound } \\ \text { Spd. } \\ (m / s) \end{array} \\ \hline \end{gathered}$ | Joule-Thomson (K/MPa) | Viscosity ( $\mathrm{uPa}^{+}$s) | $\begin{array}{\|c\|} \hline \text { Therm. } \\ \text { Cond. } \\ \left(\mathrm{W} / \mathrm{m}^{*} \mathrm{~K}\right) \end{array}$ | Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300.00 | 0.0035368 | 0.0014204 | 704.01 | 43.446 | 45.936 | 153.44 | 25.982 | 34.483 | 427.89 | 264.35 | 9.9195 | 0.018673 | vapor |
| 320.00 | 0.010546 | 0.0039778 | 251.39 | 43.931 | 46.582 | 146.47 | 26.350 | 34.980 | 441.18 | 161.25 | 10.518 | 0.020117 | vapor |
| 340.00 | 0.027188 | 0.0096808 | 103.30 | 44.404 | 47.212 | 140.54 | 26.821 | 35.653 | 453.68 | 108.77 | 11.157 | 0.021784 | vapor |
| 360.00 | 0.062194 | 0.021014 | 47.586 | 44.860 | 47.819 | 135.46 | 27.469 | 36.617 | 465.22 | 79.440 | 11.823 | 0.023695 | vapor |
| 380.00 | 0.12885 | 0.041537 | 24.075 | 45.291 | 48.393 | 131.04 | 28.372 | 38.004 | 475.61 | 61.373 | 12.504 | 0.025875 | vapor |
| 400.00 | 0.24577 | 0.076014 | 13.156 | 45.691 | 48.924 | 127.15 | 29.608 | 39.963 | 484.67 | 49.181 | 13.192 | 0.028347 | vapor |
| 420.00 | 0.43730 | 0.13055 | 7.6601 | 46.050 | 49.400 | 123.69 | 31.230 | 42.634 | 492.22 | 40.237 | 13.883 | 0.031128 | vapor |
| 440.00 | 0.73367 | 0.21276 | 4.7002 | 46.359 | 49.807 | 120.54 | 33.234 | 46.114 | 498.12 | 33.259 | 14.573 | 0.034230 | vapor |
| 460.00 | 1.1709 | 0.33209 | 3.0113 | 46.609 | 50.134 | 117.64 | 35.561 | 50.469 | 502.24 | 27.653 | 15.261 | 0.037663 | vapor |
| 480.00 | 1.7905 | 0.50035 | 1.9986 | 46.788 | 50.367 | 114.93 | 38.137 | 55.809 | 504.45 | 23.118 | 15.952 | 0.041455 | vapor |
| 500.00 | 2.6392 | 0.73265 | 1.3649 | 46.885 | 50.487 | 112.33 | 40.920 | 62.388 | 504.55 | 19.450 | 16.653 | 0.045666 | vapor |

- Nice! You get MANY properties and MANY digits !
- The EOS's used by the NIST Webbook are the best available.


# Extra Info from the NIST Webbook 

Auxiliary Data
Reference States, Normal Boiling Point Convention

| Enthalhy | $\mathrm{H}=0$ at the normal boiling point for saturated liquid. |
| :--- | :--- |
| Entropy | $\mathrm{S}=0$ at the normal boiling point for saturated liquid. |

Additional fluid data

| Critical temperature $\left(\mathbf{T}_{\mathbf{c}}\right)$ | 647.096 K |
| :--- | ---: |
| Critical pressure $\mathbf{( P}_{\mathbf{c}}$ ) | 22.0640 MPa |
| Critical density $\mathbf{( \mathrm { D } _ { \mathbf { c } } )}$ | $17.873728 \mathrm{mol/f}$ |
| Acentric factor | 0.3443 |
| Normal boiling point | 373.1243 K |
| Dipole moment | 1.855 Debye |

- Now, let's go to a computer lab and take the NIST Webbook out for a spin.
- A link to the NIST Webbook appears on the course homepage in the box near the center of the page.


## Example Problems

- Determine the $\mathbf{T}_{\text {sat }}, \hat{\mathbf{U}}$ and $\hat{\mathbf{H}}$ of saturated liquid ammonia at 300 kPa .
(Default ref. state)
- Determine $\hat{\mathbf{U}} \hat{\mathbf{H}}$ and $\hat{\mathbf{V}}$ of butane at 14.696 psia and $77^{\circ} \mathrm{F}$ in units of $\mathrm{Btu}, \mathrm{lb}_{\mathrm{m}}$ and $\mathrm{ft}^{3}$.
(Default ref. state)
- Determine $\hat{\mathbf{U}} \hat{\mathbf{H}}$ and $\hat{\mathbf{V}}$ of a saturated mixture of R-123 at $-40^{\circ} \mathrm{C}$ and $\mathrm{x}=0.30$.
(Default ref. state, kJ , mole, $\mathrm{m}^{3}$ )
- Problem 1
$\diamond \mathrm{T}_{\text {sat }}=-9.2243 \mathrm{oC}$
- $\mathrm{U}=300.25 \mathrm{~kJ} / \mathrm{kg}$
- $\mathrm{H}=300.71 \mathrm{~kJ} / \mathrm{kg}$
- Problem 2
- $\mathrm{V}=6.5394 \mathrm{ft}_{3} / \mathrm{lb}_{\mathrm{m}}$
- $\mathrm{U}=251.92 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
- $\mathrm{H}=269.71 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
- Problem 3
- $\mathrm{P}_{\text {sat }}=3.5752 \mathrm{KPa}$
- $\mathrm{U}_{\text {sat }}$ liq $=24.660 \mathrm{~kJ} / \mathrm{mol}, \mathrm{U}_{\text {sat vap }}=52.800$
$\mathrm{kJ} / \mathrm{mol}, \mathrm{U}_{\mathrm{x}=0.03}=33.102 \mathrm{~kJ} / \mathrm{mol}$
$\diamond \mathrm{H}_{\text {sat liq }}=24.660 \mathrm{~kJ} / \mathrm{mol}, \mathrm{H}_{\text {sat vap }}=54.731 \mathrm{~kJ} /$ $\mathrm{mol}, \mathrm{H}_{\mathrm{x}=0.03}=33.681 \mathrm{~kJ} / \mathrm{mol}$
- $\mathrm{V}_{\text {sat liq }}=9.4405 \times 10-5 \mathrm{~m}_{3} / \mathrm{mol}, \mathrm{V}_{\text {sat vap }}=$ $0.54014 \mathrm{~m}_{3} / \mathrm{mol}, \mathrm{V}_{\mathrm{x}=0.03}=0.16211 \mathrm{~m}_{3} / \mathrm{mol}$


## Heat Capacity

- Definition
$\diamond$ Amount of energy (J, Btu) that must be added to 1 mole or lbmole of a substance to increase its temperature by 1 degree ( ${ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{R}$ ).
$\diamond$ Units: $\quad \mathrm{J} / \mathrm{mole}-\mathrm{K} \quad \mathrm{Btu} / \mathrm{lbmole}-{ }^{\circ} \mathrm{F}$
- Specific Heat
$\diamond$ Amount of energy (J, Btu) that must be added to 1 gram, kilogram or $\mathrm{lb}_{\mathrm{m}}$ of a substance to increase its temperature by 1 degree $\left({ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{F}\right.$ or ${ }^{\circ} \mathrm{R}$ ).
$\diamond$ Units: $\mathrm{kJ} / \mathrm{kg}-\mathrm{K} \quad \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{F}$
- Constant Pressure Heat Capacity / Specific Heat: $\quad \tilde{\mathbf{C}}_{\mathrm{P}} \quad \hat{\mathbf{C}}_{\mathrm{P}}$
$\theta$ Definition: $\quad \tilde{\mathbf{C}}_{\mathbf{P}}=\left(\frac{\partial \tilde{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}} \quad \hat{\mathbf{C}}_{\mathbf{P}}=\left(\frac{\partial \hat{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$
- Constant Volume Heat Capacity / Specific Heat: $\quad \tilde{\mathbf{C}}_{\mathbf{v}} \quad \hat{\mathbf{C}}_{\mathbf{v}}$ $\therefore$ Definition: $\quad \tilde{\mathbf{C}}_{\mathbf{V}}=\left(\frac{\partial \tilde{\mathbf{U}}}{\partial \mathbf{T}}\right)_{\mathbf{P}} \quad \tilde{\mathbf{C}} \quad \hat{\mathbf{C}}_{\mathrm{v}}=\left(\frac{\partial \hat{\mathbf{U}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$
- Heat Capacity Ratio : $\gamma=\frac{\tilde{\mathbf{C}}_{\mathrm{P}}}{\tilde{\mathbf{C}}_{\mathrm{v}}}=\frac{\hat{\mathbf{C}}_{\mathrm{P}}}{\hat{\mathbf{C}}_{\mathrm{v}}}$
- Some people use the terms heat capacity and specific heat interchangeably


## Why is Heat Capacity Useful ?

- Isobaric Processes: $\quad \tilde{\mathbf{H}}_{2}-\tilde{\mathbf{H}}_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{\mathbf{p}}} \tilde{\mathbf{C}}_{\mathbf{p}} \mathrm{dT}$
- Isochoric Processes: $\quad \tilde{\mathbf{U}}_{2}-\tilde{\mathbf{U}}_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \tilde{\mathrm{C}}_{\mathrm{v}} \mathrm{dT}$


## Ideal Gases

- $\quad \tilde{\mathbf{H}}$ is a function of $T$ only, not $P$
- $\quad \tilde{\mathbf{U}}$ is a function of $T$ only, not $P$
- Therefore:

$$
\Delta \tilde{\mathbf{H}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \tilde{\mathbf{C}}_{\mathrm{P}}^{o} \mathbf{d T} \quad \Delta \tilde{\mathbf{U}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \tilde{\mathbf{C}}_{\mathbf{V}}^{o} \mathbf{d T}
$$

are valid for ALL processes for ideal gases

- IG Heat Capacities: $\quad \tilde{\mathbf{C}}_{\mathbf{P}}^{o} \quad \tilde{\mathbf{C}}_{\mathbf{V}}^{o}$
- NIST: Shomate Equation: $\widetilde{\mathbf{C}}_{\mathbf{P}}^{\mathbf{o}}=\mathbf{A}+\mathbf{B t}+\mathbf{C t}^{2}+\mathbf{D} \mathbf{t}^{3}+\mathbf{E} / \mathbf{t}^{2}$ where: $\quad t=T(K) / \mathbf{1 0 0 0}$

$$
\widetilde{\mathbf{C}}_{\mathbf{P}}^{0}[=] \mathbf{J} / \mathrm{mol} \cdot \mathbf{K}
$$

## Solids \& Incompressible Liquids

- $\quad \tilde{\mathbf{V}} \approx$ constant: $\quad \mathbf{d} \tilde{\mathbf{H}}=\mathbf{d} \tilde{\mathbf{U}}+\mathbf{d}(\mathbf{P} \tilde{\mathbf{V}})=\mathbf{d} \tilde{\mathbf{U}}+\tilde{\mathbf{V}} \mathbf{d P}$
- $\quad \tilde{\mathbf{v}}$ is very small for most solids and many liquids (far from the critical point).
- Therefore: $d \tilde{U} \gg \tilde{V} d P \quad d \tilde{H} \approx d \tilde{U}$

$$
\frac{d \tilde{H}}{d T} \approx \frac{d \tilde{U}}{d T}
$$

$\tilde{\mathbf{C}}_{\mathrm{P}} \approx \tilde{\mathbf{C}}_{\mathrm{v}}$

- This approximation is good for solids.
- It is pretty rough for liquids except for $\mathrm{P}>$ Pc.
- Good for water except near the critical point.


## Gibbs Phase Rule

- ${ }^{\mathbf{0}}$ Freedom $=\mathbf{C}-\mathbf{P}+\mathbf{2}$
- ${ }^{\circ}$ Free $=$ number of intensive variables you can independently specify.
- $\mathrm{C}=$ number of chemical species in the system
- $\mathrm{P}=$ number of phases within the system.
- Consider a pure substance in a single phase
- $\mathrm{C}=1, \mathrm{P}=1 \ldots{ }^{\circ} \mathrm{Free}=2$
- Therefore, we must specify both T \& P to completely determine the state of subcooled liquids and superheated vapors !
- Remember that $\mathrm{P}>3$ is possible as long as C $>1$.
- For subcooled liquids and superheated vapors we cannot independently specify T, P and the molar volume !


## Hypothetical Process Paths

## - Actual Process Path

$\diamond$ The series of states that a system actually passes through during a process

- Hypothetical Process Path
$\checkmark$ A convenient path connecting the initial and final states of a process that makes it easy to evaluate changes in state variables that occur during the process
- Goal: Construct an HPP in which just $T$ or $P$ changes or the phase changes in each step that makes up the path.
- Good news:
$\diamond$ We will use thermodynamic tables (only) for real gases in this course
$\diamond$ We will use the IG heat capacity (Shomate Eqn) for ideal gases
$\diamond$ If a liquid is not in the thermodynamic tables in the NIST Webbook, we will consider it to be incompressible


## Phase Changes

- Latent Heat of Vaporization: $\Delta \tilde{\mathbf{H}}_{\text {vap }}$
$\diamond$ Best choice is to look up the value
$\stackrel{\text { Estimate the value }}{ } \quad$ Clausius-Clapeyron Equation : $\quad \mathbf{L n} \mathbf{P}^{*}=\left(-\frac{\Delta \widetilde{\mathbf{H}}_{\text {vap }}}{\mathbf{R}}\right) \frac{\mathbf{1}}{\mathbf{T}}+\mathbf{C}$
- Vapor Pressure
$\diamond$ Best choice is to look up the value
$\diamond$ Estimate the value
- Antoine Equation : $\log _{10} \mathbf{P}^{*}=\mathbf{A}-\frac{\mathbf{B}}{\mathbf{T}+\mathbf{C}}$
- The Antoine Eqn often takes a slightly different form depending on where you look up the constants A, B and C
- NIST: $\mathrm{P}^{*}=$ bar, $\mathrm{T}=$ Kelvin
- Note: $1 \mathrm{bar}=100 \mathrm{kPa}$


## $\Delta H_{\text {sub }}$ from the Clausius-Clapeyron Eqn



3A-1
Enthalpy and Internal Energy for Ideal Gases
A rigid tank contains 90 L of xenon gas at $385^{\circ} \mathrm{C}$ and 2.3 MPa . The xenon gas has a total enthalpy of 1350 kJ . Assuming the xenon behaves as an ideal gas, determine its specific internal energy.

Read : Given the temperature, pressure and volume of xenon in an ideal gas state, we can calculate the mass of xenon in the system using the Ideal Gas EOS. This allows us to convert the enthalpy into specific enthalpy. We can use the definition of enthalpy or specific enthalpy to relate $\mathbf{U}$ to $\mathbf{H}$ and $\mathbf{P V}$ and then eliminate $\mathbf{P V}$ using the Ideal Gas EOS again. The units may get tricky.

Diagram:


Given: $\quad V=$

| $\mathrm{P}=$ | 2.3 | MPa |
| :--- | :---: | :--- |
| $\mathrm{H}=$ | 1350 | kJ |

Find: $\quad \mathrm{U}=\quad$ ??? $\quad \mathrm{kJ} / \mathrm{kg}$
Assumptions: 1 - Equilibrium conditions exist inside the tank.
2 - Xenon is an ideal gas at this $\mathbf{T}$ and $\mathbf{P}$.
Equations / Data / Solve:
Since xenon behaves as an ideal gas, the definition of specific enthalpy can be modified as follows:

| $\hat{\mathbf{H}}=\hat{\mathbf{U}}+\mathbf{P} \hat{\mathbf{V}}$ | Eqn 1 | $\mathbf{P} \hat{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{M W}}$ | Eqn 2 | $\hat{\mathbf{U}}=\hat{\mathbf{H}}-\frac{\mathbf{R T}}{\mathbf{M W}}$ |
| :--- | :--- | :--- | :--- | :--- |
| But : $\quad \hat{\mathbf{H}}=\frac{\mathbf{H}}{\mathbf{m}}$ | Eqn 4 |  | $\hat{\mathbf{U}}=\frac{\mathbf{H}}{\mathbf{m}}-\frac{\mathbf{R T}}{\mathbf{M W}}$ | Eqn 3 |
| Eq 5 |  |  |  |  |



| Note: To convert ${ }^{\circ} \mathbf{C}$ to $\mathbf{K}$, add $\mathbf{2 7 3 . 1 5}$ to ${ }^{\circ} \mathbf{C}$. | T | 658.15 | K |
| :---: | :---: | :---: | :---: |
|  | m | 4.9667 | kg |
|  | RT / MW | 41.7 | kJ/kg |
|  | H | 271.8 | kJ/kg |
|  | U | 230.1 | kJ/kg |
| Verify: |  |  |  |

Answers : $\mathbf{U} \mathbf{2 3 0} \mathbf{k J} / \mathbf{k g} \quad$ (Rounded to 3 significant digits.)

A piston-and-cylinder device contains superheated steam at $350^{\circ} \mathrm{C}$ and 10 atm . The piston is held in place by a pin. When the pin is removed, the steam expands isothermally until the piston hits a second pin.
At this point, the pressure is 5 atm . Determine the change in the molar enthalpy and molar internal energy of the steam in units of $\mathrm{KJ} / \mathrm{mol}$.

Read: Because the water vapor is superheated, it has $\mathbf{2}$ degrees of freedom. In this case both the $\mathbf{T}$ and $\mathbf{P}$ must be specified to completely determine the state. Because the state is completely determined, we can use the given $\mathbf{T}$ and $\mathbf{P}$ values to look up properties like $\mathbf{U}$ and $\mathbf{H}$ in the Superheated Tables in the Steam Tables.

Diagram:


| Given: | $\mathrm{T}_{1}$ | 350 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{T}_{2}$ | 350 | ${ }^{\circ} \mathrm{C}$ |
| Find: | $\Delta \mathrm{U}$ |  |  |
|  | $\Delta \mathrm{H}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{mol}$ |
|  | ??? | $\mathrm{kJ} / \mathrm{mol}$ |  |

## Assumptions: None.

## Equations / Data / Solve:

Use the NIST WebBook to determine the properties of superheated water vapor at the initial and final pressures. As always, use the ASHRAE convention. A portion of the thermodynamic table used in this problem is provided below.

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Pressure <br> $(\mathrm{atm})$ | Internal <br> Energy <br> $(\mathrm{kJ} / \mathrm{mol})$ | Enthalpy <br> $(\mathrm{kJ} / \mathrm{mol})$ | Phase |
| :---: | :---: | :---: | :---: | :---: |
| 350 | 1 | 52.041 | 57.213 | vapor |
| 350 | 2 | 52.015 | 57.178 | vapor |
| 350 | 3 | 51.989 | 57.143 | vapor |
| 350 | 4 | 51.963 | 57.107 | vapor |
| 350 | 5 | 51.936 | 57.071 | vapor |
| 350 | 6 | 51.910 | 57.036 | vapor |
| 350 | 7 | 51.883 | 57.000 | vapor |
| 350 | 8 | 51.857 | 56.964 | vapor |

The internal energy and enthalpy at the given pressures are:

| $\mathrm{P}=8 \mathrm{~atm}$ |  |  | $\mathrm{P}=1 \mathrm{~atm}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{U}_{1}$ | 51.857 | $\mathrm{KJ} / \mathrm{mol}$ | $\mathrm{U}_{2}$ | 52.015 | KJ/mol |
| $\mathrm{H}_{1}$ | 56.964 | $\mathrm{KJ} / \mathrm{mol}$ | $\mathrm{H}_{2}$ | 57.178 | KJ/mol |

Remember that the change in any property is defined as the final state minus the initial state.
$\Delta \mathrm{U}=\mathrm{U}_{2}-\mathrm{U}_{1}=$
$0.158 \mathrm{KJ} / \mathrm{mol}$
$\Delta H=H_{2}-H_{1}=$
$0.214 \mathrm{KJ} / \mathrm{mol}$

Verify: No assumptions to verify this time.
Answers :

| $\Delta \mathrm{U}$ | 0.158 | $\mathrm{~kJ} / \mathrm{mol}$ |
| :--- | :--- | :--- |

$\Delta H \quad 0.214 \quad \mathrm{~kJ} / \mathrm{mol}$

Superheated ammonia vapor is stored in two rigid tanks, as shown below. Can you determine, by observation and reasoning alone, which has the higher molar internal energy, $\mathbf{A}$ or $\mathbf{B}$ ?

Tank A


Tank B


Calculate the difference in molar internal energy between the two tanks using data from the NIST WebBook.

Read: Because the water vapor is superheated, it has $\mathbf{2}$ degrees of freedom. In this case both the $\mathbf{T}$ and $\mathbf{P}$ must be specified to completely determine the state. Because the state is completely determined, we can use the given $\mathbf{T}$ and $\mathbf{P}$ values to look up properties like $\mathbf{U}$ and $\mathbf{H}$ in the Superheated Tables in the Steam Tables.

Diagram: Given in the problem statement.

| Given: | $\mathrm{P}_{\mathrm{A}}=$ | 1.55 | atm | $\mathrm{P}_{\mathrm{B}}=$ | 1.55 | ${ }^{\text {atm }}$ |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
|  | $\mathrm{T}_{\mathrm{A}}=$ | 23 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{B}}=$ | 4 | ${ }^{\circ} \mathrm{C}$ |

Find: $\quad \Delta \mathrm{U}=\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=$ ??? $\mathrm{kJ} / \mathrm{mol}$
Assumptions: None.

## Equations / Data / Solve:

The internal energy of a substance is the sum of the kinetic energies stored in the vibrational, rotational, and translational motion of the molecules. Tank A has more energy by virtue of its higher temperature. Therefore, it must have the higher intern
We must look up the isobaric properties of superheated water in the NIST WebBook. Use the ASHRAE convention. A portion of the thermodynamic table used in this problem is given below.

| $\mathbf{T}$ <br> $\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{P}$ <br> $($ atm $)$ | $\mathbf{U}$ <br> $(\mathbf{k J} / \mathbf{m o l})$ | Phase |
| :---: | :---: | :---: | :---: |
| 2 | 1.55 | $\mathbf{2 2 . 8 4 9}$ | vapor |
| 3 | 1.55 | $\mathbf{2 2 . 8 7 8}$ | vapor |
| 4 | 1.55 | $\mathbf{2 2 . 9 0 8}$ | vapor |
| 5 | 1.55 | $\mathbf{2 2 . 9 3 7}$ | vapor |
| 21 | 1.55 | $\mathbf{2 3 . 4 0 1}$ | vapor |
| 22 | 1.55 | $\mathbf{2 3 . 4 3 0}$ | vapor |
| 23 | 1.55 | $\mathbf{2 3 . 4 5 9}$ | vapor |
| 24 | 1.55 | $\mathbf{2 3 . 4 8 7}$ | vapor |

The internal energies at the two given temperatures are:
$\mathrm{T}=23^{\circ} \mathrm{C}$
$\begin{array}{lll}\mathrm{U}_{\mathrm{A}} & 23.459 \mathrm{KJ} / \mathrm{mol}\end{array}$
$\mathrm{T}=4^{\circ} \mathrm{C}$
$\mathrm{U}_{\mathrm{B}}$
22.908 KJ/mol

As we predicted, the internal energy of the water vapor in Tank A is greater than in Tank B. The $\mathbf{U}$ of Tank $\mathbf{A}$ is greater by:
$\Delta U=U_{A}-U_{B}=\quad 0.551 \mathrm{KJ} / \mathrm{mol}$
Verify: No assumptions to verify this time.

Answers : | $\Delta \mathrm{U}$ | 0.551 | $\mathrm{KJ} / \mathrm{mol}$ |
| ---: | ---: | ---: | ---: |

3C-1
Enthalpy Change of Ammonia Using the IG Heat Capacity
5 pts
Ammonia gas is heated from 325 K to 750 K . Using the ideal gas heat capacity given by the Shomate Equation, calculate the $\boldsymbol{\Delta U}$ and $\boldsymbol{\Delta H}$ in $\mathbf{J} /$ mole.

Read : The Shomate Equation will yield the most accurate estimate of the enthalpy change for an ideal gas.
Diagram: A diagram is not needed for this problem.

| Given: | $\mathrm{T}_{1}$ | 325 | K | $\mathrm{~T}_{2}$ | 750 | K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Find: | $\Delta \mathrm{H}_{1-2}=$ | ??? | $\mathrm{J} / \mathrm{mole}$ | $\Delta \mathrm{U}_{1-2}=$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mole}$ |

Assumptions: 1 - Assume ammonia behaves as an ideal gas.

## Equations / Data / Solve:

Let's begin by collecting the data we will need from the NIST Webbook :

| Temp (K) | 298. <br> 1400. |
| :---: | :---: |
| A | 19.99563 |
| B | 49.77119 |
| C | -15.376 |
| D | 1.921168 |
| E | 0.189174 |

Part a.) The enthalpy change associated with a temperature change for an ideal gas can be determined from :

$$
\begin{equation*}
\Delta \tilde{H}_{1-2}=\int_{T_{1}}^{T_{2}} \tilde{\mathbf{C}}_{p}^{\circ} d T \tag{Eqn 1}
\end{equation*}
$$

The Shomate Equation for the ideal gas heat capacity is :

$$
\begin{array}{ll}
\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\mathrm{A}+\mathrm{Bt}+\mathrm{Ct}^{2}+\mathrm{Dt}^{3}+\mathrm{E} / \mathbf{t}^{2} & \text { Eqn 2 } \\
\mathbf{t}=\mathbf{T}(\mathrm{K}) / \mathbf{1 0 0 0} & \text { Eqn 3 } \\
\widetilde{\mathbf{C}}_{\mathrm{P}}^{0}[=] \mathrm{J} / \mathrm{mol} \cdot \mathrm{~K} &
\end{array}
$$

where:
and :
Combining Eqns 1, 2 and 3 and integrating yields:
$\Delta \tilde{H}=A\left(T_{2}-T_{1}\right)+\frac{B / 2}{1000}\left(T_{2}^{2}-T_{1}^{2}\right)+\frac{C / 3}{1000^{2}}\left(T_{2}^{3}-T_{1}^{3}\right)+\frac{D / 4}{1000^{3}}\left(T_{2}^{4}-T_{1}^{4}\right)-\frac{E}{1000^{-2}}\left(T_{2}^{-1}-T_{1}^{-1}\right)$
Eqn 4

Plug in values for the temperatures and the constants to get :

We can determine $\Delta \mathbf{U}$ using the definition of enthalpy : $\quad \Delta \tilde{\mathbf{H}}=\Delta \tilde{\mathbf{U}}+\Delta(\mathbf{P} \tilde{\mathbf{V}})$
For ideal gases, Eqn 7 becomes :
$\Delta \tilde{H}^{I G}=\Delta \tilde{\mathbf{U}}^{I G}+\Delta(\mathbf{R T})=\Delta \tilde{\mathbf{U}}^{I G}+\mathbf{R} \Delta \mathbf{T}$
Eqn 8
We can then solve Eqn 8 for $\Delta \mathbf{U}$ :

$$
\Delta \tilde{\mathbf{U}}^{1 G}=\Delta \tilde{H}^{1 G}-\mathbf{R}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)
$$

Eqn 9
$\begin{array}{lll}R & 8.314 & \mathrm{~J} / \mathrm{mol}-\mathrm{K}\end{array}$
$\Delta U$
14824
$\mathrm{J} / \mathrm{mol}$
Verify: Without knowing the pressure, it is not possible to verify this assumption.
Answers :

| $\Delta \mathrm{H}$ | 18400 | $\mathrm{~J} / \mathrm{mol}$ |
| :--- | :--- | :--- |

$\Delta \mathrm{U} \quad 14800 \quad \mathrm{~J} / \mathrm{mol}$

3C-2 Application of the Gibbs Phase Rule to the Triple Point 2 pts
$\mathbf{R}$-134a at its triple point is held in a rigid vessel. How many intensive variables can be independently specified?

Read : At the triple point, all three phases exist in equilibrium.
This is the unique aspect of the triple point and this problem.
Diagram: A diagram is not necessary for this problem.
Given: Number of chemical species present: C 1
Number of phases present at equilibrium: P 3
Find: $\quad{ }^{\circ}$ Free $=$
???
Assumptions: None.

## Equations / Data / Solve:

Gibbs Phase Rule : $\quad{ }^{\circ}$ Free $=\mathbf{C}-\mathbf{P}+2 \quad{ }^{\circ}$ Free $=\quad 0$
NO intensive variables can be independently specified at the triple point !
This means that there is just one triple point and all of the properties of all of the phases are fixed !
The triple point is unique.
Verify: No assumptions were made in the solution of this problem.
Answers:
${ }^{\circ}$ Free 0

The Thermophysical Properties of Fluid Systems page in the NIST WebBook lists the heat capacity of liquid heptane at various temperatures.

Use this resource to determine the constant volume specific heat of liquid heptane at $7^{\circ} \mathrm{C}$ and 1 atm . How many intensive properties of liquid heptane can be independently specified?

Read : Looking up the heat capacity in the NIST WebBook is straightforward.
Gibbs Phase Rule will tell us how many intensive variables can be independently specified.
Diagram: A diagram is not necessary for this problem.

| Given: | $\mathbf{T}$ | 5 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{P}$ | atm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Find: | $\mathrm{C}_{\mathrm{V}}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{kg} \mathrm{K}$ | ${ }^{\circ}$ Free $=$ | ??? |

Assumptions: - The mixture is at equilibrium

## Equations / Data / Solve:

First, we determine the constant volume specific heat at of liquid heptane.
From the NIST WebBook, we can obtain $\mathbf{C}_{\mathrm{p}}$ and $\mathbf{C}_{\mathrm{v}}$ for heptane at 1 atm and $5{ }^{\circ} \mathbf{C}$. Use the isobaric option for a range of temperatures including $5^{\circ} \mathrm{C}$ or use the isothermal option including a pressure of 1 atm . Selecting the correct units makes this task easier. Use temperature in degrees Celsius and pressure in atmospheres.

From the NIST WebBook, I obtained the following data :

| Temp. <br> (C) | Pressure (atm) | Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | Volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | Internal <br> Energy <br> (kJ/kg) | Enthalpy <br> (kJ/kg) | Entropy <br> ( $\mathrm{J} / \mathrm{g}^{*} \mathrm{~K}$ ) | Cv (J/g*K) | $\underset{\left(\mathrm{J} / \mathrm{g}^{*} \mathrm{~K}\right)}{\mathrm{Cp}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 698.87 | 0.0014309 | -226.32 | -226.18 | -0.70175 | 1.6984 | 2.159 |
| 3 | 1 | 698.04 | 0.0014326 | -224.16 | -224.01 | -0.69391 | 1.7016 | 2.1624 |
| 4 | 1 | 697.2 | 0.0014343 | -222.00 | -221.85 | -0.68609 | 1.7048 | 2.1657 |
| 5 | 1 | 696.37 | 0.001436 | -219.83 | -219.68 | -0.67828 | 1.7080 | 2.1690 |
| 6 | 1 | 695.54 | 0.0014377 | -217.66 | -217.51 | -0.67049 | 1.7112 | 2.1724 |
| 7 | 1 | 694.7 | 0.0014395 | -215.48 | -215.34 | -0.66272 | 1.7144 | 2.1758 |
| 8 | 1 | 693.87 | 0.0014412 | -213.31 | -213.16 | -0.65496 | 1.7177 | 2.1792 |

$C_{p}=$
2169 J/kg K
$C_{V}=$
1708
$\mathrm{J} / \mathrm{kg} \mathrm{K}$
${ }^{\circ}$ Free $=\quad$ Degrees of freedom or the number of intensive properties that can be independently specified
C = Number of chemical species within the system
$\mathbf{C =} \quad 1 \quad$ species
$\mathbf{P}=\quad$ Number of phases
$\mathbf{P}=1 \quad$ liquid phase
${ }^{\circ}$ Free $=2+1-1=\quad 2$
Note:
We only need 2 intensive properties, such as: $\quad \mathbf{T}, \mathbf{P}, \tilde{\mathbf{V}}, \tilde{\mathbf{U}}, \tilde{\mathbf{H}}$
to completely determine the state of the system.
Verify: The equilibrium assumption cannot be verified from the data available in this problem.
Answers:

| $\mathrm{C}_{\mathrm{V}}$ | 1708 | $\mathrm{~J} / \mathrm{kg} \mathrm{K}$ |
| :--- | :--- | :--- |


| ${ }^{\circ}$ Free |
| :---: |

3C-4 Enthalpy Change of N2 Using the IG Heat Capacity
5 pts
Nitrogen gas is heated from 450 K to 1120 K . Determine $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ in $\mathbf{k J} / \mathbf{k g}$ by...
a.) Integrating the Shomate Equation
b.) Treating the $\mathbf{C}_{\mathbf{P}}$ value as a constant, determined using the Shomate Equation at the average temperature, 800 K
c.) Treating the $\mathbf{C}_{\mathbf{P}}$ value as a constant, determined using the Shomate Equation at room temperature, $25^{\circ \mathrm{C}}$

Read : The Shomate Equation will yield the most accurate estimate of the enthalpy change. Assuming a constant value of $\mathbf{C}_{\boldsymbol{p}}$ determined at the average temperature should yield a reasonable estimate of $\Delta \mathbf{H}$ as well. Using the $\mathbf{C}_{\mathrm{p}}$ value at room temperature should not be very accurate. We can compare this result to the value we get in part (a).

Diagram: A diagram is not necessary for this problem.
$\begin{array}{lllllll}\text { Given: } & T_{1} & 600 & K & T_{2} & 1000 & K\end{array}$
Find:
$\Delta \mathrm{H}_{1-2}=\quad$ ??? $\quad \mathrm{kJ} / \mathrm{kg}$
a.) Nitrogen behaves as an ideal gas
b.) Nitrogen behaves as an ideal gas with a linear relationship between $\mathbf{C}_{\mathrm{p}}$ and $\mathbf{T}$.

This is equivalent to using a constant value of $\mathbf{C}_{p}$ that is equal to the average of $\mathbf{C}_{p}\left(\mathbf{T}_{1}\right)$ and $\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}\right)$.
c.) Nitrogen behaves as an ideal gas with a constant heat capacity.

Assumptions: The assumptions are part of the problem statement.

## Equations / Data / Solve:

Let's begin by collecting the data we will need from the NIST Webbook :

MW
28.01
g/mole

| Temp (K) | 298. - <br> 6000. |
| :---: | :---: |
| A | 26.092 |
| B | 8.218801 |
| C | -1.976141 |
| D | 0.159274 |
| E | 0.044434 |

Part a.) The enthalpy change associated with a temperature change for an ideal gas can be determined from :

$$
\Delta \tilde{H}_{1-2}=\int_{T_{1}}^{T_{2}} \tilde{C}_{P}^{o} d T
$$

Eqn 1

The Shomate Equation for the ideal gas heat capacity is :

$$
\begin{aligned}
& \widetilde{\mathbf{C}}_{P}^{\circ}=A+B t+C t^{2}+D t^{3}+E / t^{2} \\
& t=T(K) / 1000
\end{aligned}
$$

and :

$$
\tilde{\mathbf{C}}_{\mathrm{P}}^{0}[=] \mathrm{J} / \mathrm{mol} \cdot \mathrm{~K}
$$

Combining Eqns 1, 2 and 3 and integrating yields:

$$
\begin{equation*}
\Delta \tilde{H}=A\left(T_{2}-T_{1}\right)+\frac{B / 2}{1000}\left(T_{2}^{2}-T_{1}^{2}\right)+\frac{C / 3}{1000^{2}}\left(T_{2}^{3}-T_{1}^{3}\right)+\frac{D / 4}{1000^{3}}\left(T_{2}^{4}-T_{1}^{4}\right)-\frac{E}{1000^{-2}}\left(T_{2}^{-1}-T_{1}^{-1}\right) \tag{Eqn 5}
\end{equation*}
$$

$\begin{array}{lll}\text { Plug in values for the temperatures and the constants to get : } \quad \Delta \mathrm{H} & \mathbf{1 2 6 1 5} \mathrm{J} / \mathrm{mol}\end{array}$

$$
\Delta \hat{H}(\mathrm{~kJ} / \mathrm{kg})=\Delta \mathrm{H}(\mathrm{~J} / \mathrm{mole}) \frac{1000 \mathrm{~g} / \mathrm{kg}}{[1000 \mathrm{~J} / \mathrm{kJ}][\mathrm{MW}(\mathrm{~g} / \mathrm{mole})]}
$$

| H | 450.4 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

We can determine $\Delta U$ using the definition of enthalpy : $\quad \Delta \tilde{\mathbf{H}}=\Delta \tilde{\mathbf{U}}+\Delta(\mathbf{P} \tilde{\mathbf{V}}) \quad$ Eqn 7
For ideal gases, Eqn 7 becomes :

| $\Delta \tilde{\mathbf{H}}^{1 G}=\Delta \tilde{\mathbf{U}}^{1 G}+\Delta(\mathbf{R} \mathbf{T})=\Delta \tilde{\mathbf{U}}^{1 \mathrm{G}}+\mathbf{R} \Delta \mathbf{T}$ | Eqn 8 |
| ---: | ---: | ---: |
| $\Delta \tilde{\mathbf{U}}^{1 \mathrm{G}}=\Delta \tilde{\mathbf{H}}^{1 \mathrm{G}}-\mathbf{R}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)$ | Eqn 9 |
| $\Delta \mathbf{U} \quad 9289$ | $\mathrm{~J} / \mathrm{mol}$ |

$$
\Delta \hat{U}(\mathrm{~kJ} / \mathrm{kg})=\Delta \tilde{H}(\mathrm{~J} / \mathrm{mole}) \frac{1000 \mathrm{~g} / \mathrm{kg}}{[1000 \mathrm{~J} / \mathrm{kJ}][\mathrm{MW}(\mathrm{~g} / \mathrm{mole})]}
$$

$\Delta U \quad 331.6 \quad \mathrm{~kJ} / \mathrm{kg}$

Part b.) First we need to use the Shomate Equation, Eqns $2 \& 3$, to evaluate $\mathbf{C}_{\mathrm{p}}\left(\mathbf{T}_{\mathbf{1}}\right)$ and $\mathbf{C}_{\mathrm{p}}\left(\mathbf{T}_{\mathbf{2}}\right)$ :

| $t_{1}$ | 0.6 | $C_{p}\left(T_{1}\right)$ | 30.470 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ |
| :--- | ---: | :--- | ---: | :--- |
| $\mathbf{t}_{2}$ | 1 | $\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}\right)$ | 32.538 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ |
|  |  |  |  |  |
| Therefore, the average value of $\mathrm{C}_{\mathrm{p}}$ is : | $\mathrm{C}_{\mathrm{p}, \mathrm{avg}}$ | 31.504 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ |  |

When the heat capacity is a constant, Eqn 1 simplifies to: $\quad \Delta \tilde{H}_{1-2}=\tilde{C}_{\mathrm{P}, \mathrm{avg}}^{\circ}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

| $\Delta H$ | 12602 | $\mathrm{~J} / \mathrm{mol}$ |
| :--- | :--- | :--- |
| $\Delta H$ | 449.9 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  |  |  |
| $\Delta \mathbf{U}$ | 331.2 | $\mathrm{~kJ} / \mathrm{kg}$ |

This amounts to about $\mathbf{0 . 1 \%}$ error relative to the result in part (a).
Part c.) We can use Eqns 2 \& 3 to evaluate the heat capacity at $25^{\circ} \mathrm{C}$ or 298.15 K :

| $\mathrm{t}_{1}$ | 0.29815 | C ${ }_{\text {p }}(298.15 \mathrm{~K})$ | 28.871 | J/mol-K |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\Delta H$ | 11548 | J/mol |
|  |  | $\Delta \mathrm{H}$ | 412.3 | kJ/kg |
|  |  | $\Delta \mathrm{U}$ | 293.6 | kJ/kg |

This amounts to almost 9\% error relative to the result in part (a).
That is not acceptable.
Verify: No assumptions were made other than the ones in the problem statement.

|  | Answers : a.) | $\Delta \mathrm{U}$ | 332 |
| :--- | :--- | :--- | :--- |
| b.) | $\Delta \mathrm{kJ} / \mathrm{kg}$ |  |  |
|  | 331 | $\mathrm{~kJ} / \mathrm{kg}$ |  |
|  | $\Delta \mathrm{U}$ | 294 | $\mathrm{~kJ} / \mathrm{kg}$ |


| $\Delta H$ | 450 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\Delta H$ | 450 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\Delta H$ | 412 | $\mathrm{~kJ} / \mathrm{kg}$ |

Three ideal gases, Nitric Oxide (NO), Carbon Monoxide (CO), and Oxygen ( $\mathbf{O}_{2}$ ), at 220 kPa and $350^{\circ} \mathrm{C}$ are held in a tank with three chambers, as shown below.


The dividers between the chambers are removed and the three gases are allowed to mix. The mixture contains $30 \mathrm{~mole} \%$ NO, 50 mole\% CO, and 20 mole $\% \mathrm{O}_{2}$. The mixture is then heated to $735^{\circ} \mathrm{C}$.
Calculate the $\mathbf{\Delta U}$, in $\mathbf{J} /$ mole, of the mixture for the heating process. Assume the mixture is an ideal gas.

Read : The key to this problem is that enthalpy does not depend on pressure for an ideal gas. So, the initial and final pressures are not relevant. We want to determine the change in the internal energy, but only the constant pressure heat capacities are tabulated. We can either use $\mathbf{C}_{v}=\mathbf{C}_{\boldsymbol{p}}-\mathbf{R}$ and then integrate $\mathbf{C}_{v}$ with respect to $\mathbf{T}$ to get $\Delta \mathbf{U}$ or we can integrate $\mathbf{C}_{\mathbf{p}}$ with respect to $\mathbf{T}$ to get $\Delta \mathbf{H}$ and then use the definiition of enthalpy to get $\Delta \mathbf{U}$. The final aspect of the problem is that the system contains a mixture. We can either use the mole fractions to determine the constants of the heat capacity polynomial for the mixture and then integrate $\mathbf{C}_{\mathrm{p}}$ with respect to $\mathbf{T}$ one time, or we can integrate $\mathbf{C}_{\mathrm{p}}$ for each chemical component with respect to $\mathbf{T}$ and sum the resulting $\Delta H$ values to get $\Delta \mathbf{H}$ for the mixture. Either way, once we have $\Delta \mathbf{H}$, we use the definition of enthalpy to determine $\Delta \mathbf{U}$.

Diagram: The figure given in the problem statement is adequate. Just include the initial and final temperatures.


Given:
$\mathrm{P}_{1}=$
$\mathrm{T}_{1}=$
$\mathrm{T}_{2}=$
Find: $\quad \Delta \mathbf{U}=$

Assumptions:

1 - The initial state and the final state are equilibrium states.
2 - There is no change in internal energy or enthalpy due to mixing of the gases.
3 - The pure components and the mixture behave as ideal gases.

## Equations / Data / Solve:

The internal energy of an ideal gas does not depend on pressure, only on temperature.
Therefore, the question becomes, what is the change in internal energy from $\mathrm{T}_{1}=400{ }^{\circ} \mathrm{C}$, to $\mathrm{T}_{2}=600^{\circ} \mathrm{C}$.

$$
\Delta \tilde{H}_{1-2}=\int_{T_{1}}^{T_{2}} \tilde{C}_{P}^{o} d T
$$

Eqn 1

The Shomate Equation for the ideal gas heat capacity is :

$$
\begin{equation*}
\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\mathrm{A}+\mathrm{Bt}+\mathrm{Ct}^{2}+\mathbf{D} t^{3}+E / t^{2} \tag{Eqn 2}
\end{equation*}
$$

where:

$$
t=T(K) / 1000
$$

Eqn 3
and :

$$
\tilde{\mathbf{C}}_{P}^{\circ}[=] \mathrm{J} / \mathrm{mol} \cdot \mathrm{~K}
$$

Eqn 4

Combining Eqns 1, 2 and 3 and integrating yields:

$$
\Delta \tilde{H}=A\left(T_{2}-T_{1}\right)+\frac{B / 2}{1000}\left(T_{2}^{2}-T_{1}^{2}\right)+\frac{C / 3}{1000^{2}}\left(T_{2}^{3}-T_{1}^{3}\right)+\frac{D / 4}{1000^{3}}\left(T_{2}^{4}-T_{1}^{4}\right)-\frac{E}{1000^{-2}}\left(T_{2}^{-1}-T_{1}^{-1}\right)
$$

$$
\Delta \tilde{U}^{I G}=\Delta \tilde{H}^{I G}-\mathbf{R}\left(T_{2}-T_{1}\right)
$$

T in Kelvin!
Eqn 6


Method \#1: Calculate the constants for the heat capacity polynomial for the gas mixture and then integrate to determine $\Delta \mathbf{H}$ for the mixture.

$$
\begin{aligned}
& \begin{array}{ll|c|} 
& \text { Mixture } \\
A_{\text {mix }} & =y_{\mathrm{NO}} \mathbf{A}_{\mathrm{NO}}+\mathbf{y}_{\mathrm{CO}} \mathbf{A}_{\mathrm{CO}}+\mathbf{y}_{\mathrm{O} 2} \mathbf{A}_{\mathrm{O} 2}= & 25.86607 \\
\mathbf{B}_{\text {mix }}=\mathbf{y}_{\mathrm{NO}} \mathbf{B}_{\mathrm{NO}}+\mathbf{y}_{\mathrm{CO}} \mathbf{B}_{\mathrm{CO}}+\mathbf{y}_{\mathrm{O} 2} \mathbf{B}_{\mathrm{O} 2}= & 8.05215 \\
\mathbf{C}_{\text {mix }}=\mathbf{y}_{\mathrm{NO}} \mathbf{C}_{\mathrm{NO}}+\mathbf{y}_{\mathrm{CO}} \mathbf{C}_{\mathrm{CO}}+\mathbf{y}_{\mathrm{O} 2} \mathbf{C}_{\mathrm{O} 2}= & 1.44832
\end{array} \\
& \mathbf{D}_{\text {mix }}=y_{\mathrm{NO}} \mathbf{D}_{\mathrm{NO}}+\mathbf{y}_{\mathrm{CO}} \mathbf{D}_{\mathrm{CO}}+\mathbf{y}_{\mathrm{O} 2} \mathbf{D}_{\mathrm{O} 2}= \\
& E_{\text {mix }}=y_{\text {NO }} E_{\text {NO }}+y_{c \mathrm{CO}} E_{\mathrm{co}}+y_{\mathrm{O} 2} E_{\mathrm{O} 2}=
\end{aligned}
$$

Method \#2: Calculate $\Delta \boldsymbol{H}$ and then $\Delta \mathbf{U}$ for EACH gas and then compute the molar average $\Delta \mathbf{U}$ and $\Delta \boldsymbol{H}$ using the following equations:
$\Delta \tilde{U}_{\text {mix }}=\sum_{i} \mathbf{y}_{i} \Delta \tilde{U}_{i}$
Eqn $7 \quad \Delta \tilde{H}_{\text {mix }}=\sum_{i} y_{i} \Delta \tilde{H}_{i}$

Eqn 8

|  | NO | CO | $\mathbf{O}_{\mathbf{2}}$ | Mixture |  |
| :--- | :---: | :---: | :---: | :---: | :--- |
| $\Delta \mathbf{H}=$ | 12633 | 12307 | 12923 | 12528 | $\mathrm{~J} / \mathrm{mol}$ |
|  | $\mathbf{U}=$ | 9433 | 9106 | 9722 | $\mathbf{9 3 2 7}$ |
| $\mathbf{J} / \mathrm{mol}$ |  |  |  |  |  |

Verify: Assumptions $\mathbf{1}$ \& $\mathbf{2}$ cannot be verified from the data given in the problem.
The ideal gas assumption needs to be verified.
We need to determine the specific volume and check if: $\quad \widetilde{\mathbf{V}}>\mathbf{2 0} \mathbf{L} / \mathbf{m o l}$

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}
$$

Eqn 9
$\mathrm{V}_{1}$
$23.55 \mathrm{~L} / \mathrm{mol}$
$\mathrm{V}_{2}$
$38.10 \mathrm{~L} / \mathrm{mol}$

The ideal gas assumption is valid because $\mathbf{V} \mathbf{>} \mathbf{2 0} \mathbf{L} /$ mole For both the initial and final states.
Answers:
$\Delta \mathrm{U}_{\text {mix }}=9327 \mathrm{~J} / \mathrm{mol}$

Liquid methanol is heated from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in the piston-and-cylinder device shown below. The initial pressure is 100 kPa and the spring causes the pressure to increase during the process to $200 \mathbf{k P a}$.


Calculate $\Delta \mathbf{U}$ and $\Delta \mathbf{H}$ in $\mathbf{J} / \mathrm{mol}$. Assume $\mathbf{C}_{\mathrm{P}}$ is a constant and has a value of $83.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$. Assume the molar volume is also constant and has a value of $0.01848 \mathrm{~mol} / \mathrm{L}$.

Read : Construct a good HPP for this process. Treat the liquid methanol as an incompressible fluid and verify this assumption at the end. This will simplify determining $\boldsymbol{\Delta U}$ and $\boldsymbol{\Delta H}$ for changes in pressure. Use the given heat capacity to determine $\mathbf{\Delta U}$ and $\Delta \mathbf{H}$ for changes in temperature.

Diagram:


| Given: | $\mathrm{T}_{1}$ | 25 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{2}$ | 125 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{P}_{1}$ | 100 | kPa | $\mathrm{P}_{2}$ | 200 | kPa |
|  | $\mathrm{C}_{\mathrm{P}}$ | 83.4 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ | V | 0.01848 | $\mathrm{~mol} / \mathrm{L}$ |
| Find: | $\Delta \mathrm{U}_{12}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ | $\Delta \mathrm{H}_{12}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |

Assumptions:
1 - Liquid methanol is incompressible. The molar volume is constant throughout this process.

## Equations / Data / Solve:

The reason we use a hypothetical process path is to break a complex process into a series of simpler steps. In this problem, step 1-A is isobaric and step A-2 is isothermal.
Because $\mathbf{U}$ and $\mathbf{H}$ are state variables, they are additive, as follows.
$\Delta \tilde{\mathrm{H}}_{12}=\Delta \tilde{\mathrm{H}}_{1 \mathrm{~A}}+\Delta \tilde{\mathrm{H}}_{\mathrm{A} 2}$
Eqn 1
$\Delta \tilde{\mathbf{U}}_{12}=\Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}+\Delta \tilde{\mathbf{U}}_{\mathrm{A} 2}$
Eqn 2
$\boldsymbol{\Delta H}$ for Step 1-A can be determined as follows because the heat capacity is a constant.

$$
\begin{equation*}
\Delta \tilde{H}_{1 A}=\int_{T_{1}}^{T_{A}} \tilde{C}_{P} d T=\tilde{C}_{P, \text { avg }}\left(T_{A}-T_{1}\right) \tag{Eqn 3}
\end{equation*}
$$

Plugging values into Eqn 2 yields:
$\Delta H_{1 A}$
$8340.0 \mathrm{~J} / \mathrm{mol}$
Now we can use the definition of enthalpy to help us determine $\Delta \mathbf{U}$.

$$
\begin{equation*}
\Delta \tilde{\mathbf{H}}_{1 \mathrm{~A}}=\Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}+\Delta(\mathbf{P} \tilde{\mathbf{V}})_{1 \mathrm{~A}}=\Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}+\mathbf{P} \Delta \tilde{\mathbf{V}}_{1 \mathrm{~A}}+\tilde{\mathbf{V}} \Delta \mathbf{P}_{1 \mathrm{~A}} \approx \Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}} \tag{Eqn 4}
\end{equation*}
$$

Since $\mathbf{P}_{\mathrm{A}}=\mathrm{P}_{1}, \boldsymbol{\Delta P}=\mathbf{0}$.
We boldly assumed the molar volume of the liquid methanol was constant throught this process, $\Delta \mathbf{V}_{1 \mathrm{~A}}=\mathbf{0}$.
The result is easy to compute!
$\Delta \mathrm{U}_{1 \mathrm{~A}}$
$8340.0 \mathrm{~J} / \mathrm{mol}$
For an incompressible liquid, as we have assumed liquid methanol to be, $\mathbf{U}$ is not a function of $\mathbf{P}$.
Therefore :
$\Delta \mathrm{U}_{\mathrm{A} 2}$
$0 \mathrm{~J} / \mathrm{mol}$
To determine $\mathbf{\Delta H}$, we must return to the definition of enthalpy.

$$
\begin{equation*}
\Delta \tilde{\mathbf{H}}_{\mathrm{A} 2}=\Delta \tilde{\mathbf{U}}_{\mathrm{A} 2}+\Delta(\mathbf{P} \tilde{\mathbf{V}})_{\mathrm{A} 2}=\mathbf{P} \Delta \tilde{\mathbf{V}}_{\mathrm{A} 2}+\tilde{\mathbf{V}} \Delta \mathbf{P}_{\mathrm{A} 2} \approx \tilde{\mathbf{V}} \Delta \mathbf{P}_{\mathrm{A} 2} \tag{Eqn 5}
\end{equation*}
$$

Plugging values into Eqn 5 yields:
$\Delta H_{A 2}$
$1.848 \mathrm{~J} / \mathrm{mol}$
You can see that $\Delta H_{A 2}$ is very small compared to $\Delta H_{1 a}$. It is often neglected unless the change in $\mathbf{T}$ is very small or the change in $\mathbf{P}$ is very large indeed.
Now, we can plug values back into Eqn 1 and Eqn 2 to complete the solution of this problem.

| $\Delta \mathrm{U}_{12}$ | 8340 | $\mathrm{~J} / \mathrm{mol}$ |
| :--- | :--- | :--- |

Verify: We cannot verify the incompressibility of liquid methanol using only the information given in the problem statement.
However, the NIST Webbook yields the following data for the molar volume of liquid methanol.

| $\mathrm{T}(\mathrm{C})$ | P (MPa) | V (L/mol) |
| :---: | :---: | :---: |
| 25 | 0.1 | 0.017358 |
| 100 | 0.1 | 0.018479 |


| $\mathrm{T}(\mathrm{C})$ | $\mathrm{P}(\mathrm{MPa})$ | $\mathrm{V}(\mathrm{L} / \mathrm{mol})$ |
| :---: | :---: | :---: |
| 25 | 0.2 | 0.018068 |
| 100 | 0.2 | 0.018797 |

The data show that the molar volume changes by about 6\% during Step 1-A and about 4\% during Step A-2. This seems like a lot of error, but it does not translate into as much error in $\mathbf{\Delta U}$ or $\mathbf{\Delta H}$.
The first place this assumption matters is in determining $\Delta \mathrm{U}_{1 \mathrm{~A}}$.

$$
\begin{aligned}
& \Delta \tilde{\mathbf{H}}_{1 \mathrm{~A}}=\Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}+\Delta(\mathbf{P} \tilde{\mathbf{V}})_{1 \mathrm{~A}}=\Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}+\mathbf{P} \Delta \tilde{\mathbf{V}}_{1 \mathrm{~A}} \\
& \Delta \tilde{\mathbf{U}}_{1 \mathrm{~A}}=\Delta \tilde{\mathbf{H}}_{1 \mathrm{~A}}-\mathbf{P} \Delta \tilde{\mathbf{V}}_{1 \mathrm{~A}}
\end{aligned} \quad \text { Eqn 7 } \quad P \Delta V_{1 \mathrm{~A}} \quad 0.071 \mathrm{~J} / \mathrm{mol}
$$

Eqn 6

This is less than $\mathbf{1 \%}$ of $\Delta H_{1 A}$ ! This is not significant.

The next place the incompressibility assumption matters is in $\Delta \mathrm{H}_{\mathrm{A} 2}$.

$$
\Delta \tilde{\mathbf{H}}_{\mathrm{A} 2}=\Delta \tilde{\mathbf{U}}_{\mathrm{A} 2}+\Delta(\mathbf{P} \tilde{\mathbf{V}})_{\mathrm{A} 2}=\mathbf{P} \Delta \tilde{\mathbf{V}}_{\mathrm{A} 2}+\tilde{\mathbf{V}} \Delta \mathbf{P}_{\mathrm{A} 2} \approx \tilde{\mathbf{V}} \Delta \mathbf{P}_{\mathrm{A} 2}
$$

$$
\begin{array}{lll}
\mathrm{P} \Delta \mathrm{~V}_{\mathrm{A} 2} & 0.0636 & \mathrm{~J} / \mathrm{mol}
\end{array}
$$

This is less than $\mathbf{4 \%}$ of $\Delta H_{A 2}$ but it is less than $1 \%$ of $\Delta H_{12}$ ! This is not significant either.
So for determining changes in $\mathbf{U}$ and $\mathbf{H}$ the constant molar volume assumption for liquid methanol was reasonable for these conditions.

When solving a problem for chemical that is in the NIST Webbook database, you should use the best available information.

But in the absence of extensive data about the molar volume of liquids, it is very common and often accurate to assume they are incompressible over pressure ranges of $\mathbf{1 ~ M P a}$ or even more.

Answers :

| $\Delta \mathrm{U}_{12}$ | 1.85 | $\mathrm{~J} / \mathrm{mol}$ |
| :--- | :--- | :--- |

$\Delta \mathrm{H}_{12} \quad 8340 \mathrm{~J} / \mathrm{mol}$

Use the hypothetical process path (HPP) shown below to help you determine the $\Delta H$ in J/mole for propane $\left(\mathbf{C}_{3} \mathrm{H}_{8}\right)$ as it changes from a subcooled liquid at $P_{1}=300 \mathrm{kPa}$ and $\mathrm{T}_{1}=250 \mathrm{~K}$ to a superheated vapor at $\mathrm{P}_{5}=100 \mathrm{kPa}$ and $\mathrm{T}_{5}=300 \mathrm{~K}$. Calculate the molar $\Delta \mathbf{H}$ for each step in the HPP. Assume the propane vapor behaves as an ideal gas and a constant heat capacity of $69.0 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$.


Do not use tables of thermodynamic properties, except to check your answers. Use the Antoine and Clausius-Clapeyron Equations to estimate the heat of vaporization of propane at $\mathbf{T}_{1}$.
Note: The molar volume of saturated liquid propane at 250 K is $7.8914 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mole}$.

Read : $\quad$ Step 1-2 is straightforward because we will assume that the liquid propane is incompressible.
We can use the Antoine Equation with the Clausius-Clapeyron Equation to estimate $\Delta \mathbf{H}_{\text {vap }}$ for step 2-3.
Step 3-4 is easy because we were instructed to assume the propane is an ideal gas and the enthalpy of an ideal gas is not a function of pressure.
Step 4-5 is straightforward because the problem instructs us to use a constant $C_{p}$ value.

Diagram: The diagram in the problem statement is adequate.

| Given: | $\mathbf{P}_{1}$ | 300 | kPa |
| :--- | :--- | :---: | :--- |
|  | $\mathrm{T}_{1}$ | 250 | K |
|  | $\mathrm{~T}_{5}$ | 300 | K |
|  | $\mathrm{P}_{5}$ | 100 | kPa |
|  | $\mathrm{V}_{\text {liq }}$ | $7.8914 \mathrm{E}-05$ | $\mathrm{~m}^{3} /$ mole |
|  | $\mathrm{C}_{\mathrm{P}}{ }^{\circ}$ | 69.0 | $\mathrm{~J} /$ mole-K |

Find: |  | $\Delta \mathrm{H}_{1-2}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- |
|  | $\Delta \mathrm{H}_{2-3}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |
|  | $\Delta \mathrm{H}_{3-4}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |
|  | $\Delta \mathrm{H}_{4-5}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |
|  | $\Delta \mathrm{H}_{1-5}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mol}$ |

Assumptions: 1-Clausius-Clapeyron applies:

- The saturated vapor is an ideal gas
- The molar volume of the saturated vapor is much, much greater than the molar volume of the saturated liquid.
- The latent heat of vaporization is constant over the temperature range of interest.

2 - The superheated vapor also behaves as an ideal gas.
3 - Liquid propane is incompressible.

## Equations / Data / Solve:

Step 1-2 involves a change in pressure on an incompressible liquid at constant temperature.
Since neither the internal energy nor the molar volume of an incompressible liquid are functions of pressure :

$$
\begin{equation*}
\Delta \tilde{\mathbf{H}}_{12}=\Delta \tilde{\mathbf{U}}_{12}+\Delta(\mathbf{P} \tilde{\mathbf{V}})_{12}=\tilde{\mathbf{V}} \Delta \mathbf{P}_{12} \tag{Eqn 1}
\end{equation*}
$$

We can use the Antoine Equation to determine the vapor or saturation pressure of propane at $\mathbf{T}_{1}$.
$\log _{10}\left(\mathrm{P}^{*}\right)=\mathrm{A}-(\mathrm{B} /(\mathrm{T}+\mathrm{C}))$
Eqn 2
$\mathbf{P}$ is in bar $\mathbf{T}$ is in Kelvin
The Antoine constants from the NIST WebBook are: $\quad A=4.53678$
$B=1149.36$
$C=24.906$
$\begin{array}{llll}\mathbf{P}_{2}=\mathbf{P}^{*}\left(\mathbf{T}_{1}\right) & \text { Eqn 3 } & \mathbf{P}_{\mathbf{2}} & 226.9 \mathrm{kPa}\end{array}$
Now, we can plug numbers into Eqn1, but be careful with the units.

| $\Delta \mathrm{H}_{12}$ | $-5.768 \mathrm{~J} / \mathrm{mole}$ |
| :--- | :--- | :--- |

Next, we can observe that $\Delta \mathbf{H}_{23}=$ Latent Heat of Vaporization at 250 K .
We can estimate the heat of vaporization using the Clausius -Clapeyron Equation.

$$
\operatorname{Ln} P^{*}=\left(-\frac{\Delta \tilde{H}_{\text {vap }}}{R}\right) \frac{1}{T}+C
$$

Eqn 4

If we plot $L n P^{*}$ vs. $1 / T(K)$, the slope is $-\Delta H_{\text {vap }} / R$.
We can calculate the vapor pressures at two different temperatures using the Antoine Equation. Use temperatures near the temperature of interest, 250 K . Use the two points to estimate the slope over this small range of temperatures.

$$
\text { Slope }=\frac{L n P_{b}^{*}-L n P_{a}^{*}}{1 / T_{b}-1 / T_{a}}
$$

Eqn 5
From the Antoine Equation:

| $\mathrm{T}_{\mathrm{a}}$ | 249.9 | K | $\mathrm{P}_{\mathrm{a}}$ | 226.12 | kPa |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{b}}$ | 250.1 | K | $\mathrm{P}_{\mathrm{b}}$ | 227.71 | kPa |

Slope $=\quad \mathbf{- 2 1 8 8 . 7} \mathrm{K}$
Next we use this slope with Eqn 4 to determine the latent heat of vaporization at 250 K :
$\mathbf{R}=\quad 8.314 \quad \mathrm{~J} / \mathrm{mol} \mathrm{K}$

| $\Delta H_{\text {vap }}$ | 18197 | $\mathrm{~J} /$ mole |
| :---: | :---: | :---: |
| $\Delta \mathrm{H}_{23}$ | 18,197 | $\mathrm{~J} / \mathrm{mole}$ |

Next, we need to determine the enthalpy change from state 3 to 4 , in which the pressure of the saturated vapor is reduced. This causes the vapor to become a superheated vapor.

Recall the assumption that the vapor behaves as an ideal gas. Because enthalpy is only a function of $\mathbf{T}$ for ideal gases, and since $\mathrm{T}_{3}=\mathrm{T}_{4}$ :

| $\Delta \mathrm{H}_{34}$ | $\mathbf{0}$ |
| :--- | :--- |

Next, let's consider the enthalpy change from state 4 to 5 .
Because we assumed the vapor phase is an ideal gas with constant $C_{p}$, we can evaluate $\Delta H$ using:

$$
\Delta \tilde{H}_{45}=\tilde{\mathbf{C}}_{p} \Delta T_{15}
$$

Eqn 6
Plugging numbers into Eqn 6 yields:
$\Delta \mathrm{H}_{45}=\quad 3,450 \quad \mathrm{~J} / \mathrm{mole}$

Finally, put them all together:

$$
\Delta \mathrm{H}_{15}=\Delta \mathrm{H}_{12}+\Delta \mathrm{H}_{23}+\Delta \mathrm{H}_{34}+\Delta \mathrm{H}_{45}=\quad 21,641 \quad \mathrm{~J} / \mathrm{mole}
$$

Notice that $\Delta H_{12}$ is very small compared to $\Delta H_{23}$ and $\Delta H_{45}$. In fact $\Delta H_{12}$ is negligible.
This shows why it is often acceptable to approximate the enthalpy of a subcooled liquid using the enthalpy of the saturated liquid at the same TEMPERATURE. It is NOT accurate to approximate the enthalpy of a subcooled liquid using the enthalpy of the saturated liquid at the same PRESSURE.

Verify: $\quad 1-$ We can test the validity of the ideal gas assumption for state 3 as follows.

$$
\begin{equation*}
\tilde{\mathbf{V}}_{3}=\frac{R \mathrm{~T}_{3}}{\mathbf{P}_{3}}=\frac{R \mathrm{~T}_{2}}{\mathbf{P}_{2}}=\frac{R \mathrm{~T}_{1}}{\mathbf{P}^{*}\left(\mathrm{~T}_{1}\right)} \tag{array}
\end{equation*}
$$

## L/mol

Because $\mathbf{V}_{3}<\mathbf{2 0} \mathbf{L} / \mathrm{mole}$, the Clausius-Clapeyron Equation is not very accurate. This issue makes the results from this analysis somewhat unreliable.

It is not as easy to test the 2nd assumption that underpins the Clausius-Clapeyron Equation.
We can use the NIST Webbook to determine the molar volume of saturated liquid and saturated vapor at 250 K.

| $\mathrm{V}_{\text {sat vap }}$ | $8.9258 \mathrm{~L} / \mathrm{mol}$ |  |
| :--- | ---: | :--- |
| $\mathrm{V}_{\text {sat liq }}$ | $0.078977 \mathrm{~L} / \mathrm{mol}$ | $\mathrm{V}_{\text {sat vap }} / \mathrm{V}_{\text {sat liq }}=\quad 113.02$ |

Since $\mathbf{V}_{\text {sat vap }}$ is more than $\mathbf{1 0 0}$ times greater than $\mathbf{V}_{\text {sat liq }}$ this assumption underpinning the use of the ClausiusClapeyron Equation is valid.

Because we considered a very narrow temperature range, just $0.2^{\circ} \mathbf{C}$, the last assumption underpinning the use of the Clausius-Clapeyron Equation is almost certainly valid.

2 - Is the superheated vapor be accurately treated as an ideal gas?

$$
\tilde{\mathbf{V}}_{4}=\frac{\mathbf{R T}_{4}}{\mathrm{P}_{4}}=\frac{\mathrm{RT}_{1}}{\mathrm{P}_{5}}
$$

$$
V_{3}
$$

20.785 L/mol

Because $\mathbf{V}_{4} \boldsymbol{>} \mathbf{2 0}$ L/mole, the Clausius-Clapeyron Equation can be applied.
3 - Since $\Delta H_{12}$ is negligible, this assumption is not very important.
Nonetheless, we can use the NIST Webbook to determine the molar volume of liquid at $\mathbf{P}_{1}=100 \mathbf{k P a}$ and at $\mathbf{P}_{\mathbf{2}}$
$=\mathbf{2 2 6 . 9} \mathbf{~ k P a}$ at $\mathbf{2 5 0 ~ K}$. and see if the molar volume changes significantly.

| $\mathbf{V}_{1}$ | $\mathbf{0 . 0 6 2 5}$ | $\mathbf{L} / \mathrm{mol}$ | 10.887059 | $\mathbf{V}_{\mathbf{2}}$ | $\mathbf{0 . 0 6 9 3}$ | $\mathbf{L} / \mathrm{mol}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

We find that $\mathbf{V}_{\mathbf{2}}$ differs from $\mathbf{V}_{\mathbf{1}}$ by about $\mathbf{1 1 \%}$. So it is not very accurate to treat liquid propane as an incompressible liquid under these conditions.
This may be ok in this problem since $\sim \Delta \mathrm{H}_{12}$ is so small that an $11 \%$ error in its value will still not matter.

Answers:

| $\Delta \mathrm{H}_{1-2}$ | -5.77 | J |
| :---: | :---: | :---: |
| $\Delta \mathrm{H}_{2-3}$ | 18,197 | J |
| $\Delta \mathrm{H}_{3-4}$ | 0 | J |
| $\Delta \mathrm{H}_{4-5}$ | 3,450 | J |
| $\Delta \mathrm{H}_{1-5}$ | 21,600 | J |

The assumption that the saturated vapor can be accurately treated as an ideal gas is not valid and, as a result, $\Delta H_{23}$ and $\Delta H_{15}$ are not reliable.

# "The best way to Learn Thermodynamics" 

Use the Clausius-Clapeyron equation to estimate the vapor pressure, in $\mathbf{k P a}$, of ammonia at $-\mathbf{2 5 ^ { \circ }} \mathbf{C}$. The normal boiling point of ammonia is $-33.34^{\circ} \mathrm{C}$ and the latent heat of vaporization at this temperature is $1370 \mathrm{~kJ} / \mathrm{kg}$.

Read : The keys here are to know that the normal boiling point is the boiling point at 1atm and that the ClausiusClapeyron Equation provides a relationship between the rate at which vapor pressure changes and the latent heat of vaporization. Knowing that $P^{*}\left(-33.34^{\circ} \mathrm{C}\right)=101.325 \mathrm{kPa}$ and the latent heat of vaporization at this temperature allows us to evaluate both the slope and the intercept in the Clausius-Clapeyron Equation and then use the result to estimate the vapor pressure at any other temperature. We should keep in mind that this estimate is only reasonably accurate at temperatures close to the one known value, $-33.34^{\circ} \mathrm{C}$ in this case.

Diagram: A diagram is not needed in the solution of this problem.


## Equations / Data / Solve:

We can estimate the latent heat of vaporization using the Clausius -Clapeyron Equation.

$$
\begin{equation*}
\operatorname{LnP}^{*}=\left(-\frac{\Delta \widetilde{H}_{\text {vap }}}{R}\right) \frac{1}{\mathbf{T}}+\mathbf{C} \tag{Eqn 1}
\end{equation*}
$$

If we plot $\operatorname{Ln} \mathbf{P}^{*}$ vs. $\mathbf{1 / T}(\mathbf{K})$, the slope is $-\Delta \mathbf{H}_{\text {vap }} / \mathbf{R}$. Don't forget to use $\mathbf{T}$ in Kelvins in Eqn 1.
So, the next thing we need to do is use the given value of the latent heat to estimate this slope.
$\Delta \tilde{H}_{\text {vap }}=\Delta \hat{H}_{\text {vap }} M W$
Eqn 2
$\Delta H_{\text {vap }}$
$23331 \mathrm{~J} / \mathrm{mole}$
Slope
-2806.242 K

Next, we can use the one known value of the vapor pressure (at $-33.34^{\circ} \mathrm{C}$ ) to evaluate the constant (C) in the Clausius-Clapeyron Equation.

$$
C=\operatorname{LnP}{ }^{*}(239.81 \mathrm{~K})+\left(-\frac{\Delta \tilde{H}_{\text {vap }}}{R}\right) \frac{1}{T} \quad \text { Eqn } 3 \quad C \quad 16.320
$$

Evaluating $\mathbf{C}$ in this manner has a catch. This value of $\mathbf{C}$ only applies as long as the same units of pressure are used in Eqn 1. Since we used $\mathbf{P}_{1}{ }^{*}$ in $\mathbf{k P a}$, we must always use $\mathbf{P}$ in $\mathbf{k P a}$ whenever we use this value of $\mathbf{C}$.

Now, we can use the values of the slope and intercept that we have determined to subsititute back into Eqn 1 to estimate the vapor pressure of ammonia at a temperature other than $-33.34^{\circ} \mathrm{C}$, in this case $-25^{\circ} \mathrm{C}$.

$$
\mathrm{P}_{2}{ }^{*} \quad 150.1 \mathrm{kPa}
$$

Verify: Only the ideal gas assumption can be verified using the data in the problem statement.
Ideal Gas EOS: $\quad \mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}$

Solve for molar volume :

$$
\begin{equation*}
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}} \tag{Eqn 5}
\end{equation*}
$$

Plug in values based upon the results we obtained above :

| $\mathrm{V}_{1}$ | 1.97E-02 | $\mathrm{m}^{3} / \mathrm{mol}$ <br> L/mol | $\mathrm{V}_{2}$ | $1.37 \mathrm{E}-02$13.7 | $\mathrm{m}^{3} / \mathrm{mo}$ L/mol |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19.7 |  |  |  |  |

Because the molar volume of the saturated vapor at both ( $-33.34^{\circ} \mathrm{C}, 101.325 \mathrm{kPa}$ ) and $\left(-25^{\circ} \mathrm{C}, 150.1 \mathrm{kPa}\right)$ is less than $\mathbf{2 0} \mathbf{L} / \mathrm{mole}$, it is not accurate to treat the saturated vapors as ideal gases. This is a more serious problem at $-25^{\circ} \mathrm{C}$ and 150.1 kPa .

The 2nd and 3rd assumptions required to use the Clausius-Clapeyron Equation cannot be verified with the information provided in the problem statement. However, based on data available in the Ammonia Tables, these two assumption are valid under the conditions in this problem.

The Ammonia Tables also tell us that: $\quad \mathbf{P}_{\mathbf{2}}{ }^{*} \quad 151.5 \mathrm{kPa}$
Our answer based on the Clausius-Clapeyron Equation is accurate to within about 1\%. This is surprisingly good in light of the fact that the ideal gas assumption for the saturated vapor is not valid!

Answers: |  | $\mathrm{P}_{2}{ }^{*}$ | 150.1 | kPa |
| :--- | :--- | :--- | :--- | changes from a saturated liquid at 300 K to a temperature of 370 K and a pressure of 58.7 kPa .



Calculate the $\mathbf{\Delta H}$ for each step in the HPP. Do not use tables of thermodynamic properties, except to check your answers. Instead, use the Antoine Equation to estimate the heat of vaporization of heptane at 300 K .
Use the average heat capacity of heptane gas over the temperature range of interest. Assume heptane gas is an ideal gas at the relevant temperatures and pressures.

Read : Step 1-2 is a bit tricky. We can use the Antoine Equation with the Clausius-Clapeyron Equation to estimate $\Delta H_{\text {vap }}$.
Step 2-3 is straightforward because the problem instructs us to use an average $\mathbf{C}_{p}$ value. The only difficulty will be that $\mathbf{C}_{\mathrm{p}}$ values may not be available at the temperatures of interest.
Step 3-4 is cake because we were instructed to assume the heptane gas is ideal. As a result, enthalpy is not a function of pressure and $\Delta \mathrm{H}_{3-4}=\mathbf{0}$.

Diagram: The hypothetical process path diagram in the problem statement is adequate.

| $m$ | 32.5 | $g$ |  |
| :--- | :---: | :--- | :--- |
| $\mathrm{~T}_{1}=\mathrm{T}_{2}$ | 300 | K |  |
| $\mathrm{x}_{1}$ | 0 | kg vap/kg | (sat'd liq) |
| $\mathrm{T}_{3}=\mathrm{T}_{4}$ | 370 | K |  |
| $\mathrm{P}_{4}$ | 58.7 | kPa |  |
|  |  |  |  |

Find: |  | $\Delta \mathrm{H}_{1-2}$ | ??? | J |
| :--- | :--- | :--- | :--- |
|  | $\Delta \mathrm{H}_{2-3}$ | ??? | J |
|  | $\Delta \mathrm{H}_{3-4}$ | ??? | J |
|  | $\Delta \mathrm{H}_{1-4}$ | $? ? ?$ | J |

Assumptions: 1-Clausius-Clapeyron applies:
1a- The saturated vapor is an ideal gas
1b- The molar volume of the saturated vapor is much, much greater than the molar volume of the saturated liquid.
1 c - The latent heat of vaporization is constant over the temperature range of interest.
2 - The superheated vapor also behaves as an ideal gas.
3 - The heat capacity of the superheated vapor is nearly linear with respect to temperature over the temperature range of interest so that using the average value is a reasonable approximation.

## Equations / Data / Solve:

First we can observe that:
$\Delta \mathrm{H}_{1-2}=$ Latent heat of vaporization at 300 K
We can estimate the latent heat of vaporization using the Clausius Clapeyron Equation.

$$
\operatorname{Ln} P^{*}=\left(-\frac{\Delta \widetilde{H}_{\text {vap }}}{R}\right) \frac{1}{T}+C
$$

If we plot $\operatorname{Ln} P^{*}$ vs. $1 / T(K)$, the slope is $-\Delta H_{\text {vap }} / \mathbf{R}$.
We can calculate the vapor pressures at two different temperatures using the Antoine Equation. Use temperatures near the temperature of interest, 300 K . Use the two points to estimate the slope over this small range of temperatures.

Slope $=\frac{\operatorname{LnP}_{b}^{*}-\operatorname{LnP}_{a}^{*}}{1 / T_{b}-1 / T_{a}}$
Antoine Equation:

$$
\begin{aligned}
& \log _{10}\left(\mathbf{P}^{*}\right)=\mathbf{A}-(\mathrm{B} /(\mathrm{T}+\mathrm{C})) \\
& \mathbf{P} \text { is in bar } \quad \mathbf{T} \text { is in Kelvin }
\end{aligned}
$$

Eqn 3

The Antoine constants from the NIST WebBook are:
$A=4.02832$
$B=1268.636$
$\mathrm{C}=\quad-56.199$
From the Antoine Equation:

| $\mathrm{T}_{1}=\mathrm{T}_{2}$ | 300 | K | $\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{3}$ | 6.68 | kPa |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{a}}$ | 299.5 | K | $\mathrm{P}_{\mathrm{a}}=$ | 6.52 | kPa |
| $\mathrm{T}_{\mathrm{b}}$ | 300.5 | K | $\mathrm{P}_{\mathrm{b}}=$ | 6.85 | kPa |
|  |  |  | Slope | -4423.1 | K |

Next we use this slope with Eqn 1 to determine the latent heat of vaporization at 300 K :
R =
8.314
J/mol K
$\Delta \mathrm{H}_{\text {vap }}=$
$36773 \mathrm{~J} / \mathrm{mol}$
$\mathbf{n}=\frac{\mathbf{m}}{\mathbf{M W}}$
Eqn 4

| MW <br> n | 100.20 $\mathrm{~g} / \mathrm{mol}$ <br> 0.3244 mol |  |
| :--- | :--- | :--- |
| $\Delta \mathrm{H}_{(1-2)}=$ | 11,928 | J |

Next, let's consider the enthalpy change from states 2 to 3 , saturated vapor to superheated vapor.
The enthalpy change associated with a temperature change for an ideal gas can be determined from :

$$
\begin{equation*}
\Delta \tilde{\mathrm{H}}_{2-3}=\int_{\mathrm{T}_{2}}^{\mathrm{T}_{3}} \tilde{\mathrm{C}}_{\mathrm{P}}^{0} \mathrm{dT} \tag{Eqn 5}
\end{equation*}
$$

Because we assumed a constant heat capacity, Eqn 4 simplifies to:

$$
\begin{equation*}
\Delta \tilde{\boldsymbol{H}}_{2-3}=\tilde{\mathbf{C}}_{\text {P, avg }}^{\circ}\left(\mathbf{T}_{3}-\mathbf{T}_{2}\right) \tag{Eqn 6}
\end{equation*}
$$

The heat capacities are tabulated in the NIST WebBook, under the Name Search option. Interpolate to estimate $\mathbf{C}_{\mathrm{p}}$ at both $\mathbf{T}_{1}$ and $\mathbf{T}_{2}$. Then, average these two values of $\mathbf{C}_{\mathrm{p}}$ to obtain the average heat capacity. This is equivalent to determining a linear equation between $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$ and integrating.

There are many different ways to estimate $\mathbf{C}_{\mathrm{p}}\left(\mathbf{T}_{\mathbf{1}}\right)$ and $\mathbf{C}_{\mathrm{p}}\left(\mathbf{T}_{\mathbf{2}}\right)$.
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{1}\right)=\quad 166.0 \quad \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
$\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}\right)=\quad 197.3 \quad \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
$C_{p, \text { avg }}=\quad 181.6 \quad$ J/mole-K
$\Delta \mathrm{H}_{(2-3)}=\quad 12,713 \mathrm{~J} / \mathrm{mol}$

Now, just multiply by the number of moles, $n$, to get $\Delta \mathrm{H}_{2-3}$ :

| $\Delta H_{(2-3)}=$ | 4,124 | J |
| :--- | :--- | :--- |

Last, we need to determine the enthalpy change from states 3 to 4, in which the pressure of the superheated vapor is increased.

Recall the assumption that the vapor behaves as an ideal gas. Because enthalpy is only a function of $\mathbf{T}$ for ideal gases, and since $T_{3}=T_{4}$ :

Finally:

$$
\Delta \mathrm{H}_{1-4}=\Delta \mathrm{H}_{1-2}+\Delta \mathrm{H}_{2-3}+\Delta \mathrm{H}_{3-4}=\quad 16,051 \quad \mathrm{~J}
$$

Verify: The problem statement instructed us to make all of the assumptions that we used.
Nonetheless, we will verify the assumptions as well as we can from the given information.
$\begin{array}{lllll}\text { 1a - Is the saturated vapor is an ideal gas ? } & \tilde{\mathbf{V}}_{2}=\frac{\mathbf{R} \mathbf{T}_{1}}{\mathbf{P}_{1}} & \mathbf{T}_{1} & 300 & \mathbf{K} \\ \text { Use the Antoine Equation to determine } \mathbf{P}_{1}: & \mathbf{P}_{1} & \mathbf{6 . 6 8} & \mathbf{k P a} \\ & \mathbf{V}_{1} & \mathbf{3 7 3 . 4} & \mathbf{L} / \mathrm{mol}\end{array}$
Since $\mathbf{V}_{1}>21$ L/mole this ideal gas assumption is valid.
$\mathbf{1 b}$ - Is the molar volume of the saturated vapor is much, much greater than the molar volume of the saturated liquid.

1c - Is the latent heat of vaporization is constant over the temperature range of interest.
We cannot assess the validity of assumptios $\mathbf{1 b}$ and $\mathbf{1 c}$ from the data given in the problem.

2 - Does the superheated vapor also behave as an ideal gas.

$$
\tilde{\mathbf{V}}_{4}=\frac{\mathbf{R} \mathbf{T}_{4}}{\mathbf{P}_{4}}
$$

| $\mathrm{T}_{3}=\mathrm{T}_{4}$ | 370 | K |
| :--- | :--- | :--- |

$\mathrm{P}_{4} \quad 58.70 \mathrm{kPa}$
$V_{4}$
52.4 L/mol

Since $\mathbf{V}_{4}>21 \mathrm{~L} /$ mole this ideal gas assumption is valid.

3 - Is the heat capacity of the superheated vapor is nearly constant over the temperature range of interest ?
We cannot verify this assumption with the data provided in the problem statement.

## We have no evidence that any of the assumptions are invalid.

Answers :

| $\Delta H_{1-2}$ | 11,900 | J |
| :---: | :---: | :---: |
| $\Delta \mathrm{H}_{2-3}$ | 4,120 | J |
| $\Delta \mathrm{H}_{3-4}$ | 0 | J |
| $\Delta \mathrm{H}_{1-5}$ | 16,100 | J |

( All rounded to 3 significant digits)


## The First Law of Thermodynamics:

We begin this chapter by introducing the concepts of work and heat. This leads to the study of multi-step processes in which a system interacts with the surroundings by exchanging heat and work.

When heat and work are exchanged with the surroundings, the $\mathrm{P}, \mathrm{V}$ and T of the system can change. We can show the process path on a PV Diagram. Several special types of process paths are discussed in this chapter.

The First Law of Thermodynamics is introduced and used to analyze processes that take place in closed systems (no mass crosses the system boundary). The chapter concludes with a discussion of heat engines and their thermal efficiency and refrigeration and heat pump cycles and their coefficients of performance.

## Work

- Definition
$\diamond$ A force acting through a distance
$\diamond$ A restraining force is overcome to move an object

$$
\mathbf{W}_{12}=\int_{\text {State } 1}^{\text {State } 2} \mathbf{F d x}[=] \mathbf{N} \cdot \mathbf{m}[=] \mathbf{J}
$$

- Boundary Work or PV Work: F = P A

$$
\mathbf{W}_{\mathbf{b}}=\int_{\text {State1 }}^{\text {State 2 }} \mathbf{P A d x}=\int_{\text {State1 }}^{\text {State 2 }} \mathbf{P d V}
$$

- Thermodynamic Definition of Work
$\diamond$ Work is done by a system on its surroundings if the sole effect of a process on its surroundings could have been raising a weight.
$\diamond$ This definition allows for other forms of work, such as spring work, electrical work, gravitational work and acceleration work.


## Power \& Path Variables

- Power: the rate at which work is done

$$
\dot{\mathbf{W}}=\frac{\delta \mathbf{W}}{\mathrm{dt}}[=] \mathbf{W}, \mathbf{B t u} / \mathbf{s}, \mathbf{f t} \cdot \mathrm{lb}_{\mathrm{f}} / \mathbf{s}, \mathbf{h P}
$$

- Exact Differentials
$\diamond$ State variables: $\quad \mathbf{U} \Rightarrow \mathbf{d U}$
$\diamond$ Changes in state variables, like $U$, do not depend on which process path the system follows between 2 states

$$
\int_{1}^{2} d \mathbf{U}=\mathbf{U}_{2}-\mathbf{U}_{1}=\Delta \mathbf{U}
$$

- Inexact Differentials

$$
\mathbf{W} \Rightarrow \delta \mathbf{W}
$$

Path Variables:
F

Systems do not have work

$$
2
$$

Work is a form of energy that only
exists as it moves across a system boundary. $\int_{1}^{2} \delta \mathbf{W}=\mathbf{W}_{12}$
$W_{12}$ depends on the path the process follows from state 1 to state 2 .
Use $\delta$ instead of d for inexact differentials of path variables


- Consider the two processes shown here: 1-2-3 and 1-A-3
- $\Delta \mathrm{U}, \Delta \mathrm{H}$ and $\Delta \mathrm{V}$ are the same for each of these processes because they begin and end at the same states.
- But, is the amount of boundary work the same for both processes ?
- The easiest way to tell is to plot the process path on a PV Diagram
- Then, make use of the fact that boundary work is the integral of PdV to determine if the boundary work done by the two processes are the same.


## Process Paths on a PV Diagram


$\tilde{\mathrm{V}}$

Boundary Work on a PV Diagram


- The shaded area is the boundary work done during the process 1-2-3.
- Is this work positive or negative under our sign convention?


## Boundary Work on a PV Diagram


$\tilde{\mathbf{v}}$

- The shaded area is the boundary work done during the process $1-\mathrm{A}-3$.
- Is this work positive or negative under our sign convention?
- The amount of boundary work is NOT equal for the two processes !
- This is because work depends on the process path.
- Work is a PATH variable, NOT a property or state variable like $\mathrm{V}, \mathrm{U}$ and H .
- What about heat? Is the heat transfer for the two processes the same?
- Nope. Heat is also a PATH variable.


## Quasi-Equilibrium Processes

- Does it matter how rapidly we compress the gas in steps 1-2 and A-3? Yes !

$$
\mathbf{W}_{\mathbf{b}}=\int_{\text {State1 }}^{\text {State 2 }} \mathbf{F}_{\text {resist }} \mathbf{d x} \underset{\text { State1 }}{=\int_{\text {Sate 2 }} \mathbf{P}_{\text {resist }} \mathbf{d V} .}
$$

- When a gas is rapidly compressed...
- The molecules cannot get out of the way of the piston rapidly enough
- As a result, the local pressure right in front of the piston is greater than the pressure in the bulk of the gas.
$\mathrm{P}_{\text {resist }}>\mathrm{P}_{\text {bulk }}$
As a result, $\mathrm{P}_{\text {fast }}>\mathrm{P}_{\text {slow }}$ and $-\mathrm{W}_{\text {fast }}>-\mathrm{W}_{\text {slow }}$
- Quasi-Equilibrium Processes

Infinitely slow

- Always in an equilibrium state, $\mathrm{P}_{\text {resist }}=\mathrm{P}_{\text {bulk }}$
- For a turbine, $\mathrm{W}_{\text {fast }}<\mathrm{W}_{\text {slow }}$


## $\mathbf{W}_{\mathbf{b}}$ for Special Types of Processes

- Isobaric: $\quad \tilde{\mathbf{W}}_{12}=\int_{1}^{2} \mathbf{P d} \tilde{\mathbf{V}}=\mathbf{P} \int_{1}^{2} d \tilde{\mathbf{V}}=\mathbf{P}\left(\tilde{\mathbf{V}}_{2}-\tilde{\mathbf{V}}_{1}\right)=\mathbf{P} \Delta \tilde{\mathbf{V}}$
- Isothermal \& IG:

$$
\tilde{\mathbf{W}}_{12}=\int_{1}^{2} \mathbf{P d} \tilde{\mathbf{V}}=\int_{1}^{2} \frac{\mathbf{R T}}{\tilde{\mathbf{V}}} d \tilde{\mathbf{V}}=\operatorname{RT} \operatorname{Ln}\left(\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right)=\operatorname{RTLn}\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)
$$

- Polytropic:
$\diamond \delta=1 \& \mathrm{IG}$ : isothermal!
$\diamond \delta \neq 1: \quad \quad \tilde{\mathbf{W}}_{12}=\int_{1}^{2} \mathbf{P d} \tilde{\mathbf{V}}=\mathbf{C} \int_{1}^{2} \frac{\mathbf{d} \tilde{\mathbf{V}}}{\tilde{\mathbf{V}}^{\delta}}=\frac{\mathbf{P}_{2} \tilde{\mathbf{V}}_{2}-\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}}{\mathbf{1 - \delta}}$
- Polytropic \& IG:

$$
\tilde{\mathbf{W}}_{12}=\frac{\mathbf{R} \mathbf{T}_{2}-\mathbf{R} \mathbf{T}_{1}}{\mathbf{1 - \delta}}=\frac{\mathbf{R}}{1-\delta}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)=\frac{\mathbf{R}}{1-\delta} \Delta \mathbf{T}
$$

- Isobaric is the easiest type of process when it comes to evaluating the boundary work.
- Evaluating $\mathrm{W}_{\mathrm{b}}$ for an isothermal process isn't easy unless the fluid in the system is an ideal gas. Then, it isn't bad at all
- Notice that the last equality is true because $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ for an IG undergoing a polytropic process.


## Heat: Q

- Another form of energy in transition across a system boundary, like work.

$$
\mathbf{Q}[=] \mathbf{J} \quad \hat{\mathbf{Q}}[=] \mathbf{k J} / \mathbf{k g} \quad \tilde{\mathbf{Q}}[=] \mathbf{J} / \mathrm{mole} \quad \dot{\mathbf{Q}}[=] \mathbf{J} / \mathbf{s} \text { or } \mathbf{W}
$$

- Flows spontaneously from "hot" to "cold"
- Heat is the flow of thermal energy while $U$ is the amount of thermal energy a system holds.
- Heat is comparable to electrical current while $\mathbf{U}$ is comparable to electrical potential or voltage.
- Sign Convention:
$\diamond$ Heat flow into a system $>0$


## Heat : A Few Details

- Heat is a path variable and the differential of heat is inexact, so we use $\delta$ :

$$
\int_{1}^{2} \delta \mathbf{Q}=\mathbf{Q}_{12}
$$

- In an adiabatic process $\mathbf{Q}=\mathbf{0}$
- If the heat transfer rate, $\dot{\mathbf{Q}}$, is constant, then:

$$
\mathbf{Q}=\dot{\mathbf{Q}} \Delta \mathbf{t}
$$

- Heat Flux:
$\dot{\mathbf{q}}=\frac{\dot{\mathbf{Q}}}{\mathbf{A}}[=] \mathbf{W} / \mathrm{m}^{2}$


## Conduction

- Fourier's Law: $\dot{q}=-k \frac{d T}{d x}$
- $k=$ thermal conductivity [=] W/m-K
- If $k=$ constant: $\frac{d T}{d x}=\frac{\Delta T}{\Delta x}$
- Magnitude of $k$ :
- Metals:
$\mathrm{k} \approx 100 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
- Non-metals: $\mathrm{k} \approx 1-10 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
- Liquids: $\quad \mathrm{k} \approx 0.1-10 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
$\diamond$ Gases: $\quad \mathrm{k} \approx 0.01-0.1 \mathrm{~W} / \mathrm{m}-\mathrm{K}$
$\checkmark$ Insulation: $\quad \mathrm{k} \approx 0.01-0.1 \mathrm{~W} / \mathrm{m}-\mathrm{K}$


## Convection Heat Transfer

- Convection is the combination of conduction and fluid motion
- For the same fluid and conditions: $\mathbf{Q}_{\text {conv }}>\mathbf{Q}_{\text {cond }}$
- Forced Convection
- Fluid motion is driven by an external force, such as pressure
- Free or Natural Convection
$\diamond$ Fluid motion is driven by density differences and buoyant


$$
\mathrm{T}_{\mathrm{S}}>\mathrm{T}_{\mathrm{f}}
$$

## Newton's Law of Cooling

- Hot surface: $\quad \dot{\mathbf{q}}=h\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{f}}\right)$
- Cold surface: $\quad \dot{\mathbf{q}}=\mathrm{h}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{S}}\right)$
- $h=$ convection heat transfer coefficient $[=] \mathbf{W} / \mathbf{m}^{2}-K$
$\checkmark$ Depends on fluid and surface properties
- Depends on the nature of the fluid velocity profile
- Magnitude of $\mathbf{h}$ :
- Free convection, gases:
- Free convection, liquids:
- Forced convection, gases:
- Forced convection, liquids:
$\checkmark$ Boiling phase change:

$$
\begin{array}{ll}
\mathrm{h} \approx 2-25 & \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K} \\
\mathrm{~h} \approx 50-1000 & \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K} \\
\mathrm{~h} \approx 25-250 & \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K} \\
\mathrm{~h} \approx 50-20,000 & \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K} \\
\mathrm{~h} \approx 2500-1 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}
\end{array}
$$

## Radiation Heat Transfer

- Atoms emit photons in the infrared part of the spectrum. The photons carry thermal energy to the surface that absorbs them.

$$
\begin{aligned}
\dot{\mathbf{Q}}_{\text {enit,max }} & =\sigma \mathbf{A} \mathbf{T}_{\mathbf{S}}^{4} \\
\dot{\mathbf{Q}}_{\text {emit }} & =\varepsilon \sigma \mathbf{A T}_{\mathbf{S}}^{4}
\end{aligned} \quad \varepsilon=\text { emissivity }, ~=\dot{\mathbf{Q}}_{\text {emit }} \quad \text { We usually assume } \alpha=1
$$

- Radiation exchange between a body its surroundings
$\diamond$ If $\alpha=1$ :
$\dot{\mathbf{Q}}_{\text {net }}=\dot{\mathbf{Q}}_{\text {emit,body }}-\dot{\mathbf{Q}}_{\text {emit,surr }}=\varepsilon_{\text {body }} \sigma \mathbf{A T}_{\text {body }}^{4}-\varepsilon \sigma_{\text {surr }} \mathbf{A T}_{\text {Surr }}^{4}$
$\diamond \quad \underline{\text { Boldly }}$ assume $\varepsilon_{\text {body }}=\varepsilon_{\text {surr }}=\varepsilon: \quad \dot{\mathbf{Q}}_{\text {net }}=\varepsilon_{\text {body }} \sigma \mathbf{A}\left(\mathbf{T}_{\text {body }}^{4}-\mathbf{T}_{\text {Surr }}^{4}\right)$
- T must be expressed in Kelvins or Rankine (an absolute T-scale.
- Emissivity is a measure of the ability of a surface to emit thermal radiation
- $\sigma=$ Stefan-Boltzmann Constant $=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}^{4}$.


## First Law of Thermodynamics

## - Definition

$\checkmark$ Energy is neither created nor destroyed.

- General Conservation Principle
IN - OUT + GEN = ACC
- $\mathbf{1}^{\text {st }}$ Law, Integral Form

$$
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{E}=\Delta\left[\mathbf{U}+\mathbf{E}_{\text {kin }}+\mathbf{E}_{\mathrm{pot}}\right]
$$

## - $1^{\text {st }}$ Law Differential Form

$$
\dot{\mathbf{Q}}-\dot{\mathbf{W}}=\frac{\mathrm{dE}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{U}+\mathrm{E}_{\mathrm{kin}}+\mathrm{E}_{\mathrm{pot}}\right]
$$

- This statement of the $1^{\text {st }}$ Law applies to systems that do not undergo nuclear reactions.
- Many quantities are conserved.
- The integral form of the $1^{\text {st }}$ Law will help you analyze a process that takes place between two given times.
- These are often BATCH processes.
- The differential form of the $1^{\text {st }}$ Law will help you analyze continuous processes.
- This form is sometimes called the RATE form of the $1_{\text {st }}$ Law because the terms are all rates.
- The heat transfer rate, the rate at which work is done, the rate at which the energy of the system changes.


## Special Cases

. Special Case: No change in $\mathbf{E}_{\text {kin }}$ or $\mathbf{E}_{\text {pot }}$
$\checkmark \Delta E_{\text {kin }}=\mathbf{0}$ and $\Delta E_{\text {pot }}=\mathbf{0}$

$$
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}
$$

$\bigcirc \quad \frac{\mathrm{dE}_{\text {kin }}}{\mathrm{dt}}=\mathbf{0}$ and $\frac{\mathbf{d E}_{\text {pot }}}{\mathrm{dt}}=\mathbf{0}$

$$
\dot{\mathbf{Q}}-\dot{\mathbf{W}}=\frac{\mathrm{dU}}{\mathrm{dt}}
$$

- Handy Relationships: $\quad \dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}}{\hat{\mathbf{V}}}$

$$
\dot{\mathbf{V}}=\mathbf{v A}_{\text {cross }}
$$

- In many problems changes in potential energy are negligible
- Equipment isn't usually so LARGE that changes in potential energy are significant
- Changes in kinetic energy are often negligible when ...
- Pipe diameters do not change and
- No phase change occurs
- We need velocity data or flow rate and pipe diameter to calculate $\mathrm{E}_{\mathrm{kin}}$
- When we don't have this data, we usually assume changes in $\mathrm{E}_{\mathrm{kin}}$ are negligible.
- These two relationships will be used again and again, whenever a fluid flows through the system.


## Total Work and Heat

- Work :
$\mathbf{W}_{\text {total }}=\mathbf{W}_{\mathrm{b}}+\mathbf{W}_{\mathrm{s}}+\mathbf{W}_{\mathrm{e}}+\ldots$
- Heat :
$\mathbf{Q}_{\text {total }}=\mathbf{Q}_{\text {cond }}+\mathbf{C}_{\text {conv }}+\mathbf{Q}_{\text {rad }}$
- There are MANY different types of work, but only one type of heat
- There are three mechanisms for heat transfer
- Conduction: Fourier's Law
- Convection: Newton's Law of Cooling
- Radiation: The Radiation Equation
- $\mathrm{W}_{\mathrm{Sh}}=$ shaft work
- This is very important. It is work that involves rotating machinery and is the most common form of work in continuous processes


## Problem Solving Procedure

- Read Carefully
- Draw a Diagram
- List Given Information
- List All Assumptions
- Write Equations and Lookup Data
- Solve Equations
- Verify Assumptions
-The problem solving procedure is a strategy to help organize your thoughts and your work so you can avoid mistakes and communicate effectively with other engineers and scientists.
-Read
$\checkmark$ Get all the important info out of the problem statement and onto your paper.
- Draw a Diagram
$\diamond$ Draw a process schematic, include a system boundary
$\diamond$ Draw a phase diagram
-List All Given
$\Delta$ List all given values
$\diamond$ Assign variable names, including units
$\diamond$ List objectives (what are you trying to find)
-List All Assumptions
$\Delta$ State your sign convention
$\diamond$ You will add to this list as you work through the problem
-Write Equations and Lookup Data
-Count the unknown variables and the INDEPENDENT equations
-Work backwards from the answer you are looking for
-When \# of equations = \# of unknowns, the problem is well-posed and you can solve it !
- Solve Equations
-This usually turns out to be the EASY part !
-Work backwards from the answer you are looking for.
-Repeat the last two steps until you have gotten all the answers you need.
- Verify Assumptions
- In this course, the main assumption you may have to verify is that a gas is ideal.
- Answer Questions
-Hard to believe, but students routinely forget to answer


## Isobaric Processes

- $\mathbf{P}=$ constant
- $\mathbf{1}^{\text {st }}$ Law
- closed system, integral form
$\checkmark$ Assume: $\Delta \mathrm{E}_{\text {pot }}=0$ and $\Delta \mathrm{E}_{\text {kin }}=0 \quad \mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}$
- IF boundary work is the only form of work:

$$
W_{\text {total }}=W_{b}+W_{\text {sh }}^{\prime}+Y_{\mathrm{e}}=W_{b}
$$

- Definition of
boundary work: $\quad W_{b}=\int_{1}^{2} P d V=P \int_{1}^{2} d V=P\left(V_{2}-V_{1}\right)=P \Delta V$
- $\mathbf{1}^{\text {st }}$ Law becomes: $\quad \mathbf{Q}-\mathbf{P} \Delta V=\Delta \mathbf{U} \quad \Rightarrow \quad \mathbf{Q}=\Delta \mathbf{U}+\mathbf{P} \Delta \mathbf{V}$ $\mathbf{Q}=\Delta \mathbf{H}$
- This form of the $1_{\text {st }}$ Law applies when the following assumptions are true.
- Closed system
- Quasi-equilibrium
- Only form of work is boundary work
- Isobaric
- $\Delta \mathrm{E}_{\text {pot }}=0$
- $\Delta \mathrm{E}_{\text {kin }}=0$


## Isochoric Processes

- $\mathbf{V}=$ constant
- $\mathbf{1}^{\text {st }}$ Law
$\diamond$ closed system, integral form
$\diamond$ Assume: $\Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$ and $\Delta \mathbf{E}_{\text {kin }}=\mathbf{0}$

$$
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}
$$

- IF boundary work is the only form of work:
$\mathbf{W}_{\text {total }}=\mathbf{W}_{\mathrm{b}}+\mathbf{W}_{\mathrm{sh}}+\mathbf{W}_{\mathrm{e}}=\mathbf{W}_{\mathrm{b}}$
- Definition of boundary work:
$W_{b}=\int_{1}^{2} P d V=0$
- $\mathbf{1}^{\text {st }}$ Law becomes:
$\mathbf{Q}=\Delta \mathbf{U}$
- This form of the $1_{\text {st }}$ Law applies when the following assumptions are true.
- Closed system
- Quasi-equilibrium
- Only form of work is boundary work
- Isochoric
- $\Delta \mathrm{E}_{\text {pot }}=0$
- $\Delta \mathrm{E}_{\text {kin }}=0$


## Cycle Types and Characterization

- Three types of cycles
$\checkmark$ Power Cycles or Heat Engines
$\checkmark$ Refrigeration Cycles
$\checkmark$ Heat Pump Cycles
- How to Categorize Systems that Undergo Cycles
- Open vs. Closed Cycles
- Closed Cycles: Use a working fluid that never leaves the system
- Open Cycles: Take in fresh fluid and reject the used fluid when the cycle is complete.
Usually the fluid is air.
$\diamond$ Gas vs. Vapor Cycles
- Vapor Cycles: Take advantage of a phase change in the fluid
- Gas Cycles: The fluid always remains in the gas phase. The fluid is usually air or an air-fuel mixture (as in an internal combustion engine).
- Power Cycle and Heat Engine are two names for cycles that take in a net amount of heat and produce a net amount of work.
- Refrigeration and heat pump cycles are really the same cycle, but they have different OBJECTIVES.
- Closed Cycles: home refrigerator, heat pump and air-conditioners
- Open Cycles: Automobile engines, jet engines, turbine engines (warships, some tanks like the US M1 Abrams)


## Power Cycles

- $\mathbf{1}^{\text {st }}$ Law: $\quad \mathbf{Q}_{\text {cydle }}-\mathbf{W}_{\text {cyde }}=\mathbf{A E} \boldsymbol{E}_{\text {cycle }}$

$$
\mathbf{Q}_{\mathrm{cycle}}=\mathbf{W}_{\mathrm{cycle}}
$$

- Tie-fighter Diagrams
$\diamond$ No sign convention!
All quantities are positive.
$\diamond \quad 1^{\text {st }}$ Law : $\quad \mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathrm{C}}=\mathbf{W}_{\mathbf{H E}}$

- Thermal Efficiency: $\eta=\frac{\text { Desired Output }}{\text { Required Input }}=\frac{W_{H E}}{\mathbf{Q}_{H}}$

$$
\begin{gathered}
\eta=\frac{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}} \\
\eta=\mathbf{1}-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}
\end{gathered}
$$

## Refrigeration Cycles

- $\mathbf{1}^{\text {st }}$ Law:

$$
\begin{aligned}
& \mathbf{Q}_{\text {cyld }}-\mathbf{W}_{\text {cycl }}=\boldsymbol{A E} \boldsymbol{E}_{\text {cycl }} \\
& \mathbf{Q}_{\text {cycle }}=\mathbf{W}_{\text {cycle }}
\end{aligned}
$$

- Tie-fighter Diagram
$\checkmark$ No sign convention!
All quantities are positive.
- $1^{\text {st }}$ Law :

$$
\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}=\mathbf{W}_{\mathrm{ref}}
$$

- Coefficient of Performance:

$$
\begin{aligned}
& \beta_{\mathrm{R}}=\mathbf{C O P}_{\mathrm{R}}= \frac{\text { Desired Output }}{\text { Required Input }}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\text {ref }}}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}} \\
& \beta_{\mathrm{R}}=\mathbf{C O P}_{\mathrm{R}}=\frac{1}{\frac{\mathbf{Q _ { H }}}{\mathbf{Q}_{\mathrm{C}}}-1}
\end{aligned}
$$

## Heat Pump Cycles

- $\mathbf{1}^{\text {st }}$ Law: $\mathbf{Q}_{\text {cycle }}-\mathbf{W}_{\text {cyde }}=\mathbf{A E} \boldsymbol{E}_{\text {cyde }}^{1}$

$$
\mathbf{Q}_{\mathrm{cycle}}=\mathbf{W}_{\text {cycle }}
$$

- Tie-fighter Diagram
$\checkmark$ No sign convention!
All quantities are positive.
$\diamond 1^{\text {st }}$ Law : $\quad \mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathrm{C}}=\mathbf{W}_{\mathbf{H P}}$
- Once again, the $1_{\text {st }}$ Law reduces to exactly the same form.
- The goal or desired output for a heat pump is to keep your house warm, that is $\mathrm{Q}_{\mathrm{H}}$.
- The stuff you need to buy in order to run a heat pump is the required input, that is the WORK.
- Your heat pump heating system will not keep your house warm unless you connect it to the electrical circuit and pay your electric bill!
- Coefficient of Performance:

$$
\begin{aligned}
& \beta_{\mathrm{HP}}=\mathbf{C O P}_{\mathrm{HP}}= \frac{\text { Desired Output }}{\text { Required Input }}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\mathrm{HP}}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}} \\
& \beta_{\mathrm{HP}}=\mathbf{C O P}_{\mathrm{HP}}=\frac{1}{1-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}}
\end{aligned}
$$

Ten kilograms of carbon dioxide $\left(\mathbf{C O}_{2}\right)$ is held in a piston-and-cylinder device. The $\mathbf{C O}_{\mathbf{2}}$ undergoes a thermodynamic cycle consisting of three processes. The processes are :
Process 2-3: constant volume
Process 3-1: constant temperature compression
a.) Sketch the cycle path on a PV Diagram
b.) Calculate the net work done in kJ

Data: $\mathrm{T}_{1}=145^{\circ} \mathrm{C}, \mathrm{T}_{2}=440^{\circ} \mathrm{C}, \mathrm{P}_{1}=150 \mathrm{kPa}$

Read : Work your way around the cycle, step by step. The work for the cycle is the sum of the work for each step. Assume the $\mathbf{C O}_{\mathbf{2}}$ behaves as an ideal gas throughout all three process steps.
Apply the definition of boundary work or PV work to each step in the cycle.
Diagram: See the solution to part (a).

| Given: | $\mathbf{m}$ | 10 | $\mathbf{k g}$ |
| :--- | :--- | :---: | :---: |
|  | $\mathrm{~T}_{1}$ | 145 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{T}_{2}$ | 440 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathbf{P}_{\mathbf{1}}$ | 150 | $\mathbf{k P a}$ |

Find: a.) Sketch cycle on a PV Diagram.
b.) $\quad \mathrm{W}_{\text {cycle }}=\quad$ ??? kJ

Assumptions: $\quad \mathbf{1}$ - The gas is held in a closed system.
2 - Boundary work is the only form of work interaction
3 - Changes in kinetic and potential energies are negligible.
$4-\mathrm{CO}_{2}$ behaves as an ideal gas. This must be verified at all three states.

## Equations / Data / Solve:

Part a.)


Part b.) Since $W_{\text {cycle }}=W_{12}+W_{23}+W_{31}$, we will work our way around the cycle and calculate each work term along the way.

Step 1-2 is isobaric, therefore, the definition of boundary work becomes:

$$
\begin{equation*}
\mathbf{W}_{12}=\int_{V_{1}}^{V_{2}} P d V=P_{1}\left(V_{2}-V_{1}\right) \tag{Eqn 1}
\end{equation*}
$$

We can simplify Eqn 1 using the fact that $\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{1}}$ and the Ideal Gas EOS :

$$
\begin{align*}
& P V=n R T  \tag{Eqn 2}\\
& W_{12}=P_{2} V_{2}-P_{1} V_{1}=n R\left(T_{2}-T_{1}\right) \tag{Eqn 3}
\end{align*}
$$

We can determine the number of moles of $\mathbf{C O}_{2}$ in the system from the given mass of $\mathbf{C O}_{2}$ and its molecular weight.
44.01
g/mole
n
227.22 mole

Plug values into Eqn 3 :
$R$
$\mathbf{W}_{12}$
$8.314 \mathrm{~J} /$ mole-K
557.29 kJ

Because the volume is constant in step 2-3:
$W_{23}$
0 kJ
Step 3-1 is isothermal, therefore, the definition of boundary work becomes:

$$
\begin{equation*}
W_{31}=\int_{3}^{1} P d V=n R T_{1} \operatorname{Ln}\left(\frac{V_{1}}{V_{3}}\right)=n R T_{1} \operatorname{Ln}\left(\frac{P_{3}}{P_{1}}\right) \tag{Eqn 5}
\end{equation*}
$$

The problem is that we don't know either $\mathbf{P}_{\mathbf{3}}$ or $\mathbf{V}_{\mathbf{3}}$. Either one would be useful in evaluating $\mathbf{W}_{\mathbf{3 1}}$ because we know $\mathbf{P}_{1}$ and we can determine $\mathbf{V}_{1}$ from the Ideal Gas EOS, Eqn 2.

We can evaluate $\mathbf{V}_{3}$ using the fact that $\mathbf{V}_{\mathbf{3}}=\mathbf{V}_{2}$. Apply the the Ideal Gas EOS to state 2.

$$
V_{3}=V_{2}=\frac{\mathbf{n R} \mathbf{T}_{2}}{\mathbf{P}_{2}}=\frac{\mathbf{n R} \mathbf{T}_{2}}{\mathbf{P}_{1}}
$$

Eqn 6

Next, we can apply Eqn 6 to state 1 :

| $\mathrm{V}_{3}$ | 8.981 | $\mathrm{~m}^{3}$ |
| :--- | :--- | :--- |
| $\mathrm{~V}_{1}$ | 5.266 | $\mathrm{~m}^{3}$ |
|  |  |  |
| $\mathrm{~W}_{31}$ | -421.71 | kJ |

Sum the work terms for the three steps to get $\mathbf{W}_{\text {cycle }}$ :
$\mathrm{W}_{\text {cycle }}=135.6 \mathrm{~kJ}$

Verify: Only the ideal gas assumption can be verified.
We need to determine the specific volume and check if : $\quad \widetilde{\mathbf{V}}>\mathbf{2 0} \mathbf{L} / \mathbf{m o l}$

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Eqn 7
R
$8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$V_{1}$
$V_{2}=V_{3}$
$23.18 \mathrm{~L} / \mathrm{mol}$
$39.53 \mathrm{~L} / \mathrm{mol}$

The ideal gas assumption is valid because $\mathbf{V} \mathbf{>} \mathbf{2 0} \mathbf{L} /$ mole in all three states.
Answers : a.) See the sketch, above.
b.)
$\mathrm{W}_{\text {cycle }}=$
135.
kJ

4A-2
Quasi-Equilibrium Expansion of a Gas
4 pts
A piston-and-cylinder device is oriented horizontally and a compressed spring exerts a force on the back of the piston, as shown below. The gas inside the cylinder is cooled slowly and, as the cooling proceeds, the spring pushes

the piston farther into the cylinder. During the cooling process, the spring exerts a force that decreases linearly with position. Initially, the gas occupies a volume of 8.4 L while the spring exerts a force of 1.2 kN on the
back of the piston. At the end of the process, the gas occupies 3.7 L and the spring exerts a force of 0 kN on the piston. The area of the piston face is $200 \mathrm{~cm}^{2}$ and atmospheric pressure is 100 kPa .
Assume the gas behaves as an ideal gas and friction is negligible. Determine..
a.) The initial and final pressures inside the cylinder, in $\mathbf{k P a}$
b.) The boundary work, in kJ.

Read : The key to solving this problem is to determine the slope and intercept for the linear relationship between the force exerted by the spring on the piston and the volume that the gas occupies. This relationship is linear because, for a cylinder of uniform diameter, gas volume varies linearly with respect to the position of the piston.

## Diagram:



Given:

| $\mathrm{V}_{1}=$ | 8.4 | L |
| :---: | :---: | :---: |
| $\mathrm{~V}_{2}=$ | 3.7 | L |
| $\mathrm{~F}_{1}=$ | 1200 | N |
| $\mathrm{~F}_{2}=$ | 0 | N |

Find:

| $\mathrm{P}_{1}=$ | ??? | kPa |
| :--- | :--- | :--- |
| $\mathrm{P}_{2}=$ | ??? | kPa |

$P_{\text {atm }}$
$\mathrm{A}_{\text {piston }}$
100
0.020
kPa
$\mathrm{m}^{2}$
$\mathrm{W}=$
???
kJ

Assumptions: $\quad \mathbf{1}$ - The gas in the cylinder is a closed system.
2 - The process occurs slowly enough that it is a quasi-equilibrium process.
3 - There is no friction between the piston and the cylinder wall.
4- The spring force varies linearly with position.

## Equations / Data / Solve:

In the initial and final states, the piston is not accelerating. In fact, it is not moving. Therefore, there is no unbalanced force acting on it. This means that the vector sum of all the forces acting on the piston must be zero.

$$
P_{1}=P_{\mathrm{atm}}+\frac{F_{1}}{A_{\text {piston }}}
$$

Eqn 1

Initial State:

| $\mathrm{P}_{1}$ | 160 | kPa |
| :--- | :--- | :--- |

$$
\mathbf{P}_{2}=\mathbf{P}_{\mathrm{atm}}+\frac{\mathbf{F}_{2}}{\mathbf{A}_{\text {piston }}}
$$

Eqn 2

Final State:

| $P_{2}$ | 100 | kPa |
| :--- | :--- | :--- |

For a quasi-equilibrium process, boundary or PV work is defined by:

$$
\mathbf{W}=\int_{\mathbf{V}_{1}}^{\mathbf{V}_{2}} \mathbf{P d V}=\int_{\mathbf{V}_{1}}^{\mathbf{V}_{2}}\left[\mathbf{P}_{\mathrm{atm}}+\frac{\mathbf{F}_{\text {spring }}}{\mathbf{A}_{\text {piston }}}\right] \mathbf{d V}
$$

Eqn 3

Because $\mathbf{F}_{\text {spring }}$ varies linearly with the position of the piston AND volume also varies linearly with the position of the piston, we can conclude that $\mathbf{F}_{\text {spring }}$ must vary linearly with respect to the volume !

$$
\begin{equation*}
F_{\text {spring }}=\mathbf{m V}+\mathbf{b}=\mathbf{m V}+\left(F_{1}-\mathbf{m} \mathbf{V}_{1}\right)=\left(\frac{F_{2}-F_{1}}{\mathbf{V}_{2}-V_{1}}\right) \mathbf{V}+\left(F_{1}-\mathbf{m} \mathbf{V}_{1}\right) \tag{Eqn 4}
\end{equation*}
$$

$\begin{array}{lllll}\text { m } 2.5532 E+05 ~ N / m^{3} & \text { b } & -944.68 \mathrm{~N}\end{array}$

$$
\mathbf{W}=\int_{\mathbf{V}_{1}}^{\mathbf{V}_{2}}\left[\mathbf{P}_{\mathrm{atm}}+\frac{\mathbf{m} \mathbf{V}+\mathbf{b}}{\mathbf{A}_{\text {piston }}}\right] \mathbf{d V}=\left(\mathbf{P}_{\mathrm{atm}}+\frac{\mathbf{b}}{\mathbf{A}_{\text {piston }}}\right)\left(\mathbf{V}_{2}-\mathbf{V}_{1}\right)+\frac{\mathbf{m}}{A_{\text {piston }}} \frac{\left(\mathbf{V}_{2}^{2}-\mathbf{V}_{1}^{2}\right)}{2}
$$

Verify: None of the assumptions can be verified using only the information given in the problem statement.

Answers : |  | $\mathbf{P}_{1}$ | $\mathbf{1 6 0}$ | $\mathbf{k P a}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{\mathbf{2}}$ | $\mathbf{1 0 0}$ | kPa |
|  |  |  |  |

| W | -611 | J |
| :--- | :--- | :--- |

$R$-134a vapor is held in a piston-and-cylinder device at $30^{\circ} \mathrm{C}$ and 65 kPa . The $R$ - 134 a vapor is compressed as small weights are slowly added to the back of the piston until the pressure inside the cylinder reaches 400 kPa .
Determine...
a.) The boundary work done by the R-134a
b.) The final temperature of the R-134a

The following measurements have been made during the process:
$P(k P a), V(L)=(65,1.94),(104,1.57),(167,1.04),(218,0.79),(255,0.67),(311,0.51),(350,0.35)$

Read: The key concept here is that boundary or PV work is represented by the area under the process path curve on a PV Diagram. So, once we plot the given data on a PV Diagram, all we need to do is numerically integrate to determine the area under the curve and we will know the work!

We can use the R-134a Tables in the NIST Webbook to determine the final temperature because we know both $\mathbf{P}_{\text {final }}$ and $\mathbf{V}_{\text {final }}$. But we don't know the number of moles in the system. Fortunately, we can use the initial state $\mathbf{P}_{1}, \mathbf{V}_{1}$, and $\mathbf{T}_{1}$ to determine the number of moles in this closed system.

Diagram:


Given:

| $\mathbf{P}(\mathbf{k P a})$ | $\mathbf{V}(\mathrm{L})$ |
| :---: | :---: |
| 65 | 1.94 |
| 104 | 1.57 |
| 167 | 1.04 |
| 218 | 0.79 |
| 255 | 0.67 |
| 311 | 0.51 |
| 400 | 0.35 |

Find:
a.) $W_{\text {total }}$ ???
b.) $\quad \mathrm{T}_{2}$
??? ${ }^{\circ} \mathrm{C}$

Assumptions: $\mathbf{1}$ - Each state in the data table is an equilibrium state.
2 - The process is a quasi-equilibrium process.
3 - The system is a closed system.
4 - The trapezoidal rule gives an acceptable estimate of the area under the process path in the PV Diagram.

## Equations / Data / Solve:

Part a.) The area of each trapezoid under the process path in the PV Diagram is the product of the average pressure for that trapezoid and the change in volume across the trapezoid.

$$
\mathbf{W}_{\text {trap }}=\left(\frac{\mathbf{P}_{\mathbf{b}}+\mathbf{P}_{\mathrm{a}}}{2}\right) \cdot\left(\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{b}}\right)
$$

Where subscript a refers to the left side of each trapezoid and subscript $\mathbf{b}$ refers to the right side of each trapezoid in the PV Diagram.

| Trapezoid | $\mathbf{P}_{\text {avg }} \mathbf{( k P a )}$ | $\mathbf{\Delta V}(\mathbf{L})$ | $\mathbf{W}(\mathbf{J})$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 85 | -0.37 | -31.3 |
| $\mathbf{B}$ | 136 | -0.53 | -71.8 |
| C | 193 | -0.25 | -48.1 |
| D | 237 | -0.12 | -28.4 |
| E | 283 | -0.16 | -45.3 |
| F | 356 | -0.16 | -56.9 |

$\mathrm{W}_{\text {total }}=\quad-281.7 \mathrm{~J}$

Part b.) If we knew the specific volume of the R-134a in the final state, we could use the R-134a tables to determine the temperature. But, at this point, all we know is the total volume in the final state.
The trick here is that the mass is the same in the initial and final states.
Therefore, we need to determine the mass of R-134a in the system.
We can use the information we have for the initial state to determine the mass of R-134a in the system.
First, look up the specific volume of R-134a in the initial state in the isothermal thermodynamic tables:
$\begin{array}{lllll} & & \mathbf{V}_{1} & 0.37538 \mathrm{~m}^{3} / \mathrm{kg} \\ \text { Then, to calculate } \mathrm{m}_{\mathrm{R} 134 \mathrm{a}} \text {, use: } & \mathbf{m}_{\mathrm{R} 134 \mathrm{a}}=\frac{\mathbf{V}_{1}}{\hat{\mathbf{V}}_{1}} & \text { Eqn 1 } & \mathbf{m}_{\mathrm{R} 134 \mathrm{a}} & 0.00517 \mathrm{~kg} \\ \text { Finally, calculate } \mathrm{V}_{2} \text { using: } & \hat{\mathbf{V}}_{2}=\frac{\mathbf{V}_{2}}{\mathbf{m}_{\mathrm{R} 134 \mathrm{a}}} & \text { Eqn 2 } & \mathbf{V}_{2} & 0.067723 \mathrm{~m}^{3} / \mathrm{kg}\end{array}$
Now, use the isobaric thermodynamic tables at a pressure of 400 kPa . Specify a temperature range that you are sure brackets $\mathbf{V}_{2}$. Here is a table that I cut-and-pasted from the NIST WebBook.

| Temperature (C) | Pressure <br> $(\mathrm{MPa})$ | Volume <br> $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | Phase |
| :---: | :---: | :---: | :---: |
| 72 | 0.4 | 0.066907 | vapor |
| 73 | 0.4 | 0.067138 | vapor |
| 74 | 0.4 | 0.067369 | vapor |
| 75 | 0.4 | 0.067599 | vapor |
| 76 | 0.4 | 0.067830 | vapor |
| 77 | 0.4 | 0.068060 | vapor |

$\mathbf{V}_{2}$ falls between $75^{\circ} \mathrm{C}$ and $76^{\circ} \mathrm{C}$
So, now, we must interpolate.

| $\mathrm{T}_{2}$ | 75.54 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |

Verify: None of the assumptions can be verified from the data given in the problem statement.
Answers: a.)
$\mathrm{W}_{\text {total }}=\quad-282 \mathrm{~J}$
b.)
75.5
${ }^{\circ} \mathrm{C}$

4A-4
Expansion of a Gas in a Cylinder Against a Spring
A gas is held in a horizontal piston-and-cylinder device, as shown below.


A spring is attached to the back of the frictionless piston. Initially, the spring exerts no force on the piston.
The gas is heated until the pressure inside the cylinder is 650 kPa . Determine the boundary work done by the gas on the piston. Assume $\mathrm{P}_{\mathrm{atm}}=100 \mathrm{kPa}$.

Read: The key to solving this problem is to determine the slope and intercept for the linear relationship between the force exerted by the spring on the piston and the pressure within the gas. This relationship is linear because the pressure within the cylinder is atmospheric pressure plus the spring force divided by the cross-sectional area of the piston.

Diagram:

$$
\mathrm{k}=3.25 \mathrm{kN} / \mathrm{m}
$$



| Given: | $P_{2}$ | 650 | $\mathbf{k P a}$ | $D_{\text {piston }}$ | 0.0508 | m |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
|  | $P_{1}=P_{\text {atm }}$ | 100 | kPa | k | 3.25 | $\mathrm{kN} / \mathrm{m}$ |
|  |  |  |  |  |  |  |

Assumptions: $\mathbf{1}$ - The gas in the cylinder is a closed system.
2 - The process occurs slowly enough that it is a quasi-equilibrium process.
3 - There is no friction between the piston and the cylinder wall.
4 - The spring force varies linearly with position.

## Equations / Data / Solve:

For a quasi-equilibrium process, boundary or PV work is defined by:

$$
\mathbf{W}=\int_{x_{1}=0}^{x_{2}} F_{\text {total }} \mathbf{d x}=\int_{x_{1}=0}^{x_{2}}\left(F_{\text {spring }}+F_{\text {atm }}\right) d x
$$

It is critical to note that the gas must overcome the force due to atmospheric pressure AND the force of the spring during this expansion process. Because the force exerted by the linear spring on the piston increases linearly as the gas expands, we can write the following equation relating the force exerted by the gas on the piston to the displacement of the piston from its original, unstretched position.

$$
\mathbf{F}_{\text {spring }}=\mathbf{K} \mathbf{X} \quad \text { Eqn } 2 \quad \begin{aligned}
& \text { Where } \mathbf{x} \text { is the displacement of the piston from its initial } \\
& \text { position. }
\end{aligned}
$$

Plug Eqn 2 into Eqn 1 and integrate to get :

$$
\begin{equation*}
W=\left.\left(\frac{k x^{2}}{2}+F_{a t m} x\right)\right|_{0} ^{x_{2}}=\frac{k}{2} x_{2}^{2}+F_{a t m} x_{2} \tag{Eqn 3}
\end{equation*}
$$

Where $\mathbf{x}_{2}$ is the displacement of the spring in the final state.
So, our next objective is to determine how far the piston moved during this process.
In the initial and final states, the piston is not accelerating. In fact, it is not moving. Therefore, there is no unbalanced force acting on it. This means that the vector sum of all the forces acting on the piston must be zero.

Initial Stato:

$$
\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathrm{atm}}
$$

Eqn 4
$\mathrm{P}_{1}$
100
kPa

The relationship between force and pressure is:

$$
F_{\mathrm{atm}}=\mathbf{P}_{\mathrm{atm}} \mathbf{A}_{\text {piston }}
$$

| Where : | $A_{\text {piston }}=\frac{\pi}{4} D_{\text {piston }}^{2}$ | Eqn 6 | $A_{\text {piston }}$ |
| :--- | :--- | :--- | :--- | | $2.03 E-03 \mathrm{~m}^{2}$ |
| :---: |
|  |

Final State:

$$
P_{2}=P_{\mathrm{atm}}+\frac{F_{2}}{A_{\text {piston }}}
$$

or :

$$
\mathbf{F}_{2}=\left(\mathbf{P}_{2}-\mathbf{P}_{\mathrm{atm}}\right) \mathbf{A}_{\text {piston }}
$$

Now, plug numbers into Eqn 8 :
$F_{2}$
1.1148 kN

Because the spring is linear:

$$
F_{2}=k x_{2}
$$

or:

$$
x_{2}=\frac{F_{2}}{k}
$$

Finally, substitute back into Eqn 3 to evaluate the work done by the gas in the cylinder on its surroundings during this process :

$W=0.26070 \quad k J \quad$|  | W | 260.7 |
| ---: | ---: | ---: | ---: |

Verify: None of the assumptions can be verified using only the information given in the problem statement.
Answers: $\qquad$

4A-5
Quasi-Equilibrium Expansion of a Gas
A gas is compressed in a piston-and-cylinder device from 100 kPa to 700 kPa . Estimate the boundary work done by the gas during the process. The following measurements were made during the process.

| $\mathrm{P}(\mathrm{kPa})$ | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{~V}\left(\mathrm{~cm}^{3}\right)$ | 1025 | 900 | 793 | 651 | 517 | 375 | 224 |

Read: The key concept here is that boundary or PV work is represented by the area under the process path curve on a PV Diagram. So, once we plot the given data on a PV Diagram, all we need to do is numerically integrate to determine the area under the curve and we will have the work !

Diagram:


Given:

| $\mathbf{P}(\mathbf{k P a})$ | $\mathbf{V}(\mathbf{L})$ |
| :---: | :---: |
| 100 | 1.025 |
| 200 | 0.900 |
| 300 | 0.793 |
| 400 | 0.651 |
| 500 | 0.517 |
| 600 | 0.375 |
| 700 | 0.224 |

Find: W ???

Assumptions:
1 - Each state in the data table is an equilibrium state.
2 - The process is a quasi-equilibrium process.
3 - The system is a closed system.
4 - The trapezoidal rule gives an acceptable estimate of the area under the process path in the PV Diagram.

## Equations / Data / Solve:

The area of each trapezoid under the process path in the PV Diagram is the product of the average pressure for that trapezoid and the change in volume across the trapezoid.

$$
\mathbf{W}_{\text {trap }}=\left(\frac{\mathbf{P}_{\mathrm{b}}+\mathbf{P}_{\mathrm{a}}}{2}\right) \cdot\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)
$$

Eqn 1

Where subscript a refers to the left side of each trapezoid and subscript $\mathbf{b}$ refers to the right side of each

| Trapezoid | $\mathbf{P}_{\text {avg }}(\mathbf{k P a})$ | $\Delta \mathbf{V}(\mathbf{L})$ | $\mathbf{W}(\mathbf{J})$ |
| :---: | :---: | :---: | :---: |
| A | 650 | -0.151 | -98 |
| B | 550 | -0.142 | -78 |
| C | 450 | -0.134 | -60 |
| D | 350 | -0.142 | -50 |
| E | 250 | -0.107 | -27 |
| F | 150 | -0.125 | -19 |


| $\mathrm{W}_{\text {total }}$ | -331.8 | J |
| :--- | :--- | :--- |

Verify: None of the assumptions can be verified from the data given in the problem statement.
Answers : $\mathrm{W}_{\text {total }} \quad-332 \mathrm{~J}$

The sun shines on the front of a thin plate that is insulated on the back surface, as shown below. The surface of the plate exposed to the sun has an absorptivity of $\mathbf{0 . 7 2}$ for solar radiation.


The total solar radiation incident on the front of the plate is $650 \mathrm{~W} / \mathrm{m}^{2}$. The front of the plate loses heat to thesurroundings which are at $20^{\circ} \mathrm{C}$ but radiation heat loss from the plate is negligible.
The convection heat transfer coefficient is $25 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. The plate warms up until the solar heat gained is balanced by the convection heat lost. Determine the temperature of the front surface of the plate at steady-state.

Read : The key to this problem is to recognize that at steady-state, the rate at which heat is transferred into the plate from the sun by radiation must be equal to the rate at which heat is lost from the plate to the surrounding air by convection.

Diagram: The diagram in the problem statement is adequate.

Given:
$\alpha$
0.72
$q_{\text {max }}$
650
W/m ${ }^{2}$
$\mathrm{T}_{\text {air }}$
h

| 20 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |
| 25 | $\mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ |

Find: $\quad T_{s}$
???
${ }^{\circ} \mathrm{C}$

## Assumptions:

1- Radiation heat losses from the plate are negligible.
2- Heat losses through the edges of the plate are negligible.
The back of the plate is perfectly insulated. Thus, at steady-state, the temperature of the plate is
3 uniform.
4- The incident radiation, the convection heat transfer coefficient and the absorptivity of the surface are all uniform over the surface of the plate.

## Equations / Data / Solve:

The key to this problem is to recognize that at steady-state, the rate at which heat is transferred into the plate from the sun by radiation must be equal to the rate at which heat is lost from the plate to the surrounding air by convection.

$$
\begin{equation*}
\mathbf{q}_{\mathrm{rad}}=\mathbf{q}_{\mathrm{conv}} \tag{Eqn 1}
\end{equation*}
$$

Absorptivity, $\boldsymbol{\alpha}$, is the fraction of the incident radiation that is absorbed by a surface. Therefore:

$$
q_{\mathrm{rad}}=\alpha q_{\max }
$$

Newton's Law of Cooling gives us the convection heat transfer rate at the surface of the plate.

$$
\mathbf{q}_{\text {conv }}=\mathrm{h}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{air}}\right)
$$

Set Eqn 1 equal to Eqn 2 and solve for $\mathbf{T}_{\mathbf{s}}$ :

$$
T_{s}=T_{\text {air }}+\frac{\alpha q_{\max }}{h}
$$

Plug numbers into Eqn 3 to answer the question:

| $\mathrm{T}_{\mathrm{s}}$ | 38.72 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |

Verify: The assumptions cannot be verified from the information in the problem statement alone.
Answers: $\square$

The walls of a well-insulated home in the U.S. are about 6 in thick and have a thermal conductivity of $0.03 \mathrm{Btu} / \mathrm{f}-\mathrm{ft}-{ }^{\circ} \mathrm{R}$. A comfortable indoor temperature is $70^{\circ} \mathrm{F}$ and on a cold day the outdoor temperature is $-20^{\circ} \mathrm{F}$.
The convection heat transfer coefficient on the inside surface of the wall is $1.7 \mathrm{Btu} / \mathrm{h}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}$ while wind makes the convection heat transfer coefficient on the outside of the wall $5.4 \mathrm{Btu} / \mathrm{h}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}$.
Calculate the steady-state heat transfer rate through the wall in Btu/h. Assume radiation heat losses are negligible and the area of the wall is $100 \mathrm{ft}^{2}$.

Read : The key here is to recognize that, at steady state, the convection heat transfer rate into the wall must be equal to the rate at which heat is conducted through the wall and that must be equal to the rate at which heat is removed from the wall by convection on the outside. We can write 3 eqns in 3 unknowns: Newton's Law of Cooling for the inside and outside surfaces and Fourier's Law of Conduction for heat transfer through the wall. The three unknowns are the inside and outside wall surface temperatures and the heat transfer rate.

Diagram:


| Given: | $\mathrm{k}=$ | 0.03 | Btu/h-ft- ${ }^{\circ} \mathrm{R}$ | $\mathrm{T}_{\text {in }}$ | 70 | ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | L | 0.5 | ft | $\mathrm{h}_{\text {in }}$ | 1.7 | Btu/h-ft ${ }^{2}-{ }^{\circ} \mathrm{R}$ |
|  | A | 100 | $\mathrm{ft}^{2}$ | $h_{\text {out }}$ | 5.4 | Btu/h-ft ${ }^{2}-{ }^{\circ}$ |
|  |  |  |  | $\mathrm{T}_{\text {out }}$ | -20 | ${ }^{\circ} \mathrm{F}$ |

Assumptions: 1 - The system operates at steady-state.
2 - Newton's Law of Cooling applies for convection heat transfer on both the inside and outside surfaces of the wall.
3 - The thermal conductivity within the wall is constant. This is a weak assumption, but it lets us approximate $\mathbf{d T} / \mathbf{d x}$ as $\Delta \mathbf{T} / \Delta \mathbf{x}$.

## Equations / Data / Solve:

The key here is to recognize that, at steady state, the convection heat transfer rate into the wall must be equal to the rate at which heat is conducted through the wall and that must be equal to the rate at which heat is removed from the wall by convection.

Inside convection:

$$
\begin{equation*}
\dot{q}_{i}=h_{i} A\left(T_{i}-T_{w i}\right) \tag{Eqn 1}
\end{equation*}
$$

Outside convection:

$$
\begin{equation*}
\dot{\mathbf{q}}_{\mathrm{o}}=\mathrm{h}_{\mathrm{i}} \mathrm{~A}\left(\mathrm{~T}_{\mathrm{wo}}-\mathrm{T}_{\mathrm{o}}\right) \tag{Eqn 2}
\end{equation*}
$$

Conduction through the wall:

$$
\dot{\mathbf{q}}_{\text {wall }}=-k A \frac{d T}{d x} \approx-k A \frac{\left(T_{w o}-T_{w i}\right)}{L}
$$

Eqn 3

Now, we have three equations in $\mathbf{3}$ unknowns: $\mathbf{q}, \mathbf{T}_{\text {wi }}$ and $\mathbf{T}_{\text {wo }}$.
We must algebraically solve the equations simultaneously for the three unknowns.
Solve Eqn 1 for $\mathbf{T}_{\text {wi }}$ :

$$
\begin{equation*}
T_{w i}=T_{i}-\frac{\dot{q}}{h_{i} A} \tag{Eqn 4}
\end{equation*}
$$

Solve Eqn 2 for $\mathrm{T}_{\mathrm{wo}}$ : $\quad \mathrm{T}_{\mathrm{wo}}=\mathrm{T}_{\mathrm{o}}+\frac{\dot{\mathrm{q}}}{\mathrm{h}_{\mathrm{o}} \mathbf{A}}$
Replace $\mathbf{T}_{\text {wi }}$ and $\mathbf{T}_{\text {wo }}$ in Eqn 3 using Eqn 4 and Eqn 5:

$$
\dot{q}=k A \frac{\left(T_{w i}-T_{w o}\right)}{L}=\frac{k A}{L}\left[\left(T_{i}-T_{o}\right)-\frac{q}{A}\left(\frac{1}{h_{i}}+\frac{1}{h_{o}}\right)\right]
$$

Manipulate Eqn 6 algebraically to get:

Solve Eqn 7 for $\mathbf{q}$ :

$$
\begin{align*}
& \frac{\dot{q}}{A}\left(\frac{1}{h_{i}}+\frac{k}{L}+\frac{1}{h_{o}}\right)=\left(T_{i}-T_{o}\right)  \tag{Eqn 7}\\
& \dot{q}=\frac{A\left(T_{i}-T_{o}\right)}{\left(\frac{1}{h_{i}}+\frac{L}{k}+\frac{1}{h_{o}}\right)}
\end{align*}
$$

| $\mathrm{q}=$ | 516.1 | Btu/h |
| :--- | :--- | :--- |

The positive sign of $\mathbf{q}$ indicates that heat flows in the positive $x$-direction, as defined in the diagram.
We could now evaluate $\mathbf{T}_{\text {wi }}$ and $\mathbf{T}_{\text {wo }}$, using Eqns 4 and 5 , but it is not required.

| $\mathrm{T}_{\text {wi }}$ | $67.0{ }^{\circ} \mathrm{F}$ | $\mathrm{T}_{\text {wo }}$ | $-19.0{ }^{\circ} \mathrm{F}$ |
| :--- | :--- | :--- | :--- | :--- |

Verify: The first two assumptions cannot be verified, but we can shed some light on the last assumption. The wall temperature varies from $-19^{\circ} \mathrm{F}$ on the outside to $67^{\circ} \mathrm{F}$ on the inside. This seems like a wide range of temperatures. I was not able to find data specific to this temperature range, but at higher temperatures, I found data that indicated the thermal conductivity of wood changed by about $\mathbf{2 0 \%}$ over a range of $\mathbf{1 0 0 ^ { \circ }} \mathrm{C}$ above room temperature. This leads me to believe the answer below may not be accurate to $\mathbf{2}$ significant digits.

Answers:

| $\mathrm{q}=$ | 520 | Btu/h |
| :--- | :--- | :--- |

4B-3
Surface Temperature of a Spacecraft
The International Space Station (ISS) absorbs solar radiation and radiates heat into space. At steady-state, the radiation emitted is equal to the solar energy absorbed.
The surface of the ISS has an emissivity of 0.74 and an absorptivity of 0.25 for solar radiation. Incident solar radiation on the ISS is $1500 \mathbf{W} / \mathrm{m}^{2}$. Determine the surface temperature of the ISS at steady-state.

Read : The key to solving this problem is to recognize that solar radiation is incident on the spacecraft and the spacecraft radiates heat to deep space, which is at an average temperature of $\mathbf{3} \mathbf{K}$.

Diagram:


Given:

## $\mathbf{Q}_{\text {sun }}$

$\alpha$
1500
0.25
$\varepsilon$
0.74

Find: $\quad \mathbf{T}_{\text {surface }}$
??? ${ }^{\circ} \mathrm{C}$

Assumptions:
1 - Incident solar radiation on the spacecraft is uniform.
2 - The spacecraft radiates thermal energy to its surroundings which are at an average temperature of $\mathbf{3} \mathbf{K}$.

## Equations / Data / Solve:

The spacecraft absorbs $\mathbf{3 0 \%}$ of the incident radiation from the sun, because:
$\mathbf{Q}_{\text {in }}=\alpha \boldsymbol{Q}_{\text {sun }}$
Eqn 1
$Q_{i n}$
375
$\mathrm{W} / \mathrm{m}^{2}$

The space craft radiates to deep space and deep space radiates to the spacecraft as well.

$$
\mathbf{Q}_{\text {out }}=\varepsilon \sigma\left(\mathbf{T}_{\text {surface }}^{4}-T_{\text {space }}^{4}\right) \quad \text { Eqn } 2
$$

When the temperature on the surface of the spacecraft reaches a steady-state value, there will be no net amount of heat transfer to or from the surface :

$$
\mathbf{Q}_{\text {in }}=\mathbf{Q}_{\substack{\text { out } \\ \text { net }}}
$$

Eqn 3

Next, we can combine Eqns 2 and 3 and solve for the surface temperature of the spacecraft.

$$
T_{\text {surface }}=\left[T_{\text {space }}^{4}+\frac{Q_{\text {in }}}{\varepsilon \sigma}\right]^{1 / 4} \quad \mathrm{~T}_{\text {surface }} \quad 307.47 \quad \mathrm{~K}
$$

| $\mathrm{T}_{\text {surface }}$ | 34.32 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |

Verify: None of the assumptions can be verified from the data given in the problem statement.
Answers : $\mathrm{T}_{\text {surface }} \quad 34 \quad{ }^{\circ} \mathrm{C}$
4C-1
Application of the 1st Law to a Stone Falling Into Water
5 pts

A circus performer drops a cannonball with a mass of 50 kg from a platform 12 m above a drum containing 25 kg of water. Initially, the cannonball and the water are at the same temperature, state1.
Calculate $\mathbf{\Delta U}, \Delta \mathbf{E}_{\text {kin }}, \mathbf{\Delta} \mathbf{E}_{\text {pot }}, \mathbf{Q}$ and $\mathbf{W}$ for each of the following changes of state and for the entire process.
a.) From state 1 until the cannonball is about to enter the water, state 2.
b.) From state 2 until the instant the cannonball comes to rest on the bottom of the drum, state 3 .
c.) From state 3 until heat has been transferred to the surroundings in such an amount that the cannonball and water in the drum have returned to their initial temperature, state $4, \mathrm{~T}_{4}=\mathrm{T}_{1}$. Assume $\mathrm{g}=9.8066 \mathrm{~m} / \mathrm{s}^{2}$.

Read : Choose the combination of the stone and the water as the system.
In step 1-2, if no friction or heat transfer exist, potential energy is converted into kinetic energy.
In step 2-3, if the water has negligible depth, kinetic energy is converted into internal energy by friction between the stone and the water.

In step 3-4, heat transfer from the system to the surroundings reduces the internal energy of the system back to its initial value.

| Given: | $\mathrm{T}_{1}=\mathrm{T}_{4}$ |  | Find: | $\Delta \mathrm{U}$ | ??? | kJ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{h}_{1}$ | 12 | m |  | $\Delta \mathrm{E}_{\mathrm{kin}}$ | $? ? ?$ | kJ |
|  | $\mathrm{~m}_{\mathrm{w}}$ | 25 | kg | $\Delta \mathrm{E}_{\text {pot }}$ | $? ? ?$ | kJ |  |
|  | $\mathrm{~m}_{\mathrm{CB}}$ | 50 | kg |  | Q | $? ? ?$ | kJ |

Diagram:


| Assumptions: | $\mathbf{1 -}$ | Friction between the air and the stone is negligible. |
| :--- | :--- | :--- |
|  | $2-$ | The air and the stone are at the same temperature. |
|  | $3-$ | The depth of the water is very small, compared to $\mathrm{h}_{1}$. |
|  | $\mathbf{4 -}$ | $\mathbf{g} \quad \stackrel{9.8066 \quad \mathrm{~m} / \mathrm{s}^{2}}{ }$ |

## Equations / Data / Solve:

The starting point for this problem is the integral form of the1st Law :

$$
\begin{equation*}
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}+\Delta \mathbf{E}_{\text {kin }}+\Delta \mathbf{E}_{\text {pot }} \tag{Eqn 1}
\end{equation*}
$$

Step 1-2 As the stone falls through the air, it experiences some air friction, but we can assume that this is negligible. Consequently, there is no change in the temperature or internal energy of the stone. If we further assume that the air and stone are at the same temperature, then no heat transfer occurs during step 1-2. Finally, if we consider the stone and the water to be our system, then no work has crosses the system boundary either.
$\Delta U_{12}=0$
Eqn 2
$\mathbf{Q}_{12}=0$
Eqn 3
$W_{12}=0$
Eqn 4
This allows us to simplify the 1st Law to :

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{kin}}+\Delta \mathrm{E}_{\mathrm{pot}}=0 \tag{Eqn 5}
\end{equation*}
$$

Next, we can evaluate $\Delta \mathrm{E}_{\mathrm{pot}}$ from its definition.

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{pot}}=\mathbf{m} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \Delta \mathbf{z} \tag{Eqn 6}
\end{equation*}
$$

When we apply this equation to our problem, $\Delta \mathrm{z}=\mathrm{h}_{1}=-12 \mathrm{~m}$. So we can now plug values into Eqn 3.

| $\mathbf{g}_{\mathrm{c}}$ | 1 | $\mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ | $\Delta \mathrm{E}_{\text {pot }}$ | -5884.0 | J |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Now, we can use Eqn 2 to evaluate $\Delta \mathrm{E}_{\text {kin }}:$ | $\Delta \mathrm{E}_{\text {kin }}$ | 5884.0 | J |  |  |

Step 2-3 Apply the 1st Law, Eqn 1, to a process from State 2 to State 3, again using the stone and the water as our system.

Assume that the depth of the water is negligible so that: $\quad \Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$
Eqn 7
Because the water and stone are at the same temperature, no heat transfer occurs, therefore :

$$
\begin{equation*}
\mathbf{Q}_{23}=\mathbf{0} \tag{Eqn 8}
\end{equation*}
$$

Just as in Step 1-2, no work crosses the boundary of the system (the stone and the water) :

$$
\begin{equation*}
W_{23}=0 \tag{Eqn 9}
\end{equation*}
$$

Now, use Eqns 7 - 9 to simplify the 1st Law, Eqn 1 to :

$$
\begin{equation*}
\Delta \mathbf{U}+\Delta \mathbf{E}_{\text {kin }}=\mathbf{0} \tag{Eqn 10}
\end{equation*}
$$

Eqn 10 tells us that in Step 2-3, all of the kinetic energy of the stone is converted into internal energy in both the stone and the water.

| Since the kinetic energy of the stone in state 1 is zero: | $\mathbf{E}_{\text {kin,1 }}$ | $\mathbf{0}$ | J |
| :--- | :--- | :---: | :---: |
| We conclude from part (a) that: | $\mathrm{E}_{\text {kin,2 }}$ | $\mathbf{5 8 8 4 . 0}$ | J |
| After the stone hits the bottom of the tank, |  |  |  |
| it has zero kinetic energy: | $\mathbf{E}_{\text {kin,3 }}$ | $\mathbf{0}$ | J |
| Therefore, for Step 2-3: | $\Delta \mathrm{E}_{\text {kin }}$ | $\mathbf{- 5 8 8 4 . 0}$ | J |
| Plug this value of $\Delta \mathrm{E}_{\text {kin }}$ into Eqn 10 to get: | $\Delta \mathbf{U}$ | $\mathbf{5 8 8 4 . 0}$ | J |

Step 3-4 Apply the 1st Law, Eqn 1, to a process from State 3 to State 4, again using the stone and the water as our system.

In Step 3-4, there is no change in either the kinetic or the potential energy of the system. No work crosses the boundary of the system. Therefore :
$\Delta E_{\text {kin }}=0$
Eqn 11
$\Delta E_{\text {pot }}=0$
Eqn 12
$\mathbf{W}_{34}=\mathbf{0}$
Eqn 13
This allows us to simplify the 1st Law to :

$$
\begin{equation*}
\mathbf{Q}_{34}=\Delta \mathbf{U} \tag{Eqn 14}
\end{equation*}
$$

Because in Step 3-4 the system returns to its original temperature:

$$
\Delta \mathbf{U}_{34}=\mathbf{U}_{4}-\mathbf{U}_{3}=-\left(\mathbf{U}_{3}-\mathbf{U}_{1}\right)=-\left(\mathbf{U}_{3}-\mathbf{U}_{2}\right)=-\Delta \mathbf{U}_{23}
$$

Finally, we can plug this value for $\Delta \mathbf{U}$ back into Eqn 14 to evaluate $\mathbf{Q}_{34}:$| $\Delta \mathbf{U}$ | -5884.0 | $\mathbf{J}$ |
| :--- | :--- | :--- |
| $\mathbf{Q}_{34}$ | -5884.0 | J | Note that the negative value for $\mathbf{Q}_{34}$ means that heat is transferred from the system to the surroundings.

Step 1-4 We can determine the values $\mathbf{Q}, \mathbf{W}, \Delta \mathbf{U}, \Delta \mathbf{E}_{\text {kin }}$ and $\Delta \mathbf{E}_{\text {pot }}$ for the process from state $\mathbf{1}$ to state $\mathbf{4}$ by adding the results from parts (a) through (c).

| $Q_{14}$ | -5883.96 J | $\Delta \mathrm{E}_{\text {kin }}$ | 0.0 J |
| :--- | ---: | :--- | ---: |
| $\mathbf{W}_{14}$ | 0.0 J | $\Delta \mathrm{E}_{\text {kin }}$ | -5883.96 J |
| $\Delta \mathrm{U}_{14}$ | 0.0 J |  |  |

Verify: The assumptions made in this problem solution cannot be verified.

| Answers : | а.) 1-2 <br> b.) 2-3 <br> c.) 3-4 <br> d.) 1-4 | Q (J) | W (J) | $\Delta \mathrm{U}$ (J) | $\Delta \mathrm{E}_{\text {kin }}(\mathrm{J})$ | $\Delta \mathrm{E}_{\text {pot }}(\mathrm{J})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 0 | 0 | 5884 | -5884 |
|  |  | 0 | 0 | 5884 | -5884 | 0 |
|  |  | -5884 | 0 | -5884 | 0 | 0 |
|  |  | -5884 | 0 | 0 | 0 | -5884.0 |

4C-2
Equilibration of a Tank and a Piston-and-Cylinder Device
Each of two vessels contains of steam at a different temperature and pressure. Vessel $\mathbf{A}$ is a rigid tank with a volume of $0.9 \mathrm{~m}^{3}$ and vessel $\mathbf{B}$ is a piston-and-cylinder device that holds $0.7 \mathrm{~m}^{3}$ of steam.
They are connected by a pipe with a closed valve in the line. Initially, tank A contains saturated steam at 150 kPa while cylinder B contains superheated steam at $350^{\circ} \mathrm{C}$ and 400 kPa .


When the valve is opened, the steam in the two vessels is allowed to come to equilibrium.
a.) Determine the mass of steam in each vessel before the valve is opened: $\mathbf{m}_{\mathbf{A} 1}$ and $\mathbf{m}_{\mathbf{B} 1}$.
b.) If the equilibrium temperature is $\mathrm{T}_{2}=240^{\circ} \mathrm{C}$, calculate $\mathbf{Q}$ and $\mathbf{W}$ for the equilibration process.

Read: The key aspect of this problem is whether ANY water remains in the cylinder, $\mathbf{B}$, at equilibrium. If there is water left in $\mathbf{B}$ at the final state, it will exist at $\mathbf{T}_{2}$ and $\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{B} 1}$ because the piston would still be "floating". The other key is that this is a closed system, so the mass of water in the entire system remains constant. We can use the Steam Tables and the given initial volumes to answer part (a). In part (b), the work is done at constant pressure as the piston descends. So it is not difficult to compute. Finally, solve the 1st Law to determine $\mathbf{Q}$. This is possible because we know the initial and final states and the work!

Diagram:


| Given: | $\mathbf{P}_{\mathrm{A} 1}$ | 150 | kPa | $\mathrm{V}_{\mathrm{B} 1}$ | 0.7 | $\mathrm{~m}^{3}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathrm{~V}_{\mathrm{A}}$ | 0.9 | $\mathrm{~m}^{3}$ | $\mathrm{~T}_{\mathrm{B} 1}$ | 350 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathbf{x}_{\mathrm{A} 1}$ | 1 | $\mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ | $\mathrm{P}^{\circ}$ | $\mathrm{P}_{\mathrm{B} 1}$ | 400 |
|  | $\mathbf{T}_{2}$ | 240 | ${ }^{\circ} \mathrm{C}$ | kPa |  |  |

Find:
a.)

| $\mathrm{m}_{\mathrm{A} 1}$ | ??? | kg |
| :--- | :--- | :--- |
| $\mathrm{m}_{\mathrm{B} 1}$ | $? ? ?$ | kg |

b.)

Q
???
kJ
w ??? kJ

Assumptions: 1- - The initial and final states are equilibrium states.
2- - The process is a quasi-equilibrium process.

## Equations / Data / Solve:

Part a.) We can determine $\mathbf{m}_{A 1}$ because we know the volume of the tank and we can look up the specific volume of the saturated vapor that it contains.
$\mathbf{m}_{\mathrm{A} 1}=\frac{\mathbf{V}_{\mathrm{A}}}{\hat{\mathbf{V}}_{\mathrm{A} 1}}$
Eqn $1 \quad$ NIST WebBook: $\quad V_{\text {A1 }}$
$1.1593 \mathrm{~m}^{3} / \mathrm{kg}$

| $\mathrm{m}_{\mathrm{A} 1}$ | 0.7763 kg |
| :--- | :--- | :--- |

We can use the same approach to determine $\mathbf{m}_{\mathbf{B} 1}$, but first we must determine its state.

NIST WebBook:

| $\mathrm{V}_{\mathrm{B} 1}$ | 0.71396 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{m}_{\mathrm{B} 1}$ | 0.9805 | kg |

Part b.) In part $\mathbf{b}$, there are two possibilities. At equilibrium, either $\mathbf{B}$ contains some water or it is completely empty.
Case 1 - $\mathbf{B}$ is not empty: $\mathbf{P}_{\mathbf{B} 2}=\mathbf{P}_{\mathbf{B} 1}$ because the piston is still floating.
Case 2 - $\mathbf{B}$ is empty: $\mathbf{V}_{\mathbf{B} 2}=\mathbf{0}$ and $\underline{A L L}$ of the water is in tank $\mathbf{A}$.
Let's test Case 1 first. Since $\mathbf{T}_{2}>\mathbf{T}_{\text {sat }}$ at 500 kPa , the water would still be superheated vapor and the specific volume would be:

$$
\text { V } \quad 0.58314 \quad \mathrm{~m}^{3} / \mathrm{kg}
$$

Therefore the total volume occupied by this superheated vapor would be:

$$
\mathrm{V}_{2}=\left(\mathrm{m}_{\mathrm{A} 1}+\mathrm{m}_{\mathrm{B} 1}\right) \hat{\mathbf{V}}_{2} \quad \text { Eqn 2 } \quad \mathrm{V}_{2} \quad 1.0245 \quad \mathrm{~m}^{3}
$$

Since this volume, which the total mass of water in the system occupies at $\mathbf{P}_{\mathbf{B} 1}$, is greater than the volume of tank $\mathbf{A}$, we can conclude that all of the water could not fit into tank $\mathbf{A}$ at $\mathbf{P}_{\mathbf{B} 1}$. If $\mathbf{P}_{\mathbf{2}}$ were less than $\mathbf{P}_{\mathbf{B} 1}$, the water would occupy even more volume and again would not fit into tank $\mathbf{A}$. Some water must remain in the cylinder and, therefore, $\mathbf{P}_{\mathrm{B} 2}=\mathbf{P}_{\mathrm{B} 1}$.

Therefore:

$$
V_{B 2}=V_{2}-V_{A 1}=0.1245 \mathrm{~m}^{3}
$$

Calculate the PV or boundary work from:

$$
\mathbf{W}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{PdV}
$$

Eqn 3

$$
\begin{equation*}
W=P\left(V_{2}-V_{1}\right) \tag{Eqn 4}
\end{equation*}
$$

But, since this process is isobaric:

Finally, we need to apply the 1st Law to determine $\mathbf{Q}$. Use all of the water in both vessels as the system.

$$
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}
$$

Or:

$$
\mathbf{Q}=\mathbf{U}_{2}-\mathbf{U}_{1}+\mathbf{W}=\mathbf{m}_{\mathrm{tot}} \hat{\mathbf{U}}_{2}-\mathbf{m}_{\mathrm{A} 1} \hat{\mathbf{U}}_{\mathrm{A} 1}-\mathbf{m}_{\mathrm{B} 1} \hat{\mathbf{U}}_{\mathrm{B} 1}+\mathbf{W}
$$

Use the NIST WebBook and the ASHRAE Convention to determine all of the specific internal energies.

| $\mathrm{m}_{\text {tot }}$ | 1.7568 | kg | $\mathrm{U}_{\mathrm{A} 1}$ | 2519.2 | kJ/kg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{U}_{2}$ | 2651.0 | kJ/kg | $\mathrm{U}_{\mathrm{B} 1}$ | 2884.4 | kJ/kg |
|  |  |  | $\Delta \mathrm{U}$ | -126.6 | kJ |
|  |  |  | Q | -356.8 | kJ |

Verify: None of the assumptions can be verified from the data given in the problem statement.

| Answers : a.) | $\mathrm{m}_{\text {A1 }}$ | 0.776 | kg | b.) | W | -230 | kJ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{m}_{\mathrm{B} 1}$ | 0.980 | kg |  | Q | -357 | kJ |

4C-3 Quenching a Steel Bar in Oil
A hot steel bar weighing 20 kg is submerged in an insulated bath holding 50 L of heavy oil. The steel bar and the oil are allowed to equilibrate thermally without exchanging heat with the surroundings.


Initially, the steel bar and the oil are at $700^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$, respectively. Determine the final temperature of the steel bar and the oil.
Data: steel: $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{v}}=0.42 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$, oil: $\rho=890 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{v}}=2.1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
Read : The easiest way to solve this problem is to choose the entire contents of the tank, both the oil and the steel, as our system.
If we assume that this system is adiabatic and does not have any work interactions with its surroundings, then the internal energy of the system must remain constant as the steel bar cools and the oil becomes warmer. If we further assume that the steel and oil are incompressible, then this is a constant volume process. For solids and liquids it is often reasonable to assume the heat capacity is a constant over a fairly wide temperature range. The only unknown left in the 1 st Law is the final system temperature!
Diagram: The diagram in the problem statement is adequate.

| Given: | $\mathrm{m}_{\text {steel }}$ | 20 | kg | $\rho_{\text {steel }}$ | 8000 | kg/m ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\text {steel }, 1}$ | 700 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{C}_{\mathrm{v}, \text { steel }}$ | 0.42 | kJ/kg-K |
|  | $\mathrm{V}_{\text {oil }}$ | 0.05 | $\mathrm{m}^{3}$ | $\rho_{\text {oil }}$ | 890 | $\mathrm{kg} / \mathrm{m}^{3}$ |
|  | $\mathrm{T}_{\text {oil, } 1}$ | 25 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{C}_{\mathrm{v} \text {,oil }}$ | 2.1 | kJ/kg-K |
| Find: | $\mathrm{T}_{2}=$ | ??? | ${ }^{\circ} \mathrm{C}$ |  |  |  |
| Assumptions: |  | 1 - | - Steel and oil have constant heat capacities. <br> - No heat is exchanged with the surroundings by either the steel or the oil. <br> - Steel and the oil are both incompressible, so this process is a constant volume process. |  |  |  |
|  |  |  |  |  |  |  |
|  |  | 3 - |  |  |  |  |

## Equations / Data / Solve:

We begin by writing the 1st Law and we choose as our system the oil and the steel.

$$
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}=\mathbf{m}_{\text {steel }}\left(\hat{\mathbf{U}}_{2, \text { steel }}-\hat{\mathbf{U}}_{1, \text { steel }}\right)+\mathbf{m}_{\text {oil }}\left(\hat{\mathbf{U}}_{2, \text { oil }}-\hat{\mathbf{U}}_{1,0 \text { oil }}\right)=\mathbf{0}
$$

By cleverly selecting our system, $\mathbf{Q}=\mathbf{0}$ and $\mathbf{W}=\mathbf{0}$. This makes the solution simpler.
$\mathbf{m}_{\text {oil }}=\rho_{\text {oil }} V_{\text {oil }}$
Eqn 2
Therefore:
$\mathrm{m}_{\text {oil }}$
$44.5 \quad \mathrm{~kg}$

Because both oil and steel are assumed to be incompressible with constant heat capacities:


$$
\mathbf{m}_{\text {steel }} \hat{\mathbf{C}}_{\mathrm{v}, \text { steel }}\left(\mathbf{T}_{2}-\mathbf{T}_{1, \text { steel }}\right)+\mathbf{m}_{\text {oil }} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }}\left(\mathbf{T}_{2}-\mathbf{T}_{1, \text { oil }}\right)=0
$$

Now, solve for $\mathbf{T}_{2}$ :

$$
\left(\mathbf{m}_{\text {steel }} \hat{\mathbf{C}}_{\mathrm{V}, \text { steel }}+\mathbf{m}_{\text {oil }} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }}\right) \mathbf{T}_{2}=\mathbf{m}_{\text {steel }} \hat{\mathbf{C}}_{\mathrm{v}, \text { steel }} \mathbf{T}_{1, \mathrm{Cu}}+\mathbf{m}_{\text {oil }} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }} \mathbf{T}_{1, \text { oil }}
$$

$$
\mathbf{T}_{2}=\frac{\mathbf{m}_{\text {steel }} \hat{\mathbf{C}}_{\mathrm{v}, \text { steel }} \mathbf{T}_{1, \text { steel }}+\mathbf{m}_{\text {oil }} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }} \mathbf{T}_{1, \text { oil }}}{\mathbf{m}_{\text {steel }} \hat{\mathbf{C}}_{\mathrm{v}, \text { steel }}+\mathbf{m}_{\text {oil }} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }}}
$$

| $\mathrm{T}_{2}$ | 80.67 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |

Verify: $\quad$ None of the assumptions can be verified from the data given in the problem statement.
Assumptions $1 \& 3$ are very nearly true for solids over the temperature range covered in this problem. Assumption 2 could be made nearly true with sufficient insulation.

Answers : $\mathrm{T}_{2} \quad 80.7 \quad{ }^{\circ} \mathrm{C}$

An air-powered pellet gun uses 1.5 mL of compressed air at 1.2 MPa and $29^{\circ} \mathrm{C}$ in a small tank to propel a projectile. Assume the pellet, with a mass $\mathrm{m}_{\mathrm{p}}=0.02 \mathrm{~kg}$, seals against the walls of the cylinder and behaves like a piston.


Trigger Pin
The pellet is held by a pin until the trigger is pulled, removing the pin and releasing the pellet. Assume the air expands isothermally as the pellet moves along the barrel of the gun and the pressure in the barrel drops all the way to ambient pressure, 100 kPa , just as the bullet leaves the gun barrel. Estimate...
a.) The mass and volume of the air in the cylinder as the pellet reaches the end of the barrel
b.) The work done by the air within the cylinder on the pellet and
the work done ON the ambient air (outside the gun) by the bullet
c.) The velocity of the bullet when it leaves the gun barrel (muzzle velocity)

Boldly assume that the process is a quasi-equilibrium process.

Read : - We must assume that the process is a quasi-equilibrium process. This is not a great assumption, but it does yield a reasonable 1st approximation of the muzzle velocity of the bullet.

- We can use the Generalized Compressibility EOS to show that, despite the molar volume, the gas behind the bullet actually behaves as an ideal gas. This fact allows us to solve the problem using the Ideal Gas EOS.
- We can determine the work done on the bullet by the air behind it using the relationship for boundary work done by an ideal gas as it expands isothermally.
- The bullet does work on the surrounding air in a constant pressure process. So, we can evaluate this work term using the formula for isobaric compression of an ideal gas.
- Finally, we can apply the 1st Law to the bullet. There is no heat exchanged and no change in the internal energy or potential energy of the bullet. The only remaining terms are the two work terms we already know how to determine and the change in kinetic energy. The initial velocity is zero, so the only unknown left in the 1st Law equation is the final velocity of the bullet as it leaves the barrel of the gun !

Diagram: The diagram in the problem statement is adequate.

| Given: | $\mathrm{V}_{1}$ | $1.5 \mathrm{E}-06$ | $\mathrm{~m}^{3}$ | $\mathrm{P}_{2}$ | 100 | kPa |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{P}_{1}$ | 1200 | kPa |  |  |  |
|  | $\mathrm{T}_{1}$ | 29 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{c}}$ | 132.5 | K |
|  | $\mathrm{~m}_{\mathrm{B}}$ | 0.02 | kg | $\mathrm{P}_{\mathrm{c}}$ | 3770 | kPa |
|  |  |  |  |  |  |  |
| Find: | $\mathrm{V}_{2}$ | $? ? ?$ | $\mathrm{~m}^{3}$ | $\mathrm{~W}_{\text {on surr }}$ | $? ? ?$ | J |
|  | $\mathrm{~W}_{\text {on bullet }}$ | $? ? ?$ | J | $\mathrm{~V}_{2}$ | $? ? ?$ | $\mathrm{~m} / \mathrm{s}$ |

## Assumptions:

- For purposes of computing the work done on the bullet, you may treat the air inside the cylinder as an ideal gas. This is not entirely accurate because the initial pressure is so high.
- Assume that the air in the barrel is initially in an equilibrium state.
- Assume that the air in the barrel as the bullet leaves the gun is also in an equilibrium state.
- Assume the process is isothermal.
- For estimation purposes, assume that the process is a quasi-equilibrium process. This assumption will yield the maximum muzzle velocity that the bullet could attain.
- Assume that the air within the system is a closed system until the bullet leaves the gun.

Part c.)

- If the temperature of the bullet remains constant, then its internal energy does not change.
- Changes in the gravitational potential energy of the bullet are negligible, especially if the gun is fired horizontally !
- Heat transfer to or from the bullet is negligible if the process is isothermal.


## Equations / Data / Solve:

Part a.) Begin by using the initial state to determine the number of moles of air inside the barrel. This remains constant until the bullet leaves the gun and that is the time interval in which we are interested.


Reduced temperature and pressure are required in order to use the compressibility charts to determine the compressibility, z :

| $T_{R}=\frac{T}{T_{c}}$ | Eqn 3 |  |  |  | $\mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\mathrm{c}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R | 8.314 | J/mol-K | $\mathrm{z}_{1}$ | 1 | (Because $\mathbf{P}_{\mathbf{c}}$ is so high) |
| $\mathrm{T}_{\mathrm{R} 1}$ | 2.28 |  |  |  |  |
| $\mathrm{P}_{\mathrm{R} 1}$ | 0.318 |  | n | 7.17E-04 | moles |
| $\mathrm{T}_{\mathrm{R} 2}$ | $\mathrm{T}_{\mathrm{R} 1}$ |  | $\mathrm{V}_{1}$ | 2.1E-03 | $\mathrm{m}^{3} / \mathrm{mol}$ |
| $\mathrm{P}_{\mathrm{R} 2}$ | 0.027 |  | $\mathrm{z}_{2}$ | 1 | (Because $\mathbf{P}_{\mathrm{c}}$ is so high) |

Since $\mathbf{Z}=\mathbf{1}$ throughout the process, it is safe to treat air as an ideal gas throughout this process.
This is a surprise since the molar volume is $2.5 \mathrm{~L} / \mathrm{mol}$ and that is less than $5 \mathrm{~L} / \mathrm{mol}$.
The process is assumed to be isothermal and we discovered that the air could be treated as an ideal gas. Therefore:

| $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ | Eqn 5 | or : | $V_{2}=V_{1} \frac{P_{1}}{P_{2}}$ |  | Eqn 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{2}$ | 1.80E-05 | $\mathrm{m}^{3}$ |
| $\mathbf{m}=\mathbf{n} \mathbf{M W}$ | Eqn 7 |  | $\mathrm{MW}_{\text {air }}$ | 28.97 | g/mole |
|  |  |  | m | 0.0208 | g |

Part b.) Next, we can calculate the work done by the air, on the bullet using the work equation derived for isothermal processes like this one:

$$
W=\int_{V_{1}}^{V_{2}} P d V=P_{1} V_{1} \operatorname{Ln}\left(\frac{V_{2}}{V_{1}}\right)=P_{1} V_{1} \operatorname{Ln}\left(\frac{P_{1}}{P_{2}}\right)
$$

The bullet does work on the surrounding air against a constant restraining pressure, $\mathbf{P}_{\text {atm }}$. Therefore:

$$
\begin{equation*}
\mathbf{W}_{\text {on surr }}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathbf{P d V}=\mathbf{P}_{\mathrm{atm}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{Eqn 9}
\end{equation*}
$$

| $W_{\text {on surr }}$ | 1.650 | $J$ |
| :--- | :--- | :--- |

Part c.) In order to determine the muzzle velocity of the bullet, we must determine the change in the kinetic energy of the bullet as a result of the net amount of work done on it.
We can do this by applying the 1st Law, using the bullet as our system.

$$
\begin{equation*}
\mathrm{Q}-\mathrm{W}_{\text {net }}=\Delta \mathbf{U}+\Delta \mathrm{E}_{\mathrm{kin}}+\Delta \mathrm{E}_{\mathrm{pot}} \tag{Eqn 10}
\end{equation*}
$$

The net work is the difference between the work done on the surroundings and the work done by the bullet.

$\mathbf{W}_{\text {net }}$
-2.823 J

Solving for $\mathbf{v}_{\mathbf{2}}$ :

$$
\begin{equation*}
\mathbf{v}_{2}=\sqrt{-W_{\text {net }} \frac{\mathbf{2} \mathbf{g}_{\mathrm{c}}}{\mathbf{m}_{\mathrm{B}}}} \tag{Eqn 12}
\end{equation*}
$$

| $\mathrm{v}_{2}$ | $16.80 \mathrm{~m} / \mathrm{s}$ |
| :--- | :--- |

Verify: The ideal gas assumptions were shown to be valid using the Generalized Compressibility EOS.
The remaining assumptions are reasonable, but cannot be verified using only the information given in the problem statement.

Answers :

| $\mathrm{V}_{2}$ | $1.80 \mathrm{E}-05$ | $\mathrm{~m}^{3}$ |
| :---: | :---: | :---: |
| $\mathrm{~W}_{\text {on bullet }}$ | 4.47 | J |


| $\mathrm{W}_{\text {on surr }}$ | 1.65 | J |
| :---: | :---: | :---: |
| $\mathrm{~V}_{2}$ | 16.8 | $\mathrm{~m} / \mathrm{s}$ |

4E-1
Isobaric Expansion of Steam in a Closed System
Steam is contained in a piston and cylinder device with a free-floating piston. Initially, the steam occupies a volume of 0.18 $\mathrm{m}^{3}$ at a [pressure of 500 kPa .

The steam is slowly heated until the temperature is $400^{\circ} \mathrm{C}$, while the pressure remains constant. If the cylinder contains $0.65 \mathbf{k g}$ of steam, determine the heat transfer and the work in $\mathbf{k J}$ for this process.

Read: We know the values of two intensive variables for state 1: $\mathbf{P}$ and specific volume, so we can determine the values of all other properties in this state.

We know the values of two intensive variables for state 2 : $\mathbf{T}$ and $\mathbf{P}$, so we can determine the values of all other properties in this state.

Therefore we can calculate $\Delta \mathbf{U}$ directly.
We can also use the definition of work for an isobaric process to evaluate $\mathrm{W}_{12}$.
Once we know $\mathbf{W}_{12}$ and $\Delta \mathbf{U}$, we can use the 1st Law to evaluate $\mathbf{Q}_{12}$.

| Given: | $\mathrm{V}_{1}$ | 0.18 | $\mathrm{~m}^{3}$ | Find: | $\mathrm{Q}_{12}$ | ??? | kJ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | m | 0.65 | kg |  | $\mathrm{~W}_{12}$ | ??? | kJ |
|  | $\mathrm{P}_{1}$ | 500 | kPa |  |  |  |  |
|  | $\mathbf{P}_{2}$ | 500 | $\mathbf{k P a}$ |  |  |  |  |
|  | $\mathrm{~T}_{2}$ | 300 | ${ }^{\circ} \mathrm{C}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |

Diagram:


Assumptions: 1- Changes in kinetic and potential energies are negligible.
2- The process is a quasi-equilibrium process.

## Equations / Data / Solve:

Choose the water inside the cylinder as the system.
Apply the integral form of the 1 st Law to the process:

$$
\mathbf{Q}_{12}-W_{12}=\Delta U+\Delta E_{\text {kin }}+\Delta E_{\text {pot }}
$$

If we assume that changes in kinetic and potential energies are negligible, then Eqn 1 simplifies to :

$$
\begin{equation*}
\mathbf{Q}_{12}-\mathbf{W}_{12}=\Delta \mathbf{U}=\mathbf{U}_{2}-\mathbf{U}_{1}=\mathbf{m}\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}\right) \tag{Eqn 2}
\end{equation*}
$$

We can evaluate $\mathbf{W}_{12}$ from the definiton of work applied to an isobaric process.

$$
\begin{equation*}
W_{12}=\int_{1}^{2} P d V=P \int_{1}^{2} d V=P\left(V_{2}-V_{1}\right)=m P\left(\hat{V}_{2}-\hat{V}_{1}\right) \tag{Eqn 3}
\end{equation*}
$$

Let's combine Eqns 2 and 3:

$$
\begin{equation*}
Q_{12}=m\left[\left(\hat{U}_{2}-\hat{U}_{1}\right)+P\left(\hat{V}_{2}-\hat{V}_{1}\right)\right]=m\left(\hat{H}_{2}-\hat{H}_{1}\right) \tag{Eqn 4}
\end{equation*}
$$

We still need to lookup the same amount of data in the Steam Tables, $\mathbf{V}$ and $\mathbf{H}$, but the calculations are just a little bit simpler and faster using $\mathbf{H}$ than using $\mathbf{U}$.
Before we can look up $\mathbf{H}$, we need to determine the state of the water in the cylinder.

|  | $\tilde{\mathbf{V}}_{1}=\frac{\mathbf{V}_{1}}{\mathrm{~m}_{1}}$ | $\mathrm{~V}_{1}$ | $0.2769 \mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | :--- | :--- | ---: |
| Calculate $\mathrm{V}_{1}$ from : |  |  |  |
| At $500 \mathrm{kPa}:$ |  | $\mathrm{V}_{\text {sat liq }}$ | $0.0010925 \mathrm{~m}^{3} / \mathrm{kg}$ |
|  |  | $\mathrm{V}_{\text {sat vap }}$ | $0.37481 \mathrm{~m}^{3} / \mathrm{kg}$ |

Since $\mathbf{V}_{\text {sat liq }}<\mathbf{V}_{\mathbf{1}}<\mathbf{V}_{\text {sat vap }}$, we conclude that a saturated mixture exists in the cylinder at state $\mathbf{1}$.
So, we must next evaluate the quality of the steam.

$$
\mathbf{x}=\frac{\mathbf{v}-\mathbf{v}_{\text {sat liq }}}{\mathbf{v}_{\text {sat vap }}-\mathbf{v}_{\text {sat liq }}}
$$

Eqn 5
x
0.7381
kg vap/kg

Then, we can use the quality to evaluate the specific enthalpy :

$$
\hat{H}_{1}=\mathbf{x}_{1} \hat{H}_{\text {sat vap }}+\left(1-\mathbf{x}_{1}\right) \hat{H}_{\text {sat liq }}
$$

| $\mathrm{H}_{\text {sat liq }}$ | 640.09 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

$\begin{array}{llllll}H_{\text {sat vap }} & 2748.1 & \mathrm{~kJ} / \mathrm{kg} & \mathrm{H}_{1} & 2196.0 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
Next, we need to determine the phases present in State 2. We can do this by comparing $\mathbf{T}_{2}$ to $\mathrm{T}_{\text {sat }}\left(\mathbf{P}_{2}\right)$. In the saturation pressure table of the Steam Tables we find:
$\mathrm{T}_{\text {sat }}\left(\mathrm{P}_{2}\right)$
$151.8{ }^{\circ} \mathrm{C}$
Because $\mathbf{T}_{2}>\mathbf{T}_{\text {sat }}\left(\mathbf{P}_{2}\right)$, state $\mathbf{2}$ is a superheated vapor.
From the NIST Webbook or the Superheated Tables of the Steam Tables we obtain the following data:
$\begin{array}{llllll}V_{2} & 0.52261 & \mathrm{~m}^{3} / \mathrm{kg} & \mathrm{H}_{2} & 3064.6 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
Now, we can plug values back into Eqns 3 and 4 to evaluate $\mathbf{Q}_{12}$ and $\mathbf{W}_{12}$ :
$W_{12}$
79.8 kJ
$Q_{12}$
564.6 kJ

Verify: The assumptions made in this problem solution cannot be verified.

Answers : | $\mathrm{W}_{12}$ | 80 | kJ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A gas in a piston and cylinder device undergoes three quasi-equilibrium processes to complete a thermodynamic cycle. The following information is known about the three steps that make up the cycle.
Process 1-2: constant volume, $\mathrm{V}=37 \mathrm{~L}, \Delta \mathrm{U}_{12}=31.6 \mathrm{~kJ}$
Process 2-3: expansion with $\mathrm{PV}=$ constant and $\Delta \mathrm{U}_{23}=0$
Process 3-1: constant pressure, $\mathrm{P}=155 \mathrm{kPa}, \mathbf{W}_{31}=-15.1 \mathrm{~kJ}$
Assume changes in kinetic and potential energies are negligible.
a.) Sketch the path for the cycle on a PV Diagram
b.) Calculate the total boundary work for the cycle in $\mathbf{k J}$
c.) Calculate $\mathbf{Q}_{23}$ in $\mathbf{k J}$
d.) Calculate $\mathbf{Q}_{\mathbf{3 1}}$ in $\mathbf{k J}$
e.) Determine whether this cycle is a power cycle or a refrigeration/heat-pump cycle and calculate the COP or thermal efficiency.

Read: Work your way around the cycle, step by step. Sum the boundary work for the three steps to determine $\mathbf{W}_{\text {cycle }}$. Write and solve the 1 st Law for steps 2-3 and 3-1 to determine $\mathbf{Q}_{23}$ and $\mathbf{Q}_{31}$.
Write and solve the 1st Law for steps 2-3 and 3-1 to determine $\mathbf{Q}_{12}$ and sum the $\mathbf{Q}$ 's to evaluate $\mathbf{Q}_{\text {cycle }}$.
Check your work using $\mathbf{Q}_{\text {cycle }}=\mathbf{W}_{\text {cycle }}$ because $\boldsymbol{\Delta} \mathbf{U}_{\text {cycle }}=\mathbf{0}$.
Power cycle is $\mathbf{W}_{\text {cycle }}>\mathbf{0}$. Refrigeration or HP cycle of $\mathbf{W}_{\text {cycle }}<\mathbf{0}$.

Given:

| Step 1-2: | $\mathrm{V}_{1}=\mathrm{V}_{2}$ | 0.037 | $\mathrm{~m}^{3}$ |
| :--- | :--- | :---: | :--- |
|  | $\mathrm{U}_{2}-\mathrm{U}_{1}$ | 31.6 | kJ |

Step 3-1:

| $P_{3}=P_{1}$ | 155 | $k P a$ |
| :--- | :---: | :--- |
| $W_{31}$ | -15.1 | $k J$ |

Step 2-3 $\quad \mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}=\mathbf{P}_{\mathbf{3}} \mathbf{V}_{\mathbf{3}}$ $\mathrm{U}_{3}=\mathrm{U}_{2}$

Diagram: See the answer to part (a), below.

Find:

| a.) | Sketch the cycle on a PV Diagram. | d.) | Q $_{31}$ | ??? kJ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b.) | $\mathbf{W}_{\text {cycle }}$ | ??? | kJ | e.) | Power or Refrigeration Cycle ? |
| c.) | $\mathrm{Q}_{23}$ | ??? | kJ |  |  |

## Assumptions:

1- The gas is a closed system
2- Boundary work is the only form of work interaction
3 - $\quad$ Changes in kinetic and potential energies are negligible.

## Equations / Data / Solve:

Part a.)


Part b.) Since $\mathbf{W}_{\text {cycle }}=\mathbf{W}_{12}+\mathbf{W}_{23}+\mathbf{W}_{31}$, we will work our way around the cycle and calculate each work term along the way.

Because the volume is constant in step 1-2: $\quad \mathbf{W}_{12} \quad \mathbf{0} \mathbf{k J}$
In step 2-3: P V = C , therefore, the definition of boundary work becomes:

$$
\mathbf{W}_{23}=\int_{V_{2}}^{V_{3}} P d V=C \int_{V_{2}}^{V_{3}} \frac{d V}{V}=C \operatorname{Ln} \frac{V_{3}}{V_{2}}
$$

But, we don't know $\mathbf{V}_{\mathbf{3}}$ !
Perhaps we can use $\mathbf{W}_{31}$ to detemine $\mathbf{V}_{3}$.
Step 3-1 is isobaric, therefore, the definition of boundary work becomes:
$\mathbf{W}_{31}=\int_{\mathbf{V}_{3}}^{\mathrm{V}_{1}} \mathbf{P d V}=\mathbf{P}_{\mathbf{3}}\left(\mathbf{V}_{1}-\mathbf{V}_{\mathbf{3}}\right)$
Eqn 2

Solve this equation for $\mathbf{V}_{3}$ :

$$
\mathbf{V}_{3}=\mathbf{V}_{1}-\frac{\mathbf{W}_{31}}{\mathbf{P}_{3}}
$$

Eqn 3 $\mathrm{V}_{3} \quad 0.1344 \mathrm{~m}^{3}$
Now, plug $\mathbf{V}_{\mathbf{3}}$ and $\mathbf{C}=\mathbf{P}_{3} \mathbf{V}_{\mathbf{3}}$ into Eqn $\mathbf{1}$ to determine $\mathbf{W}_{23}$ :

Sum the work terms for the three steps to get $\mathrm{W}_{\text {cycle }}$ :

| $\mathrm{W}_{23}$ | $\mathbf{2 6 . 9}$ | kJ |
| :--- | :---: | :--- |
| $\mathrm{~W}_{\text {cycle }}$ | 11.78 | kJ |

Part c.) Write the 1st Law for step 2-3:

$$
Q_{23}-W_{23}=U_{3}-U_{2}=0
$$

Eqn 4
$Q_{23}=W_{23} \quad 26.88 \mathrm{~kJ}$

Part d.) Write the 1st Law for step 3-1:

$$
Q_{31}-W_{31}=U_{1}-U_{3}
$$

But, $\mathbf{U}_{\mathbf{2}}=\mathbf{U}_{\mathbf{3}}$ :

$$
Q_{31}-W_{31}=U_{1}-U_{3}=U_{1}-U_{2}=-\left(U_{2}-U_{1}\right)
$$

Solve for $\mathbf{Q}_{31}$ :
$Q_{31}=W_{31}-\left(U_{2}-U_{1}\right)$
Eqn 7
Plug in the given values :

| $\mathrm{Q}_{31}$ | -46.70 | kJ |
| :--- | :--- | :--- |

Part e.) First, we should determine $\mathbf{Q}_{12}$ from the 1st Law:

$$
\begin{array}{llll}
Q_{12}-W_{12}=U_{2}-U_{1}=0 & & \text { Eqn 8 } \\
Q_{12}=U_{2}-U_{1} & & & \text { Eqn 9 } \\
& Q_{12} & 31.6 & \mathrm{~kJ} \\
Q_{\text {cycle }}=Q_{12}+Q_{23}+Q_{31} & & & \text { Eqn 10 }
\end{array}
$$

Since $\mathbf{Q}_{\text {cycle }}>0$ and $W_{\text {cycle }}>0$, this is a power cycle!
Notice that $\mathbf{Q}_{\text {cycle }}=\mathbf{W}_{\text {cycle }}$ because $\Delta \mathbf{U}_{\text {cycle }}=\mathbf{0}$.
Thermal Efficiency is defined by : $\quad \eta_{\text {th }}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{\mathbf{H}}}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{12}+\mathbf{Q}_{23}}=\frac{\mathbf{Q}_{\text {cycle }}}{\mathbf{Q}_{12}+\mathbf{Q}_{\mathbf{2 3}}}$

| $\eta_{\text {th }}$ | 20.14 | $\%$ |
| :--- | :--- | :--- |

Verify: The assumptions made in this problem solution cannot be verified. But all of these assumptions are pretty solid.
Answers: a.)

| See the sketch, above. |  |  |
| :---: | :---: | :---: |
| $\mathrm{W}_{\text {cycle }}$ | 11.8 | kJ |
| $\mathbf{Q}_{23}$ | 26.9 | kJ |

d.)
e.)

| $\mathbf{Q}_{31}$ | -46.7 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| This is a Power Cycle. |  |  |  |  |
| $\eta_{\text {th }}$ |  |  | $\mathbf{2 0 . 1}$ | $\%$ |

4F-2
Efficiency of a Power Cycle
2 pts

## A power cycle produces $2.4 \times 10^{8}$ Btu and rejects $7.1 \times 10^{8}$ Btu of heat to the surroundings. Calculate the thermal efficiency

 of the cycle.Read : This one is a straightforward application of the definition of the the 1st Law and the efficiency of a power cycle.

Diagram :


Given:
$\mathrm{W}_{\text {cycle }}$
$2.4 \mathrm{E}+08$
Btu
$Q_{C}$
7.1E+08

Btu

Find: $\quad \eta_{\text {cycle }}$ ???

Assumption: 1- The cycle only exchanges heat with the two thermal reservoirs.
Equations / Data / Solve:
1st Law applied to the heat engine:

$$
\begin{equation*}
\mathbf{W}_{\text {cycle }}=\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathbf{c}} \tag{Eqn 1}
\end{equation*}
$$

Definition of thermal efficiency :

$$
\eta=\frac{W_{\text {cycle }}}{Q_{H}}
$$

Degree of freedom analysis: $\mathbf{2}$ eqns in $\mathbf{2}$ unknowns: $\boldsymbol{Q}_{\boldsymbol{H}}$ and $\boldsymbol{\eta}$.
Solve Eqn 1 for $\mathbf{Q}_{\mathbf{H}}$ :

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{H}}=\mathbf{W}_{\text {cycle }}+\mathbf{Q}_{\mathbf{C}} \tag{Eqn 3}
\end{equation*}
$$

$\mathrm{Q}_{\mathrm{H}} \quad 9.5 \mathrm{E}+08$ Btu

Next, plug numbers into Eqn 2 :

| $\eta$ | 0.2526 |
| :--- | :--- |

Verify assumption: The only assumption cannot be verified.
Answer questions:

| $\eta$ | 25.3 | $\%$ |
| :--- | :--- | :--- |

4F-
Coefficient of Performance of a Refrigeration Cycle
3 pts
An industrial refrigerator rejects heat at a rate of $24,750 \mathrm{~kJ} / \mathrm{min}$ to the surroundings. If the refrigeration cycle has a COP of $\beta$ $=3.3$, determine $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{W}_{\text {cycle }}$, each in $\mathbf{k J} / \mathbf{m i n}$.

Read :
This one is a straightforward application of the definition of the the 1st Law and the COP of a refrigeration cycle.

Diagram :


Given:

kJ/min
Find:
$\mathbf{Q}_{\mathrm{C}}$
$\mathbf{W}_{\text {cycle }}$
???
???
$\underset{k J / m i n}{k J}$
Assumption: - The cycle only exchanges heat with the two thermal reservoirs.
Equations / Data / Solve:
1st Law applied to the refrigerator:

$$
\mathbf{Q}_{\mathbf{H}}=\mathbf{W}_{\text {cycle }}+\mathbf{Q}_{\mathbf{c}}
$$

Definition of COP for a refrigerator :

$$
\begin{equation*}
\boldsymbol{\beta}=\frac{\mathbf{Q}_{\mathrm{c}}}{\mathbf{W}_{\mathrm{cycle}}} \tag{En 2}
\end{equation*}
$$

Degree of freedom analysis: $\mathbf{2}$ eqns in $\mathbf{2}$ unknowns: $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{W}_{\text {cycle }}$ -
Solve Eqn 2 for $\mathbf{Q}_{\mathbf{C}}$ and use the result to eliminate $\mathbf{Q}_{\mathbf{C}}$ from Eqn 1 :

$$
\begin{equation*}
\mathbf{Q}_{\mathrm{c}}=\beta \mathbf{W}_{\text {cycle }} \quad \text { Eqn 3 } \quad \mathbf{Q}_{\mathrm{H}}=\mathbf{W}_{\text {cycle }}+\boldsymbol{\beta} \mathbf{W}_{\text {cycle }} \tag{Eqn 4}
\end{equation*}
$$

Next, solve Eqn 4 for $\mathbf{W}_{\text {cycle }}$ in terms of the known quantities $\mathbf{Q}_{\mathbf{H}}$ and $\beta$.

$$
\begin{equation*}
W_{\text {cycle }}=\frac{Q_{H}}{\beta+1} \tag{Eqn 5}
\end{equation*}
$$

Plug numbers into Eqn 5 :
$\mathrm{W}_{\text {cycle }}$
$5755.8 \quad \mathrm{~kJ} / \mathrm{min}$
Now, use this value for $\mathbf{W}_{\text {cycle }}$ and the given value of $\beta$ in Eqn 3 to evaluate $\mathbf{Q}_{\mathbf{C}}$ :
$Q_{C} \quad 18994.2 \quad \mathrm{~kJ} / \mathrm{min}$
Verify: The only assumption cannot be verified.
Answers : $\mathrm{Q}_{\mathrm{C}}=19000 \mathrm{~kJ} / \mathrm{min}$

| $\mathrm{W}_{\text {cycle }}=$ | 5760 | $\mathrm{~kJ} / \mathrm{min}$ |
| :--- | :--- | :--- |

4F-4
Heat and Work for a Cycle Executed in a Closed System Containing R-134a
8 pts
Ammonia in a piston-and-cylinder device undergoes a 3-step thermodynamic cycle made up of the following three quasiequilibrium processes.

Step 1-2: Isochoric heating from $-20^{\circ} \mathrm{C}$ and 150 kPa up to $50^{\circ} \mathrm{C}$
Step 2-3: Isothermal compression until the quality is 0.55 kg vap/kg, $\mathrm{Q}_{23}=-91.7 \mathrm{~kJ}$
Step 3-1: Adiabatic expansion
a.) Sketch the process path for this cycle on a PV Diagram. Put a point on the diagram for each state and label it. Be sure to include and label all the important features for a complete PV Diagram for this system
b.) Calculate $\mathbf{Q}_{\text {cycle }}$ and $\mathbf{W}_{\text {cycle }}$ in $\mathbf{k J} / \mathbf{k g}$
c.) Determine whether this cycle is a power cycle or a refrigeration/heat-pump cycle? Explain your reasoning.

Read: We are given $\mathbf{T}_{1}$ and $\mathbf{P}_{1}$, so we can determine any and all properties of the system using the Ammonia Tables. In particular, we can evaluate the specific volume and we know that this does not change in step 1-2. This gives us a 2nd intensive property for state 2 and allows us to evaluate all of the properties of state $\mathbf{2}$. We expect $T_{2}>T_{1}$. Step 2-3 is an isothermal compression to a quality of $\mathbf{x}_{3}=0.55$. Because $T_{3}=T_{2}$, we will be able to evaluate all of the properties of state 3, again using the Ammonia Tables. In each of the three steps, we know the value of either the heat or the work. $\mathbf{W}_{12}=\mathbf{0}$ because the process is isochoric. $\mathbf{Q}_{23}$ is given and $\mathbf{Q}_{31}$ $=\mathbf{0}$ because the process is adiabatic. So, when we apply the 1 st Law to each step, there is just one unknown and we can evaluate it. Once we know $\mathbf{Q}$ and $\mathbf{W}$ for each step, we can determine $\mathbf{Q}_{\text {cycle }}$ and $\mathbf{W}_{\text {cycle }}$ because they are the sum of the Q's and W's for the steps that make up the cycle, respectively.

| Given : | T | -20 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{1}$ | 150 | kPa |
|  | T | 50 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{T}_{3}$ | 50 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{x}_{3}$ | 0.55 | kg vap/kg |
|  | $\mathrm{Q}_{23}$ | -91.7 | kJ/kg |
|  | $\mathrm{Q}_{31}$ | 0 | kJ |

Find: |  | $\mathrm{Q}_{12}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  | $\mathrm{W}_{23}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |  |
|  | $\mathrm{W}_{31}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |  |
|  | $\mathrm{Q}_{\text {cycle }}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |  |
|  | $\mathrm{W}_{\text {cycle }}$ | ??? | $\mathrm{kJ} / \mathrm{kg}$ |  |  |  |  |
|  | Power or Refrigeration |  |  |  |  |  | Cycle ? |

## Diagrams :



## Part a.)



## Assumptions:

$$
\begin{array}{ll}
1- & \text { Changes in kinetic and potential energies are } \underline{\text { negligible. }} \\
2- & \text { Boundary work is the only form of work that crosses the system boundary. }
\end{array}
$$

## Equations / Data / Solve :

Part b.) Let's begin by writing the 1st Law for each of the three steps that make up the cycle, assuming that changes in potential and kinetic energies are negligible.

Step 1-2:

$$
\hat{\mathbf{Q}}_{12}-\hat{W N}_{12}=\Delta \hat{\mathbf{U}}=\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}
$$

Eqn 1

Step 2-3:

$$
\hat{\mathbf{Q}}_{23}-\hat{\mathbf{W}}_{23}=\Delta \hat{\mathbf{U}}=\hat{\mathbf{U}}_{3}-\hat{\mathbf{U}}_{2}
$$

Step 3-1 :

$$
\hat{\mathbf{Q}}_{31}-\hat{\mathbf{W}}_{31}=\Delta \hat{\mathbf{U}}=\hat{\mathbf{U}}_{1}-\hat{\mathbf{U}}_{3}
$$

Eqn 3

Step 1-2 is isochoric, so no boundary work occurs. If we assume that boundary work is the only form of work interaction in this cycle, then $\mathbf{W}_{\mathbf{1 2}}=\mathbf{0} . \mathbf{Q}_{\mathbf{3 1}}=\mathbf{0}$ because step $\mathbf{3 - 1}$ is adiabatic.

We can solve Eqns 1-3 to evaluate the unknowns $\mathbf{Q}_{12}, \mathbf{W}_{23}$ and $\mathbf{W}_{31}$.
Step 1-2:

$$
\hat{\mathbf{Q}}_{12}=\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}
$$

Eqn 4

Step 2-3 :

$$
\hat{\mathbf{W}}_{23}=\hat{\mathbf{Q}}_{23}+\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{3}
$$

Step 3-1:

$$
\begin{equation*}
\hat{\mathbf{W}}_{31}=\hat{\mathbf{U}}_{3}-\hat{\mathbf{U}}_{1} \tag{Eqn 6}
\end{equation*}
$$

Our next step must be to determine the value of the specific internal energy at states 1, 2 and 3 because, once we know these, we can use Eqns 4-6 to evaluate the unknowns $\mathbf{Q}_{12}, \mathbf{W}_{23}$ and $\mathbf{W}_{31}$.

Let's begin with state 1. First, we must determine the phase or phases that exist in state 1. We can accomplish this by comparing $\mathbf{P}_{1}$ to $\mathbf{P}_{\text {sat }}\left(\mathbf{T}_{1}\right)$.

$$
\mathbf{P}_{\text {sat }}\left(\mathrm{T}_{1}\right) \quad 190.08 \mathrm{kPa}
$$

Since $\mathbf{P}_{\mathbf{1}}<\mathbf{P}_{\text {sat }}\left(\mathbf{T}_{\mathbf{1}}\right)$, we conclude that a superheated vapor exists in the cylinder at state 1.
We can determine $\mathbf{U}_{1}$ from the Superheated Ammonia Tables. We can also determine $\mathbf{V}_{1}$ because we know $\mathbf{V}_{\mathbf{2}}$ $=\mathrm{V}_{1}$ and the knowledge of this 2nd intensive variable for state $\mathbf{2}$ will allow us to evaluate $\mathbf{U}_{2}$.
$\mathbf{V}_{1}=\mathbf{V}_{2}=0.79779 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{U}_{1} \quad 1303.8 \mathrm{~kJ} / \mathrm{kg}$
Next, let's work on state 2. We know the value of $\mathbf{2}$ intensive variables, $\mathbf{T}_{\mathbf{2}}$ and $\mathbf{V}_{2}$, and we know that if a superheated vapor expands at constant volume, it must still be a superheated vapor. Consequently, we can use the Superheated Ammonia Tables to determine $\mathbf{U}_{2}$ (and any other properties at state 2 that we want).

At $\mathrm{T}_{2}=50^{\circ} \mathrm{C}$, it turns out that $\mathrm{V}_{2}=0.79779 \mathrm{~m}^{3} / \mathbf{k g}$ falls between $\mathbf{1 0 0} \mathbf{~ k P a}$ and $\mathbf{2 0 0} \mathbf{~ k P a}$, so we must interpolate to determine $\mathbf{U}_{2}$.

At $\mathrm{T}_{2}=50^{\circ} \mathrm{C}$ :

| $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{U}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{P}(\mathrm{kPa})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1.56571 | 1425.2 | 100 |  |  |  |  |
| 0.79779 | $\mathrm{U}_{2}$ | $\mathrm{P}_{2}$ |  | $\mathrm{U}_{2}$ | 1421.8 | $\mathrm{~kJ} / \mathrm{kg}$ |
| 0.77679 | 1421.7 | 200 |  | $\mathrm{P}_{2}$ | 197.3 | kPa |

Now, let's work on state 3. We know the temperature and the quality, so we can determine $\mathbf{U}_{3}$ using :

$$
\hat{\mathbf{U}}_{3}=\mathbf{x}_{3} \hat{\mathbf{U}}_{\text {sat vap }}+\left(\mathbf{1}-\mathbf{x}_{3}\right) \hat{\mathbf{U}}_{\text {sat liq }}
$$

We can use the Saturated Ammonia Tables to determine $\mathbf{U}_{\text {sat vap }}$ and $\mathbf{U}_{\text {sat liq }}$ at $50^{\circ} \mathrm{C}$ and then we can plug numbers into Eqn 7 to evaluate $\mathbf{U}_{3}$.

| $\mathrm{U}_{\text {sat liq }}$ | 171.41 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{U}_{\text {sat vap }}$ | 263.69 | $\mathrm{~kJ} / \mathrm{kg}$ |$\quad \mathrm{U}_{3} \quad \mathbf{2 2 2 . 2} \mathrm{~kJ} / \mathrm{kg}$

Now, we can go back and plug the values of the specific internal energies into Eqns $4-6$ to evaluate the unknowns $\mathbf{Q}_{12}, \mathbf{W}_{23}$, and $\mathbf{W}_{31}$.

| $Q_{12}$ | 118.04 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{W}_{23}$ | 1107.94 |
| :--- | :--- | :--- | ---: | :--- |
|  |  | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |
|  | $\mathrm{W}_{31}$ | -1081.60 | $\mathrm{~kJ} / \mathrm{kg}$ |  |

Next, we need to evaluate the specific work and specific heat transfer for the entire cycle.
The specific work for the cycle is the sum of the specific work for each step.
The specific heat transfer for the cycle is the sum of the specific heat transfer for each step.
$Q_{\text {cycle }}$
26.34
kJ/kg
$\mathrm{W}_{\text {cycle }}$
$26.34 \mathrm{~kJ} / \mathrm{kg}$

Verify: The assumptions cannot be verified from the information in the problem statement alone.
Answers: Part a.) See the diagram, above.
Part b.)

|  | Q (kJ/kg) | $\mathbf{W}(\mathrm{kJ} / \mathrm{kg})$ |
| :--- | :---: | :---: |
| Step 1-2 | 118.0 | 0 |
| Step 2-3 | -91.7 | 1107.9 |
| Step 3-1 | 0 | -1081.6 |
| Cycle | 26.3 | 26.3 |

Part c.)
Because $\mathrm{W}_{\text {cycle }}>0$, this is a power cycle!


## The First Law of Thermodynamics: Open Systems

Many important processes take place in open systems. Application of the First Law of Thermodynamics to an open system leads to the rate form of the First Law. The concept of flow work is introduced and this allows us to eliminate internal energy terms in favor of enthalpy terms in the First Law.

The next part of Chapter 5 shows how the First Law can be used to analyze a wide variety of steady-state processes including pumps, compressors, turbines, nozzles and heat exchangers.

Chapter 5 concludes with a discussion of transient or unsteady-state processes. We learn how to analyze transient uniform state, uniform flow processes.

## Conservation of Mass

- Mass is neither created nor destroyed
- Integral Mass Balance on an Open System

$$
\Delta \mathbf{m}_{\mathrm{sys}}=\sum_{\mathrm{i}=1}^{\# \text { Feeds }} \mathbf{m}_{\mathrm{in}, \mathrm{i}}-\sum_{\mathrm{j}=1}^{\text {\#effluents }} \mathbf{m}_{\text {out }, \mathrm{j}}
$$

- Differential Mass Balance on an Open System

$$
\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\sum_{\mathrm{i}=1}^{\text {\#feeds }} \dot{\mathbf{m}}_{\mathrm{in}, \mathrm{i}}-\sum_{\mathrm{j}=1}^{\text {\#effluents }} \dot{\mathbf{m}}_{\text {out }, \mathrm{j}}
$$

- Rate of change of mass in the system = total rate at which mass enters the system - total rate at which mass leaves the system
- A feed stream enters the system
- An effluent stream leaves the system
- These equations look complicated, but, in practice, they are pretty simple.


## Flow Rates and Velocity

- Specific Volume: $\hat{\mathbf{V}}=\frac{\mathbf{V}}{\mathrm{m}}$ or: $\hat{\mathbf{V}}=\frac{\dot{\mathbf{V}}}{\dot{\mathrm{m}}}$
$\diamond$ Therefore: $\quad \dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}}{\hat{\mathbf{V}}}$
- Volumetric Flow Rate: $\dot{\mathbf{V}}=\int \mathbf{v} \mathrm{dA}=2 \pi \int_{0}^{\mathrm{R}} \mathbf{v} \mathrm{dr}=\langle\mathbf{v}\rangle \mathrm{A}_{\text {cross }}$
$\diamond$ Where:
$<\mathrm{v}>=$ average fluid velocity
$\mathrm{A}_{\text {cross }}=$ cross-sectional area for flow
- Conclusion:

$$
\dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}}{\hat{\mathbf{V}}}=\frac{\langle\mathbf{v}\rangle \mathbf{A}_{\text {cross }}}{\hat{\mathbf{V}}}
$$

## $1^{\text {st }}$ Law, Open Systems

- SISO = Single Inlet, Single Outlet
$\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}+\dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{U}}_{\text {in }}+\hat{\mathbf{E}}_{\text {kin, in }}+\hat{\mathbf{E}}_{\text {pot, in }}\right]-\dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{U}}_{\text {out }}+\hat{\mathbf{E}}_{\text {kin }, \text { out }}+\hat{\mathbf{E}}_{\text {pot, out }}\right]$ $\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\dot{\mathbf{m}}_{\text {in }}-\dot{\mathbf{m}}_{\text {out }}$
- At Steady-State nothing changes with respect to time



## Flow Work

## - Three main types of work in this course:

$\mathrm{W}_{\mathrm{b}}$ is boundary work
$\mathrm{W}_{\mathrm{s}}$ is shaft work

- Associated with the rotating shafts in fluid processing equipment
$\mathrm{W}_{\text {flow }}$ is flow work or inection work
- Work done to force fluid to flow into and out of the system
- Evaluating Net Flow Work

$$
\begin{aligned}
& \dot{\mathbf{W}}_{\text {flow }}=\dot{\mathbf{W}}_{\text {flow, in }}+\dot{\mathbf{W}}_{\text {flow,out }}=-\left(\mathbf{P}_{\text {in }} \mathbf{A}_{\text {in }}\right) \mathbf{v}_{\text {in }}+\left(\mathbf{P}_{\text {out }} \mathbf{A}_{\text {out }}\right) \mathbf{v}_{\text {out }} \\
& \dot{\mathbf{W}}_{\text {flow }}=(\mathbf{P} \dot{\mathbf{V}})_{\text {in }}-(\mathbf{P} \dot{\mathbf{V}})_{\text {in }}=\dot{\mathbf{m}}\left[(\mathbf{P} \hat{\mathbf{V}})_{\text {out }}-(\mathbf{P} \hat{\mathbf{V}})_{\text {in }}\right]=\dot{\mathbf{m}} \Delta(\mathbf{P} \hat{\mathbf{V}})
\end{aligned}
$$

- $\mathbf{1}^{\text {st }}$ Law : $\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{s}}-\dot{\mathbf{m}} \Delta(\mathbf{P} \hat{\mathbf{V}})=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{U}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{\mathbf{E}}_{\text {pot }}\right]$

$$
\dot{\mathbf{Q}}-\dot{\mathrm{W}}_{\mathrm{s}}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{\mathbf{E}}_{\text {pot }}\right]
$$



- $1^{\text {st }}$ Law, SS, SISO system
- No tricks.
- It is unusual to have boundary work in an open system.
- One boundary of the system would be required to move.
- This might be accomplished by a balloon or a bladder or a piston-and-cylinder device, but would be MOST unusual.
- The flow work gets combined with the change in internal energy and becomes the change in enthalpy.
- Shaft work is the work you need to put into a system to make a process proceed or it is the useful work you get out of a process.
- Flow work is not especially useful or interesting, so we split it away from the shaft work.
- In fact, the 1st Law is so often applied to SS, SISO systems that we tabulate a function that already takes flow work into account...and we call it enthalpy.
- Flow work is always present in flow systems, but we don't pay much attention to it because we cannot recover this work in a useful form.
- The bottom line is that for SS, SISO systems, enthalpy is the key property, not internal energy.
- It just saves you time, over and over again, to look up specific H instead of looking up BOTH specific $U$ and specific $V$.


## MIMO Processes

- MIMO = Multiple Inlet, Multiple Outlet
- $1^{\text {st }}$ Law :

- $1^{\text {st }}$ Law, SS :



- MIMO processes are common, but not too common in this course.
- Mixers and splitters are the only MIMO devices we will use in this course.
- We will learn more about them later in this class.
- MIMO processes are not nearly as challenging as the long equations on this page ight make you believe.


## Steady-State Processes

- In the real world, the goal is usually to operate flow processes at steady-state.
- Common steady-state flow processes:
- Nozzles \& Diffusers
$\diamond$ Turbines
$\diamond$ Pumps and Compressors
$\diamond$ Throttling Devices
$\diamond$ Heat Exchangers
$\diamond$ Mixing Chambers
$\diamond$ Pipes
- These are the processes we will analyze in this course.
- With these devices, engineers have built an amazing array of processes from jet airplanes to artificial hearts !


## Nozzles \& Diffusers



- Common Assumptions: $\Delta \hat{\mathrm{E}}_{\mathrm{pot}} \approx 0$
$\dot{\mathrm{Q}} \approx 0$
$\dot{\mathbf{W}}_{\mathrm{s}} \approx 0$
$\Delta \hat{\mathbf{H}}+\frac{\Delta \mathbf{v}^{2}}{2 \mathrm{~g}_{\mathrm{C}}}=\mathbf{0}$
- Nozzles and diffusers are usually relatively small and the fluid moves through it quickly
- Therefore, little change in potential energy occurs
- There is little area or time for significant heat transfer to occur
- Still, these assumptions are not always valid, so you need to pay attention and think !


## Turbines

- A turbine is a device which converts the energy of a flowing fluid into shaft work.
- Common Assumptions: $\Delta \hat{\mathbf{E}}_{\text {pot }} \approx 0$
$\Delta \hat{\mathbf{E}}_{\text {kin }} \approx 0$
$\dot{\mathrm{Q}} \approx 0$
- $\mathbf{1}^{\text {st }}$ Law :

$$
\dot{\mathbf{W}}_{\mathrm{s}}=-\dot{\mathrm{m}} \Delta \hat{\mathbf{H}}
$$

Changes in potential energy across a turbine are almost always negligible.

Changes in kinetic energy across a turbine are often important. Be careful !

Heat losses from a turbine are OFTEN significant as we will see later. Real turbines are not adiabatic.

As always, you need to pay attention and think!

But, when these assumptions are valid, the $1^{\text {st }}$ Law reduces to a nice, simple form.

## Pumps \& Compressors



- Pumps cause liquids to flow by raising the pressure
- Compressors cause gases to flow by raising the pressure
- Common Assumptions: $\Delta \hat{\mathrm{E}}_{\text {pot }} \approx 0$
$\Delta \hat{\mathbf{E}}_{\text {kin }} \approx 0$
$\dot{\mathrm{Q}} \approx 0$
- $\mathbf{1}^{\text {st }}$ Law :
$-\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$
- Changes in potential energy across a pump or compressor are almost always negligible.
- Changes in kinetic energy across a pump are negligible if the inlet and outlet pipe diameters are the same if the liquid is incompressible over the range of pressure from $P_{\text {in }}$ to $P_{\text {out. }}$
- Changes in kinetic energy across a compressor are often significant because the specific volume of a gas changes a great deal as the pressure changes. Be careful!
- Heat losses from a compressor are OFTEN significant as we will see later. Real compressors are not adiabatic.
- Pumps are usually assumed to be essentially adiabatic.
- As always, you need to pay attention and think !
- But, when these assumptions are valid, the $1^{\text {st }}$ Law reduces to a nice, simple form that should look familiar.


## Throttling Devices

- A common throttling device is a partially closed valve


Throttling Valve

- Other throttling devices include capillary tubes and porous plugs.
- Common Assumptions : $\Delta \hat{\mathrm{E}}_{\mathrm{pot}} \approx 0 \quad \Delta \hat{\mathrm{E}}_{\text {kin }} \approx 0$
$\dot{\mathrm{Q}} \approx 0 \quad \dot{\mathrm{~W}}_{\mathrm{s}} \approx 0$
- $1^{\text {st }}$ law :
$\Delta \hat{\mathbf{H}}=\mathbf{0}$
- The purpose of a throttling device is to drop the pressure by causing a lot of friction.
- I usually draw a valve when there is a throttling device in a system, whether the throttling device is a valve or not !
- In a home refrigerator, the throttling device is actually a long, small-diameter tube called a capillary tube. I still draw a throttling valve because they are easy to draw and it is very clear what the purpose of the valve is: to drop the pressure !
- Throttling devices are not always particularly close to adiabatic, so $\mathrm{Q} \sim 0$ may not always be a good assumption.
- The other assumptions are pretty solid unless the throttling device is enormous (unlikely) or the pipe diameter changes (possible) or you put a turbine of some sort in a capillary tube (silly).


## Heat Exchangers



- Common Assumptions: $\Delta \hat{\mathbf{E}}_{\text {pot }} \approx 0 \quad \Delta \hat{\mathbf{E}}_{\text {kin }} \approx 0$
$\dot{\mathrm{Q}}_{\text {axiliz }} \approx 0 \quad \dot{\mathrm{~W}}_{\mathrm{s}} \approx 0$
- $\mathbf{1}^{\text {st }}$ law
$\checkmark$ Hot Side: $\quad \dot{\mathbf{Q}}=\dot{\mathbf{m}}_{\text {hot }} \Delta \hat{\mathbf{H}}_{\text {hot }}$
$\checkmark$ Cold Side:
$\dot{\mathbf{Q}}=\dot{\mathbf{m}}_{\text {cold }} \Delta \hat{\mathbf{H}}_{\text {cold }}$
$\checkmark$ Overall:
$\dot{\boldsymbol{m}}_{\text {cold }} \Delta \hat{\mathbf{H}}_{\text {cold }}=\dot{\mathbf{m}}_{\text {hot }} \Delta \hat{\mathbf{H}}_{\text {hot }}$
- In a process HEX, heat is transferred between two streams that are both important parts of an overall process
- In a utility HEX, heat is exchanged between a process stream and a utility stream that is not an important stream in the overall process
- Utility streams are usually steam, air or cooling water
- These assumptions are not always valid, so you need to pay attention and think !


## Mixers \& Splitters



- Mixers and Splitters are tees in a pipe where streams join and mix or split, depending on the direction of flow into and out of the tee.
- Common Assumptions: $\quad \dot{\mathrm{Q}} \approx 0 \quad \dot{\mathrm{~W}}_{\mathrm{s}} \approx 0 \quad \Delta \hat{\mathrm{E}}_{\mathrm{pot}} \approx 0$
- $\mathbf{1}^{\text {st }}$ Law: $\quad\left[\sum_{i=1}^{\# \text { inles }} \dot{\mathbf{m}}_{\text {in, }, \mathrm{i}}\left[\hat{\mathbf{H}}_{\text {in }}+\hat{\mathbf{E}}_{\text {kin, in }}\right]_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\text {\#outlets }} \dot{\mathbf{m}}_{\text {out }, \mathrm{j}}\left[\hat{\mathbf{H}}_{\text {out }}+\hat{\mathbf{E}}_{\text {kin,out }}\right]_{\mathrm{j}}\right]$
- Conservation of Mass: $\quad \sum_{i=1}^{\text {\#inets }} \dot{\mathbf{m}}_{\mathrm{in}, \mathrm{i}}=\sum_{\mathrm{j}=1}^{\text {\#oultes }} \dot{\mathbf{m}}_{\text {out }, \mathrm{j}}$
- Tees in pipes are small and offer little area for heat transfer.
- The fluid spends very little time in these devices.
- So, it is generally true that $\mathrm{Q} \sim 0$ and $\Delta \mathrm{E}_{\text {pot }}$ $\sim 0$.
- There are no moving parts in these devices, so $\mathrm{W}_{\mathrm{s}}$ really is zero.
- Occasionally, $\Delta \mathrm{E}_{\text {kin }} \sim 0$, but it is not all that common. The flow rates and pipe diameters must be carefully matched to make this true.
- Still, these assumptions are not always valid, so you need to pay attention and think !


## Pipe Flow: Bernoulli Equation

- Assumptions:
$\dot{\mathbf{Q}}_{\text {wail }} \approx 0$
$\dot{\mathbf{W}}_{\mathrm{s}} \approx 0$
- Incompressible fluid: $\Delta \hat{\mathbf{V}} \approx \mathbf{0}$
$\checkmark$ No friction:
$\Delta \hat{\mathbf{U}} \approx 0$
- $\mathbf{1}^{\text {st }}$ Law:

$$
\begin{aligned}
& \dot{\mathbf{Q}}^{1}-\boldsymbol{\mu}_{\mathrm{s}}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{\mathbf{E}}_{\text {pot }}\right] \\
& \mathbf{0}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{t}}+\hat{\mathbf{V}} \Delta \mathbf{P}+\mathbf{P} \hat{\boldsymbol{v}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{\mathbf{E}}_{\text {pot }}\right]
\end{aligned}
$$

- Bernoulli

Equation :

$$
\frac{\Delta \mathrm{P}}{\rho}+\frac{\Delta \mathrm{v}^{2}}{2 \mathrm{~g}_{\mathrm{C}}}+\frac{\mathrm{g}}{\mathrm{~g}_{\mathrm{C}}} \Delta \mathrm{z}=0
$$

- Use of the Bernoulli Equation requires that the following assumptions apply:
- Adiabatic
- No shaft work
- No friction
- Incompressible fluid
- This is not often applicable because friction is often significant.


## Transient Processes

- If $\mathbf{A N Y}$ variable associated with the process changes over time, then it is a transient process.
- Transient processes are very complex and a computer is often required to solve the equations that describe these processes.
- We will only consider special transient processes in which the following assumptions are true.
- Uniform Flow
$\checkmark$ The properties and flow rates of all inlet and outlet streams are constant or uniform over the cross-sectional area for flow and are also constant with respect to time.
- Uniform State
$\diamond$ The state of the mass within the system is uniform.
$\diamond$ At all times, the properties of the outlet stream are exactly the same as the properties of the system at that time.
- A pot of water boiling on a stove is a transient process.
$\checkmark$ Although the T, P and other properties of the saturated liquid and saturated water vapor in the pot remain constant
$\checkmark$ The MASS of water inside the pot changes as water vapor flows out into the kitchen.


## Transient Mass Balances

- Differential

Mass Balance: $\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{m}_{\text {sys }}=\dot{\mathbf{m}}_{\text {in }}-\dot{\mathbf{m}}_{\text {out }}$

- Integrate :

$$
\int_{\mathbf{m}_{1}}^{\mathbf{m}_{2}} \mathbf{d} \mathbf{m}_{\text {sys }}=\int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \dot{\mathbf{m}}_{\text {in }} \mathbf{d t}-\int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \dot{\mathbf{m}}_{\text {out }} \mathbf{d t}
$$

- Uniform

Flow : $\quad \dot{\mathbf{m}}_{\text {in }} \neq \mathbf{f x n}(\mathbf{t}) \quad \dot{\mathbf{m}}_{\text {out }} \neq \mathbf{f x n}(\mathbf{t})$

$$
\mathbf{m}_{2}-\mathbf{m}_{1}=\dot{\mathbf{m}}_{\text {in }}\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)-\dot{\mathbf{m}}_{\text {out }}\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)
$$

$$
\Delta \mathbf{m}_{\mathrm{sys}}=\mathbf{m}_{\text {in }}-\mathbf{m}_{\text {out }}
$$

$\diamond \quad$ MIMO : $\quad \mathbf{m}_{2}-\mathbf{m}_{1}=\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \sum_{i=1}^{\text {incts }} \dot{\mathbf{m}}_{\text {in,i }}-\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right){ }^{\text {oultets }} \dot{\mathbf{m}}_{\mathrm{j}=1} \dot{\mathbf{m}}_{\text {out }, \mathrm{j}}$ $\Delta \mathbf{m}_{\text {sys }}=\mathbf{m}_{\text {in }}-\mathbf{m}_{\text {out }}$

- The uniform flow assumption allows us to easily evaluate the integrals on the righthand side of the mass balance equation without the help of a computer.
- The key here is that the mass flow rate must be the same over the cross-sectional area for flow.
- The results are very simple.
- The boxed equations are true even if the mass flow rate varies with respect to time.


## Integrating the $1^{\text {st }}$ law

- The $1^{\text {st }}$ Law for Open Systems:

$$
\begin{aligned}
& \frac{\mathbf{d}}{\mathbf{d t}} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{s}}+\dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\hat{\mathbf{E}}_{\text {kin, in }}+\hat{\mathbf{E}}_{\text {pot }, \text { in }}\right] \\
&-\dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\hat{\mathbf{E}}_{\text {kin,out }}+\hat{\mathbf{E}}_{\text {pot,out }}\right]
\end{aligned}
$$

$\diamond \quad \mathrm{W}_{\mathrm{s}}$ is work other than flow work, usually shaft work.

- Integrate from $\mathbf{t}_{\mathbf{1}}$ to $\mathbf{t}_{\mathbf{2}}$ :

$$
\begin{aligned}
\Delta \mathbf{E}_{\text {sys }}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}} & +\int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\hat{\mathbf{E}}_{\text {kin, in }}+\hat{\mathbf{E}}_{\text {pot, in }}\right] \mathbf{d t} \\
& -\int_{\mathrm{t}_{1}}^{\mathrm{t}_{1}} \dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\hat{\mathbf{E}}_{\text {kin, out }}+\hat{\mathbf{E}}_{\text {pot,out }}\right] \mathbf{d t}
\end{aligned}
$$

- It is important to remember that flow work is included in the enthalpy terms on the right-hand side of this equation.
- When we integrate heat transfer rate in Watts, we get a total amount of heat transfer in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
$\checkmark \Delta \mathrm{E}_{\text {sys }}$ has units of energy, say J or Btu.


## Uniform Flow and the $1^{\text {st }}$ Law

$$
\begin{aligned}
\Delta \mathbf{E}_{\text {sys }}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}} & +\int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\hat{\mathbf{E}}_{\text {kin, in }}+\hat{\mathbf{E}}_{\text {pot,in }}\right] \mathbf{d t} \\
& -\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\hat{\mathbf{E}}_{\text {kin, out }}+\hat{\mathbf{E}}_{\text {pot,out }}\right] \mathbf{d t}
\end{aligned}
$$

## - Uniform Flow Assumption:

$$
\begin{gathered}
{\left[\hat{\mathbf{H}}, \hat{\mathbf{E}}_{\text {kin }} \text { and } \hat{\mathbf{E}}_{\text {pot }}\right]_{\text {in,out }} \neq \mathbf{f x n s}(\mathbf{t})} \\
\Delta \mathbf{E}_{\mathrm{sys}}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}}+\mathbf{m}_{\text {in }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\text {in }}-\mathbf{m}_{\text {out }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\text {out }}
\end{gathered}
$$

- The uniform flow assumption tells us that the properties of the inlet and outlet streams do not change with respect to time.
- This lets us pull them out of the integrals on the right-hand side of the $1_{\text {st }}$ law equation.
- The remaining integrals of the mass flow rate were evaluated 2 slides back.
$\diamond$ They are the total mass entering between $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$ and the total mass leaving between $t_{1}$ and $t_{2}$.


## Uniform State and the $1^{\text {st }}$ Law

$$
\Delta \mathbf{E}_{\mathrm{sys}}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}}+\mathbf{m}_{\text {in }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\mathrm{in}}-\mathbf{m}_{\text {out }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\text {out }}
$$

- Uniform State Assumption:
- If changes in kinetic and potential energies are negligible:

$$
\begin{gathered}
\Delta \mathbf{E}_{\text {sys }}=\mathbf{m}_{\text {sys }, 2} \hat{\mathbf{U}}_{\mathrm{sys}, 2}-\mathbf{m}_{\mathrm{sys}, 1} \hat{\mathbf{U}}_{\mathrm{sys}, 1} \\
\mathbf{m}_{\mathrm{sys}, 2} \hat{\mathbf{U}}_{\mathrm{sys}, 2}-\mathbf{m}_{\mathrm{sys}, 1} \hat{\mathbf{U}}_{\mathrm{sys}, 1}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}}+\mathbf{m}_{\mathrm{in}} \hat{\mathbf{H}}_{\text {in }}-\mathbf{m}_{\text {out }} \hat{\mathbf{H}}_{\text {out }}
\end{gathered}
$$

- The uniform state assumption allows us to evaluate the total energy of the system as just the total mass of the system times the specific energy of the system.
- Here we only consider our three favorite forms of energy: internal, kinetic and potential.
- We can substitute this result into the $1_{\text {st }}$ law to get the $1_{\text {st }}$ boxed equation.
- This is the $1_{\text {st }}$ Law for Uniform Flow, Uniform State systems.
- If changes in kinetic and potential energies are negligible, then the much simpler equation in the last box is applicable.
- This is the equation we will use to solve most of the transient problems in this course.
- But you need to know where it came from and when it is applicable.


## Transient $1^{\text {st }}$ Law for MIMO Processes

- SISO:
$\Delta \mathbf{E}_{\text {sys }}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}}+\mathbf{m}_{\text {in }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\text {in }}-\mathbf{m}_{\text {out }}\left[\hat{\mathbf{H}}+\hat{\mathbf{E}}_{\text {kin }}+\hat{\mathbf{E}}_{\text {pot }}\right]_{\text {out }}$
- MIMO:
$\diamond$ If changes in kinetic and potential energies are negligible:
$\mathbf{m}_{\mathrm{sy}, 2} \hat{\mathbf{U}}_{\mathrm{sy}, 2}-\mathbf{m}_{\mathrm{sy}, 1} \hat{\mathbf{U}}_{\mathrm{sys}, 1}=\mathbf{Q}-\mathbf{W}_{\mathrm{s}}+\sum_{\mathrm{i}=1}^{\text {inlets }} \mathbf{m}_{\mathrm{in}, \mathrm{i}} \hat{\mathbf{H}}_{\mathrm{in}, \mathrm{i}}-\sum_{\mathrm{j}=1}^{\text {outhets }} \mathbf{m}_{\text {out }, \mathrm{j}} \hat{\mathbf{H}}_{\text {out }, \mathrm{j}}$
- As before, MIMO processes are more tedious than SISO processes, but are conceptually almost identical.

5A-1
Volumetric and Mass Flow Rates
Water is flowing through a pipe with an inside diameter of 4 inches. The volumetric flow rate is 24 GPM (gallons per minute). Determine ...

a.) The mass flow rate in $\mathbf{l b}_{\mathbf{m}} / \mathbf{m i n}$. Assume the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$
b.) The average velocity of the water in the pipe in $\mathrm{ft} / \mathrm{s}$.

Read : $\quad$ This is a straightforward application of the relationships between mass and volumetric flow rates, density or specific volume, velocity and cross-sectional area for flow.

Diagram:


$$
V=24 \text { GPM }
$$

Given: $\quad \mathrm{V}$
24
gal/min
64.4
$\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}^{\mathbf{3}}$
D
4 in
0.333 ft

Find:
a.) m
???
$\mathbf{l b}_{\mathrm{m}} /$ min
b.)
v
??? $\mathrm{ft} / \mathrm{s}$
Assumptions: 1 - The density of the water is uniform and constant.
Equations / Data / Solve:
Part a.) The key relationship for this part of the problem is :

$$
\begin{equation*}
\dot{\mathbf{m}}=\rho \cdot \dot{\mathbf{V}} \tag{Eqn 1}
\end{equation*}
$$

Before we can use Eqn 1, we need to convert the units on the volumetric flow rate to $\mathrm{ft}^{3} / \mathrm{min}$.

$$
\begin{array}{lllll}
\dot{\mathrm{V}}=\mathbf{2 4} \frac{\mathrm{gal}}{\mathrm{~min}} \cdot \frac{1 \mathrm{ft}^{3}}{7.4805 \mathrm{gal}} & \text { Eqn 2 } & \mathrm{V} & 3.208 & \mathrm{ft}^{3} / \mathrm{min} \\
\text { Now, we plug values into Eqn 1 to get : } & \mathrm{m} & 206.6 & \mathbf{l b}_{\mathrm{m}} / \mathrm{min}
\end{array}
$$

Part b.) The key relationship for this part of the problem is :

$$
\dot{\mathrm{m}}=\rho \cdot \dot{\mathbf{V}}=\rho \mathrm{vA}=\frac{\mathrm{vA}}{\hat{\mathrm{~V}}}
$$

We can solve Eqn 3 for the average water velocity, $\mathbf{v}$ :

$$
\begin{aligned}
& \mathbf{v}=\frac{\dot{\mathbf{V}}}{\mathbf{A}}=\frac{\dot{\mathbf{m}}}{\rho \mathbf{A}}=\frac{\dot{\mathbf{m}} \hat{\mathbf{V}}}{\mathbf{A}} \\
& \mathbf{A}=\frac{\pi}{4} D^{2}
\end{aligned}
$$

Plugging values into Eqns 4 \& 5 yields :

| A | 0.08727 | $\mathrm{ft}^{2}$ |
| :--- | :---: | :---: |
| v | 0.6127 | $\mathrm{ft} / \mathrm{s}$ |

Verify: We cannot verify the constant density assumption.
Answers: a.)
m $\quad 207 \quad \mathrm{lb}_{\mathrm{m}} / \mathrm{min}$
b.)
0.613

Steam enters a system at 200 kPa and $350^{\circ} \mathrm{C}$ and leaves the system at the same mass flow rate at 180 kPa and $350^{\circ} \mathrm{C}$.

Calculate the flow work in $\mathbf{k J} / \mathbf{k g}$ for this process assuming the usual sign convention in which work done by the system is considered to be positive.

Read : This problem reinforces the point that it takes energy to push fluid into a system and it takes energy to push a fluid out of a system into the surroundings. This energy is called flow work and it can be very significant.

In this problem, we apply the definition of flow work to evaluate the net amount of flow work in a simple flow system, perhaps a long pipe.

Diagram:


| Given: | $\mathbf{P}_{1}$ | 200 | $\mathbf{k P a}$ | $\mathbf{P}_{2}$ | 180 | $\mathbf{k P a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}_{1}$ | 350 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{T}_{2}$ | $350 \quad{ }^{\circ} \mathrm{C}$ |  |
| Find: | $\mathrm{W}_{\text {flow }}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |
|  |  |  |  |  |  |  |
| Assumptions: | None. |  |  |  |  |  |

## Equations / Data / Solve:

The net amount of PV or flow work in a flow process is the flow work done by the system through exiting streams minus the flow work done on the system through entering streams.

$$
\begin{equation*}
\hat{W}_{\text {flow, net }}=\hat{W}_{\text {flow, exit }}-\hat{W}_{\text {flow, inlet }}=(P \hat{V})_{2}-(P \hat{V})_{1} \tag{Eqn 1}
\end{equation*}
$$

We know the inlet and outlet pressures, so now we need to determine the inlet and outlet specific volumes. We can get this information from the Steam Tables or the NIST Webbook.
$\begin{array}{lll}\mathrm{V}_{1} & 1.4330 \quad \mathrm{~m}^{3} / \mathrm{kg}\end{array}$
$\mathrm{V}_{2}$
$1.5927 \mathrm{~m}^{3} / \mathrm{kg}$

Now, we can plug values into Eqn 1 to evaluate the flow work.

| $W_{\text {flow, exit }}$ | 286.69 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{W}_{\text {flow, inlet }}$ | 286.59 | $\mathrm{~kJ} / \mathrm{kg}$ |


| $\mathrm{W}_{\text {flow, net }}$ | 0.1006 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :---: | :--- |
|  | 100.6 | $\mathrm{~J} / \mathrm{kg}$ |

Verify: No assumptions.
Answers :
$\mathrm{W}_{\text {flow, net }} \quad 10$ J/kg

Water vapor enters a tank at a rate of $32.4 \mathrm{~kg} / \mathrm{min}$ at $250^{\circ} \mathrm{C}$ and 140 kPa and leaves the tank at the same rate at $180^{\circ} \mathrm{C}$ and 110 kPa . The diameter of the inlet and outlet pipes are 6 cm and 15 cm , respectively.
No form of work enters or leaves the tank other than flow work. Calculate...
a.) The total rate at which energy is entering the tank in the feed stream
b.) The total rate at which energy is entering the tank in the effluent stream
c.) The heat transfer rate required to keep the total energy of the water inside the tank constant.

Read : $\quad$ The key to this problem is the enthalpy form of the 1st Law for open systems. Once you assume that gravitational potential energy is negligible in this problem, the solution is straightforward. Kinetic energy changes are not negligible. The relationships amoung velocity, density, specific volume, volumetric flow rate and mass flow rate are also important.

Diagram:


| Given: | m | 32.4 | $\mathrm{~kg} / \mathrm{min}$ |
| :--- | :--- | :---: | :--- |
|  |  | 0.54 | $\mathrm{~kg} / \mathbf{s}$ |
|  | $\mathrm{T}_{\text {in }}$ | 250 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{P}_{\text {in }}$ | 140 | kPa |
|  | $\mathrm{D}_{\text {in }}$ | 6 | cm |
|  |  | 0.06 | m |


|  | $\mathbf{W}_{\text {sys }}$ | 0 | kW |
| :--- | :--- | :---: | :--- |
|  | $\mathbf{T}_{\text {out }}$ | 180 | ${ }^{\circ} \mathbf{C}$ |
|  | $\mathbf{P}_{\text {out }}$ | 110 | $\mathbf{k P a}$ |
|  | $\mathbf{D}_{\text {out }}$ | 15 | $\mathbf{c m}$ |
|  |  | 0.15 | $\mathbf{m}$ |
| c.) | $\mathbf{d E}$ sys $/ \mathbf{d t}$ | 0 | $\mathbf{k W}$ |

Find:
a.)
$E_{\text {in }}$
???
kW
b.) $E_{\text {out }}$
??? kW
c.)

Q
??? kW

Gravitational potential energy is negligible in computing the energy entering and leaving the system. Without this assumption, we would add the same arbitrary amount of energy to both the feed and effluent streams and then assume that changes in potential energy are negligible. Either way, potential energy is negligible in this problem.

## Equations / Data / Solve:

The key equation for this problem in the enthalpy form of the 1st Law for open systems.

$$
\begin{array}{r}
\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{E}_{\text {sys }}=\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\text {sys }}+\dot{\mathbf{m}}_{\text {in }}\left[\hat{\mathbf{H}}_{\text {in }}+\frac{\left\langle\mathbf{v}_{\text {in }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {in }}\right] \\
-\dot{\mathbf{m}}_{\text {out }}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \mathbf{z}_{\text {out }}\right]
\end{array}
$$

Eqn 1

Eqn 1 can be simplified for this problem because $\mathrm{W}_{\text {sys }}=0$ and we have assumed that changes in potential energy are negligible.

$$
\begin{equation*}
\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{E}_{\text {sys }}=\mathbf{Q}+\dot{\mathbf{E}}_{\text {in }}-\dot{\mathbf{E}}_{\text {out }}=\dot{\mathbf{Q}}+\dot{\mathbf{m}}\left[\hat{\mathbf{H}}_{\text {in }}+\frac{\left\langle\mathbf{v}_{\text {in }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}\right]-\dot{\mathbf{m}}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}\right] \tag{Eqn 2}
\end{equation*}
$$

Part a) \& In order to evaluate $\mathbf{E}_{\text {in }}$ and $\mathbf{E}_{\text {out }}$, we first need to lookup the enthalpies of the inlet and outlet streams.
Part b) The Steam Tables or the NIST Webbook provide the information we need.
$\begin{array}{llllll}\mathbf{H}_{\text {in }} & 2973.2 \mathrm{~kJ} / \mathrm{kg} & \mathrm{H}_{\text {out }} & 2835.4 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
Next, we need to evaluate the specific kinetic energies at the inlet and outlet.

$$
\hat{E}_{\text {kin }}=\frac{\mathbf{v}^{2}}{\mathbf{2} g_{c}}
$$

Eqn 3

We can determine the velocity from the mass flow rate as follows :

$$
\mathbf{v}=\frac{\dot{\mathbf{V}}}{\mathbf{A}}=\frac{\dot{\mathbf{m}}}{\rho \mathbf{A}}=\frac{\dot{\mathbf{m}} \hat{\mathbf{V}}}{\mathbf{A}} \quad \text { Eqn } 4 \quad \text { Where: } \quad \mathbf{A}=\frac{\pi}{4} \mathbf{D}^{2}
$$

Eqn 5

We still need the specific volumes of the water at the inlet and outlet conditions to make use of Eqn 4. The Steam Tables or the NIST Webbook provide the information we need.
$V_{\text {in }}$
$1.7163 \mathrm{~m}^{3} / \mathrm{kg}$
$V_{\text {in }}$
$1.8883 \mathrm{~m}^{3} / \mathrm{kg}$

Now, we can plug values into Eqns 5,4 \& 3, in that order.

| $A_{\text {in }}$ | 0.002827 | $\mathrm{~m}^{2}$ | $A_{\text {out }}$ | 0.017671 | $\mathrm{~m}^{2}$ |
| :--- | :---: | :--- | :--- | :---: | :--- |
| $\mathrm{~V}_{\text {in }}$ | 327.8 | $\mathrm{~m} / \mathrm{s}$ | $\mathrm{V}_{\text {out }}$ | 57.7 | $\mathrm{~m} / \mathrm{s}$ |
| $\mathrm{g}_{\mathrm{c}}$ | 1 | $\mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{s}^{2}$ |  |  |  |
| $\mathrm{E}_{\text {kin,in }}$ | 53.72 | $\mathrm{~kJ} / \mathrm{kg}$ | $E_{\text {kin,out }}$ | 1.66 | $\mathrm{~kJ} / \mathrm{kg}$ |

We can now use the right-hand portion of Eqn 2 to complete parts (a) and (b) of this problem.
$\mathrm{E}_{\text {in }} \quad 1634.5 \mathrm{~kW}$
$E_{\text {out }}$
1532.0 kW

Part c.) Eqn 2 can be simplified because $\mathbf{d E}_{\text {sys }} / \mathbf{d t}=\mathbf{0}$. The result can be solved for $\mathbf{Q}$ to obtain the following equation.

$$
\mathbf{Q}=\dot{\mathbf{E}}_{\text {out }}-\dot{\mathbf{E}}_{\text {in }}=\dot{\mathbf{m}}\left[\hat{\mathbf{H}}_{\text {out }}+\frac{\left\langle\mathbf{v}_{\text {out }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}\right]-\dot{m}\left[\hat{\mathbf{H}}_{\text {in }}+\frac{\left\langle\mathbf{v}_{\text {in }}\right\rangle^{2}}{\mathbf{2} \mathbf{g}_{\mathrm{c}}}\right]
$$

Eqn 6

Plugging values into Eqn 6 yields:
Q
-102.5 kW
Verify: The assumption made in this solution cannot be verified with the given information.
Answers: a.)

| $\mathrm{E}_{\text {in }}$ | 1630 | kW |
| :---: | :---: | :---: |
| $\mathrm{E}_{\text {out }}$ | 1530 | kW |

c.)

Q
-103
kW
b.)

## "The best way to Learn Thermodynamics"

5C-1
Cross-Sectional Area Requirement for an Adiabatic Nozzle
6 pts
Steam at 3.5 MPa and $350^{\circ} \mathrm{C}$ flows steadily into an adiabatic nozzle at a mass flow rate of $3.15 \mathrm{~kg} / \mathrm{s}$. The steam leaves the nozzle at 500 kPa with a velocity of $571 \mathrm{~m} / \mathrm{s}$.
If the inlet velocity of the steam is $5 \mathrm{~m} / \mathrm{s}$, determine the exit diameter of the nozzle in $\mathbf{c m}$.

Read: The key here is that we know both the mass flow rate and velocity of the effluent stream. If we can determine the specific volume of the effluent, we can determine the cross-sectional area for flow at the effluent, $\mathbf{A}_{\mathbf{2}}$. We are given the value of one intensive variable for the effluent, $\mathbf{P}_{\mathbf{2}}$, but we need to know another in order to completely determine the state of the effluent. Once know the state of the effluent, we can use the Steam Tables to determine the specific volume and then the cross-sectional area. We must apply the steady-state form of 1st Law for open systems to this process. If we assume that heat transfer and changes in potential energy are negligible and that no shaft work occurs, we can solve for the specific enthalpy of the effluent and thereby fix the state of the system. This allows us to complete the problem.

| Given: | $\mathbf{P}_{1}$ | 3500 | $\mathbf{k P a}$ | $\mathbf{P}_{2}$ | 500 | kPa |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{T}_{1}$ | 350 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{v}_{2}$ | 571 | $\mathrm{~m} / \mathrm{s}$ |
|  | $\mathbf{v}_{1}$ | 5 | $\mathrm{~m} / \mathbf{s}$ | $\mathrm{m}_{\text {dot }}$ | 3.15 | $\mathrm{~kg} / \mathrm{s}$ |

Find: $\quad \mathrm{D}_{2} \quad$ ??? cm

Diagram:


## Equations / Data / Solve:

Let's begin by writing the steady-state form of the 1st Law for open systems.

$$
\begin{equation*}
\dot{Q}-\dot{W}_{\mathrm{s}}^{\top}=\dot{\mathrm{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{E}_{\mathrm{pot}}\right] \tag{Eqn 1}
\end{equation*}
$$

Based on the assumptions listed above, we can simplify Eqn 1 as follows :

$$
\begin{equation*}
\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\text {kin }}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}+\frac{\mathbf{v}_{2}^{2}-\mathbf{v}_{1}^{2}}{2 \mathbf{g}_{\mathrm{c}}}=\mathbf{0} \tag{Eqn 2}
\end{equation*}
$$

The only unknown in Eqn 2 is $\mathbf{H}_{\mathbf{2}}$ because we can lookup $\mathbf{H}_{1}$ and the velocities are both given.
So, let's look up $\mathbf{H}_{1}$ and solve Eqn 2 for $\mathbf{H}_{\mathbf{2}}$ :

$$
\begin{equation*}
\hat{H}_{2}=\hat{H}_{1}-\frac{v_{2}^{2}-v_{1}^{2}}{2 g_{c}} \tag{Eqn 3}
\end{equation*}
$$

| $\mathrm{H}_{1}$ | 3104.8 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 2941.8 | $\mathrm{~kJ} / \mathrm{kg}$ |

We could use $\mathbf{H}_{2}$ and $\mathbf{P}_{2}$ to determine $\mathbf{T}_{2}$ using the Steam Tables, but we are more interested in $\mathbf{V}_{\mathbf{2}}$ because :

$$
\dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}_{2}}{\hat{\mathbf{V}}_{2}}=\frac{\mathbf{v}_{2} \mathbf{A}_{2}}{\hat{\mathbf{V}}_{2}} \quad \text { Eqn } 4 \quad \text { or: } \quad \mathbf{A}_{2}=\frac{\dot{\mathbf{m}} \hat{\mathbf{V}}_{2}}{\mathbf{v}_{2}}
$$

Eqn 5

Once we know the specific volume at state 2, we can use Eqn 5 to determine the cross-sectional area of the effluent pipe.
Interpolating on the Steam Tables at 500 kPa :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | H (kJ/kg) | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 2855.8 | 0.42503 |  |  |  |
| T | 2941.8 | $\mathrm{V}_{2}$ | T | 240.9 | ${ }^{\circ} \mathrm{C}$ |
| 250 | 2961.0 | 0.47443 | $\mathrm{V}_{2}$ | 0.46541 | $\mathrm{m}^{3} / \mathrm{kg}$ |
| Now, plug | into Eqn 5 |  | $\mathrm{A}_{2}$ | $2.568 \mathrm{E}-03$ |  |

Determine $\mathbf{D}_{\mathbf{2}}$ from $\mathbf{A}_{\mathbf{2}}$ :
$A_{2}=\frac{\pi}{4} D_{2}^{2}$
Solving for $\mathbf{D}_{\mathbf{2}}$ yields:
$D_{2}=\sqrt{\frac{4}{\pi} A_{2}}$

Eqn 6

Plug values into Eqn 7:
$D_{2}$
0.05718 m
5.718 cm

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.
Answers:

| $\mathrm{D}_{2}$ | 5.72 | $\mathrm{~cm}^{2}$ |
| :--- | :--- | :--- |

5C-2
Heat Losses From a Steam Turbine
5 pts
At steady-state, a steam turbine produces 1,050 MW by letting the pressure down from 50 bar to 1 bar. The steam enters the turbine at $320^{\circ} \mathrm{C}$ with a velocity of $8 \mathrm{~m} / \mathrm{s}$ and a mass flow rate of $150 \mathrm{~kg} / \mathrm{min}$.
The steam leaves the turbine with a quality of 0.94 kg vapor/kg and a velocity of $65 \mathrm{~m} / \mathrm{s}$. Determine the rate of heat loss from the turbine to the surroundings in $\mathbf{k W}$.

Read: Apply the steady-state form of the 1st Law for open systems and solve for $\mathbf{Q}$. Assume changes in potential energy are negligible. We know the values of two intensive variables for state 1 , so we can look up $\mathbf{H}_{1}$. We know the pressure and quality for state 2 , so we can also determine $\mathbf{H}_{2}$. Then, just plug back into the 1st Law to get Q !

| Given: | m | 150 | $\mathrm{~kg} / \mathrm{min}$ | $\mathrm{v}_{1}$ | 8 | $\mathrm{~m} / \mathrm{s}$ |
| :--- | :--- | :---: | :--- | :--- | :---: | :---: |
|  |  | 2.500 | $\mathrm{~kg} / \mathrm{s}$ | $\mathrm{P}_{2}$ | 100 | kPa |
|  | $\mathrm{W}_{\mathbf{s}}$ | 1050 | kW | $\mathbf{x}_{2}$ | 0.94 |  |
|  | $\mathrm{P}_{1}$ | 5000 | kPa | $\mathrm{v}_{2}$ | 65 | $\mathrm{~m} / \mathrm{s}$ |
|  | $\mathrm{T}_{1}$ | 320 | ${ }^{\circ} \mathrm{C}$ |  |  |  |
| Find: | $\mathbf{Q}$ | $? ? ?$ | kW |  |  |  |

Diagram:

$$
\begin{aligned}
& \mathbf{P}_{1}=5000 \mathrm{kPa} \\
& \mathrm{~T}_{1}=320^{\circ} \mathrm{C} \\
& \mathrm{v}_{1}=8 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~m}=2.5 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$



Assumptions:
1- The turbine operates at steady-state.
2 - The change in the potential energy of the fluid from the inlet to the outlet is negligible.

## Equations / Data / Solve:

Let's begin by writing the steady-state form of the 1st Law for open systems.

$$
\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\mathrm{kin}}+\Delta \hat{E}_{\mathrm{pot}}\right]
$$

Solve Eqn 1 for $\mathbf{Q}: \quad \dot{\mathbf{Q}}=\dot{\mathbf{W}}_{\mathrm{s}}+\dot{\mathbf{m}}\left[\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}+\frac{\mathbf{v}_{2}^{2}-\mathbf{v}_{1}^{2}}{\mathbf{2 g}_{\mathrm{c}}}\right]$
We must use the Steam Tables to determine $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{H}_{\mathbf{1}}$ :

$$
\hat{\mathbf{H}}_{2}=\mathbf{x}_{2} \hat{\mathbf{H}}_{\text {sat vap }}+\left(1-\mathbf{x}_{2}\right) \hat{\mathbf{H}}_{\text {sat liq }}
$$

| $\mathrm{H}_{1}$ | $2986.2 \mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

At $\mathrm{P}_{2}=100 \mathrm{kPa}$ :

| $\mathrm{H}_{\text {sat liq }}$ | 417.50 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :---: | :--- |
| $\mathrm{H}_{\text {sat vap }}$ | 2674.95 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{H}_{2}$ | 2539.5 | $\mathrm{~kJ} / \mathrm{kg}$ |
| Q | -61.62 | kW |

Verify: None of the assumptions made in this problem solution can be verified.
Answers :

| $\mathbf{Q}$ | -61.6 | kW |
| :--- | :--- | :--- |

# "The best way to Learn Thermodynamics" 

5C-3
Shaft Work Requirement for an Air Compressor
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to 10 bar while losing 4.2 kW of heat to the surroundings.

At the compressor inlet, the air is at $25^{\circ} \mathrm{C}$ and has a velocity of $14 \mathrm{~m} / \mathrm{s}$. At the compressor outlet, the air is at $350^{\circ} \mathrm{C}$ and has a velocity of $2.4 \mathrm{~m} / \mathrm{s}$.
If the compressor inlet has a cross-sectional area of $500 \mathrm{~cm}^{2}$ and the air behaves as an ideal gas, determine the power requirement of the compressor in $\mathbf{k W}$.

Read : The keys here are the 1st Law, the Ideal Gas EOS and the Ideal Gas Property Tables. Since we know the velocity, temperature and pressure of both the feed and effluent, we can determine the change in the specific enthalpy (using the Ideal Gas Properties Table for air) and the specific kinetic energy. The problem is the mass flow rate. Use the Ideal Gas EOS to determine the specific volume. Then, use the relationship between velocity, cross-sectional area for flow, specific volume and mass flow rate to determine the mass flow rate. After that, plug all the values back into the 1st Law and solve for the shaft work.

| Given: | $\mathrm{P}_{1}$ | 1 | bar | $\mathrm{P}_{2}$ | 10 | bar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 100 | kPa |  | 1000 | kPa |
|  | T | 25 | ${ }^{\circ} \mathrm{C}$ | T | 350 | ${ }^{\circ} \mathrm{C}$ |
|  |  | 298.15 | K |  | 623.15 | K |
|  | $\mathrm{v}_{1}$ | 14 | m/s | $\mathrm{v}_{2}$ | 2.4 | $\mathrm{m} / \mathrm{s}$ |
|  | $\mathrm{A}_{1}$ | 500 | $\mathrm{cm}^{2}$ | Q | -4.20 | kW |
|  |  | 0.050 | $\mathrm{m}^{2}$ |  |  |  |
| Find: | $\mathrm{W}_{\text {s }}$ | ??? | kW |  |  |  |

Diagram:


Assumptions: $\mathbf{1 -} \quad$ The compressor operates at steady-state.
2- The change in the potential energy of the fluid from the inlet to the outlet is negligible.
3 The air behaves as an ideal gas throughout this process.

Equations / Data / Solve:
Let's begin by writing the steady-state form of the 1st Law for open systems.

$$
\begin{equation*}
\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{\mathbf{E}}_{\text {kin }}+\Delta \hat{E}_{\mathrm{pot}}^{1}\right] \tag{Eqn 1}
\end{equation*}
$$

Solve for $\mathbf{W}_{\mathbf{s}}$

$$
\begin{equation*}
\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{Q}}-\dot{\mathbf{m}}\left[\hat{\mathbf{H}}_{2}-\hat{H}_{1}+\frac{\mathbf{v}_{2}^{2}-v_{1}^{2}}{2 g_{\mathrm{c}}}\right] \tag{Eqn 2}
\end{equation*}
$$

We know the inlet and outlet velocities and we can lookup the inlet and outlet specific enthalpies in the Ideal Gas Properties Table. So, the only remaining obstacle to evaluating the shaft work using Eqn 2 is the mass flow rate.
The following relationship will let us evaluate the mass flow rate :

$$
\begin{equation*}
\dot{m}=\frac{\dot{\mathbf{V}}_{1}}{\hat{\mathbf{V}}_{1}}=\frac{\mathbf{v}_{1} A_{1}}{\hat{\mathbf{V}}_{1}} \tag{Eqn 3}
\end{equation*}
$$

Next, we must use the Ideal Gas Equation of State to determine the specific volume of the air feed.

$$
\begin{equation*}
\mathbf{P} \tilde{\mathbf{V}}_{1}=\mathbf{R} \mathbf{T}_{1} \tag{Eqn 4}
\end{equation*}
$$

Solve for $\mathbf{V}$ : $\quad \tilde{\mathbf{V}}_{\mathbf{1}}=\frac{\mathbf{R} \mathbf{T}_{1}}{\mathbf{P}_{\mathbf{1}}}$
Convert molar volume to specific volume : $\quad \hat{\mathbf{V}}_{1}=\frac{\tilde{\mathbf{V}}_{1}}{\mathbf{M W}_{\text {air }}} \quad$ Eqn 6
Plugging values into Eqns 5 \& 6 yields :

|  |  |  | $V_{1}$ | 0.02479 | $\mathrm{~m}^{3} / \mathrm{mole}$ |
| :--- | :--- | :--- | :--- | :---: | :--- |
| R | 8.314 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ | $\mathrm{V}_{1}$ | 0.85565 | $\mathrm{~m}^{3} / \mathrm{kg}$ |
| MW $_{\text {air }}$ | 28.97 | $\mathrm{~g} / \mathrm{mole}$ | $\mathrm{m}_{\text {dot }}$ | 0.8181 | $\mathrm{~kg} / \mathrm{s}$ |

Next we need to look up the specific enthalpy of air at the inlet and outlet temperature in the Ideal Gas Properties Table for air. Remember that the enthalpy of an ideal gas does NOT depend on the pressure !
$\begin{array}{lllll}\text { At } 25^{\circ} \mathrm{C} \text { or } 298.15 \mathrm{~K} \text {, no interpolation is required : } & \mathbf{H}^{\circ}{ }_{1} & \mathbf{8 5 . 5 6 5} & \mathbf{k J} / \mathrm{kg}\end{array}$
At $200^{\circ} \mathrm{C}$ or 473.15 K , interpolation is required :

| $\mathbf{T}(\mathrm{K})$ | $\mathbf{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | ---: |
| 620 | 418.55 |

$623.15 \quad \mathrm{H}^{\circ}{ }_{2}$
$630 \quad 429.25$

| $\mathrm{H}_{2}{ }_{2}$ | $\mathbf{4 2 1 . 9 2}$ | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{W}_{\mathrm{s}}$ | -279.29 | kW |

Verify: Only the ideal gas assumption can be verified. Use Eqn 5 for both state 1 and state 2.
$V_{1}$
24.79
L/mole
$V_{2}$
$5.181 \mathrm{~L} / \mathrm{mole}$

Because air is made up of diatomic gases, the test for the applicability of the Ideal Gas EOS is whether the molar volume > $5 \mathrm{~L} / \mathrm{mole}$.

This considition is satisfied at both the inlet and outlet conditions, so using the Ideal Gas EOS and the Ideal Gas Properties Tables will yield results accurate to at least $\mathbf{2}$ significant figures.

Answers :

| $\mathrm{W}_{\mathrm{s}}$ | -279 | kW |
| :---: | :---: | :---: |

A throttling valve is used to reduce the pressure in a steam line from 10 MPa to $\mathbf{3 0 0} \mathbf{~ k P a}$. If the steam enters the throttling valve at $500^{\circ} \mathrm{C}$, determine...
a.) The steam temperature at the outlet of the throttling valve
b.) The area ratio, $\mathbf{A}_{2} / \mathbf{A}_{1}$, required to make the kinetic energy the same at the inlet and the outlet.

Read : We know the values of two intensive variables for the inlet steam, so we can determine the values of all of its other properties, including the specific enthalpy, from the Steam Tables. If changes in kinetic and potential energy are negligible and the throttling device is adiabatic, then the throttling device is isenthalpic. In this case, we then know the specific enthalpy of the outlet stream. The pressure of the outlet stream is given, so we now know the values of two intensive properties of the outlet stream and we can determine the values of any other property using the Steam Tables. Part (b) is an application of the 1st Law. The area must be greater at the outlet in order to keep the velocity the same because the steam expands as the pressure drops across the throttling device.

Diagram:


| Given: $\begin{array}{ll} & \mathbf{P} \\ & \mathbf{T}_{1} \\ & \mathbf{P}\end{array}$ | 10000 | kPa | Find: | T | ??? | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 500 | ${ }^{\circ} \mathrm{C}$ |  | $\mathrm{A}_{2} / \mathrm{A}_{1}$ | ??? |  |
|  | 300 | kPa |  |  |  |  |
| Assumptions: | 1 - | The throttling device is adiabatic. Changes in potential energy are negligible. |  |  |  |  |
|  | 2 - |  |  |  |  |  |
|  | 3 - | Changes in kinetic energy are negligible because the cross-sectional area for flow |  |  |  |  |
|  |  | in the feed and effluent lines have been chosen to make the fluid velocity the same at the inlet and the outlet. |  |  |  |  |

## Equations / Data / Solve:

Begin by looking up the specific enthalpy of the feed in the steam tables.
At a pressure of $10,000 \mathrm{kPa}$, the saturation temperature is : $\quad \mathrm{T}_{\text {sat }} \quad 311.00{ }^{\circ} \mathrm{C}$
Because $\mathbf{T}_{1}>\mathbf{T}_{\text {sat }}$, we conclude that the feed is superheated steam and we must consult the Superheated Steam Tables. Because $10,000 \mathrm{kPa}$ is listed in the table, interpolation is not required.
$\begin{array}{llllll}\mathbf{V}_{1} & 0.032811 & \mathrm{~m}^{3} / \mathrm{kg} & \mathbf{H}_{1} & 3375.1 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
The 1st Law for a throttling device that is adiabatic and causes negligible changes in kinetic and potential energies is:

$$
\begin{equation*}
\hat{\mathbf{H}}_{2}=\hat{\mathbf{H}}_{1} \tag{Eqn 1}
\end{equation*}
$$

Because the pressure drops in the throttling device and the feed is a superheated vapor, the effluent must also be a superheated vapor. So, to answer part (a), we must use the Superheated Steam Tables to determine the temperature of 300 kPa steam that has a specific enthalpy equal to $\mathbf{H}_{2}$.

At 300 kPa :

| $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3275.5 | 400 | 1.0315 |  |  |
| 3375.1 | 447.2 | 1.1048 |  | $\mathrm{~T}_{2}$ |
| 3486.6 | 500 | 1.1867 |  | $\mathrm{~V}_{2}$ |

Part b.) We need to use the definition of kinetic energy to determine how much the area of the outlet pipe must be greater than the area of the inlet pipe in order to keep the kinetic energy (and therefore the velocity) constant.

$$
\begin{equation*}
E_{\text {kin }}=\frac{\dot{m} v^{2}}{2 g_{c}} \quad \text { Eqn 2 } \quad E_{\text {kin, } 1}=\frac{\dot{n} v_{1}^{2}}{2 g_{c}}=\frac{\dot{m} v_{2}^{2}}{2 g_{c}}=E_{\text {kin }, 2} \tag{Eqn 2}
\end{equation*}
$$

Because the mass flow rate at the inlet and outlet is the same, Eqn 3 simplifies to :

$$
\begin{equation*}
\mathbf{v}_{2}=\mathbf{v}_{1} \tag{Eqn 4}
\end{equation*}
$$

Next, we need to consider the relationship between velocity, specific volume and cross-sectional area.

$$
\begin{equation*}
\mathbf{v}=\frac{\dot{\mathbf{m}} \cdot \hat{\mathbf{v}}}{\mathbf{A}}[=] \frac{(\mathbf{k g} / \mathbf{s})\left(\mathbf{m}^{3} / \mathbf{k g}\right)}{\mathbf{m}^{2}}[=] \frac{\mathbf{m}}{\mathbf{s}} \tag{Eqn 5}
\end{equation*}
$$

Now, substitute Eqn 5 into Eqn 4 to get: $\quad \frac{\mathbf{m} \cdot \hat{\mathbf{V}}_{\mathbf{2}}}{\mathbf{A}_{2}}=\frac{\mathbf{m} \cdot \hat{\mathbf{V}}_{\mathbf{1}}}{\mathbf{A}_{1}}$

Solve for the area ratio, $\mathbf{A}_{\mathbf{2}} / \mathbf{A}_{1}$ :

$$
\frac{A_{2}}{A_{1}}=\frac{\hat{\mathbf{V}}_{2}}{\hat{\mathbf{V}}_{1}}
$$

Plugging values into Eqn 7 yields:

$$
\mathbf{A}_{2} / \mathbf{A}_{1}
$$

Verify: None of the assumptions made in this problem solution can be verified.
Answers : $\square$ $\begin{array}{ll}\mathrm{A}_{2} / \mathrm{A}_{1} & 33.7\end{array}$

| $\mathrm{A}_{2} / \mathrm{A}_{1}$ | 33.7 |
| :--- | :--- |

## "The best way to Learn Thermodynamics"

Steam at $350^{\circ} \mathrm{C}$ and 650 kPa is mixed with subcooled water at $30^{\circ} \mathrm{C}$ and 650 kPa in an open feedwater heater (FWH) as a way to produce saturated liquid water at the same pressure.
Assuming the open FWH is adiabatic, determine the mass flow rate of steam required per kilogram of subcooled liquid water fed to the open FWH.

Read : The feedwater heater is just a fancy mixer. When we write the MIMO form of the 1 st Law at steady-state, there are three unknowns: the three mass flow rates. The states of all three streams are fixed, so we can determine the specific enthalpy of each of them.
Mass conservation tells us that $\mathbf{m}_{\mathbf{3}}=\mathbf{m}_{1}+\mathbf{m}_{\mathbf{2}}$. We can use this to eliminate $\mathbf{m}_{\mathbf{3}}$ from the 1 st Law. Then we can solve the 1st Law for $\mathbf{m}_{\mathbf{1}} / \mathbf{m}_{\mathbf{2}}$ !

Given:

| $\mathbf{T}_{1}$ | 30 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{P}_{3}$ | 650 | kPa |
| :--- | :---: | :--- | :---: | :---: | :---: |
| $\mathrm{P}_{1}$ | 650 | kPa | $\mathbf{x}_{3}$ | 0 | $\mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ |
| $\mathrm{T}_{2}$ | 350 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{Q}$ | 0 |  |
| $\mathrm{P}_{2}$ | 650 | kPa |  |  |  |

Find:

$$
\mathrm{m}_{\mathrm{dot} 1} / \mathrm{m}_{\mathrm{dot}, 2}=\quad ? ? ?
$$

Diagram:


Assumptions:

$$
\begin{array}{ll}
1- & \text { The feedwater heater operates at steady-state. } \\
2- & \text { Changes in potential and kinetic energies are negligible. } \\
3- & \text { Heat transfer is negligible. } \\
4- & \text { No shaft work crosses the system boundary in this process. }
\end{array}
$$

## Equations / Data / Solve:

An open feedwater heater is essentially a mixer in which superheated vapor is used to raise the temperature of a subcooled liquid. We can begin our analysis with the steady-state form of the 1st Law.

The assumptions in the list above allow us to simplify the 1st Law considerably:

$$
\begin{equation*}
\dot{\mathbf{m}}_{1} \hat{\mathbf{H}}_{1}+\dot{\mathbf{m}}_{2} \hat{\mathbf{H}}_{2}=\dot{\mathbf{m}}_{3} \hat{\mathbf{H}}_{3} \tag{Eqn 2}
\end{equation*}
$$

Conservation of mass on the feedwater heater operating at steady-state tells us that :

$$
\begin{equation*}
\dot{\mathbf{m}}_{1}+\dot{\mathbf{m}}_{2}=\dot{\mathbf{m}}_{3} \tag{Eqn 3}
\end{equation*}
$$

We can solve Eqn 3 for $\mathbf{m}_{\text {dot }, 3}$ and use the result to eliminate $\mathbf{m}_{\text {dot }, 3}$ from Eqn 2. The result is:

$$
\begin{equation*}
\dot{\mathbf{m}}_{1} \hat{\mathrm{H}}_{1}+\dot{\mathbf{m}}_{2} \hat{\mathrm{H}}_{2}=\left(\dot{\mathbf{m}}_{1}+\dot{\mathbf{m}}_{2}\right) \hat{\mathrm{H}}_{3} \tag{Eqn 4}
\end{equation*}
$$

The easiest way to determine $\mathbf{m}_{\text {dot }, 1} / \mathbf{m}_{\mathrm{dot}, 2}$ is to divide Eqn 4 by $\mathbf{m}_{\mathrm{dot}, 2}$.

$$
\begin{equation*}
\left(\frac{\dot{\mathbf{m}}_{1}}{\dot{m}_{2}}\right) \hat{H}_{1}+\hat{H}_{2}=\left(\frac{\dot{m}_{1}}{\dot{m}_{2}}+1\right) \hat{H}_{3} \tag{Eqn 5}
\end{equation*}
$$

Now, we can solve Eqn 5 for $\mathbf{m}_{\text {dot }, 1} / \mathbf{m}_{\text {dot, } 2}$ :

$$
\begin{equation*}
\frac{\dot{\mathbf{m}}_{1}}{\dot{\mathbf{m}}_{2}}=\frac{\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}}{\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{1}} \tag{Eqn 6}
\end{equation*}
$$

Now, all we need to do is to determine the specific enthalpy of all three streams and plug these values into Eqn 6 to complete the problem.
First we must determine the phase(s) present in each

$$
\mathrm{T}_{\text {sat }}(650 \mathrm{kPa})=161.98{ }^{\circ} \mathrm{C}
$$

Therefore: $\quad$ Stream 1 is a subcooled liquid because $\mathbf{T}_{1}<\mathbf{T}_{\text {sat }}$
Stream 2 is a superheated vapor because $T_{2}>T_{\text {sat }}$
$T_{3}=T_{\text {sat }}$ because it is a saturated liquid.
Data from the Steam Tables of the NIST Webbook (using the default reference state) :

| $\mathrm{H}_{1}$ | $126.32 \mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{H}_{2}$ | 3165.1 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathrm{H}_{3}$ | 684.1 | $\mathrm{~kJ} / \mathrm{kg}$ |

Now, plug these values into Eqn 6 to obtain :
$\mathbf{m}_{\mathrm{dot} 1} / \mathbf{m}_{\mathrm{dot}, 2}=$
Verify: None of the assumptions made in this problem solution can be verified.
Answers : $\quad \mathrm{m}_{\mathrm{dot} 1} / \mathrm{m}_{\mathrm{dot}, 2}=\quad 4.45$

"The best way to Learn Thermodynamics"

The steam power plant, shown below, operates at steady-state with negligible heat losses to the surroundings and negligible pressure drops due to friction in the boiler and condenser.


If the mass flow rate of the steam is $11.3 \mathrm{~kg} / \mathrm{s}$, determine...
a.) The power of the turbine and the pump
b.) The velocity at the outlet of the pump
c.) The heat transfer rates in the boiler and in the condenser
d.) The mass flow rate of cooling water required in the condenser
e.) The thermal efficiency of the power cycle

Data: $P_{1}=120 \mathrm{kPa}, \mathrm{T}_{1}=55^{\circ} \mathrm{C}, \mathrm{P}_{2}=10,000 \mathrm{kPa}, \mathrm{T}_{2}=50^{\circ} \mathrm{C}, \mathrm{D}_{2}=0.05 \mathrm{~m}, \mathrm{P}_{3}=10,000 \mathrm{kPa}, \mathrm{T}_{3}=700^{\circ} \mathrm{C}, \mathrm{P}_{4}=120 \mathrm{kPa}, \mathrm{x}_{4}=$ 0.95 kg vap $/ \mathrm{kg}, \mathrm{T}_{\mathrm{cw} . \mathrm{in}}=20^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{cw} . \text { out }}=45^{\circ} \mathrm{C}$

Read : Cycle problems of this type usually require you to work your way around the cycle, process by process until you have determined the values of all of the unknowns. This is a good approach here because the problem statement asks us to determine the values of unknowns in every process in the cycle. The only decision is where to begin. We can begin with the turbine because that is the 1st question and also because we have enough information to answer part (a). We know $\mathbf{T}_{3}$ and $\mathbf{P}_{3}$, so we can determine $\mathbf{H}_{3}$. Stream 4 is saturated mixture with known $\mathbf{P}_{4}$ and $\mathbf{x}_{4}$, so we can also determine $\mathbf{H}_{4}$. With the usual assumtions about kinetic and potential energy, we can determine $\mathbf{W}_{\text {turb }}$. In fact, because we know the $\mathbf{T}$ and $\mathbf{P}$ of streams 1 and $\mathbf{2}$ as well, we can analyze the processes in this cycle in any convenient order. So, we will let the questions posed in the problem determine the order in which we analyze the processes. We will apply the 1st Law to the pump, the boiler and the condenser, in that order. Use the Steam Tables in the NIST Webbook.

Diagram:


| Given: | $\mathbf{m}$ | 11.3 | $\mathbf{k g} / \mathbf{s}$ |
| :--- | :--- | :---: | :--- |
|  | $\mathbf{P}_{1}$ | 120 | $\mathbf{k P a}$ |
|  | $\mathbf{T}_{1}$ | 55 | ${ }^{\circ} \mathbf{C}$ |
|  | $\mathbf{P}_{2}$ | 10000 | $\mathbf{k P a}$ |
|  | $\mathbf{T}_{2}$ | 55 | ${ }^{\circ} \mathbf{C}$ |
|  | $\mathbf{D}_{2}$ | 0.05 | $\mathbf{m}$ |


| Find: | $\mathrm{W}_{\text {turb }}$ | ??? | MW |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{W}_{\text {pump }}$ | ??? | kW |
|  | $\mathrm{V}_{2}$ | ??? | $\mathrm{m} / \mathrm{s}$ |


| $\mathbf{Q}_{\text {boil }}$ | ??? | MW |
| :--- | :--- | :--- |
| $\mathbf{Q}_{\text {cond }}$ | $? ? ?$ | MW |
| $\mathrm{m}_{\text {cw }}$ | $? ? ?$ | $\mathrm{~kg} / \mathrm{s}$ |
| $\eta_{\text {th }}$ | $? ? ?$ |  |


| 10000 | kPa |
| :---: | :--- |
| 700 | ${ }^{\circ} \mathrm{C}$ |
| 120 | KPa |
| 0.95 | kg vap $/ \mathrm{kg}$ |
| 20 | ${ }^{\circ} \mathrm{C}$ |
| 45 | ${ }^{\circ} \mathrm{C}$ |


| Assumptions: | $\mathbf{1 -}$ | Changes in kinetic and potential energy are negligible in all the processes in the cycle. <br> The pump and turbine are adiabatic. |
| :--- | :--- | :--- |
|  | $\mathbf{2 -}$ | All of the heat that leaves the working fluid in the condenser is transferred to the cooling |
|  |  |  |
| water. No heat is lost to the surroundings. |  |  |

Part a.) Begin by writing the 1st Law for the turbine, assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter information to use.

$$
\begin{equation*}
\dot{\boldsymbol{Q}}^{\prime}-\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{turb}}=\dot{\mathrm{m}} \Delta \hat{\mathbf{H}} \tag{Eqn 1}
\end{equation*}
$$

If we assume that the turbine is adiabatic, we can solve Eqn 1 for the shaft work of the turbine :

$$
\begin{equation*}
\dot{\mathbf{W}}_{\mathrm{s}, \text { turb }}=\dot{\mathbf{m}}\left(\hat{\mathrm{H}}_{3}-\hat{\mathbf{H}}_{4}\right) \tag{Eqn 2}
\end{equation*}
$$

Now, we must use the Steam Tables to determine $\mathbf{H}_{3}$ and $\mathbf{H}_{4}$. Let's begin with stream 3 .
At a pressure of $10,000 \mathrm{kPa}$, the saturation temperature is : $\quad \mathrm{T}_{\text {sat }} \quad 311.00{ }^{\circ} \mathrm{C}$
Because $T_{3}>T_{\text {sat }}$, we conclude that stream 3 is superheated steam and we must consult the Superheated Steam Tables. Fortunately, there is an entry in the table for $10,000 \mathrm{kPa}$ and $700^{\circ} \mathrm{C}$, so no interpolation is necessary.

$$
\begin{array}{lll}
\mathrm{H}_{3} & 3870.0 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Stream 4 is a saturated mixture at 120 kPa , so we need to use the properties of saturated liquid and saturated vapor at $\mathbf{1 2 0} \mathbf{k P a}$ in the following equation to determine $\mathbf{H}_{4}$ :

At 120 kPa :

$$
\hat{\mathbf{H}}_{4}=\mathbf{x}_{4} \hat{\mathbf{H}}_{\text {sat vap }}+\left(\mathbf{1}-\mathbf{x}_{4}\right) \hat{\mathbf{H}}_{\text {sat liq }}
$$

Eqn 3


Part b.) Write the 1st Law for the pump, assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation or velocity data and we are given only the outlet pipe diameter. Also, assume the pump is adiabatic, $\mathbf{Q}_{\text {pump }}=\mathbf{0}$.

$$
\dot{Q}-\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{pump}}=\dot{\mathbf{m}} \Delta \hat{H} \quad \quad \text { Eqn } 4 \quad \dot{\mathbf{W}}_{\mathrm{s}, \mathrm{pump}}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2}\right)
$$

Now, we must determine $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$. We know the $\mathbf{T}$ and $\mathbf{P}$ for both of these streams, so we should have no difficulty determining the $\mathbf{H}$ values.

| $\mathbf{T}_{\text {sat }}\left(\mathbf{P}_{1}\right)$ | 104.78 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{T}_{1}<\mathbf{T}_{\text {sat }}$, therefore we must consult the Subcooled Water Tables. |
| :--- | :--- | :--- | :--- |
| $\mathbf{T}_{\text {sat }}\left(\mathbf{P}_{2}\right)$ | 311.00 | ${ }^{\circ} \mathrm{C}$ | $\mathbf{T}_{2}<\mathrm{T}_{\text {sat }}$, therefore we must consult the Subcooled Water Tables. |

The NIST Webbook provides these enthalpy values without interpolation.

| $\mathrm{H}_{1}$ | $230.34 \mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{H}_{2}$ | $\mathbf{2 3 8 . 7 4}$ | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- |
| Now, we can plug $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ back into Eqn 5 to answer part (b) : | $\mathrm{W}_{\text {pump }}$ | -94.857 | kW |  |

Part c.) Here, we need to consider the relationship between velocity, specific volume and cross-sectional area.

$$
\begin{equation*}
\mathbf{v}_{2}=\frac{\dot{\mathbf{m}} \cdot \hat{\mathbf{V}}_{2}}{\mathbf{A}_{2}}[=] \frac{(\mathbf{k g} / \mathbf{s})\left(\mathbf{m}^{3} / \mathbf{k g}\right)}{\mathbf{m}^{2}}[=] \frac{\mathbf{m}}{\mathbf{s}} \tag{Eqn 6}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathrm{A}_{\mathbf{2}}=\frac{\pi}{4} \mathrm{D}_{2}^{2} \tag{En 7}
\end{equation*}
$$

From the NIST Webbook :
\(\left.\begin{array}{cc}\mathrm{A}_{2} \& 0.0019635 \mathrm{~m}^{2} <br>

\mathrm{~V}_{2} \& 0.0010101 \mathrm{~m}^{3} / \mathrm{kg}\end{array}\right]\)|  |  |
| :---: | :---: |
| $\mathrm{v}_{2}$ | $5.813 \mathrm{~m} / \mathrm{s}$ |

Part d.) Write the 1 st Law for the boiler, assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. There is no shaft work in a boiler.

$$
\dot{\mathbf{Q}}_{\text {boil }}-\dot{\mathbf{W}}_{\mathrm{s}, \text { boil }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{H}} \quad \text { Eqn } 8 \quad \dot{\mathbf{Q}}_{\text {boil }}=\dot{\mathbf{m}}\left(\hat{H}_{3}-\hat{\mathrm{H}}_{2}\right)
$$

Eqn 9

We determined $\mathbf{H}_{2}$ in part (b) and $\mathbf{H}_{3}$ in part (a), so all we need to do is plug numbers into Eqn 9.

$$
\begin{array}{lll}
Q_{\text {boil }} & 41.033
\end{array}
$$

Part e.) Write the 1st Law for the condenser assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. Use the working fluid as the system so that $\mathbf{Q}_{\text {cond }}$ is the amount of heat transferred to the cooling water. There is no shaft work in a condenser.

$$
\dot{Q}_{\text {cond }}-\dot{\mathbf{W}} / \mathrm{s,cond}=\dot{\mathbf{m}} \Delta \hat{H} \quad \text { Eqn } 10 \quad \dot{Q}_{\text {cond }}=\dot{\mathrm{m}}\left(\hat{H}_{1}-\hat{H}_{4}\right)
$$

Eqn 11

We determined $\mathbf{H}_{1}$ in part (b) and $\mathbf{H}_{4}$ in part (a), so all we need to do is plug numbers into Eqn 11.

Part f.) In order to determine the mass flow rate of the cooling water, we must write the 1st Law using the cooling water as our system. For this system, $\mathbf{Q}_{\mathrm{cw}}=-\mathbf{Q}_{\text {cond }}$ because heat leaving the working fluid for the cycle enters the cooling water.

$$
\begin{array}{lll}
Q_{\mathrm{cw}} & 26.448
\end{array}
$$

Assume that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. There is no shaft work for the cooling water system.

$$
\dot{\mathbf{Q}}_{\mathrm{cw}}-\dot{\mathrm{W}}, \overrightarrow{\mathrm{~s}, \mathrm{cw}}=\dot{\mathrm{m}} \Delta \hat{\mathbf{H}}
$$

We cannot use the Steam Tables to determine the enthalpy of the cooling water because we do not know the pressure in either stream. The next best thing we can do is to use the specific heat of the cooling water to determine $\Delta \mathrm{H}_{\mathrm{cw}}$ using:

$$
\Delta \hat{\mathbf{H}}_{\mathrm{cw}}=\int_{\mathrm{T}_{\mathrm{cw}, \mathrm{in}}}^{\mathrm{T}_{\mathrm{cw}, \mathrm{out}}} \hat{\mathbf{C}}_{\mathrm{P}} \mathrm{dT}
$$

If we further assume that the specific heat of liquid water is constant over the temperature range $20^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$, than Eqn 13 simplifies to:

$$
\begin{equation*}
\Delta \hat{H}_{\mathrm{cw}}=\hat{\mathbf{C}}_{\mathrm{P}}\left(\mathrm{~T}_{\mathrm{cw}, \text { out }}-\mathrm{T}_{\mathrm{cw}, \text { in }}\right) \tag{Eqn 14}
\end{equation*}
$$

We can then combine Eqn 14 with Eqn 12 to obtain :

$$
\begin{equation*}
\dot{Q}_{\mathrm{cw}}=\dot{\mathbf{m}}_{\mathrm{cw}} \hat{\mathbf{C}}_{\mathrm{P}}\left(\mathrm{~T}_{\mathrm{cw}, \mathrm{out}}-\mathrm{T}_{\mathrm{cw}, \mathrm{in}}\right) \tag{Eqn 15}
\end{equation*}
$$

Finally, we can solve Eqn 15 for $\mathrm{m}_{\mathrm{cw}}: \quad \quad \dot{\mathbf{m}}_{\mathrm{cw}}=\frac{\dot{\mathbf{Q}}_{\mathrm{cw}}}{\hat{\mathbf{C}}_{\mathrm{p}}\left(\mathrm{T}_{\mathrm{cw}, \mathrm{out}}-\mathrm{T}_{\mathrm{cw}, \mathrm{in}}\right)}$
Eqn 16

All we need to do is look up the average heat capacity of water between $20^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$.

| NIST Webbook: | $\mathrm{C}_{\mathrm{P}, \mathrm{cw}}\left(50^{\circ} \mathrm{C}\right)$ | 4.1813 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{C}_{\mathrm{P}, \mathrm{cw}}\left(20^{\circ} \mathrm{C}\right)$ | 4.1841 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ | $\mathrm{C}_{\mathrm{P}, \mathrm{cw}}$ | 4.1827 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
|  |  |  |  |  |  |  |
| Let's use : | $\mathrm{C}_{\mathrm{P}, \mathrm{cw}}$ | 4.182 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |  |  |  |
| Then : | $\mathrm{m}_{\mathrm{cw}}$ | 252.97 | $\mathrm{~kg} / \mathrm{s}$ |  |  |  |

Part g.) The thermal efficiency of this power cycle can be determined directly from its definition.

$$
\eta_{\mathrm{th}}=\frac{\dot{\mathbf{W}}_{\text {net }}}{\dot{Q}_{\mathrm{H}}}=\frac{\dot{\mathbf{W}}_{\text {turb }}+\dot{\mathbf{W}}_{\text {pump }}}{\dot{Q}_{\text {boil }}} \quad \text { Eqn } 17 \quad \eta_{\text {th }} \quad 0.3555
$$

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.

| Answers : | a.) | $\mathrm{W}_{\text {turb }}$ | 14.68 | MW | e.) | $Q_{\text {cond }}$ | -26.4 | MW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b.) | $\mathrm{W}_{\text {pump }}$ | -94.9 | kW | f.) | $\mathrm{m}_{\mathrm{cw}}$ | 253 | kg/s |
|  | c.) | $\mathrm{v}_{2}$ | 5.81 | $\mathrm{m} / \mathrm{s}$ | g.) | $\eta_{\text {th }}$ | 35.5 | \% |
|  | d.) | $\mathbf{Q}_{\text {boil }}$ | 41.0 | MW |  |  |  |  | EARN

A 25 kW compressor is used to increase the pressure of saturated steam at $140^{\circ} \mathrm{C}$ to 1.2 MPa . The compressor effluent is at $280^{\circ} \mathrm{C}$. If the steam flow rate is $3.7 \mathrm{~kg} / \mathrm{min} .$.
a.) Calculate the rate of heat loss from the compressor
b.) Assume the steam behaves as an ideal gas and calculate the \% error in the heat loss that results from the ideal gas assumption.

Read: This is a straightforward application of the steady-state form of the 1st Law.
In part (a), we can lookup properties in the Steam Tables.
In part (b), we must use the Ideal Gas Heat Capacity from the NIST Webbook to evaluate $\mathbf{\Delta H}$.

Given: m

| m | 3.7 | $\mathrm{~kg} / \mathrm{min}$ |
| :--- | :---: | :--- |
|  | 0.0617 | $\mathrm{~kg} / \mathrm{s}$ |
| $\mathrm{x}_{1}$ | 1.00 | kg vap/kg total |
| $\mathrm{T}_{1}$ | 140 | ${ }^{\circ} \mathrm{C}$ |


| $\mathrm{P}_{2}$ | 1200 | kPa |
| :--- | :---: | :--- |
| $\mathrm{T}_{2}$ | 280 | ${ }^{\circ} \mathrm{C}$ |
| W | -25 | kW |

Find: Q ??? kW

Diagram:


Assumptions: 1- Changes in kinetic and potential energy are negligible.

## Equations / Data / Solve:

Part a.) Begin by writing the steady-state form of the 1st Law for open systems in which changes in kinetic and potential energy are negligible.

$$
\dot{\mathrm{Q}}-\dot{\mathrm{W}}_{\mathrm{s}}=\dot{\mathrm{m}} \Delta \hat{\mathrm{H}}
$$

We can solve Eqn 1 for $\mathbf{Q}$ :

$$
\dot{\mathbf{Q}}=\dot{\mathrm{W}}_{\mathrm{s}}+\dot{\mathrm{m}}\left({\left.\hat{\hat{H}_{2}}-\hat{\mathrm{H}}_{1}\right), ~}_{\text {and }}\right.
$$

Now, we need to determine $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$. We can lookup $\mathbf{H}_{1}$ in the NIST Webbook.

For state 2, we must first determine the phase.
$\mathbf{P}_{\text {sat }}\left(\mathbf{T}_{2}\right) \quad 6416.6 \quad \mathbf{k P a} \quad \mathbf{P}_{2}<\mathbf{P}_{\text {sat }}$, therefore we must consult the Superheated Steam Tables.
From the NIST Webbook, we can obtain :

| $\mathrm{H}_{2}$ | 3002.6 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| Q | -8.404 | kW |

Part b.) Eqn 2 still applies if the steam is treated as an ideal gas.
The difference from part (a) lies in how we evaluate the change in the specific enthalpy of the steam. In part (b) we evaluate the change in the enthalpy using:

$$
\begin{equation*}
\Delta \tilde{H}_{1-2}=\int_{T_{1}}^{T_{2}} \tilde{\mathbf{C}}_{\mathrm{P}}^{\circ} d \mathbf{d} \tag{Eqn 3}
\end{equation*}
$$

The Shomate Equation for the ideal gas heat capacity is :

$$
\begin{equation*}
\tilde{\mathbf{C}}_{\mathbf{P}}^{0}=\mathbf{A}+\mathbf{B t}+\mathbf{C t}^{2}+\mathbf{D} \mathbf{t}^{3}+\mathbf{E} / \mathbf{t}^{2} \tag{Eqn 4}
\end{equation*}
$$

NIST Webbook :

$$
\begin{equation*}
\text { where : } \quad t=T(K) / 1000 \tag{Eqn 5}
\end{equation*}
$$

| Temp (K) | 500. - 1700. |
| :---: | :---: |
| A | 30.092 |
| B | 6.832514 |
| C | 6.793435 |
| D | -2.53448 |
| E | 0.082139 |

Combining Eqns 1, 2 and 3 and integrating yields :

$$
\begin{aligned}
\Delta \widetilde{H}= & A\left(T_{2}-T_{1}\right)+\frac{B / 2}{1000}\left(T_{2}^{2}-T_{1}^{2}\right)+\frac{C / 3}{1000^{2}}\left(T_{2}^{3}-T_{1}^{3}\right) \ldots \\
& +\frac{D / 4}{1000^{3}}\left(T_{2}^{4}-T_{1}^{4}\right)-\frac{E}{1000^{-2}}\left(T_{2}^{-1}-T_{1}^{-1}\right)
\end{aligned}
$$

Eqn 7


We can calculate the \%error due to assuming that the steam is an ideal gas using :

$$
\% \text { error }=\frac{Q-Q_{1 G}}{Q} \times 100 \%
$$

Eqn 8

## \%error

Verify: The assumption made in this problem solution cannot be verified.
Answers:

| $\mathbf{Q}$ | -8.40 | kW |
| :---: | :---: | :---: |
| $\mathbf{Q}_{\mathrm{IG}}$ | -8.20 | kW |
| \%error | $2.4 \%$ |  |

Note that the negative sign indicates that heat transfer is from the compressor to the surroundings.

# "The best way to Learn Thermodynamics" 

The pump shown below increases the pressure in liquid water from 100 kPa to 6000 kPa . What is the minimum horsepower motor required to drive the pump for a flow rate of $25 \mathrm{~L} / \mathrm{s}$ ?


Assume the liquid water is incompressible and that its specific volume is equal to that of saturated liquid at $25^{\circ} \mathrm{C}$.

Read: The minimum horsepower that a motor must supply to this pump is the value of $\mathbf{W}_{\mathbf{s}}$ that we can determine by applying the 1st Law. We can assume that heat transfer and changes in potential energy are negligible. We still have a problem because without any temperature data, we cannot look up the properties of the water in the Steam Tables. However, if we assume that the liquid water is incompressible, the problem gets much simpler. For starters, the volumetric flow rate in and out of the pump must be equal at steady-state. If we also assume that the temperature of the water does not change significantly in the process, then $\Delta \mathbf{U}=\mathbf{0}$ because $\mathbf{U}$ of an incompressible liquid is a function of temperature only. These assumptions and the relationship between mass flow rate, volumetric flow rate and specific volume will dramatically simplify the 1st Law and allow us to evaluate $\mathbf{W}_{\mathbf{s}}$. Unfortunately, we will still need to assume a value for the specific volume.

Diagram: The diagram in the problem statement is adequate.

| Given: | $\mathrm{P}_{1}$ | 100 | kPa | $\mathrm{D}_{1}$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{2}$ | 6000 | kPa |  | 0.040 |
|  | $\mathrm{V}_{\text {dot }}$ | 25 | L/s | $\mathrm{D}_{2}$ | 6 |
|  |  | 0.025 | $\mathrm{m}^{3} / \mathrm{s}$ |  | 0.060 |
| Find: | $\mathrm{W}_{\text {s }}$ | ??? | hP |  |  |
| Assumptions: |  |  | The pump operates adiabatically and nearly isothermally. Changes in potential energy are negligible. <br> Water behaves as an incompressible fluid in this process. |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Equations / Data / Solve:

Write the 1st Law for the pump, assuming that changes in potential energy are negligible. This makes sense because we have no elevation data. Also, assume the pump is adiabatic, $\mathrm{Q}_{\text {pump }}=0$.

$$
\begin{aligned}
& \dot{Q}^{\prime}-\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{pump}}=\dot{\mathrm{m}}\left[\Delta \hat{\mathrm{H}}+\Delta \hat{E}_{\text {kin }}\right] \\
& \dot{\mathrm{W}}_{\mathrm{s}, \mathrm{pump}}=-\dot{\mathrm{m}}\left[\Delta \hat{\mathrm{H}}+\Delta \hat{E}_{\text {kin }}\right]
\end{aligned}
$$

The problem is that we cannot lookup the specific enthalpy and we do not know the mass flow rate. We can use the definition of enthalpy to work around this :

$$
\begin{equation*}
\Delta \hat{\mathrm{H}}=\Delta \hat{\mathbf{U}}+\Delta(\mathbf{P} \hat{\mathbf{V}}) \tag{Eqn 3}
\end{equation*}
$$

For an incompressible liquid, $\mathbf{U}=\mathbf{f x n}(\mathbf{T}) \underline{\text { only }}$. Since we assumed $\mathbf{T}_{\mathbf{1}}=\mathbf{T}_{\mathbf{2}}, \Delta \mathbf{U}=\mathbf{0}$.
Also, specific volume is a constant for an incompressible liquid at constant temperature, so V pops out of the $\Delta$ brackets in the last term of Egn 3.

$$
\Delta \hat{\mathbf{H}}=\hat{\mathbf{V}} \Delta \mathbf{P}
$$

Eqn 4 is a pretty simple result, but we still cannot evaluate the specific volume.

Now, let's consider the kinetic energy term :

$$
\begin{equation*}
\hat{E}_{k i n}=\frac{v^{2}}{2 g_{c}} \tag{Eqn 5}
\end{equation*}
$$

Velocity is related to the volumetric flow rate and the cross-sectional area for flow by :

$$
\begin{array}{lll}
\mathbf{V}=\frac{\dot{\mathbf{V}}}{\mathbf{A}} \quad \text { Eqn } 6 & \text { where : } & \mathbf{A}=\frac{\pi}{4} \mathbf{D}^{2} \\
\text { We can evaluate } \mathbf{A}_{1} \text { and } \mathbf{A}_{2}: & \mathbf{A}_{1} & 0.0012566 \mathrm{~m}^{2} \\
& \mathbf{A}_{2} & 0.0028274 \mathrm{~m}^{2}
\end{array}
$$

Now, we can use Eqn 6 and then Eqn 5 to determine the velocities and the change in the specific kinetic energy :

| $\mathbf{v}_{1}$ | 19.89 | $\mathrm{~m} / \mathrm{s}$ |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{v}_{2}$ | 8.84 | $\mathrm{~m} / \mathrm{s}$ | $\Delta \mathrm{E}_{\text {kin }}$ | $-158.803 \mathrm{~J} / \mathrm{kg}$ |

Now, we need to think about the relationship between mass flow rate, volumetric flow rate and the specific volume.

$$
\dot{\mathbf{V}}=\dot{\mathbf{m}} \hat{\mathbf{V}} \quad \text { Eqn } 8 \quad \text { or : } \dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}}{\hat{\mathbf{V}}}
$$

Eqn 9

So, for an isothermal, adiabatic pump working on an incompressible fluid, with negligible changes in potential energy, the 1st Law simplifies from Eqn 2 to :

$$
\begin{equation*}
\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{pump}}=-\dot{\mathbf{V}} \Delta P-\dot{\mathbf{m}} \Delta \hat{E}_{\mathrm{kin}} \tag{Eqn 10}
\end{equation*}
$$

Unfortunately, in the end we still need to assume a value for the specific volume.
We will use the value of specific volume of saturated liquid water at $25^{\circ} \mathrm{C}$ :

The, we can use Eqn 9 to determine $\mathbf{m}_{\text {dot }}$ :
Finally, we can plug numbers into Eqn 10 to evaluate $\mathbf{W}_{\mathbf{s}}$ :
Now, all we need to to do is convert to units of horsepower, hP :
Therefore :

| V | $0.001003 \mathrm{~m}^{3} / \mathrm{kg}$ |  |
| :--- | :---: | :--- |
| $\mathrm{m}_{\text {dot }}$ | 24.93 | $\mathrm{~kg} / \mathrm{s}$ |
| $\mathrm{W}_{\mathrm{s}}$ | -143.54 | kW |
| $1 \mathrm{hp}=$ | 745.7 | W |
| $\mathrm{~W}_{\mathrm{s}}$ | -192.49 | hP |

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.
Answers: $\square$

5C-9
Outlet Temperature From a Steam Diffuser
A diffuser is used to reduce the velocity of steam from $525 \mathrm{ft} / \mathrm{s}$ to $64 \mathrm{ft} / \mathrm{s}$. The inlet steam is saturated vapor at $285^{\circ} \mathrm{F}$ and the effluent pressure is 60 psia. Calculate the temperature of the effluent.

Read : If we can determine the enthalpy of the effluent, we can use the Steam Tables and the known value of the pressure to determine the temperature.
We can simplify the 1st Law if we assume the process is adiabatic with no shaft work. Changes in potential energy are negligible.
We can evaluate $\Delta \mathrm{E}_{\text {kin }}$ because we know both the inlet and outlet velocities.
We can evaluate $\mathbf{H}_{1}$ from the Saturated Temperature Table of the Steam Tables.
This leaves only one unknown in the 1st Law, $\mathbf{H}_{2}$. Once we evaluate $\mathbf{H}_{2}$, by solving the 1st Law, we can use $\mathbf{H}_{2}$ and $\mathbf{P}_{2}$ and the Steam Tables to determine $\mathbf{T}_{\mathbf{2}}$.

Diagram:


| Given: | 1 | kg vap/kg | $\mathrm{P}_{2}$ | 60 | psia |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 285 | ${ }^{\circ} \mathrm{F}$ | $\mathrm{v}_{2}$ | 64 | ft/s |
|  | 525 | $\mathrm{ft} / \mathrm{s}$ |  |  |  |
| Find: $\quad \mathrm{T}_{\mathbf{2}}$ | ??? | ${ }^{\circ} \mathrm{F}$ |  |  |  |
| Assumptions: | 1 - | The fluid passes quickly through the diffuser so that heat exchange with the surroundings is negligible. |  |  |  |
|  | 2 - | Assume changes in potential energy are negligible. Unless the diffuser is very long and oriented vertically, this is a pretty good assumption. |  |  |  |
|  | $3-$ | No shaft w |  |  |  |

Equations / Data / Solve:
We could use the Steam Tables to determine $\mathbf{T}_{2} \underline{i f}$ we knew the value of one more intensive variable in state 2. The most likely choice is to find $\mathbf{H}_{2}$. This is the right choice because $\mathbf{H}_{2}$ appears in the 1st Law.

Begin by writing the 1st Law for an open system :


Assume that the diffuser is adiabatic, there is no shaft work and that changes in potential energy are negligible. This allows us to simplify Eqn 1 to :

$$
\begin{equation*}
\Delta \hat{H}+\Delta \hat{E}_{\text {kin }}=0 \tag{Eqn 2}
\end{equation*}
$$

We can lookup $\mathbf{H}_{1}$ because we know the water is a saturated vapor at $285^{\circ} \mathrm{F}$.
$\mathrm{P}_{1}$
53.266
psia
$\mathrm{H}_{1}$
1176.3 Btu/lb ${ }_{m}$
The specific kinetic energy is defined as :

$$
\begin{equation*}
\hat{\mathbf{E}}_{\text {kin }}=\frac{\mathbf{v}^{2}}{\mathbf{2 g _ { c }}} \tag{Eqn 3}
\end{equation*}
$$

Since we know both velocities, we can evaluate both the inlet and outlet specific kinetic energies and the change as well :

| $\mathrm{g}_{\mathrm{c}}$ | 32.174 | $\mathrm{ft}-\mathrm{lb} \mathrm{b}_{\mathrm{m}} / \mathrm{lb} \mathrm{b}_{\mathrm{t}}-\mathrm{s}^{2}$ |  |  | $1 \mathrm{Btu}=$ | 778.170 | $\mathrm{ft}-\mathrm{lb}_{\mathrm{f}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{\text {kin,1 }}$ | 4283.3 | $\mathrm{ft}-\mathrm{lb} / \mathrm{lb}_{\mathrm{m}}$ |  |  | $\mathrm{E}_{\text {kin,1 }}$ | 5.504 | Btu/lb ${ }_{\text {m }}$ |
| $\mathrm{E}_{\text {kin,2 }}$ | 63.7 | $\mathrm{ft}-\mathrm{lb} / \mathrm{lb}_{\mathrm{m}}$ |  |  | $\mathrm{E}_{\text {kin,2 }}$ | 0.082 | Btu/lb ${ }_{\text {m }}$ |
| $\Delta \mathrm{E}_{\text {kin }}$ | -4219.7 | $\mathrm{ft}-\mathrm{lb} / \mathrm{llb}_{\mathrm{m}}$ |  |  | $\Delta \mathrm{E}_{\text {kin }}$ | -5.423 | Btu/lb ${ }_{\text {m }}$ |
| Now, we can solve Eqn 2 for $\mathbf{H}_{\mathbf{2}}$ : |  |  |  |  | $\hat{H}_{2}=\hat{H}_{1}-\Delta \hat{\mathbf{E}}_{\text {kin }}$ |  | Eqn |
| Now, we can plug numbers into Eqn 4 and evaluate $\mathbf{H}_{2}$ |  |  |  |  | $\mathrm{H}_{2}$ | 1181.7 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| Next, we need to determine the state of the water in state 2. |  |  |  |  |  |  |  |
| At 60 |  | $\mathrm{H}_{\text {sat liq }}$ | 262.38 | Btu/lb ${ }_{\text {m }}$ | $\mathrm{H}_{\text {sat vap }}$ | 1178.6 | Btu/lb ${ }_{\text {m }}$ |

Since $\mathbf{H}_{2}>\mathbf{H}_{\text {sat vap }}$, we conclude that stream 2 is a superheated vapor. Therefore, we must use the Superheated Steam Tables to determine the temperature of steam at 60 psia that has a specific enthalpy of 1181.7 Btu/lb $\mathrm{m}_{\mathrm{m}}$.

From the NIST Webbook at 60 psia:

| $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$ | $\mathrm{H}\left({\left.\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)}^{292.7}\right.$ |
| :---: | :---: |
| 21178.6 |  |
| $\mathrm{~T}_{2}$ | 1181.7 |
| 300 | 1182.7 |
| 350 | 1209.2 |

Interpolating between $\mathrm{T}_{\text {sat }}=292.7^{\circ} \mathrm{F}$ and $300^{\circ} \mathrm{F}$ yields $\mathrm{T}_{2}: \quad \mathrm{T}_{2} \quad 298.25{ }^{\circ} \mathrm{F}$
Verify: $\quad$ None of the assumptions made in this problem solution can be verified.
Answers : $\mathrm{T}_{1} \quad 298{ }^{\circ} \mathrm{F}$

## "The best way to Learn Thermodynamics"

When a block of cold carbon steel touches a hot aluminum block in an insulated chamber, both blocks eventually reach thermal equilibrium at a temperature between their initial temperatures.

Determine the equilibrium temperature if the aluminum block has a mass of 10 kg and an initial temperature of $380^{\circ} \mathrm{C}$ and the carbon steel block has a mass of 25 kg and an initial temperature of $10^{\circ} \mathrm{C}$.

Read : The mass and initial temperature of each block are given. We know that the equilibrium temperature of the blocks must lie between the two intial temperatures. We will need to lookup the heat capacity or specific heat of both steel and aluminum. Then, we can apply the 1st Law to a system made up of the two blocks. No work or heat transfer crosses the boundary of this system during the approach to equilibrium, so the only unknown in the equation is the final, equilibrium temperature. So, we can solve for it and evaluate it.

Diagram: A diagram is optional here. The system and process are fairly simple.

| Given: | $\mathrm{m}_{\text {steel }}$ | 25 | kg | $\mathrm{~m}_{\mathrm{Al}}$ | 10 | kg |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  | $\mathrm{~T}_{\text {steel, } 1}$ | 10 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{Al}, 1}$ | 380 | ${ }^{\circ} \mathrm{C}$ |
| Find: | $\mathrm{T}_{2}$ | $? ? ?$ | ${ }^{\circ} \mathrm{C}$ |  |  |  |

Assumptions: 1- Steel and aluminum have constant heat capacities.
2- $\quad$ No heat is exchanged with the surroundings by either the steel or the aluminum.
3- Steel and aluminum are both incompressible, so this process is a constant volume process.

## Equations / Data / Solve:

We begin by writing the 1 st Law and we choose as our system the steel and the aluminum.

$$
\begin{equation*}
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}=\mathbf{m}_{\mathrm{st}}\left(\hat{\mathbf{U}}_{2, \mathrm{st}}-\hat{\mathbf{U}}_{1, \mathrm{St}}\right)+\mathbf{m}_{\mathrm{Al}}\left(\hat{\mathbf{U}}_{2, \mathrm{Al}}-\hat{\mathbf{U}}_{1, \mathrm{Al}}\right)=\mathbf{0} \tag{Eqn 1}
\end{equation*}
$$

By cleverly selecting our system, $\mathbf{Q}=\mathbf{0}$ and $\mathbf{W}=\mathbf{0}$. This makes the solution simpler.

Because both steel and aluminum are assumed to be incompressible with constant heat capacities:

$$
\Delta \hat{\mathbf{U}} \approx \hat{\mathbf{C}}_{\mathrm{V}} \Delta \mathrm{~T}
$$

Substitute Eqn 2 into Eqn 1 twice, once for steel and once for aluminum to get :

$$
\begin{equation*}
\mathbf{m}_{\mathrm{st}} \hat{\mathbf{C}}_{\mathrm{v}, \mathrm{St}}\left(\mathbf{T}_{2}-\mathbf{T}_{1, \mathrm{St}}\right)+\mathbf{m}_{\mathrm{Al}} \hat{\mathbf{C}}_{\mathrm{V}, \mathrm{Al}}\left(\mathbf{T}_{2}-\mathbf{T}_{1, \mathrm{Al}}\right)=\mathbf{0} \tag{Eqn 3}
\end{equation*}
$$

Notice that there is only one $\mathbf{T}_{2}$ because in the final, equilibrium state, the steel and the aluminum are both at the same temperature!

Now, solve Eqn 3 for $\mathbf{T}_{\mathbf{2}}$ :

$$
\begin{equation*}
\left(\mathbf{m}_{\mathrm{Cu}} \hat{\mathbf{C}}_{\mathrm{V}, \mathrm{Cu}}+\mathbf{m}_{\mathrm{oil}} \hat{\mathbf{C}}_{\mathrm{V}, \mathrm{oil}}\right) \mathbf{T}_{2}=\mathbf{m}_{\mathrm{Cu}} \hat{\mathbf{C}}_{\mathrm{v}, \mathrm{Cu}} \mathbf{T}_{1, \mathrm{cu}}+\mathbf{m}_{\mathrm{oil}} \hat{\mathbf{C}}_{\mathrm{V}, \mathrm{oil}} \mathbf{T}_{1, \mathrm{oil}} \tag{Eqn 4}
\end{equation*}
$$

Now, solve Eqn 4 for $\mathbf{T} \mathbf{2}$.

$$
\mathbf{T}_{2}=\frac{\mathbf{m}_{\mathrm{Cu}} \hat{\mathbf{C}}_{\mathrm{v}, \mathrm{Cu}} \mathbf{T}_{1, \mathrm{Cu}}+\mathbf{m}_{\mathrm{oil}} \hat{\mathbf{C}}_{\mathrm{v}, \mathrm{oil}} \mathbf{T}_{1, \mathrm{oil}}}{\mathbf{m}_{\mathrm{cu}} \hat{\mathbf{C}}_{\mathrm{v}, \mathrm{Cu}}+\mathbf{m}_{\mathrm{oil}} \hat{\mathbf{C}}_{\mathrm{v}, \text { oil }}}
$$

Eqn 5

Before we can evaluate $\mathbf{T}_{\mathbf{2}}$, we must lookup the specific heat of steel and of aluminum.

For carbon steel, I found :
For incompressible solids, $\mathbf{C}_{\mathrm{v}}=\mathbf{C}_{\mathbf{p}}$, so :
For aluminum, I found :

Now, we can finally plug numbers into Eqn 5 and evaluate $\mathbf{T}_{\mathbf{2}}$ :
Verify: $\quad$ None of the assumptions can be verified.

Answers: |  | $\mathrm{T}_{2}$ | 168 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |

| $\mathrm{C}_{\mathrm{P}, \mathrm{st}}$ | 0.49 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :---: | :--- |
| $\mathrm{C}_{\mathrm{V}, \mathrm{st}}$ | 0.49 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\mathrm{C}_{\mathrm{P}, \mathrm{Al}}$ | 0.91 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\mathrm{C}_{\mathrm{V}, \mathrm{Al}}$ | 0.91 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\mathrm{T}_{2}$ | 167.7 | ${ }^{\circ} \mathrm{C}$ |

Water flows into a tank from two different pipes, $\mathbf{A}$ and $\mathbf{B}$, and leaves the tank through pipe $\mathbf{C}$. The volumetric flow rates in the pipes are $7.4,3.9$ and $8.1 \mathrm{~L} / \mathrm{min}$, respectively.


If the tank is initially empty, how much time is required for 1500 kg of water to accumulate in the tank? Assume the density of water is $985 \mathrm{~kg} / \mathrm{m}^{3}$.

## Read:



$$
\rho=985 \mathrm{~kg} / \mathrm{m}^{3}
$$

## Diagram:

| Given: | $\mathrm{V}_{\mathrm{A}}$ | 7.4 | $\mathrm{~L} / \mathrm{min}$ | $\mathrm{m}_{\text {init }}$ | 0 | kg |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
|  | $\mathrm{~V}_{\mathrm{B}}$ | 3.9 | $\mathrm{~L} / \mathrm{min}$ | $\mathrm{m}_{\text {final }}$ | 1500 | kg |
|  | $\mathrm{~V}_{\mathrm{C}}$ | 8.1 | $\mathrm{~L} / \mathrm{min}$ | $\rho$ | 985 | $\mathrm{~kg} / \mathbf{m}^{\circ}$ |
| Find: | $\Delta \mathbf{\Delta t}$ | $? ? ?$ | hr |  | 0.985 | $\mathrm{~kg} / \mathrm{L}$ |

Assumptions:

1 -
2- $\quad$ All of the volumetric flow rates are constant: uniform-flow process.

## Equations / Data / Solve:

The key equation in the solution of this problem is the Differential or Rate Mass Balance Equation., with constant inlet and outlet mass flow rates.

$$
\begin{equation*}
\Delta \mathbf{m}_{\text {sys }}=\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{2}\right)-\mathbf{m}_{\text {sys }}\left(\mathbf{t}_{1}\right)=\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \sum_{i}^{\text {in }} \dot{m}_{i}-\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right) \sum_{j}^{\text {out }} \dot{m}_{\text {out }} \tag{Eqn 1}
\end{equation*}
$$

Applying Eqn 1 to this problem yields :

$$
\begin{equation*}
\Delta \mathrm{m}_{\mathrm{sys}}=\left(\dot{\mathrm{m}}_{\mathrm{A}}+\dot{\mathrm{m}}_{\mathrm{B}}-\dot{\mathrm{m}}_{\mathrm{C}}\right) \cdot \Delta \mathrm{t} \tag{Eqn 2}
\end{equation*}
$$

Eqn $\mathbf{2}$ is useful because we can determine the time required to accumulate mass, $\mathbf{m}$, in the tank using the following equation.

$$
\begin{equation*}
\Delta t=\frac{\Delta m_{s y s}}{\dot{m}_{A}+\dot{m}_{B}-\dot{m}_{C}} \tag{Eqn 3}
\end{equation*}
$$

Next, we need to determine the mass flow rates from the volumetric flow rates of the three streams.

$$
\begin{equation*}
\dot{\mathbf{m}}=\rho \cdot \dot{\mathbf{V}} \tag{Eqn 4}
\end{equation*}
$$

Now we can plug numbers into Eqns 4, 2 and 3, in that order to solve the problem.

| $\mathrm{m}_{\mathrm{A}}$ | 7.289 | $\Delta \mathrm{~m}_{\text {sys }}$ | $\mathbf{3 . 1 5 2}$ | $\mathrm{kg} / \mathrm{min}$ |
| :--- | :---: | :--- | :--- | :--- |
| $\mathrm{m}_{\mathrm{B}}$ | 3.8415 |  |  |  |
| $\mathrm{~m}_{\mathrm{C}}$ | 7.9785 | $\Delta \mathrm{t}$ | $\mathbf{4 7 5 . 9}$ | $\mathbf{~ m i n}$ |
|  |  |  | $\mathbf{7 . 9 3 1}$ | $\mathbf{h r}$ |

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers: | $\Delta t$ | 7.93 | hr |
| :--- | :--- | :--- |

An evacuated tank will be filled with steam that flows into the tank from a steam supply line where the pressure is 2.8 MPa and the temperature is $350^{\circ} \mathrm{C}$.
The steam from the supply line passes through a valve before it enters the tank. When the valve is opened, the tank fills with steam and the pressure increases until it reaches 2.8 MPa .
At this point, steam flow stops and the valve is closed. If the process is adiabatic and changes in kinetic and potential energies are negligible, determine the final temperature of the steam in the tank.

Read: Use the contents of the tank as the system. Most of the key assumptions for this problem are given in the problem statement. One additional assumption is that no shaft work crosses the boundary of the system during the process. Another crucial assumption is that this is a uniform flow, uniform state process. These assumptions allow us to simplify the 1st Law dramatically. We can use a transient mass balance to show that the mass in the tank in the final state is equal to the mass that was added to the tank. This probably seems obvious since the tank was initially empty. We can determine the specific enthalpy of the steam entering the tank from the Steam Tables because we know both $\mathbf{T}_{\text {in }}$ and $\mathbf{P}_{\text {in }}$. We will be able to determine the internal energy of the steam in the tank in the final state from the 1st Law. Then, we can use the Steam Tables to determine the value of $\mathbf{T}_{2}$ using $\mathbf{U}_{\mathbf{2}}$ and the given value of $\mathbf{P}_{\mathbf{2}}$.

| Given: | $\mathrm{P}_{\text {in }}$ | 1800 | kPa | Q | 0 | kJ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathrm{~T}_{\text {in }}$ | 350 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{W}_{\mathrm{s}}$ | 0 | kJ |
|  | $\mathrm{P}_{2}$ | 1800 | kPa |  |  |  |
| Find: | $\mathrm{T}_{2}$ | $? ? ?$ | ${ }^{\circ} \mathrm{C}$ |  |  |  |

Diagram: Initial :


## Final :



Assumptions: 1- Although this is a transient process, it can be analyzed as a uniform flow, uniform state problem because the properties of the steam entering the tank are constant.
2- $\quad$ Changes in kinetic and potential energies are negligible.
3- No shaft work crosses the boundary of the system, which consists of the contents of the tank.
4- The process is adiabatic.

## Equations / Data / Solve:

The integral form of the transient energy balance equation for a single-input, single-output system in which kinetic and potential energies are negligible is :

$$
\begin{equation*}
m_{2} \hat{\mathrm{U}}_{2}-\mathrm{ma}_{1}^{1} \hat{\mathrm{U}}_{1}=\boldsymbol{Q}-\mathbf{W}_{\text {shatt }}^{\prime}+\mathrm{m}_{\text {in }} \hat{\mathrm{H}}_{\text {in }}-\mathbf{M}_{\text {out }}^{\prime} \hat{H}_{\text {out }} \tag{Eqn 1}
\end{equation*}
$$

In our process, no shaft work occurs, no heat transfer occurs, there is no mass leaving the system and there is no mass inside the system initially, so Eqn 1 can be simplified a great deal.

$$
\begin{equation*}
\mathbf{m}_{2} \hat{\mathbf{U}}_{2}=\mathbf{m}_{\text {in }} \hat{\mathbf{H}}_{\text {in }} \tag{Eqn 2}
\end{equation*}
$$

The integral form of the transient mass balance on the tank is :

$$
\begin{equation*}
\Delta m_{\text {sys }}=m_{\text {in }}-m_{\text {out }}^{\prime}=m_{2}-\mathbf{m}_{1} \tag{Eqn 3}
\end{equation*}
$$

Eqn 3 can be simplified because there is no mass leaving the sytstem and there is no mass initially inside the system.

$$
\begin{equation*}
\mathbf{m}_{\mathrm{in}}=\mathbf{m}_{\mathbf{2}} \tag{Eqn 4}
\end{equation*}
$$

We can use Eqn 4 to further simplify Eqn 2 :

$$
\begin{equation*}
\hat{\mathbf{U}}_{2}=\hat{\mathbf{H}}_{\mathrm{in}} \tag{Eqn 5}
\end{equation*}
$$

Next, we need to determine $\mathbf{H}_{\text {in }}$. First, we need to determine the state of the system.
In the NIST Webbook, we can find the $\mathbf{P}_{\text {sat }}\left(\mathbf{T}_{\text {in }}\right)$ for steam: $\quad \mathbf{P}_{\text {sat }}\left(\mathbf{T}_{\text {in }}\right) \quad 16.529 \mathrm{MPa}$
Because $\mathbf{P}_{\text {in }}<\mathbf{P}_{\text {sat }}\left(\mathbf{T}_{\text {in }}\right)$, we must consult the Superheated Steam Tables to evaluate $\mathbf{H}_{\text {in }}$.

| From the NIST Webbook, we can obtain : | $\mathbf{H}_{\text {in }}$ | 3141.8 | $\mathbf{~ k J} / \mathbf{k g}$ |
| :--- | :--- | :--- | :--- |
| Plugging values into Eqn 5 gives us : | $\mathbf{U}_{2}$ | $\mathbf{3 1 4 1 . 8}$ | $\mathbf{~ k J} / \mathbf{k g}$ |

Now, we know the values of two intensive properties at state 2: pressure and specific internal energy. The state is completely determined and we can use the Steam Tables to evaluate any other intensive property, such as $\mathbf{T}_{2}$. To do so, we must first detemine which phase or phases are present in state 2.
At $P=1.4 \mathrm{MPa}$, the NIST Webbook tells us that :
$\begin{array}{lllll}\text { Usat liq } & 882.37 & \mathbf{k J} / \mathrm{kg} & \mathbf{U}_{\text {sat vap }} & 2597.2 \mathrm{~kJ} / \mathrm{kg}\end{array}$
Because $\mathbf{U}_{\mathbf{2}}>\mathbf{U}_{\text {sat vap }}\left(\mathbf{P}_{2}\right)$, we must consult the Superheated Steam Tables to evaluate $\mathbf{T}_{\mathbf{2}}$.

At $\mathrm{P}=1.8 \mathrm{MPa}$, the NIST Webbook tells us that :

| $\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{U}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 510 | 3135.7 |  |  |  |  |
| $\mathrm{~T}_{2}$ | 3141.8 |  |  |  |  |
| 520 | 3152.9 | Interpolation yields : | $\mathbf{T}_{2}$ | 513.56 | ${ }^{\circ} \mathrm{C}$ |

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.

Answers : |  | $\mathrm{T}_{2}$ | 513.6 | ${ }^{\circ} \mathrm{C}$ |
| ---: | :--- | ---: | :--- |

The temperature of the steam in the tank in the final state is greater than the temperature of the steam in the feed line because the surroundings did flow work on the system as it filled with steam. This flow work caused the internal energy of the steam in the tank to exceed the internal energy of the steam in the feed line. Consequently, the temperature of the steam in the tank in the final state must be greater than the temperature of feed.

5E-2
Charging a Tank With R-134a
7 pts
A rigid tank contains ammonia at $-20^{\circ} \mathrm{C}$ with a quality of 0.50 kg vap/ kg . Superheated ammonia vapor at 800 kPa and $80^{\circ} \mathrm{C}$ slowly and steadily enters the tank from a supply line through a pipe with a valve.


When the pressure in the tank reaches 600 kPa , the valve is closed. At this point, the last drop of liquid ammonia in the tank vaporizes and the tank contains only saturated ammonia vapor.
The total volume of the tank is 350 L . Determine...
a.) The final temperature of the ammonia in the tank
b.) The mass of ammonia that has entered the tank
c.) The heat transfer between the tank and the surroundings that has taken place during this process

Read: Part (a) is straightforward because the vapor in the system is saturated at 800 kPa . We can then determine the initial and final mass of ammonia in the tank. A mass balance between the initial and final states of the system (the tank) tells us that the mass added to the tank is just the final mass minus the initial mass. This process is a transient process because the mass of ammonia inside the system (the tank) changes with time. We will need to use the integral form of the transient 1st Law Equation to answer part (c).

| Given: | V | 350 | L | $P_{\text {in }}$ | 800 | kPa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.35 | $\mathrm{m}^{3}$ | $\mathrm{T}_{\text {in }}$ | 40 | ${ }^{\circ} \mathrm{C}$ |
|  | T | -20 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{P}_{2}$ | 600 | kPa |
|  | $\mathrm{x}_{1}$ | 0.50 | kg vap/kg total | $\mathrm{x}_{2}$ | 1.00 | kg vap/kg total |
| Find: | T | ??? | ${ }^{\circ} \mathrm{C}$ | Q | ??? | kJ |
|  | $\mathrm{m}_{\text {in }}$ | ??? | kg |  |  |  |

Diagram: The diagram in the problem statement is adequate.

Assumptions: 1- Although this is a transient process, it can be analyzed as a uniform flow problem because the properties of the R-134a entering the tank are constant.
2- Kinetic and potential energies are negligible.
No shaft work crosses the boundary of the system, which consists of the content of
3 the tank.

## Equations / Data / Solve:

Part a.) The vapor inside the tank in the final state is saturated. Therefore, it is at the saturation temperature of ammonia at a pressure of 600 kPa . We can obtain this temperature from the NIST Webbook.

$$
\begin{array}{lll}
\mathrm{T}_{2} & 9.285 & { }^{\circ} \mathrm{C}
\end{array}
$$

Part b.) The integral form of the transient mass balance on the tank is :

$$
\Delta m_{\text {sys }}=m_{\text {in }}-\boldsymbol{n}_{\mathrm{out}}=\mathrm{m}_{2}-\mathrm{m}_{1}
$$

We can determine the intial and final mass of R-134a in the system using :

$$
\mathbf{m}=\frac{\mathbf{V}}{\hat{\mathbf{V}}}
$$

Our next step is to determine the intial and final specific volume of the ammonia.
In the initial state :

$$
\begin{array}{llll}
\text { At }-20^{\circ} \mathrm{C}: & \mathrm{P}_{1} & 190.08 \quad \mathrm{kPa}
\end{array}
$$

$$
\hat{\mathbf{V}}_{1}=\mathbf{x}_{1} \hat{\mathbf{V}}_{\text {sat vap }}+\left(\mathbf{1}-\mathbf{x}_{1}\right) \hat{\mathbf{V}}_{\text {satliq }}
$$

$\mathrm{V}_{\text {sat liq }} \quad 0.0015035 \mathrm{~m}^{3} / \mathrm{kg}$
$\begin{array}{lllll}V_{\text {sat vap }} & 0.62373 & \mathrm{~m}^{3} / \mathrm{kg} & \mathrm{V}_{1} & 0.31262 \mathrm{~m}^{3} / \mathrm{kg}\end{array}$
The final state is simpler because the ammonia in the tank is a saturated vapor.
At $600 \mathrm{kPa}: \quad \mathrm{V}_{\text {sat vap }} \quad 0.21035 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{V}_{2} \quad 0.21035 \mathrm{~m}^{3} / \mathrm{kg}$

Now, we can use Eqn 2 to to determine the initial and final mass of ammonia in the tank.
$\mathrm{m}_{1}$
1.12 kg
$\mathrm{m}_{2}$
1.66 kg

Plug these values back into Eqn 1 to determine the mass of ammonia that was added to the tank during this process.

$$
\mathrm{m}_{\text {in }} \quad 0.544 \quad \mathrm{~kg}
$$

part c.) The integral form of the transient energy balance equation for a single-input, single-output system in which kinetic and potential energies are negligible is:

$$
\begin{equation*}
\mathbf{m}_{2} \hat{\mathbf{U}}_{2}-\mathbf{m}_{1} \hat{U}_{1}=\mathbf{Q}-\mathbf{W}_{\mathrm{shaft}}+\mathbf{m}_{\mathrm{in}} \hat{H}_{\mathrm{in}}-\mathbf{m}_{\mathrm{out}} \hat{H}_{\mathrm{out}} \tag{Eqn 4}
\end{equation*}
$$

In our process, no shaft work occurs and there is no mass leaving the system, so Eqn 4 can be simplified and solved for $\mathbf{Q}$ :

$$
\mathbf{Q}=\mathrm{m}_{2} \hat{\mathbf{U}}_{2}-\mathrm{m}_{1} \hat{\mathbf{U}}_{1}-\mathbf{m}_{\mathrm{in}} \hat{H}_{\mathrm{in}}
$$

We can determine $\mathbf{U}_{2}$ and $\mathbf{U}_{1}$ much as we determined $\mathbf{V}_{2}$ and $\mathbf{V}_{1}$ in part (b).
The NIST Webbook, using the default reference state, tells that in the initial state :
At $-20^{\circ} \mathrm{C}$ :

$$
\begin{aligned}
& \mathbf{U}_{\text {sat liq }} \quad 89.095 \mathrm{~kJ} / \mathrm{kg} \\
& \hat{U}_{1}=\mathbf{X}_{1} \hat{U}_{\text {sat vap }}+\left(1-\mathbf{X}_{1}\right) \hat{U}_{\text {sat liq }}
\end{aligned}
$$

Eqn 6
$\mathbf{U}_{1}$
$694.52 \mathrm{~kJ} / \mathrm{kg}$
The final state is simpler because the ammonia in the tank is a saturated vapor.
$\begin{array}{lllllll}\text { At } 600 \mathrm{kPa}: & \mathrm{U}_{\text {sat vap }} & 1326.1 & \mathrm{~kJ} / \mathrm{kg} & \mathrm{U}_{2} & 1326.1 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
Next, we need to determine $\mathbf{H}_{\text {in }}$. First, we need to determine the state of the system.
$T_{\text {sat }}\left(P_{\text {in }}\right) \quad 17.848 \quad{ }^{\circ} \mathbf{C} \quad T_{\text {in }}>T_{\text {sat }}$, therefore we must consult the Superheated Ammonia Tables.

From the NIST Webbook, we can obtain :
$\mathrm{H}_{\text {in }} \quad 1521.3 \mathrm{~kJ} / \mathrm{kg}$
Now, we can plug values back into Eqn 5 to evaluate $\mathbf{Q}$ :
Q
600.83 kJ

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.

| Answers : | $\mathrm{T}_{2}$ | 9.3 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{m}_{\mathrm{in}}$ | 0.544 | kg |
|  |  |  |  |


| Q | 601 | $k J$ |
| :--- | :--- | :--- |

The tank, shown below, has two chambers of equal volume. The left side holds 10 kg of air at 500 kPa and $60^{\circ} \mathrm{C}$. The right side is completely evacuated.


When the wall that separates the two chambers within the tank is removed, the air expands to fill the right side of the tank. Calculate the final temperature and pressure in the tank.

Assume air behaves as an ideal gas and the process is adiabatic because the tank is well-insulated.

Read : The most important thing to recognize in this problem is that removing the partition is equivalent to allowing the partition to move the to the left (in our diagram) until the ideal gas fills the entire tank. The resisting force in this expansion process is zero because there is a vacuum in the left chamber of the tank. Since the resisting force is zero, the work done by the expanding gas is also zero. If we take the ideal gas to be our system, there is no heat transfer during the expansion either, because the tank is insulated. The 1st Law tells us that $\Delta \mathbf{U}=\mathbf{0}$ when no work or heat transfer occur during a process on a closed system. Also, because $\mathbf{U}$ is a function of $\mathbf{T}$ only for an ideal gas, $\mathbf{T}_{2}=\mathbf{T}_{\mathbf{1}}$. Then, all we need to do is apply the IG EOS to determine $\mathbf{P}_{\mathbf{2}}$.

Diagram: The diagram in the problem statement is adequate.

| Given: | $\mathbf{m}$ | 10 | kg | Find: | $\mathbf{P}_{2}$ | ??? | kPa |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{1}$ | 500 | kPa |  |  |  |  |
|  | $\mathrm{T}_{1}$ | 60 | ${ }^{\circ} \mathrm{C}$ |  |  |  |  |

Assumptions: 1 - The gas behaves as an ideal gas.
2- Changes in kinetic and potential energy are negligible.
3- The tank is perfectly insulated, so the process is adiabatic: $\mathbf{Q}=\mathbf{0}$.

## Equations / Data / Solve:

The ideal gas is the system that we will analyze. This is a closed system because no mass crosses the boundary during the expansion process.

The 1st Law for a closed system is:

$$
\mathscr{Q}-\mathbf{W}_{\mathrm{b}}^{\prime}=\Delta U+\Delta \overrightarrow{E_{\mathrm{pot}}}+\Delta \boldsymbol{Z} \mathbf{E}_{\mathrm{kin}}
$$

Since the restraining force overcome during the expansion is zero, the boundary work for the expansion is also zero. Combining this fact with the 2nd and 3rd assumptions listed above, allows us to simplify Eqn 1 to Eqn 2 :

$$
\Delta \mathbf{U}=\mathbf{0} \quad \text { or: } \quad \mathbf{U}_{2}=\mathbf{U}_{1}
$$

For an ideal gas, internal energy depends only on the temperature of the gas. If the internal energy is the same in state 2 as in state 1, then the temperature in state 2 must also be the same as the temperature in state 1!

$$
\begin{equation*}
\mathrm{T}_{2}=\mathrm{T}_{1} \tag{Eqn 3}
\end{equation*}
$$

Now that we know $\mathbf{T}_{2}$, we can apply the Ideal Gas EOS to both states 1 and 2 to determine $\mathbf{P}_{\mathbf{2}}$.

$$
P_{1} V_{1}=n_{1} R T_{1} \quad \text { Eqn } 4 \quad P_{2} V_{2}=n_{2} R T_{2} \quad \text { Eqn } 5
$$

Divide Eqn 5 by Eqn 4 and cancel like terms :

$$
\begin{equation*}
\frac{P_{2} V_{2}}{P_{1} V_{1}}=\frac{h_{2} R T T_{2}}{n_{1} R T_{1}} \tag{Eqn 6}
\end{equation*}
$$

But, we know that $\mathbf{T}_{1}=\mathbf{T}_{2}$ and because the system is closed, $\mathbf{n}_{1}=\mathbf{n}_{\mathbf{2}}$. Also, because the left and right chambers of the tank are equal in size, $\mathbf{V}_{\mathbf{2}}=\mathbf{2} \mathbf{V}_{\mathbf{1}}$. Therefore, Eqn 6 can be simplified as follows:
$\mathrm{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}}=\mathrm{P}_{\mathbf{1}} \mathrm{V}_{\mathbf{1}}$
Eqn 7

$$
\begin{equation*}
P_{2}\left(2 V_{1}\right)=P_{1} V_{1} \tag{Eqn 8}
\end{equation*}
$$

or:
Solving Eqn 8 for $\mathbf{P}_{\mathbf{2}}$ yields :

$$
\mathbf{P}_{2}=\frac{\mathbf{P}_{1}}{2}
$$

Putting values into Eqn 9 gives us the answer:
$P_{2}$
250.0 kPa

Verify: $\quad$ None of the assumptions can be verified.
Answers : $\quad \mathrm{P}_{2} \quad 250 \quad \mathrm{kPa}$

The rigid tank, shown below, contains 20 L of liquid water and 45 L of water vapor in equilibrium at $200^{\circ} \mathrm{C}$.


When the valve in the drain line is opened slightly, liquid water flows slowly out of the tank at a constant rate. Heat transfer into the tank keeps the temperature within the tank uniform and constant.
a.) Determine the mass of liquid water and the mass of water vapor initially in the tank
b.) When the total mass of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ in the tank is $20 \%$ of what it was initially, determine the quality of the vapor-liquid mixture in the tank and the amount of heat transfer required up to that point.
Note: this process can be considered a uniform-flow, unsteady process.

Read : The key to this problem is that the process is an isothermal process. As a result, the properties of the liquid inside this system and leaving the system are always the properties of saturated liquid at $200^{\circ} \mathrm{C}$. As a result, this is a uniform state process. We can also assume it is a uniform flow process. If we further assume that changes in kinetic and potential energies are negligible and that no shaft work occurs, we can use the 1st Law to determine $\mathbf{Q}$. Parts (a) and (b) require use of the Steam Tables or NIST Webbook and a working knowledge of the relationship between mass, volume and specific volume, but should not be difficult.

Diagram:


| Given: | $\mathrm{V}_{1, \text { liq }}$ | 20 | $\mathbf{L}$ |  | $\mathrm{~T}_{1}=\mathrm{T}_{2}=$ | 200 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{V}_{1, \text { vap }}$ | 0.020 | $\mathrm{~m}^{3}$ | 45 | L |  | 473.15 |
| K |  |  |  |  |  |  |  |

Find:
a.) $\begin{array}{lll}\mathrm{m}_{1, \text { vap }} & ? ? ? & \mathrm{~kg} \\ & \mathrm{~m}_{1, \text { liq }} & ? ? ? \\ \mathrm{~m}_{1} & \text { ??? } & \mathrm{kg} \\ & \end{array}$
b.)
$\mathrm{X}_{2}$
??? $\quad \mathrm{kg}$ vap/kg total when: $\quad \mathbf{m}_{\mathbf{2}}=\frac{\mathbf{m}_{\mathbf{1}}}{\mathbf{2}}$
c.)
$Q_{12}$
??? kJ

## Assumptions:

1- Only saturated liquid water leaves the tank.
2- The process is isothermal.
3- Only flow work (no shaft work) crosses the system boundary.
4- Changes in kinetic and potential energies are negligible.
5- Uniform Flow: The properties and flow rate of the outlet stream are constant over the cross-sectional area of the pipe and with respect to time.
6 - Uniform State: At all times, the properties of the outlet stream are the same as the properties of the contents of the system at that point in time.

## Equations / Data / Solve:

Part a.) Because the water liquid and vapor are in equilibrium with each other at all times throughout the process, they are always saturated. Therfore, we can determine the mass of liquid and vapor initially in the tank by looking up their specific volumes in the Saturated Steam Tables or the NIST Webbook.

$$
\mathbf{m}_{1, \text { liq }}=\frac{\mathbf{V}_{1, \text { liq }}}{\hat{\mathbf{V}}_{\text {satliq }}}
$$

Eqn 1
$\mathbf{m}_{1 \text {.vap }}=\frac{\mathbf{V}_{1, \text { vap }}}{\hat{\mathbf{V}}_{\text {sat vap }}}$
At $200^{\circ} \mathrm{C}$ :

| $\mathrm{V}_{\text {sat vap }}$ | $0.12721 \mathrm{~m}^{3} / \mathrm{kg}$ |
| :--- | ---: |
| $\mathrm{V}_{\text {sat liq }}$ | $0.0011565 \mathrm{~m}^{3} / \mathrm{kg}$ |


| $\mathrm{m}_{1 \text {,vap }}$ | 0.3537 | kg |
| :--- | :---: | :---: |
| $\mathrm{~m}_{1, \text { liq }}$ | 17.29 | kg |

## kg

kg
We can determine the total mass of water in the system initially from:

$$
\begin{array}{cr}
m_{1}=m_{1, \text { vap }}+m_{1, \text { liq }} &  \tag{Eqn 3}\\
m_{1} & 17.65 \quad \mathrm{~kg}
\end{array}
$$

$\begin{array}{lllll}\text { Part b.) We know that: } & \mathbf{m}_{2}=\frac{\mathbf{m}_{1}}{2} & \text { Eqn } 4 & \mathbf{m}_{2} & 3.53 \\ \mathbf{k g}\end{array}$
The key here is that we know both the volume and the total mass in the tank, so we can calculate the specific volume and use it to determine the quality from :

$$
\mathbf{x}_{2}=\frac{\hat{\mathbf{V}}_{2}-\hat{\mathbf{V}}_{\text {sat liq }}}{\hat{\mathbf{V}}_{\text {sat vap }}-\hat{\mathbf{V}}_{\text {sat liq }}}
$$

The real key to this problem is that the process is isothermal. As a result, the properties of the saturated vapor in the tank remain constant and the properties of the saturated liquid inside the tank and flowing out of the tank also remain constant.

We determine the overall specific volume at state 2 from:

$$
\hat{\mathbf{V}}_{2}=\frac{\mathbf{V}}{\mathbf{m}_{2}}
$$

Eqn 6

| Now, we can plug values into Eqns 6 \& 5 : | $\mathrm{V}_{2}$ | 0.018417 | $\mathrm{m}^{3} / \mathrm{kg}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{X}_{2}$ | 0.1369 | kg vap/kg tot |

Part c.) To determine Q, we need to apply the 1st Law for transient processes and open systems.
Here, we assume that $\mathbf{W}_{\mathbf{S}}=\mathbf{0}, \Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$. The appropriate form of the 1 st Law under these conditions is:

$$
\Delta \mathbf{U}=\mathbf{m}_{2} \hat{\mathbf{U}}_{2}-\mathbf{m}_{1} \hat{\mathbf{U}}_{1}=\mathbf{Q}-\mathbf{W}_{\mathbf{s}}+\mathbf{m}_{\mathrm{in}} \hat{\mathbf{H}}_{\text {in }}-\mathbf{m}_{\text {out }} \hat{\mathbf{H}}_{\text {out }} \quad \text { Eqn } 7
$$

Solving Eqn 7 for $\mathbf{Q}$ yields:

$$
\mathbf{Q}=\mathbf{m}_{2} \hat{\mathbf{U}}_{2}-\mathbf{m}_{1} \hat{\mathbf{U}}_{1}+\mathbf{m}_{\mathrm{out}} \hat{\mathbf{H}}_{\mathrm{out}}
$$

The specific enthalpy of the water leaving the system is the enthalpy of saturated liquid water at $200^{\circ} \mathrm{C}$ :
$H_{\text {out }}$
$852.27 \mathrm{~kJ} / \mathrm{kg}$
A mass balance allows us to determine $\mathbf{m}_{\text {out }}$ :

$$
\mathbf{m}_{\mathrm{out}}=\mathrm{m}_{1}-\mathbf{m}_{2}
$$

Eqn 9
$\mathbf{m}_{\text {out }}$
14.12 kg

Next, we can determine $\mathbf{U}_{1}$ and $\mathbf{U}_{2}$ :

$$
\begin{aligned}
& \hat{\mathbf{U}}_{2}=\mathrm{X}_{2} \hat{\mathbf{U}}_{\text {sat vap }}+\left(1-\mathrm{X}_{2}\right) \hat{\mathbf{U}}_{\text {sat liq }} \\
& \mathbf{x}_{1}=\frac{\mathbf{m}_{1, \mathrm{vap}}}{\mathbf{m}_{1}}
\end{aligned}
$$

Eqn 10

Eqn 11

Eqn 12

Plugging values into Eqns 10-12 yields:
At $200^{\circ} \mathrm{C}$ :

$$
\begin{aligned}
& \mathbf{U}_{\text {sat vap }} \\
& \mathbf{U}_{\text {sat liq }}
\end{aligned}
$$

$2594.20 \mathrm{~kJ} / \mathrm{kg}$
$850.47 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{U}_{1}$
$\mathrm{U}_{2}$
$885.43 \mathrm{~kJ} / \mathrm{kg}$
$1089.24 \mathrm{~kJ} / \mathrm{kg}$

We are finally ready to put numbers into Eqn 8 to complete this problem.
$Q=$
$\mathrm{m}_{2} \mathrm{U}_{2}$
3844
$\mathrm{m}_{1} \mathrm{U}_{1}$
$\mathrm{m}_{\text {out }} \mathrm{H}_{\text {out }}$
$15625 \quad+\quad 12032$
kJ

Q
251.2 kJ

Verify: The assumptions made in this solution cannot be verified with the given information.
Answers: a.)

| $\mathrm{m}_{1, \text { vap }}$ | 0.354 | kg |
| :---: | :---: | :---: |
| $\mathrm{~m}_{1, \text { liq }}$ | 17.3 | kg |
| $\mathrm{~m}_{1}$ | 17.6 | kg |

b.)

| $\mathrm{X}_{2}$ | 0.137 | y vap/kg total |
| :--- | :--- | :--- |

c.) $\mathrm{Q}_{12} \quad 251 \quad$ kJ


## The Second Law of Thermodynamics

In this chapter, we begin with the concept of a thermal reservoir and show how they can be used in heat engines, refrigerators and heat pumps.Next, we introduce a simple, intuitive statement of the Second Law of Thermodynamics. In this chapter and the next one, we develop progressively more useful statements of the Second Law. These help us understand and analyze the feasibility and performance of processes and cycles.

Next, we discuss the concept of reversibility and sources of irreversibility. The Carnot Cycle is a reversible cycle that leads to two new and important implications of the Second Law called the Carnot Principles. The Carnot Principles are used with the Kelvin Relationship to establish the fact that the Kelvin temperature scale is a thermodynamic temperature scale. This establishes a relationship between the thermal efficiency of a power cycle and the temperatures of the thermal reservoirs with which it interacts. This leads to the key idea that the usefulness or value of 1 kJ of energy depends on the temperature of the reservoir from which you take it.

## $1^{\text {st }}$ Law and Spontaneity

- $1^{\text {st }}$ Law: Energy is neither created nor destroyed
$\diamond$ Places no restriction on the direction that energy flows spontaneously
- Imagine a cup of water rejecting 100 kJ to the surrounding air and freezing solid.
- Imagine a cup of water absorbing 100 kJ from the surrounding air and boiling.
$\diamond$ We need another law to help us understand why these things do not happen spontaneously.
- Spontaneity
$\diamond$ Unbalanced forces tend to drive the state of a system towards an equilibrium state
$\diamond$ We can harness these unbalanced driving forces to do work for us.
- The greater the unbalanced driving force, the greater the potential to do work.
- A cup of water left out on a table at room temperature does not spontaneously freeze unless room temperature drops below $0_{0} \mathrm{C}$.
- A cup of water left out on a table at room temperature does not spontaneously boil unless room temperature climbs above 100 。C.
- But if these things did happen, it would NOT VIOLATE the $1_{\text {st }}$ Law!
- As long as 100 kJ leaves the water and 100 kJ enters the surroundings, the $1_{\text {st }}$ Law is satisfied.
- And yet this NEVER happens.
- So, the $1_{\text {st }}$ Law is completely inadequate to explain WHY these things never happen.
- We can take advantage of things that happen spontaneously.
- Don't think of things that are not in equilibrium as being bad or negative.
- We would not be alive if we were in equilibrium with our surroundings !

[^1]
## Power Cycles Produce Work

- $\mathbf{1}^{\text {st }}$ Law: $\quad \mathrm{IN}=\mathbf{O U T}$

$$
\mathbf{Q}_{\mathrm{H}}=\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\mathrm{HE}}
$$

- Thermal Efficiency of a Power Cycle

$$
\eta=\frac{\text { Desired Result }}{\text { Required Input }}=\frac{\mathbf{W}_{\mathrm{HE}}}{\mathbf{Q}_{\mathrm{H}}}
$$


$\eta=\frac{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}$

$$
\eta=\mathbf{1}-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}
$$

- Sign Convention Issues
- Do not forget that, in tie-fighter diagrams, all work and heat flows are positive in the directions that the arrows indicate in the diagrams!
- In the $1_{\text {st }}$ Law, I have assumed that the heat engine is operating at steady-state.
- We can calculate the thermal efficiency of any Heat Engine if we know $\mathrm{Q}_{\mathrm{C}}$ and $\mathrm{Q}_{\mathrm{H}}$ using this simple equation.


## Vapor Power Cycle Components

- Note, in the tie-fighter sign convention : $\mathbf{W}_{\mathbf{H E}}=\mathbf{W}_{\text {turb }}-\mathbf{W}_{\text {pump }}$

- A vapor power cycle is the type of power cycle used to generate electrical power in coal, oil, natural gas and nuclear power plants.
- This cycle accounts for the vast majority of electrical power production worldwide.
- The sign convention issue pops up again.
- The best way to keep this straight is to always double check the signs of $\mathbf{Q}$ and $\mathbf{W}$ to make certain that they make sense.
- Turbines produce work and pumps require work to operate.
- Heat must be added to make the working fluid boil.
- Heat must be removed to make the working fluid condense.


## Refrigeration Cycles

- $\mathbf{1}^{\text {st }}$ Law: $\mathrm{IN}=\mathbf{O U T}$
$\mathbf{Q}_{\mathrm{H}}=\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\text {Ref }}$
- Coefficient of Performance of a Refrigeration Cycle

$$
\beta_{\text {Ref }}=\operatorname{COP}_{\mathrm{R}}=\frac{\text { Desired Result }}{\text { Required Input }}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\text {Ref }}}
$$


$\beta_{\text {Ref }}=\mathbf{C O P}_{R}=\frac{\mathbf{Q}_{C}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}$

$$
\beta_{\text {Ref }}=\operatorname{COP}_{\mathrm{R}}=\frac{1}{\frac{1}{\mathrm{Q}_{\mathrm{H}}}-1}
$$

## Vapor Refrigeration Cycle Components

- The working fluid that flows through the four processes is called a refrigerant.

The turbine has been replaced by an expansion valve because

- Expansion valves are less expensive
$\checkmark$ The turbine in a vapor refrigeration cycle produces very little work.

- In the $1_{\text {st }}$ Law, I have assumed that the heat engine is operating at steady-state.
- Not much new here.
- The value of COPR is usually greater than 1 .
- In this case, that means that $\mathrm{Q}_{\mathrm{C}}>\mathrm{W}_{\text {ref }}$
- That is what is so "cool" about refrigerators !
- This is the type of refrigeration cycle used in home refrigerators and in most air conditioners.
- The working fluid flows through four processes in series, but never leaves the system.
- A refrigerator can include a turbine where I have drawn an expansion valve.
- The problem is that turbines are relatively expensive, require maintenance and, in this type of refrigeration system, produce a small amount of work.
- Expansion valves are cheap and require little or no maintenance.
- So, it is hard to find a vapor refrigeration cycle that includes a turbine.


## Heat Pump Cycles

- $1^{\text {st }}$ Law: $\quad \mathrm{IN}=\mathbf{O U T}$

$$
\mathbf{Q}_{\mathrm{H}}=\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\mathrm{HP}}
$$

- Coefficient of Performance of a Refrigeration Cycle

$$
\begin{aligned}
& \beta_{\mathrm{HP}}=\mathbf{C O P}_{\mathrm{HP}}=\frac{\text { Desired Result }}{\text { Required Input }}=\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{~W}_{\mathrm{HP}}} \\
& \beta_{\mathrm{HP}}=\mathbf{C O P}_{\mathrm{HP}}=\frac{\text { Desired Result }}{\text { Required Input }}=\frac{\mathrm{Q}_{\mathrm{H}}}{W_{\mathrm{HP}}}
\end{aligned}
$$

$$
\beta_{\mathrm{HP}}=\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}
$$

$$
\beta_{\mathrm{HP}}=\mathrm{COP}_{\mathrm{HP}}=\frac{1}{1-\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{H}}}}
$$

- Very similar to refrigerators.
- The main difference is that the desired result is to add heat to the hot reservoir instead of removing heat from the cold reservoir.


## Heat Pump Cycle Components

- The working fluid that flows through the four processes is called a refrigerant.
- The turbine has been replaced by an expansion valve because
$\diamond$ Expansion valves are less expensive
$\diamond$ The turbine in a vapor heat pump cycle produces very little work.

- The schematic diagram for a HP is also very similar to the schematic for a refrigerator.
- The working fluid is still called a refrigerant.


## The $2^{\text {nd }}$ Law of Thermodynamics

- Colloquial Statement of the $\mathbf{2}^{\text {nd }}$ Law
$\bullet$ Heat flows spontaneously from hot objects to cold objects.
- The Clausius Statement of the $\mathbf{2}^{\text {nd }}$ law
- A thermodynamic cycle cannot transfer heat from a cooler body to a hotter body and produce no other effect on the universe.
- The "other effect on the universe" means refrigerators and heat pumps require a work input !
- The colloquial statement of the $2^{\text {nd }}$ Law is concrete and tangible. You should feel very confident about it. All of the experience of your life supports it.
- Over the next few weeks, we will develop several other expressions of the $2^{\text {nd }}$ Law.
- For each new expression of the $2^{\text {nd }}$ Law, we will show that it is equivalent to the one before it.
- In this way, we will develop some very useful and abstract expressions of the $2^{\text {nd }}$ Law.
- The goal is to connect these forms of the $2^{\text {nd }}$ Law in a step-by-step manner back to the colloquial statement of the $2^{\text {nd }}$ Law.
- This should give you the same level of certainty about the validity of these abstract forms of the $2^{\text {nd }}$ Law.
- The simple Clausius Statement has ASTOUNDING implications !
- Let's look at an application of the Clausius Statement of the $2^{\text {nd }}$ Law


## Application of the Clausius Statement

- Can a heat engine have an efficiency of $100 \%$ ? That is, can a HE completely convert heat into work?

$\diamond$ This heat pump violates the Clausius Statement of the $2^{\text {nd }}$ Law.

$\diamond$ The HE complies with both the $1^{\text {st }}$ and $2^{\text {nd }}$ Laws
$\diamond$ The combined system absorbs heat from a single reservoir and converts it completely into work
- This slide shows that a cycle which violates the Clausius Statement of the 2nd Law could be combined with an ordinary HE (one that does not violate the $1_{\text {st }}$ or $2_{\text {nd }}$ Laws) to make a new system (inside the dashed line) that completely converts heat into work !
- When is it OK to include a reservoir inside the system boundary?
$\diamond$ ONLY when the reservoir has ZERO NET heat exchanged.
$\diamond$ So, the key here is that the HP absorbs the same amount of heat from the cold reservoir that the HE rejects back into it.


## Kelvin-Planck Statement of the $2^{\text {nd }}$ Law

- A thermodynamic cycle cannot produce a net amount of work while exchanging heat with just one thermal reservoir.
- This means that heat engines cannot completely convert heat into work. $\eta<\mathbf{1 0 0 \%}$
- We showed, on the previous slide, that a cycle which violates the Clauisus Statement also vio-lates the K-P Statement.
- If we can show that the converse is also true (that a cycle which violates the K-P Statement must also violate the Clausius Statement) then we can conclude that the two statements of the $2^{\text {nd }}$ Law are equivalent.
- Here is out first new statement of the 2 nd Law.
- It is not obvious how it is related to the Clausius Statement.
- We can show that the K-P and Clausius Statements are equivalent by taking 2 steps.
$\checkmark 1$ - We must show that any cycle which violates the Clausius Statement must also violate the K-P Statement.
- We already did this on the previous slide!
- 2 - We must show that any cycle which violates the K-P Statement must also violate the Clausius Statement.
- This is our mission on the next slide


## A Heat Engine That Violates KP Violates Clausius

- Does a HE that completely converts heat into work violate the Clausius Statement of the $\mathbf{2}^{\text {nd }}$ Law?


Cold Reservoir

- This heat engine violates the KelvinPlanck Statement of the $2^{\text {nd }}$ Law.

$\checkmark$ The HP complies with both the $1^{\text {st }}$ and $2^{\text {nd }}$ Laws
- The combined system transfers heat from the cold reservoir to the hot reservoir without any work interaction.
- This slide shows that a HE that violates the K-P Statement leads to a combined cycle, a HE plus a HP, that also violates the Clausius Statement.
- Any cycle that violates Clausius must also violate K-P
- Any cycle that violates K-P must also violate Clausius.
- Conclusion: Clausius \& K-P are EQUIVALENT statements of the $2_{\text {nd }}$ Law !
- This is a very, very important concept to recognize and accept as fully as you know that heat flows spontaneously from hot things to cold things.
- It is important because ...
- The K-P Statement of the $2_{\text {nd }}$ Law is much more useful in the analysis of cycles.
- The K-P Statement will be the jump-off point for deriving even MORE USEFUL expressions of the $2^{n d}$ Law.


## Perpetual Motion Machines

- Three kinds of PMMs
- $\quad 1^{\text {st }}$ Kind
- Violate the $1^{\text {st }}$ Law or conservation of mass
- Create of destroy mass or energy without a nuclear reaction
- Usually fairly easy to identify
- $\quad 2^{\text {nd }}$ Kind
- Violate the $2^{\text {nd }}$ Law of Thermodynamics
- It is easiest to identify these using the Kelvin-Planck Statement of the $2^{\text {nd }}$ Law
- $3^{\text {rd }}$ Kind
- Produce and consume no work
- Have no friction
- Run forever
- A bit harder to de-bunk
- It is fun to try to identify PMM's and determine which kind they are.
- Let's look at a few example problems of this nature.


## Reversible and Irreversible Processes

## - Reversible Processes

- Processes in which the system and the surroundings can both simultaneously return to their initial states after the process is completed.
- Irreversible Processes
- Processes in which the system and the surroundings cannot both simultaneously return to their initial states after the process is completed.
- A reversible process is the most efficient process.
- No real process is truly reversible.
- In real, irreversible processes, either the system or the surroundings can be returned to its original state, but not BOTH at the same time !
- Some are nearly reversible.
- Let's see what makes a process irreversible so we will know how to make a real process as close to reversible as we can. This means that we will know how to make the efficiency of the process as high as possible!


## Sources of Irreversibility

- Heat Transfer through a finite temperature difference
- Friction
- Unrestrained, or fast, expansion or compression
- Mixing of two different substances
- Spontaneous chemical reactions
- Electric current flowing through a finite resistance
- Inelastic deformation of solids
- The top 3 sources of irreversibility are the key ones for this course.
- The others are very important, but not so much for the kinds of problems we will consider.
- Now, let's take a closer look at the first 3 sources of irreversibility.
- Minimizing these 3 is the key to designing an efficient process.


## Heat Transfer

- Heat transfer from the system to the surroundings occurs spontaneously because $\mathbf{T}_{\mathbf{1}}>\mathbf{T}_{\text {surr }}$.
- But the system cannot spontaneously return to the initial state because heat cannot spontaneously flow from $\mathbf{T}_{\text {surr }}$ $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {sys }}=\mathbf{3 0}^{\circ} \mathrm{C}$.
- We could use a heat pump to transfer heat from the surroundings into the system to return the system to state 1 .
- But the HP would require work from the surroundings to run and this would leave the surroundings in a different state than they started in !
- Any heat transfer through a finite $\Delta T$ is therefore irreversible.

- To minimize the irreversibility of a process (and maximize its efficiency) we must keep all the driving forces for heat transfer ( $\Delta \mathbf{T}$ 's)as small as practical.
- Think about Newton's law of cooling: $Q=h A \Delta T$
$\diamond$ If you need to transfer a lot of heat and you need to keep $\Delta \mathbf{T}$ small, then you must maximize h and A .
- The trouble is that you can only make $\mathbf{h}$ SO big.
- A is the area for heat transfer. You can always build BIGGER heat exchangers, that is no problem.
- The problem is that BIGGER heat exchangers cost more money, weigh more and take up more space. These can all be big problems.
- So, the trade-off becomes efficiency versus HEX size/cost.
- The breakeven point usually turns out to be in the neighborhood of $\boldsymbol{\Delta T} \sim \mathbf{1 0}^{\circ} \mathrm{C}$.
- This yields reasonable efficiency and moderately large HEX's.
- This is just a rule of thumb. Circumstances can totally change this. Sometimes expense is not a problem (think military, medical or space applications).


## Friction

- Friction converts kinetic energy into internal energy when two bodies in contact with each other are in motion relative to each other.

- Consider what happens when the block spontaneously slides down the inclined plane.
- The bodies can be solids, liquids or gasses.
- Before we even start, we realize that processes with less friction will be more efficient.
- Why is that ?What is the connection with reversibility and irreversibility?


## Friction

- As the block slides down the inclined plane, the potential energy of the block decreases.
- Friction acts in the direction that opposes motion.

- The block does work on the surroundings in order to overcome the frictional force that resists motion.
- Friction converts the work into an increase in $\mathbf{T}$ and U of the system and surroundings
- When a resisting force is overcome work is done.
- In this case, the block does work on the surroundings.
- But this work is completely converted into increased U and, therefore, increased T by friction.


## Friction

- The block never spontaneously slides back up the inclined plane !
- Work must be input to increase $\mathrm{E}_{\mathrm{pot}}$ and to overcome friction.
- Friction again converts the work input into another increase in $T$ and $U$ of the system and surroundings.
- To return both the block and the surroundings to their original states, we must take heat out of the block and the surroundings and completely convert it to work and return this work to the surroundings.
- A device that completely converts heat into work violates the K-P Statement of the $\mathbf{2}^{\text {nd }}$ Law and is impossible !
- We conclude that any process that includes friction is irreversible !
- Any process that violates the $2_{\text {nd }}$ Law is impossible.
- An impossible process would be required to return the system and the surroundings to their original states after the process.
- Therefore, the process is irreversible because the "reverse" process is impossible.


## Expansion and Compression

- Even without friction, fast expansion and compression are irreversible.

- Force that must be overcome during the fast compression is greater than $\mathrm{P}_{1} \mathrm{~A}_{\text {piston }}$.
- Force that is overcome during the slow expansion is equal to $\mathrm{P}_{1} \mathrm{~A}_{\text {piston }}$.
- We put more work in during the fast compression than we got back out during the slow expansion!
- Recall from our discussion of quasiequilibrium processes that...
- As the compression proceeds rapidly, the molecules don't have time to get out of the way of the advancing piston.
$\checkmark$ So, the local pressure just inside the face of the piston is GREATER THAN the pressure in the bulk of the fluid inside the piston.
- As a result, the force that must be overcome to compress the gas is always greater than $P_{1}$ time Apiston.
- We must put in extra work in order to make the process go rapidly.
- We can let the gas expand infinitely slowly back to the original pressure.
$\checkmark$ In this case, the force which is overcome is exactly equal to the bulk pressure inside the cylinder because the forces acting on the piston are always balanced...the system is always in an equilibrium state.
- The result is that we put more work into the system during the compression than we got out during the expansion.


## Expansion and Compression

- If we put in more work than we got out, then $\mathrm{U}_{\text {sys }}$ and $\mathrm{T}_{\text {sys }}$ must have increased!

- To return both the system and the surroundings to their original states, we must take heat out of the system and completely convert it to work and return this work to the surroundings.
- A device that completely converts heat into work violates the K-P Statement of the $2^{\text {nd }} \mathrm{Law}$ and is impossible!
- We conclude that compression or expansion at a finite rate are irreversible!
- Because the process is adiabatic and changes in Ekin and Epot are negligible, this excess work input becomes internal energy.
- This means the temperature of the system increases.
- We must transfer heat out of the system in order to return it to its original temperature.
- We must also return the work to the surroundings in order to return them to their original state.
- The problem is that a device that takes heat from our system and completely converts it into work which can be returned to the surroundings violates the K-P Statement of the 2nd Law and is therefore impossible!
- Since it is impossible to simultaneously return the system and surroundings to their original states, we conclude that compression at a finite rate is irreversible.
- A similar analysis would show that expansion at a finite rate is also irreversible.


## Internally Reversible Processes

- No irreversibilities within the boundary of the system
$\checkmark$ No friction inside the system
$\checkmark$ No rapid expansion or compression inside the system
$\diamond$ No mixing of two different substances inside the system
$\diamond$ No spontaneous chemical reactions inside the system
$\checkmark$ No electric current flowing through a finite resistance inside the system
$\checkmark$ No inelastic deformation of solids inside the system


## - Irreversibilities can exist outside the system

$\checkmark$ This usually means that heat can be exchanged between the system and surroundings through a finite temperature difference.

## Externally Reversible Processes

- Irreversibilites do not exist in the surroundings
$\diamond \quad$ This usually means that heat can only be exchanged between the system and surroundings through an infinitely small or infinitessimal temperature difference.
- Irreversibilites can exist inside the system


## Reversible Processes

- No irreversibilities exist within the system or in the surroundings
- No real process is reversible
- Some real processes are very nearly reversible
- They have very little friction
- They involve only very slow compression or expansion
$\diamond$ Heat transfer only takes place between bodies at very similar temperatures.
- Why bother studying reversible processes if they do not exist?
- Reversible processes are easier to analyze
- Reversible processes provide a best-case to which we can compare the performance of any real process.


## Carnot Power Cycle

- Characteristics

Completely Reversible
$\diamond \quad$ Maximum efficiency between any two thermal reservoirs

- Steps

1-2: Isothermal expansion
2-3: Adiabatic expansion
3-4: Isothermal compression
4-1: Adiabatic compression

- Boundary Work
$\mathrm{W}_{12}>0$ and $\mathrm{W}_{23}>0$
$\diamond \quad W_{34}<0$ and $W_{41}<0$
$\diamond \quad W_{\text {cycle }}>0$
$\diamond \quad \mathrm{W}_{\text {cycle }}=$ enclosed area
- We can imagine a wide variety of reversible cycles, but the Carnot Cycle is the standard against which we will compare all other cycles.
- It is simple and elegant.
- Steps
- 1-2: Take some weight off of the back of the piston and let the gas in the cylinder expand. Keep the cylinder submerged in a constant temperature bath at $\mathbf{T}_{\mathbf{H}}$. Heat is transferred from the bath to the gas in the cylinder to keep it at a constant temperature.
- 2-3: Take more weights off the back of the piston, but this time keep the cylinder perfectly insulated so that the process is adiabatic. As the gas expands, the temperature drops from $\mathrm{T}_{\mathrm{H}}$ to $\mathrm{T}_{\mathrm{C}}$.
- 3-4: Put the cylinder into a new constant temperature bath that is at $\mathbf{T}_{\mathbf{C}}$. Add weights to the back of the piston to compress the gas in the cylinder. Heat is transferred from the gas in the cylinder into the bath in order to keep the gas in the cylinder at a constant temperature.
- 4-1: Put more weights onto the back of the piston to raise the pressure back to $\mathbf{P}_{\mathbf{1}}$. Keep the cylinder insulated during this compression process so that it occurs adiabatically. As the gas is compressed, its temperature rises from $\mathbf{T}_{\mathbf{C}}$ to $\mathbf{T}_{\mathbf{H}}$ to complete the cycle.
- Cycles that move clockwise on PV Diagrams are power cycles and the enclosed area is the boundary work output !


## Carnot Heat Pump \& Refrigeration Cycles

- If we execute the steps of the Carnot Power Cycle in reverse order, we obtain the Carnot HP / Ref Cycle.
- Steps

1-4: Adiabatic expansion
4-3: Isothermal expansion
$\bigcirc$ 3-2: Adiabatic compression
$\diamond$ 2-1: Isothermal compression


- The Carnot Cycle is REVERSIBLE.
- This means that you can operate each step in the reverse order and still come back to the original state. That is, we can consider the reverse cycle !
- The reverse of the Carnot Power Cycle is the Carnot Heat Pump or Refrigeration Cycle.
- The Carnot Refrigeration Cycle absorbs heat from the cold reservoir at $\mathbf{T}_{\mathbf{C}}$ and rejects heat to the hot reservoir at $\mathbf{T}_{\mathbf{H}}$.
- Cycles that move counter-clockwise on PV Diagrams are refrigeration or heat pump cycles and the enclosed area is the boundary work input!
- Reversing the cycle does not change the magnitudes of $\mathbf{Q}_{\mathbf{H}}, \mathbf{Q}_{\mathbf{C}}$ and $\mathbf{W}_{\text {cycle }}$, just the SIGNS.


## Carnot Gas Power Cycle



- The Carnot Power Cycle can also be executed with continuous flow equipment as shown here.
- The compression steps take place in compressors and the expansion steps take place in turbines.
- Notice that the inlet to a turbine is at the narrow end of the trapezoid. I remember this because the gas expands in a turbine, so the trapezoid gets wider as the gas flows across it.
- The inlet to a compressor is at the thick end of the trapezoid. I remember this because the gas is compressed to a smaller specific volume in a compressor, so the trapezoid gets narrower as the gas flows across it.
- This is not a very practical cycle because it is difficult to build isothermal turbines and compressors.
- It just isn't practical to submerge rotating equipment in constant temperature baths !
$\checkmark$ Still, in principle, this could be done.
$\diamond$ Of course, real processes are NOT reversible, or adiabatic for that matter !

- There are some problems with the Carnot Vapor Power Cycle as well.
- High-efficiency pumps don't work very well with vapor-liquid mixtures.
$\checkmark$ Pumps are designed to work best on liquids !
- Turbines don't work well if the quality drops below about $90 \%$ or even $95 \%$.
$\checkmark$ Liquid droplets collide with the turbine blades at very high velocity and erode them!
- Again, in principle, the Carnot Vapor Power Cycle could be built.
- Of course, real processes are NOT reversible, or adiabatic for that matter !


## Carnot Vapor HP \& Ref Cycles



- There are also some problems with the Carnot Vapor HP / Ref Cycle.
- Compressors don't work very well will va-por-liquid mixtures.
$\diamond$ Compressors are designed to work best on gases!
- I already removed the turbine in this refrigeration cycle because it just isn't cost effective.
- In principle, the Carnot Vapor HP / Ref Cycle could be built.
- Once again, real processes are NOT reversible, or adiabatic for that matter !
- In order to be a Carnot Cycle, the cycle must include a turbine, not an expansion valve because expansion valves are inherently irreversible!
- In most cases, a turbine in a refrigerator is just not practical.


## $1^{\text {st }}$ Carnot Principle

- The efficiency of a reversible cycle will always be greater than the efficiency of an irreversible cycle operating between the same two thermal reservoirs.

- If: $\eta_{R}>\eta_{I} \quad$ Then: $\quad \mathbf{W}_{I}>\mathbf{W}_{R} \quad \mathbf{Q}_{\mathrm{C}, \mathrm{I}}<\mathbf{Q}_{\mathrm{C}, \mathrm{R}}$
$\diamond$ The reversible HE could be reversed (right drawing)
$\diamond$ System in the dashed line violates the K-P Statement of the $2^{\text {nd }}$ Law !
$\diamond$ Conclusion: $\quad \eta_{I}>\eta_{R}$
- A reversible HE can be reversed !
- When it is reversed, it becomes a heat pump or a refrigerator.
- When it is reversed, the directions of all the heat and work interactions are also reversed, but they do not change in magnitude.
- So, the HP and the HE in the diagram at right exchange ZERO net heat with the hot reservoir!
- As a result, we can include the reservoir in the system enclosed by the dashed line.
- This system absorbs a net amount of heat from the cold reservoir because $\mathbf{Q}_{\mathbf{C}, \mathbf{R}}>\mathbf{Q}_{\mathbf{C}, \mathbf{I}}$.
- It completely converts this heat into a net amount of work equal to $\mathbf{W}_{\mathbf{I}}-\mathbf{W}_{\mathbf{R}}$.
- This violates the K-P Statement of the 2nd Law!
- Therefore, it is not possible for an irreversible HE to have a higher efficiency than a reversible HE.
- This confirms what you already knew... reversible heat engines have the maximum efficiency.


## $2^{\text {nd }}$ Carnot Principle

- All reversible power cycles operating between the same two thermal reservoirs have the same efficiency

- If: $\eta_{2}>\eta_{1} \quad$ Then: $\quad \mathbf{W}_{2}>\mathbf{W}_{1} \quad \mathbf{Q}_{\mathbf{c}, 2}<\mathbf{Q}_{\mathrm{c}, 1}$
$\diamond$ System in the dashed line violates the K-P Statement of the $2^{\text {nd }}$ Law !
$\diamond$ Conclusion: $\eta_{1}=\eta_{2}$


## Thermodynamic Temperature Scales

- From Ch 5:

$$
\eta=1-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}
$$

- $2^{\text {nd }}$ Carnot Principle :
$\eta=\mathbf{f x n}\left(\mathbf{T}_{\mathrm{C}}, \mathbf{T}_{\mathrm{H}}\right)$
$\checkmark$ Therefore : $\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}=\mathbf{f x n}\left(\mathbf{T}_{\mathrm{C}}, \mathbf{T}_{\mathrm{H}}\right)$
- Thermodynamic Temperature Scales
- Operate a HE between two thermal reservoirs
$\diamond \quad$ Measure $\mathbf{Q}_{\mathrm{C}}, \mathbf{Q}_{\mathbf{H}}$ and $\mathbf{W}$
- Calculate $\eta$
$\diamond$ Arbitrarily assign a value to either $\mathbf{T}_{\mathbf{C}}$ or $\mathbf{T}_{\mathrm{H}}$
- If we know the function: $\eta=\mathrm{fxn}\left(\mathbf{T}_{\mathrm{C}}, \mathbf{T}_{\mathrm{H}}\right)$
we can calculate the other, unknown $\mathbf{T}$.
$\checkmark$ This is a Thermodynamic Temperature Scale
- In Ch 5 we learned that thermal efficiency depends only on the ratio of $\mathbf{Q}_{\mathrm{C}}$ to $\mathbf{Q}_{\mathbf{H}}$.
- From the $2^{\text {nd }}$ Carnot Principle, we learned that thermal efficiency depends only on $\mathbf{T}_{\mathbf{C}}$ and $\mathbf{T}_{\mathbf{H}}$.
- We can conclude that $\mathbf{Q}_{\mathbf{C}} / \mathbf{Q}_{\mathbf{H}}$ depends only on $\mathbf{T}_{\mathbf{C}}$ and $\mathbf{T}_{\mathbf{H}}$.
- Our goal is to determine this functional relationship !
- This will be a very important result. Why ?
- For starters, it will allow us to define thermodynamic temperature scales.
- Thermodynamic temperature scales are not dependent on the properties of any material!

$$
\begin{aligned}
& \mathbf{Q}_{\mathrm{C}} / \mathbf{Q}_{\mathrm{H}}=\mathbf{F x n}\left(\mathbf{T}_{\mathrm{H}}, \mathbf{T}_{\mathrm{C}}\right) \\
& \frac{Q_{1}}{Q_{H}}=\mathrm{fxn}\left(\mathrm{~T}_{\mathrm{H}}, \mathrm{~T}_{1}\right) \\
& \frac{\mathbf{Q}_{\mathrm{C}}}{\mathrm{Q}_{1}}=\mathrm{fxn}\left(\mathrm{~T}_{1}, \mathrm{~T}_{\mathrm{C}}\right) \\
& \frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}=\mathrm{fxn}\left(\mathrm{~T}_{\mathrm{H}}, \mathrm{~T}_{\mathrm{C}}\right) \\
& \text { Algebra tells us that : } \\
& \frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathbf{1}}} \frac{\mathbf{Q}_{1}}{\mathbf{Q}_{\mathrm{H}}} \\
& \operatorname{fxn}\left(T_{H}, T_{C}\right)=\mathbf{f x n}\left(T_{H}, T_{1}\right) \cdot \mathbf{f x n}\left(T_{1}, T_{C}\right)
\end{aligned}
$$

- Because we are applying the 2 nd Carnot Principle to these heat engines, the result of this work will only apply to REVERSIBLE cycles!
- Notice that $\mathrm{fxn}\left(\mathrm{T}_{\mathrm{H}}, \mathrm{T}_{1}\right)$ means plug $\mathrm{T}_{\mathrm{H}}$ and $\mathrm{T}_{1}$ into the function.
$\diamond$ It does NOT mean fxn multiplied by $\mathrm{T}_{\mathrm{H}}$ or $\mathrm{T}_{1}$.
$\checkmark$ Ex: $\operatorname{fxn}(x, y)=a x+b y+c$, then fxn $\left(\mathrm{T}_{\mathrm{H}}=400, \mathrm{~T}_{1}=300\right)=400 \mathrm{a}+300 \mathrm{~b}+\mathrm{c}$
- The bottom line is:
- The function "fxn" must be a very special function in order for the boxed equation to be true
- Let's see what kind of function would satisfy the relationship in the box.


## The Kelvin Relationship

$$
\mathbf{f x n}\left(\mathrm{T}_{\mathrm{H}}, \mathrm{~T}_{\mathrm{C}}\right)=\mathbf{f x n}\left(\mathrm{T}_{\mathrm{H}}, \mathrm{~T}_{1}\right) \cdot \mathbf{f x n}\left(\mathrm{T}_{1}, \mathrm{~T}_{\mathrm{C}}\right)
$$

- All of the $T_{1}$ terms in $f_{A}$ and $f_{B}$ must drop out when they are multiplied together.
- Only true if the $f x n$ has the form : $f x n(x, y)=\frac{f x n 2(y)}{f \times n 2(x)}$

$$
\operatorname{fxn}\left(T_{H}, T_{C}\right)=\frac{f x n 2\left(T_{C}\right)}{f \operatorname{xn} 2\left(T_{H}\right)}=\frac{f x n 2\left(T_{1}\right)}{f \operatorname{xnn} 2\left(T_{H}\right)} \cdot \frac{f x n 2\left(T_{C}\right)}{f \operatorname{xnn} 2\left(T_{1}\right)}
$$

- Conclusion : $\frac{Q_{C}}{Q_{H}}=\operatorname{fxn}\left(T_{H}, T_{C}\right)=\frac{f x n 2\left(T_{C}\right)}{\operatorname{fxn} 2\left(T_{H}\right)}$
- Lord Kelvin : $\quad f \times n 2(T)=T$
- Result : $\quad$| $\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}} \quad \eta_{\mathrm{Rev}}=1-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}$ |
| :--- |
- This is a wonderful result. So, if we know the temperatures of two reservoirs in Kelvin, we can immediately and easily compute the thermal efficiency of a reversible HE operating between those reservoirs.
- What is the thermal efficiency of a reversible HE operating between a human body and the ambient air in the classroom?
- What is the thermal efficiency of a reversible HE operating between a nuclear reactor at 2000 K and the cooling water at 300 K ?
- This is why we want to have a very hot reservoir to generate electrical power.
- There is only one way for all of the $\mathbf{T}_{\mathbf{1}}$ terms to drop out.
- This leads to such a nice, simple result. It makes life much easier than all those other functions.
- We will use the Kelvin Relationships in most of the problems in the rest of this course !
- Choices other than the one made by Kelvin are possible.
$\checkmark$ Fxn 2 must be a function that increases monotonically, so $\operatorname{fxn} 2(T)=e^{T}$
- This is called a logarithmic temperature scale
- Temperature on this scale goes from $-\infty$ to $+\infty$ as opposed to $\mathbf{0}$ to $+\infty$ on the Kelvin scale.
- Now, back to temperature scales...
- Use water at its triple point as one reservoir for a HE and assign its temperature a numerical value of $\mathbf{2 7 3 . 1 6}$.
- Run a reversible HE between this reservoir and another reservoir at an unknown temperature.
- Measure $\mathbf{Q}_{\text {triple }}$ and $\mathbf{Q}_{\mathrm{unk}}$.
- $T_{\text {unk }}=273.16 *\left(Q_{\text {unk }} / Q_{\text {triple }}\right)$
- This IS the Kelvin Temperature Scale !
-The Kelvin Temperature Scale IS a THERMODYNAMIC TEMPERATURE SCALE!


## The Ideal Gas Temperature Scale

- Apply the $1^{\text {st }}$ Law to Steps 1-2 and 3-4 carried out in a closed system to determine $Q_{H}$ and $Q_{C}$.
$\tilde{\mathbf{Q}}-\tilde{\mathbf{W}}=\Delta \tilde{\mathbf{U}}$
- Use the definition of boundary work and $\mathrm{C}_{\mathrm{V}}$ for ideal gases.

$$
\tilde{\mathbf{Q}}=\int \tilde{\mathbf{C}}_{\mathbf{V}}^{0} \mathbf{d T}+\int \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}} \mathbf{d} \tilde{\mathbf{V}}
$$

- Results :
$\tilde{\mathbf{Q}}_{\mathbf{H}}=\mathbf{R} \mathbf{T}_{\mathbf{H}} \mathbf{L n}\left[\begin{array}{l}\tilde{\mathbf{V}}_{\mathbf{2}} \\ \tilde{\mathbf{V}}_{\mathbf{1}}\end{array}\right]$
$\tilde{\mathbf{Q}}_{\mathrm{C}}=-\mathbf{R} \mathbf{T}_{\mathrm{C}} \mathbf{L n}\left[\frac{\tilde{\mathbf{V}}_{4}}{\tilde{\mathbf{V}}_{3}}\right]$

- As usual, assume changes in kinetic and potential energies are negligible.
- The only tricky part here is converting from the $1^{\text {st }}$ Law... which uses our sign convention... to $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{Q}_{\mathbf{H}}$ which are both positive and DO NOT use the sign convention.
- Here is the key:
$\checkmark \mathbf{Q}_{\mathbf{H}}=\mathbf{Q}_{\mathbf{1 2}}$
$\diamond \mathbf{Q}_{\mathbf{C}}=-\mathbf{Q}_{34}$
- The results come naturally when you realize that Steps 1-2 and 3-4 are both isothermal.


## Adiabatic Steps in a Carnot Cycle

- Apply the $1^{\text {st }}$ Law to Steps 2-3
$-\tilde{\mathbf{W}}=\Delta \tilde{\mathbf{U}}$
- Use the definition of boundary work and $\mathrm{C}_{\mathrm{V}}$ for ideal gases.
$\int \frac{\tilde{\mathbf{C}}_{\mathrm{V}}^{0}}{\mathbf{T}} \mathbf{d T}=-\int \frac{\mathbf{R}}{\tilde{\mathbf{V}}} \mathbf{d} \tilde{\mathbf{V}}$
- Results :

$$
\begin{aligned}
& \int_{T_{\mathrm{H}}}^{\mathrm{T}_{\mathrm{C}}} \frac{\tilde{\mathbf{C}}_{\mathrm{V}}^{0}}{\mathbf{T}} \mathbf{d T}=-\mathbf{R L n}\left[\frac{\tilde{\mathbf{V}}_{3}}{\tilde{\mathbf{V}}_{2}}\right] \\
& \int_{\mathrm{T}_{\mathrm{C}}}^{\mathrm{T}_{\mathrm{H}}} \frac{\tilde{\mathbf{C}}_{\mathbf{V}}^{0}}{\mathbf{T}} \mathbf{d T}=-\mathbf{R L n}\left[\frac{\tilde{\mathbf{V}}_{1}}{\tilde{\mathbf{V}}_{4}}\right]
\end{aligned}
$$

- Conclusion :

$$
\begin{gathered}
\frac{\tilde{\mathbf{V}}_{4}}{\tilde{\mathbf{V}}_{1}}=\frac{\tilde{\mathbf{V}}_{3}}{\tilde{\mathbf{V}}_{2}} \\
\tilde{\tilde{\mathbf{V}}}_{3} \\
\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}} \\
\hline
\end{gathered}
$$

## Ideal Gas \& Kelvin Temperature Scales

- The isothermal
steps :

$$
\begin{gathered}
\tilde{\mathbf{Q}}_{\mathrm{C}}=-\mathbf{R} \mathbf{T}_{\mathrm{C}} \mathbf{L n}\left[\frac{\tilde{\mathbf{V}}_{4}}{\tilde{\mathbf{V}}_{3}}\right] \quad \tilde{\mathbf{Q}}_{\mathrm{H}}=\mathbf{R} \mathbf{T}_{\mathrm{H}} \mathbf{L n}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right] \\
\frac{\tilde{\mathbf{Q}}_{\mathrm{H}}}{\tilde{\mathbf{Q}}_{\mathrm{C}}}=\frac{\mathbf{R} \mathbf{T}_{\mathrm{H}} \mathbf{L n}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]}{-\mathbf{R} \mathbf{T}_{\mathrm{C}} \mathbf{L n}\left[\frac{\tilde{\mathbf{V}}_{4}}{\tilde{\mathbf{V}}_{3}}\right]}=\frac{\mathbf{T}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{C}}} \frac{\operatorname{Ln}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]}{\operatorname{Ln}\left[\begin{array}{l}
\tilde{\mathbf{V}}_{3} \\
\tilde{\mathbf{V}}_{4}
\end{array}\right]}
\end{gathered}
$$

- The adiabatic steps: $\quad \frac{\tilde{\mathbf{V}}_{3}}{\tilde{\mathbf{V}}_{4}}=\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}$
- Combining yields : $\quad \begin{aligned} & \tilde{\mathrm{Q}}_{\mathrm{H}} \\ & \tilde{\mathrm{Q}}_{\mathrm{C}}\end{aligned}=\frac{\mathrm{T}_{\mathrm{H}}}{\mathrm{T}_{\mathrm{C}}}$
- The Ideal Gas \& Kelvin Scales are identical !


## Carnot Efficiency and COP

| Power Cycles | Refrigeration Cycles | Heat Pump Cycles |
| :---: | :---: | :---: |
| $\eta=1-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}$ | $\mathrm{COP}_{\mathrm{R}}=\frac{1}{\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{Q}_{\mathrm{C}}}-1}$ | $\operatorname{COP}_{\mathrm{HP}}=\frac{1}{1-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}}$ |
| $\eta_{\mathrm{Rev}}=\mathbf{1}-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}$ | $\mathbf{C O P}_{\mathrm{R}, \mathrm{rev}}=\frac{1}{\frac{\mathbf{T}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{C}}}-1}$ | $\operatorname{COP}_{\mathrm{HP}, \mathrm{rev}}=\frac{1}{1-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}}$ |
| $\eta_{\text {lrrev }}<\mathbf{1}-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}$ | $\mathrm{COP}_{\mathrm{R}, \mathrm{irrev}}<\frac{1}{\frac{\mathrm{~T}_{\mathrm{H}}}{\mathrm{~T}_{\mathrm{C}}}-1}$ | $\mathbf{C O P}_{\mathrm{HP}, \text {,irev }}<\frac{1}{1-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}}$ |

## Performance vs. Reservoir Temperature

- All cycles shown here are reversible.




## The Relative Value of Energy



- 100 J of heat at 1000 K produces more work than 100 $J$ of heat at 300 K
- Heat energy available at a higher T is more valuable or has a higher quality.
- You can always completely convert work into heat at ANY temperature using friction.
- We can conclude that work is a more valuable form of energy than heat !
- The idea that energy has a certain quality depending on the temperature at which it is available leads to the concept of entropy that we will study in the next chapter !
- No matter what the temperature, if you do some work, the resulting friction yields heat.
- So, work can be completely converted to heat at ANY temperature.
- Heat can NEVER be completely converted into work (K-P statement of the $2^{\text {nd }}$ Law).
- Work is therefore more valuable than heat, regardless of the temperature at which the heat is available.


# "The best way to Learn Thermodynamics" 

## 6B-1

Home Heat Pump COP
6 pts
A well-insulated house requires $138 \mathrm{MJ} / \mathrm{h}$ to keep the indoor temperature comfortable on a cold day. Under this load, the heat pump compressor uses 7.7 kW of electrical power.
a.) Determine the COP of the heat pump
b.) If the heat pump operates 125 hours in a winter month, what will the homeowner spend on electric heat that month?

Residential electricity costs \$0.11/kW-h.
c.) How much would the homeowner spend that month if she had electrical resistance heating instead of a heat pump?

Read : This is a straightforward application of the definition of the COP of a heat pump.
Given:

| $\mathrm{Q}_{\mathrm{H}}$ | 138 | $\mathrm{MJ} / \mathrm{h}$ |
| :--- | :---: | :--- |
| $\mathrm{W}_{\mathrm{HP}}=$ | 7.7 | kW |
| Price | 0.11 | $\$ / \mathrm{kW}-\mathrm{h}$ |
| OpTime | 125 | h/month |

Find: COP $_{\text {HP }}$
???

## Diagram:



## Cold Reservoir $T_{c}$

Assumptions:

$$
\begin{array}{ll}
1 \text { - } & \text { The heat pump operates at steady-state. } \\
\text { 2- } & \text { There is no loss of efficiency when the heat pump is started up or shut down by the } \\
\text { thermostatic control system. }
\end{array}
$$

## Equations / Data / Solve:

Begin by writing the definition for the COP of a heat pump :

$$
\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\mathrm{HP}}}
$$

We can use Eqn 1 to evaluate the $\mathbf{C O P}_{\text {Hp }}$. Watch the units !
$Q_{H}$
38.33
kW
COP ${ }_{\text {нр }}$
4.98

First let's see how much it would cost to deliver $\mathbf{Q}_{\mathbf{H}}$ to the home using an electrical resistance heater.

An electrical resistance heater, at best, converts all of the electrical work supplied, $\mathbf{W}$, into heat released into the

$\begin{array}{ll}\mathbf{W}_{\text {resist }} & 38.33 \mathrm{~kW}\end{array}$
Now, we can determine how much it would cost to operate the resistance heater for $125 \mathrm{hr} / \mathrm{month}$.

$$
\begin{aligned}
\operatorname{Cost}(\$ / \text { month })=\operatorname{Pr} \text { ice }(\$ / k \backslash V \cdot h) \times W(k \not V) \times \text { time }(h / \text { month }) & \text { Eqn } 2 \\
\text { Cost }_{\text {resist }} & 527.08 \quad \$ / \text { month }
\end{aligned}
$$

Now, we can apply Eqn 2 to determine the cost of operating the heat pump for a month.

| Cost $_{\text {HP }}$ | 105.88 | $\$ /$ month |
| :--- | :--- | :--- |
| Savings | 421.21 | $\$ /$ month |

Verify: We cannot verify the steady-state assumption or the assumption about the thermostatic control system based on the information given in the problem statement.

Answers : | COP $_{\mathrm{HP}}$ | 5.0 | Savings | 421 |
| :--- | :--- | :--- | :--- |

Electrical resistance heaters are not very popular, especially in cold climates.
The thermal efficiency of a heat pump drops significantly as the outside temperature falls.
When the outside temperature drops far enough that the $\mathbf{C O P}_{\mathrm{HP}} \sim \mathbf{1}$, it becomes more practical to use the resistance heater !

A geothermal heat pump absorbs $15 \mathrm{Btu} / \mathrm{s}$ of heat from the Earth 50 ft below a house. This heat pump uses a 10 hP compressor.
a.) Calculate the COP of the heat pump.
b.) In the summer, the cycle is reversed to cool the house. Calculate the COP of the cycle when it is operated as an airconditioner assuming the working fluid rejects $15 \mathrm{Btu} / \mathrm{s}$ to the Earth.

Read : Here we must apply the definition of COP for both refrigerators and heat pumps.

Given: W
Find:

## a.)

$\mathrm{COP}_{\mathrm{HP}}$
???


Diagram:
$\begin{array}{lll}\mathbf{Q}_{\mathrm{C}} & 15 & \mathrm{Btu} / \mathrm{s}\end{array}$
b.)
$\mathrm{COP}_{\mathrm{R}}$
???


Assumptions:
1 -
The heat pump and the refrigerator operate at steady-state.

## Equations / Data / Solve:


So, let's begin with the definition of the coefficient of performance for a refrigerator.

$$
\begin{equation*}
\mathbf{C O P}_{\mathrm{R}}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\mathrm{Ref}}} \tag{Eqn 1}
\end{equation*}
$$

We are given the values of both $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{W}$, so all we need to do is make the units consistent and then plug values into Eqn 1.
Conversion Factors :
$1 \mathrm{hP}=$
2545
Btu/h

| W | 25450 | $\mathrm{Btu} / \mathrm{h}$ |
| :--- | :--- | :--- |
| $\mathrm{Q}_{\mathrm{C}}$ | 54000 | Btu/h |
| COP $_{\mathrm{R}}$ | 2.122 |  |

Part b.) If the purpose is to heat a building, then the device is a heat pump.
So, let's begin with the definition of the coefficient of performance for a heat pump.

$$
\begin{equation*}
\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\mathrm{HP}}} \tag{Eqn 2}
\end{equation*}
$$

Next, we apply the 1st Law to the heat pump cycle, keeping in mind that we traditionally do not use our sign convention when tie-fighter diagrams are used. The arrows on the diagrams indicate the direction that heat and work are moving.

$$
\mathbf{Q}_{\mathrm{H}}=\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\mathrm{HP}}
$$

Eqn 3
Use Eqn 3 to eliminate $\mathbf{Q}_{\mathbf{H}}$ from Eqn 2 to get :

$$
\begin{equation*}
\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\mathrm{HP}}}{\mathbf{W}_{\mathrm{HP}}} \tag{Eqn 4}
\end{equation*}
$$

Now, we can plug in the numbers in consistent units that we used in part (a).

Notice that : $\quad \mathrm{COP}_{\mathrm{HP}}=\mathrm{COP}_{\mathrm{R}}+1$
Eqn 5

This is always true for Carnot Cycles.
Verify: $\quad$ No assumptions to verify that were not given in the problem statement.

Answers:
COP $_{R} \quad 2.12$ COP ${ }_{\text {HP }}$ 3.12

6C-1
Is This a Perpetual Motion Machine ?
2 pts
In a day, an electrical resistance heater uses $8.4 \mathrm{~kW}-\mathrm{h}$ of electricity. In the same day, the heater delivers 9.7 kW -h of heat to the house in which it is located. Is this possible or is this a perpetual motion machine?
If so, what kind? Explain your reasoning.

Read : Short and sweet.
Given: $\quad W_{s}$
8.4 kW-h
$\begin{array}{lll}\mathbf{Q}_{\mathrm{H}} & 9.7 & \text { kW-h }\end{array}$
Find: Is this a PMM ? Explain

Diagram:


Assumptions: None.

## Equations / Data / Solve:

Apply the 1st Law to the inventor's process :

$$
\mathbf{W}_{\mathrm{s}}=\mathbf{Q}_{\mathrm{H}}
$$

But $8.4 \mathrm{~kW}-\mathrm{h} \neq 9.7 \mathrm{~kW}-\mathrm{h}$ !
Therefore, if the device operates on a true thermodynamic cycle (no change in state after a complete cycle), then it violates the 1st Law.

Verify: $\quad$ No assumptions to verify !
Answers:
It is a PMM of the 1st Kind !

## ＂The best way to Learn Thermodynamics＂

6C－2
Is This a Perpetual Motion Machine ？
Air is compressed by a compressor that is driven by an electric motor．The effluent air is warmer than the air at the inlet of the compressor．An entrepreneur plans to use this system to heat his home．

He claims that this system is $10 \%$ more efficient than an eletrical resistance heater．Is this possible or is this another perpetual motion machine？If so，what kind？Explain your reasoning．

Read ：Short and sweet．

$$
\text { Given: } \eta_{? ?}=1.1 \eta_{\text {resist }}
$$

Find：Is this a PMM ？Explain

Assumptions：None．

## Diagram：



## Equations／Data／Solve：

Efficiency for a heating system is really the coefficient of performance and it is defined by ：

$$
\mathbf{C O P}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\mathrm{s}}}
$$

The COP for the resistance heater is $\mathbf{1}$ because it converts all of the electrical energy input into heat rejected into the hot reservoir．．．your home．

If the COP of the compressor／heater device is $10 \%$ greater，then ：$\quad \mathbf{C O P}=\quad \mathbf{1 . 1}$
And：

$$
Q_{H}=1.1 \cdot W_{S}
$$

But if you consider a system in which the air is recycled as the working fluid，then the 1st Law for the compressor／heater system is：

$$
\mathbf{W}_{\mathrm{S}}=\mathbf{Q}_{\mathbf{H}}
$$

Eqns 2 and 3 cannot both be true.
Therefore, the inventor's device violates the 1st Law !
Verify: $\quad$ No assumptions to verify !
Answers : It is a PMM of the 1st Kind!

6D-1
Determine Whether Water Condensing is a Reversible Process
A piston-and-cylinder device with a free-floating piston contains saturated water vapor at $225^{\circ} \mathrm{C}$. Heat is lost from the water to the surroundings which are at $25^{\circ} \mathrm{C}$.
Eventually, all of the water has condensed and the cylinder contains saturated liquid water at $225^{\circ} \mathrm{C}$. Is this process internally reversible? Reversible? Irreversible? Explain your answer.

Read : What can be said about this case of heat transfer process for (a) isothermal cooling of the water and (b) contact between $225^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ surroundings?

| Given: | $\mathbf{T}_{\mathbf{w}}$ | 225 | ${ }^{\circ} \mathrm{C}$ | Find: | Internally Reversible ? Reversible ? |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}_{\text {surr }}$ | 25 | ${ }^{\circ} \mathrm{C}$ |  | Explain. |

Diagram:


Assumptions:
The system is the water in the piston-and-cylinder assembly.
2 -
The system undergoes a constant-temperature process from saturated vapor to saturated liquid.

## Equations / Data / Solve:

No equations are needed to resolve this problem.
There are no equations to solve.
Verify: None of the assumptions made can be verified with the given information.
Answers: Since the temperature is constant during the process, the pressure also remains constant. As shown by the T-V Diagram, the process is a sequence of equilibrium states, and thus is internally reversible.

The process is not reversible because there is a significant irreversibility in the surroundings. The spontaneous heat transfer taking place between the water at $225^{\circ} \mathrm{C}$ and the surroundings at $25^{\circ} \mathrm{C}$ is irreversible.

A piston－and－cylinder device containing 12 kg of water carries out a Carnot power cycle．The maximum pressure is 2.0 MPa and the minimum pressure is 110 kPa ．
During the isothermal expansion，the water is heated from a quality of $14 \%$ until it is a saturated vapor．The cycle produces 500 kJkg of work during the adiabatic expansion．
a．）Sketch the process path for the cycle on a PV Diagram
b．）Calculate $\mathbf{Q}$ and $\mathbf{W}$ ，in $\mathbf{k J}$ ，for each process in the cycle
c．）Calculate the thermal efficiency of the cycle．

Read ：$\quad$ Apply the 1st Law（for a closed system）to get $\mathbf{Q}$ and $\mathbf{W}$ ．
Use the 1st Law applied to step 2－3 to determine $\mathbf{U}_{3}$ and $\mathbf{x}_{3}$ ．
The trick is to get $\mathbf{Q}_{34}$ ．Use $\mathbf{T}_{\mathbf{C}}, \mathbf{T}_{\mathbf{H}}, \mathbf{Q}_{\mathbf{1 2}}$ and the Carnot Efficiency of this reversible cycle to determine $\mathbf{Q}_{34}$ ．
Given：

| $\mathrm{P}_{1}$ | 2 | MPa |
| :--- | :---: | :---: |
| $\mathrm{x}_{1}$ | 0.14 |  |
| $\mathrm{P}_{2}$ | 2 | MPa |
| $\mathrm{x}_{2}$ | 1 |  |


| $P_{3}=P_{4}$ | 110 | $\mathbf{k P a}$ |
| :---: | :---: | :--- |
| $\mathbf{Q}_{23}=Q_{41}$ | 0 | $\mathbf{k J} / \mathbf{k g}$ |
| $\mathrm{W}_{23}$ | 500 | $\mathbf{k J} / \mathbf{k g}$ |
| $\mathbf{m}$ | 12 | $\mathbf{k g}$ |

Find：Part（a）PV Diagram

| Part（b） | $\mathrm{Q}_{12}, \mathrm{Q}_{23}, \mathrm{Q}_{34}, \mathrm{Q}_{41}$ | $?$ | e |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{W}_{12}, \mathrm{~W}_{23}, \mathrm{~W}_{34}, \mathrm{~W}_{41}$ | $?$ | e |
| Part（c） | $\eta$ | $?$ |  |

## Diagram：

Part a．）


Assumptions：

1 －
The system undergoes a Carnot Cycle．
－$\quad$ Steps 1－2 and 3－4 are isothermal．
－$\quad$ Steps 2－3 and 4－1 are adiabatic．
－All steps are reversible．
2－The water inside the cylinder is the system and it is a closed system．
3－Changes in kinetic and potential energies are negligible．
4－Boundary work is the only form of work interaction during the cycle．

Equations / Data / Solve:
Part b.) Begin by applying the 1st law for closed systems to each step in the Carnot Cycle. Assume that changes in kinetic and potential energies are negligible.

$$
\mathbf{\Delta} \mathbf{U}=\mathbf{Q}-\mathbf{W}
$$

Step 1-2
Apply the 1st Law, Eqn 1, to step 1-2 :

$$
\begin{equation*}
\Delta \mathbf{U}_{12}=\mathbf{Q}_{12}-W_{12} \tag{Eqn 2}
\end{equation*}
$$

Boundary work at for a constant pressure process, like step 1-2, can be determined from :

$$
\mathbf{W}_{12}=\int_{1}^{2} \mathbf{P d V}=\mathbf{P} \Delta \mathbf{V}=\mathbf{m P}\left(\hat{\mathbf{V}}_{2}-\hat{\mathbf{V}}_{1}\right)
$$

Now, we can substitute Eqn 3 into Eqn 1 to get : $\quad \Delta \mathbf{U}_{\mathbf{1 2}}=\mathbf{Q}_{12}-\mathbf{P} \boldsymbol{\Delta} \mathbf{V}_{12}$

The definition of enthalpy is:

$$
\Delta H=\Delta U+\Delta(P V)
$$

For isobaric processes, Eqn 5 becomes :

$$
\Delta \mathbf{H}=\Delta \mathbf{U}+\mathbf{P} \boldsymbol{\Delta V}
$$

Now, combine Eqns 4 and 6 to get :

$$
\begin{equation*}
Q_{12}=\Delta H_{12}=m \Delta \hat{H}_{12} \tag{Eqn 7}
\end{equation*}
$$

We know the pressure and the quality of states 1 and 2 , so we can use the Saturation Table in the Steam Tables to evaluate $\mathbf{V}$ and $\mathbf{H}$ for states 1 and 2 so we can use Eqns 3 and 7 to evaluate $\mathbf{Q}_{12}$ and $\mathbf{W}_{12}$.
Properties are determined from NIST WebBook:

$$
\begin{equation*}
\hat{\mathbf{V}}=\hat{\mathbf{V}}_{\text {sat liq }}+\mathbf{x}\left(\hat{\mathbf{V}}_{\text {sat vap }}-\hat{\mathbf{V}}_{\text {sat liq }}\right) \tag{Eqn 8}
\end{equation*}
$$

$\begin{array}{llrlll}\text { At } P_{1} \text { and } \mathrm{x}_{1}: & \mathrm{V}_{\text {sat liq, } 1} & 0.0011767 & \mathrm{~m}^{3} / \mathrm{kg} \\ \mathrm{V}_{\text {sat vap, } 1} & 0.099585 & \mathrm{~m}^{3} / \mathrm{kg}\end{array} \quad \mathrm{V}_{1} \quad 0.014954 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\hat{\mathbf{U}}=\hat{\mathbf{U}}_{\text {sat liq }}+\mathbf{x}\left(\hat{\mathbf{U}}_{\text {sat vap }}-\hat{\mathbf{U}}_{\text {sat liq }}\right)
$$

| $\mathrm{U}_{\text {sat liq, } 1}$ | 906.14 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |


| $\mathrm{U}_{\text {sat vap, } 1}$ | 2599.1 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{U}_{1}$ | 1143.2 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\hat{\mathbf{H}}=\hat{\mathbf{H}}_{\text {sat liq }}+\mathbf{x}\left(\hat{\mathbf{H}}_{\text {sat vap }}-\hat{\mathbf{H}}_{\text {sat liq }}\right)
$$

| $\mathrm{H}_{\text {sat liq, } 1}$ | $908.50 \mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

$\mathrm{H}_{\text {sat vap, } 1} \quad 2798.3 \mathrm{~kJ} / \mathrm{kg}$
Saturated vapor at $\mathbf{P}_{2}$ : $\quad \mathbf{V}_{2} \quad 0.099585 \mathrm{~m}^{3} / \mathbf{k g}$

| $\mathrm{U}_{2}$ | 2599.1 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{W}_{12}$ | 2031.147 kJ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 2798.3 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{Q}_{12}$ | 19502.68 kJ |

Step 2-3
Apply the 1st Law, Eqn 1, to step 2-3 :
$\Delta \mathbf{U}_{23}=\mathbf{Q}_{23}-\mathbf{W}_{23}$
Eqn 10
The specific heat transferred and specific work for step 2-3 are given in the problem statement.

| $\mathbf{Q}_{23}$ | $0 \quad$ kJ | $\mathbf{W}_{23}$ | $\mathbf{6 0 0 0}$ | kJ |
| :--- | :--- | :--- | :--- | :--- |
| We can plug these values into Eqn 8 to determine $\Delta \mathbf{U}_{23}:$ | $\Delta \mathbf{U}_{23}$ | -6000 | kJ |  |

We already determined $\mathbf{U}_{2}$, so we can now determine $\mathbf{U}_{3}$ :

$$
\begin{array}{ll}
\hat{\mathbf{U}}_{3}=\frac{\Delta \hat{\mathbf{U}}_{23}}{\mathbf{m}}+\hat{\mathbf{U}}_{2}  \tag{Eqn 11}\\
\mathbf{U}_{3} & \\
& \\
& \text { Eq } \\
\text { 2099.1 } \mathrm{kJ} / \mathrm{kg}
\end{array}
$$

We can use this value of $\mathbf{U}_{3}$ to determine the unknown quality, $\mathbf{x}_{3}$, using :

$$
\begin{equation*}
\mathbf{x}_{3}=\frac{\hat{\mathbf{U}}_{3}-\hat{\mathbf{U}}_{\text {sat tiq }, 3}}{\hat{\mathbf{U}}_{\text {sat vap }, 3}-\hat{\mathbf{U}}_{\text {sat tiq }, 3}} \tag{Eqn 12}
\end{equation*}
$$

Properties are determined from NIST WebBook:

| At $\mathbf{P}_{3}$ : | $\mathbf{U}_{\text {sat liq, }} 3$ <br> $\mathbf{U}_{\text {sat vap, }} 3$ | $\begin{aligned} & 428.72 \\ & 2508.7 \end{aligned}$ | kJ/kg kJ/kg | $\mathrm{X}_{3}$ | 0.8031 | kg vap/kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\hat{\mathbf{V}}=\hat{\mathbf{V}}_{\mathbf{s}}$ | + $\times$ ( | at vap |  |  | Eqn 13 |
| At $\mathbf{P}_{3}$ and $\mathbf{x}_{3}$ : | $\mathbf{V}_{\text {sat liq, } 3}$ | 0.001045 | $\mathrm{m}^{3} / \mathrm{kg}$ |  |  |  |
|  | $\mathrm{V}_{\text {sat vap, } 3}$ | 1.54946 | $\mathrm{m}^{3} / \mathrm{kg}$ | $\mathrm{V}_{3}$ | 1.2445 | $\mathrm{m}^{3} / \mathrm{kg}$ |
|  | $\mathbf{H}=\mathbf{H}_{\mathrm{s}}$ | $q+\mathbf{X}$ | vap - |  |  | Eqn 14 |
|  | $\mathbf{H}_{\text {sat liq, } 3}$ | 428.84 | kJ/kg |  |  |  |
|  | $H_{\text {sat vap, }} \mathbf{}$ | 2679.2 | kJ/kg | $\mathrm{H}_{3}$ | 2236.0 | kJ/kg |

Step 3-4
Apply the 1st Law, Eqn 1, to step 3-4: $\quad \Delta \mathbf{U}_{34}=\mathbf{Q}_{34}-\mathbf{W}_{34}$
Eqn 15

Because step 3-4 is isobaric, just like step 1-2,
Eqn 7 is the simplified form of the 1 st Law :

$$
\mathbf{Q}_{34}=\Delta \mathbf{H}_{34}=\mathbf{m} \Delta \hat{\mathbf{H}}_{34}
$$

Eqn 16
To determine the properties at state 4, we make us of the relationship between the absolute Kelvin temperature scale and heat transferred in a Carnot Cycle.

$$
\begin{equation*}
\frac{\left|\mathbf{Q}_{34}\right|}{\left|\mathbf{Q}_{12}\right|}=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}} \tag{Eqn 17}
\end{equation*}
$$

Solve Eqn 13 for $\mathbf{Q}_{34}: \quad\left|\mathbf{Q}_{34}\right|=\left(\frac{\mathbf{T}_{\mathbf{C}}}{\mathbf{T}_{\mathbf{H}}}\right)\left|\mathbf{Q}_{\mathbf{1 2}}\right|$

| $T_{H}=T_{\text {sat }}\left(P_{1}\right):$ | $T_{H}$ | 485.53 | K | $\mathrm{Q}_{34}$ | -15080.8 kJ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~T}_{\mathrm{C}}=\mathrm{T}_{\text {sat }}\left(\mathrm{P}_{3}\right):$ | $\mathrm{T}_{\mathrm{C}}$ | 375.44 | K | $\mathrm{Q}_{34}$ | -1256.7 |
| $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |  |  |

Now, we can use $\mathbf{Q}_{34}$ and Eqn 12 to determine $\mathbf{H}_{4}$ as follows:
$\mathbf{Q}_{34}=\mathbf{m}\left(\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3}\right)$
Eqn 19
or:

Eqn 20

| $\mathrm{H}_{4}$ | 979.29 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Now that we know the values of two intensive properties at state $4, \mathbf{T}_{4}$ and $\mathbf{H}_{4}$, we can evaluate all the other properties using the Saturation Tables in the Steam Tables.

Properties are determined from NIST WebBook:

$$
\mathbf{x}_{4}=\frac{\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{\text {sat liq }, 4}}{\hat{\mathbf{H}}_{\text {sat vap }, 4}-\hat{\mathbf{H}}_{\text {sat liq }, 4}}
$$

Eqn 21
$\begin{array}{lllllll}\text { At } \mathbf{P}_{4}: & \mathrm{H}_{\text {sat liq, } 4} & 428.84 & \mathrm{~kJ} / \mathrm{kg} \\ \mathrm{H}_{\text {sat vap, } 4} & 2679.2 & \mathrm{~kJ} / \mathrm{kg} & \mathbf{x}_{4} & 0.24461 & \mathrm{~kg} \mathrm{vap} / \mathrm{kg}\end{array}$

$$
\hat{\mathbf{V}}=\hat{\mathbf{V}}_{\text {sat liq }}+\mathbf{x}\left(\hat{\mathbf{V}}_{\text {sat vap }}-\hat{\mathbf{V}}_{\text {sat liq }}\right) \quad \text { Eqn } 22
$$

At $\mathbf{P}_{4}$ and $\mathbf{x}_{4}$ :

$$
\begin{aligned}
& \begin{array}{cccccc}
\mathrm{V}_{\text {sat liq, } 4} & 0.0010453 & \mathrm{~m}^{3} / \mathrm{kg} & & & \\
\mathrm{~V}_{\text {sat vap, } 4} & 1.54946 & \mathrm{~m}^{3} / \mathrm{kg} & \mathrm{~V}_{4} & 0.37980 & \mathrm{~m}^{3} / \mathrm{kg}
\end{array} \\
& \hat{\mathbf{U}}=\hat{\mathbf{U}}_{\text {sat liq }}+\mathbf{x}\left(\hat{\mathbf{U}}_{\text {sat vap }}-\hat{\mathbf{U}}_{\text {sat liq }}\right) \\
& \mathrm{U}_{\text {sat liq, } 4} \quad 428.72 \quad \mathrm{~kJ} / \mathrm{kg} \\
& \begin{array}{llllll}
\mathrm{U}_{\text {sat vap, } 4} & 2508.7 & \mathrm{~kJ} / \mathrm{kg} & \mathrm{U}_{4} & 937.51 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

At last we have $\mathbf{U}_{4}$ and we can plug it into Eqn 11 to evaluate $\mathbf{W}_{34}$ :

$$
\mathbf{W}_{34}=\mathbf{Q}_{34}-\mathbf{m}\left(\hat{\mathbf{U}}_{4}-\hat{\mathbf{U}}_{3}\right)
$$

Step 4-1
The heat transferred for step 4-1 is given in the problem statement.
Apply the 1st Law, Eqn 1, to step 4-1: $\quad \boldsymbol{\Delta} \mathbf{U}_{\mathbf{4 1}}=\mathbf{Q}_{\mathbf{4 1}}-\mathbf{W}_{\mathbf{4 1}}$
Eqn 25

Solve Eqn 25 for $\mathbf{W}_{41}$ :

$$
\begin{equation*}
\mathbf{W}_{41}=\mathbf{Q}_{41}-\Delta \mathbf{U}_{41}=\mathbf{Q}_{41}-\mathbf{m}\left(\hat{\mathbf{U}}_{1}-\hat{\mathbf{U}}_{4}\right) \tag{Eqn 26}
\end{equation*}
$$

Part c.) The efficiency of a Carnot Cycle is defined by: $\quad \boldsymbol{\eta}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{\text {in }}}$
Where:

$$
\mathbf{W}_{\text {cycle }}=\mathbf{W}_{12}+\mathbf{W}_{23}+\mathbf{W}_{34}+\mathbf{W}_{41}
$$

Eqn 28
And :
$\mathbf{Q}_{\text {in }}=\mathbf{Q}_{12}$
Eqn 29

| $Q_{\text {in }}$ | 19502.7 | kJ |
| :--- | :---: | :---: |
| $W_{\text {cycle }}$ | 4421.9 | kJ |

$\eta \quad 0.2267$

Or the efficiency can be determined in terms of reservoir temperatures:

$$
\eta=1-\frac{T_{C}}{T_{H}}
$$

Eqn 30
$\eta$
0.2267

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : |  | Process | Q |
| :---: | :---: | :---: |
|  | $1-2$ | 19502.7 |
|  | W | 2031.1 |
|  | $3-3$ | -15080.8 |
|  | -1141.5 |  |
|  | $4-1$ | 0.0 |
| -2467.8 |  |  |
|  | Cycle | 4421.9 |

The thermal efficiency of the process is :

Two power cycles are available for your use and analysis. One is reversible ( $\mathbf{R}$ ) and one is irreversible (I). You also have two thermal reservoirs at your disposal. You connect both cycles to both reservoirs, as shown below.

a.) If each cycle receives the same amount of heat from the hot reservoir, show that the irreversible cycle rejects more heat to the cold reservoir than the reversible cycle does.
b.) If each cycle produces the same net amount of work, show that the irreversible cycle must absorb more heat from the hot reservoir than the reversible cycle does.

Read : Between reversible and irreversible cycles, the Carnot Corollaries indicate that $\eta_{\text {Rev }}>\eta_{\text {IRR }}$. Use the 1st Law and the Carnot Corollaries to demonstrate these two points.

Given: A reversible power cycle $\mathbf{R}$ and an irreversible power cycle I operate between the same two thermal reservoirs.
Find: Show that:

$$
\begin{array}{lll}
\text { Part (a) } & \text { for } \mathbf{Q}_{H}=\mathbf{Q}_{\mathrm{H}} & \mathbf{Q}_{\mathrm{C}}>\mathbf{Q}_{\mathrm{C}} \\
\text { Part (b) } & \text { for } \mathbf{Q}_{\mathrm{R}}=W_{\mathrm{l}} & \mathbf{Q}_{\mathrm{H}}>\mathbf{Q}_{\mathrm{H}}
\end{array}
$$

Diagram:


Assumptions: 1 -

The system $\mathbf{R}$ undergoes a reversible power cycle while system I undergoes an irreversible power cycle.

## Equations / Data / Solve:

No equations are needed to answer this problem.
This problem is a proof. Therefore, the equations needed will be determined in the answer questions section.
Verify: The assumptions in this problem cannot be verified with the given information.

## Answers :

Part (a) By the first Carnot Corollary, $\eta_{\text {Rev }}>\eta_{\text {IRR }}$.
Since both cycles receive the same amount of energy, $\mathbf{Q}_{\boldsymbol{H}}$, it follows that:

$$
\begin{equation*}
W_{R}>W_{1} \tag{Eqn 1}
\end{equation*}
$$

An energy balance on cycle $\mathbf{R}$ is:


An energy balance on cycle $\mathbf{I}$ is:

$$
\mathbf{W}_{\mathbf{I}}=\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathbf{C}}^{\prime}
$$

Eqn 3

Combining Eqns 1, 2 and 3 yields:

$$
\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{c}}>\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}^{\prime}
$$

The $\mathbf{Q}_{\mathbf{H}}$ terms in Eqn 4 cancel out and we obtain:

$$
\mathbf{Q}_{\mathrm{c}}^{\prime}>\mathbf{Q}_{\mathbf{c}}
$$

Thus, not only do actual cycles develop less work they also discharge more energy by heat transfer to their surroundings, thereby increasing the effect of thermal polution.

Part (b) By the first Carnot Corollary, $\eta_{\text {Rev }}>\eta_{\text {IRR }}$ and from the problem statement we know:

|  | $\mathbf{W}_{\mathbf{R}}=\mathbf{W}_{\mathbf{1}}=\mathbf{W}$ | Eqn 6 |
| :--- | :--- | :--- |
| Efficiency is defined by: | $\boldsymbol{\eta}=\frac{\mathbf{W}}{\mathbf{Q}_{\mathbf{H}}}$ | Eqn 7 |
| Therefore, because $\eta_{\text {Rev }}>\eta_{\text {IRR }}:$ | $\frac{\mathbf{W}}{\mathbf{Q}_{\mathbf{H}}}>\frac{\mathbf{W}}{\mathbf{Q}_{\mathbf{H}}^{\prime}}$ | Eqn 8 |

The work terms cancel because both cycles produce the same amount of work. Therefore, Eqn 8 becomes :

$$
\begin{equation*}
\mathbf{Q}_{\mathrm{H}}^{\prime}>\mathbf{Q}_{\mathrm{H}} \tag{Eqn 9}
\end{equation*}
$$

Notice that:

$$
\mathbf{Q}_{\mathrm{c}}^{\prime}>\mathbf{Q}_{\mathbf{c}}
$$

If the hot reservoir were maintained by, say, energy from the combustion of a fossil fuel, the irreversible cycle would have the greater fuel requirement. Also, note the irreversible cycle would also have the greater energy discharge to the cold reservoir, increasing the magnitude of thermal polution.

Consider the power cycle described by the diagram, below. Consider each of the following cases and determine whether the power cycle in each case is reversible, irreversible or impossible.

a.) $Q_{H}=1150 \mathrm{~kJ}, \mathrm{~W}_{\text {cycle }}=988 \mathrm{~kJ}$
b.) $Q_{H}=1122 \mathrm{~kW}, Q_{C}=207 \mathrm{~kW}$
c.) $\mathrm{W}_{\text {cycle }}=1660 \mathrm{~kJ}, \mathrm{Q}_{\mathrm{C}}=499 \mathrm{~kJ}$
d.) $\eta=74 \%$

Read : $\quad$ What is the relationship between $\mathbf{Q}_{\mathbf{C}} / \mathbf{Q}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}} / \mathbf{T}_{\mathbf{H}}$ for a reversible cycle?
Read about the Kelvin temperature scale. How does this allow you to determine the maximum theoretical efficiency of a thermodynamic cycle from $\mathbf{T}_{\mathbf{C}}$ and $\mathbf{T}_{\mathbf{H}}$ ?
Note that the maximum efficiency by definition is associated with a reversible cycle.
Any real cycle always possesses some losses or friction and these irreversibilities reduce $\eta$ below $\eta_{\text {max }}$.

Diagram: The diagram in the problem statement is adequate.

| Given: |  | $\mathbf{T}_{\mathrm{H}}$ | 1870 | K |
| :--- | :---: | :---: | :---: | :--- |
|  |  | $\mathbf{T}_{\mathrm{C}}$ | 345 | K |
|  | a.) | $\mathbf{Q}_{\mathrm{H}}$ | 1150 | kJ |
|  |  | $\mathbf{W}_{\text {cycle }}$ | 988 | kJ |
|  | b.) | $\mathbf{Q}_{\mathrm{H}}$ | 1122 | kJ |
|  |  | $\mathbf{Q}_{\mathrm{C}}$ | 207 | kJ |

Find: $\quad$ Reversible ?
Assumptions:
1 -

## Irreversible?

## Impossible?

The system shown undergoes a power cycle.

## Equations / Data / Solve:

To determine if each case is reversible, irreversible, or impossible we need to compare the actual efficiency of the case to the maximum efficiency. There are $\mathbf{3}$ possibilities :

If the efficiency of the process equals the maximum efficiency, then the process is reversible. If the efficiency of the process is less than the maximum efficiency, then the process is irreversible. If the efficiency of the process is greater than the maximum efficiency, then the process is impossible.

Since the maximum efficiency, by definition, is associated with a 'reversible' cycle, the maximum thermal efficiency for any power cycle operating between thermal resevoirs $T_{H}$ and $T_{C}$ is:

$$
\eta_{\max }=1-\frac{T_{C}}{T_{H}}
$$

The efficiency for each case is determined by:

$$
\eta=\frac{W_{\text {cycle }}}{Q_{H}}
$$

Only in part (a) do we know $\mathbf{W}_{\text {cycle }}$ and $\mathbf{Q}_{\mathbf{H}}$ but realizing:

$$
\mathbf{W}_{\text {cycle }}=\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathbf{C}}
$$

$$
\text { or : } \quad \mathbf{Q}_{\mathbf{H}}=\mathbf{W}_{\text {cycle }}+\mathbf{Q}_{\mathbf{C}}
$$

Combining Eqns 2 and 4 gives an equation we can use to resolve parts (b) and (c) :

$$
\eta=\frac{W_{\text {cycle }}}{W_{\text {cycle }}+Q_{c}}=1-\frac{Q_{C}}{Q_{H}}
$$

| $\eta_{\max }$ | 0.816 |
| :---: | :---: |
| $\eta$ | 0.859 |
| $\eta$ | 0.816 |
| $\eta$ | 0.769 |
| $\eta$ | 0.740 |

Verify: The assumptions made in this problem cannot be verified with the given information.
Answers: Part (a) The process is impossible because the efficiency of the process is greater than the maximum efficiency for any power cycle operating between thermal resevoirs at $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$.

Part (b) The process is reversible because the efficiency of the process equals the maximum efficiency for any power cycle operating between thermal resevoirs at $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$.

Part (c) The process is irreversible because the efficiency of the process is less than the maximum efficiency for any power cycle operating between thermal resevoirs at $\mathbf{T}_{H}$ and $\mathbf{T}_{\mathbf{C}}$.

Part (d) The process is irreversible because the efficiency of the process is less than the maximum efficiency for any power cycle operating between thermal resevoirs at $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$.

## 6E-4 <br> Pressure, Work and COP for a Carnot Gas Refrigeration Cycle

The PV Diagram, below, shows the process path for a Carnot refrigeration cycle carried out in a piston-and-cylinder device with $8.4 \mathrm{lb}_{\mathrm{m}}$ of air as the working fluid.


The maximum temperature in the cycle is $80^{\circ} \mathrm{F}$ and the minimum temperature is $-10^{\circ} \mathrm{F}$. The isothermal expansion requires 126 Btu of heat transfer and the volume of air in the cylinder at the end of the
isothermal compression is $1.74 \mathrm{ft}^{3}$. Assume air behaves as an ideal gas with a constant heat capacity ratio of $\gamma=1.4$. The following relationship is valid for the adiabatic steps in the Carnot cycle:

$$
\mathbf{T} \mathbf{P}^{1-\gamma / \gamma}=\mathbf{C}
$$

Calculate...
a.) The pressure at states 1 to 4
b.) The work for each of the four processes
c.) The COP for the refrigeration cycle.

Read: Part (a)
Note the direction (CW or CCW) of the cycle. It will be the opposite direction to that of a power cycle. With the final volume, $\mathbf{V}_{4}$ given, use the ideal gas EOS to determine $\mathbf{P}_{4}$. Use the equation given in the problem statement to determine $\mathbf{P}_{1}$. You can then calaculate $\mathbf{V}_{1}$ from the ideal gas EOS. Use an energy balance to determine $\mathbf{V}_{\mathbf{2}}$ and then the ideal gas EOS to find $\mathbf{P}_{\mathbf{2}}$. Finally, use the equation in the problem statement again to determine $\mathbf{P}_{3}$.
Part (b)
Notice that $\left(\mathbf{U}_{\mathbf{2}}-\mathbf{U}_{\mathbf{1}}\right)=\mathbf{0}$ for an ideal gas undergoing an isothermal process because $\mathbf{U}$ is a function of $\mathbf{T}$ only. Carefully apply an energy balance to step 2-3 (watch the sign of each term). Here $\mathbf{d U}=\mathbf{C}_{\mathrm{v}} \mathbf{d T}=\mathbf{R} /(\gamma-1) \mathrm{dT}$ for the case of constant $\gamma$. Note that $\mathrm{MW}_{\text {air }}=28.97 \mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol}$.

Given:

| $\mathbf{m}$ | 8.4 | $\mathbf{l b}_{\mathbf{m}}$ | $\gamma$ | 1.4 |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| $\mathbf{T}_{\mathbf{C}}$ | -10 | ${ }^{\circ} \mathbf{F}$ | $\mathbf{T}_{\mathrm{H}}$ | 80 | ${ }^{\circ} \mathbf{F}$ |
|  | 449.67 | ${ }^{\circ} \mathbf{R}$ | $\mathbf{T}_{\mathbf{H}}$ | 539.67 | ${ }^{\circ} \mathbf{R}$ |
| $\mathbf{Q}_{12}$ | 126 | Btu | $\mathbf{V}_{\mathbf{4}}$ | 1.74 | $\mathbf{f t}^{3}$ |

Find:
a.) $\quad \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}$
$\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$
b.) $\quad W_{12}, W_{23}, W_{34}, W_{41}$
c.)
$\mathrm{COP}_{\mathrm{R}}$
???

Diagram:


Assumptions: $\quad 1$ - $\quad$ The system consists of air modeled as an ideal gas with $\gamma=1.4$.
2- Boundary work is the only form of work interaction.
3- $\quad$ Changes in kinetic and potential energies are negligible.
4- Because the cycle is a Carnot Cycle, the cycle is reversible and therefore each step in the cycle is a reversible process.
5- The heat capacities of the ideal gas are constant.
Equations / Data / Solve:

| R | 1545.35 | (ft * lbf)/(lbmol ${ }^{\text {* }}$ 'R) | Conversion Factors: | $1 \mathrm{ft}^{2}=$ | 144 | $\mathrm{in}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | 1.986 | Btu/lbmol- ${ }^{\circ} \mathrm{R}$ |  | $1 \mathrm{Btu}=$ | 778 | $\mathrm{ft}-\mathrm{lb}_{\mathrm{f}}$ |
| $\mathrm{MW}_{\text {air }}$ | 29 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol}$ |  | $1 \mathrm{~L}=$ | 0.0353 | $\mathrm{ft}^{3}$ |
| $\mathrm{T}_{\text {ref }}$ | 459.67 | ${ }^{\circ} \mathrm{R}$ |  |  |  |  |

Part a.) Since air is modeled as an ideal gas, we can determine the pressure at state $\mathbf{4}$ from the ideal gas EOS: $\quad \mathbf{P}_{4}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R T}_{\mathbf{4}}}{\mathbf{V}_{\mathbf{4}}}$

Now, let's apply the equation given in the problem statement to step 1-4 :

Solving for $\mathbf{P}_{\mathbf{1}}$ :

$$
\mathbf{P}_{1}=\mathbf{P}_{4}\left(\frac{\mathbf{T}_{4}}{\mathbf{T}_{1}}\right)^{\gamma /(1-\gamma)}
$$

Eqn 3

$$
\mathbf{T}_{1} \mathbf{P}_{1}^{1-\gamma / \gamma}=\mathbf{T}_{4} \mathbf{P}_{4}^{1-\gamma / \gamma}
$$

964
$\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$
Eqn 2
$\mathbf{P}_{\mathbf{2}}$ can also be determined from the ideal gas EOS: $\quad \mathbf{P}_{\mathbf{2}}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R} \mathbf{T}_{\mathbf{2}}}{\mathbf{V}_{\mathbf{2}}}$
Eqn 4

The problem is that we don't know $\mathbf{V}_{2}$. We could determine $\mathbf{V}_{2}$ if we knew the value of $\mathbf{W}_{12}$ because :
The work is:

$$
\mathrm{W}_{12}=\int_{1}^{2} \mathrm{PdV}
$$

Eqn 5
We can then use the IG EOS for isothermal step 1-2 : $\quad \mathbf{P}=\frac{\mathbf{n R} \mathbf{T}_{1}}{\mathbf{V}}$

Substituting Eqn 6 into Eqn 5 yields :

$$
\begin{equation*}
\mathbf{W}_{12}=\int_{1}^{2} \frac{\mathbf{n R T}_{1}}{\mathbf{V}} \mathbf{d V} \tag{Eqn 7}
\end{equation*}
$$

Integrating Eqn 7 yields :
$\mathbf{W}_{\mathbf{1 2}}=\mathbf{n R T} \mathbf{C} \mathbf{L n}\left(\mathbf{V}_{\mathbf{2}} / \mathrm{V}_{\mathbf{1}}\right)$
Eqn 8

Solving for Eqn 8 for $\mathbf{V}_{\mathbf{2}}$ :

$$
\begin{equation*}
V_{2}=\exp \left[\frac{W_{12}}{n R T_{c}}\right] V_{1} \tag{Eqn 9}
\end{equation*}
$$

Now, the issue is that we still don't know $\mathbf{W}_{12}$. Let's write the 1st Law for step 1-2, assuming changes in kinetic and potential energies are negligible.

$$
\begin{equation*}
\Delta \mathbf{U}_{12}=\mathbf{Q}_{12}-\mathbf{W}_{12} \tag{Eqn 10}
\end{equation*}
$$

Since the internal energy of an ideal gas depends on temperature only and the temperature is constant along Process 1-2, $\mathrm{U}_{2}=\mathrm{U}_{1}$ and Eqn 10 reduces to:

$$
\begin{equation*}
\mathbf{Q}_{12}=\mathbf{W}_{12} \tag{Eqn 11}
\end{equation*}
$$

| We can determine the number of |
| :--- |
| moles in the system from : |$\quad \mathbf{n}=\frac{\mathbf{m}}{\mathbf{M W}}$


|  | n | 0.28966 | Ibmole |
| :---: | :---: | :---: | :---: |
| Then, we can evaluate $\mathbf{V}_{\mathbf{1}}$ from the Ideal Gas EOS : | $V_{1}=\frac{n R T_{1}}{P_{1}}$ |  |  |
|  | $\mathrm{V}_{1}$ | 2.7456 | $\mathrm{ft}^{3}$ |
| Now, we can substitute $\mathbf{W}_{12}$ and $\mathbf{V}_{1}$ into Eqn 9 to evaluate $\mathbf{V}_{\mathbf{2}}$ : | $\mathrm{V}_{2}$ | 4.4683 | $\mathrm{ft}^{3}$ |
| At last we can use $\mathbf{V}_{\mathbf{2}}$ in Eqn 4 to evaluate $\mathbf{P}_{\mathbf{2}}$ : | $\mathrm{P}_{2}$ | 312.8 | $\mathbf{l b} /{ }_{\mathbf{f}} / \mathrm{in}^{2}$ |

That leaves us $\mathbf{P}_{3}$ yet to be determined for part (a).
$\mathbf{P}_{3}$ can be determined by applying Eqn 3 to step 2-3 :

$$
\begin{equation*}
\mathbf{P}_{3}=\mathbf{P}_{2}\left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{3}}\right)^{\gamma /(1-\gamma)} \tag{Eqn 14}
\end{equation*}
$$

$$
\begin{array}{lll}
\mathrm{P}_{3} & 592.4 & \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}
\end{array}
$$

Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume at each state and check if : $\widetilde{\mathbf{V}}>\mathbf{8 0} \mathbf{f t}^{\mathbf{3}} / \mathbf{l b m o l}$
From the Ideal Gas EOS, we obtain :

$$
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Eqn 16

| $\mathrm{V}_{1}$ | 11.38 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ | $\mathrm{V}_{3}$ | 9.78 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{2}$ | 18.51 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ | $\mathrm{V}_{4}$ | 6.01 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |

It is NOT accurate to treat the air in this process as an ideal gas !
We were instructed to do so and we did, but we need to keep in mind that the results may not be accurate to 2 significant figures.

| $\mathbf{P}_{1}$ | 509 | $\mathrm{lb}_{f} / \mathrm{in}^{2}$ |
| :--- | :--- | :--- |
| $\mathbf{P}_{2}$ | 313 | $\mathrm{lb}_{f} / \mathrm{in}^{2}$ |$\quad$| $\mathbf{P}_{3}$ | 592 | $\mathrm{lb}_{f} / \mathrm{in}^{2}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{P}_{4}$ | 964 | $\mathrm{lb}_{f} / \mathrm{in}^{2}$ |

Part b.) Let's begin by writing the 1st Law, open systems, steady-state with changes in kinetic and potentail energies negligible :

$$
\boldsymbol{\Delta} \mathbf{U}=\mathbf{Q}-\mathbf{W}
$$

Apply Eqn 16 to each step in the cycle :
$G A b_{12}=Q_{12}-W_{12}$
or :
$\mathbf{Q}_{12}=\mathbf{W}_{12}$
Eqn 17
$\Delta U_{23}=\omega_{23}-W_{23}$
or :
$\mathbf{W}_{23}=-\Delta \mathbf{U}_{23}$
Eqn 18
$\Delta \Delta \boldsymbol{b}_{34}=\mathbf{Q}_{34}-\mathbf{W}_{34}$
or:
$\mathbf{Q}_{34}=\mathbf{W}_{34}$
Eqn 19
$\Delta \mathbf{U}_{41}=\boldsymbol{a}_{41}^{A}-\mathbf{W}_{41}$
or : $\quad \mathbf{W}_{\mathbf{4 1}}=-\boldsymbol{\Delta} \mathbf{U}_{\mathbf{4 1}}$
Eqn 20
$\Delta \mathbf{U}_{12}=\Delta \mathbf{U}_{34}=\mathbf{0}$ because these steps are isothermal processes and the system contains an ideal gas. $\mathbf{Q}_{23}=\mathbf{Q}_{41}=\mathbf{0}$ because these steps are adiabatic.
Integrating the definition of the constant volume heat capacity we obtain :

$$
\begin{equation*}
\Delta U_{A B}=\int_{T_{A}}^{T_{\mathrm{B}}} \mathbf{C}_{\mathrm{v}} d T \tag{Eqn 21}
\end{equation*}
$$

For an ideal gas with constant
heat capacities, Eqn 21 becomes :

$$
\Delta \mathbf{U}_{\mathrm{AB}}=\mathbf{n} \tilde{\mathbf{C}}_{V}^{o}\left(\mathbf{T}_{\mathrm{B}}-\mathbf{T}_{\mathrm{A}}\right)
$$

The heat capacities of ideal gases are related by the following equations:

$$
\tilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}+\mathbf{R}
$$

$$
\begin{equation*}
\frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{\circ}}{\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}}=\gamma=1+\frac{\mathbf{R}}{\tilde{\mathbf{C}}_{\mathrm{V}}^{o}} \quad \quad \text { Eqn 24 } \quad \tilde{\mathbf{C}}_{\mathrm{V}}^{o}=\frac{\mathbf{R}}{\gamma-1} \tag{Eqn 25}
\end{equation*}
$$

$$
\mathrm{C}_{\mathrm{v}}
$$

Btu/lbmole- ${ }^{\circ}$ R
Now, we can combine Eqn 22 with
Eqns 18 \& 20 for steps 2-3 and 4-1:

$$
\begin{array}{lrl}
\mathrm{W}_{23} & -129.432 & \text { Btu } \\
\mathrm{W}_{41} & 129.432 & \text { Btu }
\end{array}
$$

We already know, from part (a), that :
$W_{12}$
126
Btu
So, now we need to evaluate $\mathbf{W}_{34}$. Because step 3-4 is adiabatic (like step 1-2) we can apply Eqn 8 to step 3-4 as follows :

$$
\mathbf{W}_{34}=\mathbf{n R T} \mathbf{T}_{\mathbf{H}} \operatorname{Ln}\left(\mathrm{V}_{4} / \mathrm{V}_{3}\right) \quad \text { Eqn } 26 \quad \mathrm{~W}_{34} \quad-151.195 \text { Btu }
$$

The assumptions made in this part of the problem cannot be verified with the given information.

| $W_{12}$ | $126 ~ B t u$ |
| :--- | ---: |
| $W_{23}$ | -129.43 Btu |$\quad$| $W_{34}$ | -151.19 Btu |
| :--- | :--- | :--- |
| $\mathrm{W}_{41}$ | 129.43 Btu |

Part c.) The coefficient of performance of a Carnot Cycle is: $\quad \mathbf{C O P}_{\mathrm{R}, \max }=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}$
Verify: The assumptions made in this part of the problem cannot be verified with the given information.
Answers: a.)

| $\mathrm{P}_{1}$ | 510 | $\mathrm{lb}_{\mathrm{b}} / \mathrm{in}^{2}$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{2}$ | 310 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ |


| $\mathrm{P}_{3}$ | 590.0 | $\mathrm{Ib}_{\mathrm{f}} / \mathrm{in}^{2}$ |
| :--- | :--- | :--- |
| $\mathrm{P}_{4}$ | 960.0 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ |

b.)

| $W_{12}$ | 126 | Btu |
| :--- | :---: | :---: |
| $W_{23}$ | -129 | Btu |


| $W_{34}$ | -151 | Btu |
| :--- | :--- | :--- |
| $W_{41}$ | 129 | Btu |

c.)

| COP $_{\mathrm{R}}$ |
| :---: |

6F-1
Relationship Between Carnot Cycle Efficiencies
Three Carnot heat engines operate between three thermal reservoirs, as shown in the diagram, below.


Derive an equation for the thermal efficiency of $\mathbf{H E}_{\mathrm{C}}\left(\eta_{\mathrm{C}}\right)$, in terms of the thermal efficiency of $\mathrm{HE}_{\mathrm{A}}\left(\eta_{\mathrm{A}}\right)$ and the thermal efficiency of $\mathrm{HE}_{\mathrm{B}}\left(\eta_{\mathrm{B}}\right)$.

Read : The key to this problem is the fact that all three heat engines are Carnot Engines and their efficiencies are completely determined by the temperatures of the three reservoirs. Our goal is to algebraically manipulate the three equations for the three efficiencies in order to eliminate all three temperatures.

Given: $\quad \mathrm{HE}_{1}$ absorbs heat from a reservoir at $\mathbf{T}_{1}$ and rejects heat to a reservoir at $\mathbf{T}_{\mathbf{2}}$.
$\mathrm{HE}_{2}$ absorbs heat from a reservoir at $\mathbf{T}_{2}$ and rejects heat to a reservoir at $\mathbf{T}_{3}$.
$\mathrm{HE}_{3}$ absorbs heat from a reservoir at $\mathbf{T}_{1}$ and rejects heat to a reservoir at $\mathbf{T}_{3}$.

Find: $\quad \eta_{3}=\mathbf{f n x}\left(\eta_{1}, \eta_{2}\right)$

Diagram: The diagram in the problem statement is adequate.
Assumptions: 1- All three heat engines are Carnot Heat Engines.
Equations / Data / Solve:
Begin by applying the equation relating the thermal efficiency of a Carnot Engine to the temperatures of the reservoirs to all three heat engines.

$$
\begin{array}{ll}
\eta_{\mathrm{A}}=1-\frac{T_{2}}{T_{1}} & \text { Eqn } 1 \\
\eta_{\mathrm{B}} & =1-\frac{T_{3}}{T_{2}} \\
& \eta_{\mathrm{C}}=1-\frac{T_{3}}{T_{1}} \tag{Eqn 3}
\end{array}
$$

Rearrange Eqns 1 \& 2 as follows :

$$
\frac{T_{2}}{T_{1}}=1-\eta_{A} \quad \text { Eqn } 4
$$

$$
\frac{T_{3}}{T_{2}}=1-\eta_{B}
$$

Multiply Eqn 4 by Eqn 5 to get :

$$
\frac{T_{2}}{T_{1}} \frac{T_{3}}{T_{2}}=\frac{T_{3}}{T_{1}}=\left(1-\eta_{B}\right)\left(1-\eta_{A}\right)
$$

$$
\text { Eqn } 6
$$

Now, substitute Eqn 6 back into Eqn 3 :

$$
\eta_{\mathrm{C}}=1-\left(1-\eta_{\mathrm{B}}\right)\left(1-\eta_{\mathrm{A}}\right)
$$

$$
\text { Eqn } 7
$$

Simplify Eqn 7 :

$$
\eta_{\mathrm{C}}=1 /\left(\mathcal{1}-\eta_{\mathrm{B}}-\eta_{\mathrm{A}}+\eta_{\mathrm{A}} \eta_{\mathrm{B}}\right) \quad \text { Eqn } 8
$$

Finally :

$$
\eta_{\mathrm{C}}=\eta_{\mathrm{B}}+\eta_{\mathrm{A}}-\eta_{\mathrm{A}} \eta_{\mathrm{B}}
$$

Verify: We cannot verify that the heat engines are Carnot Engines, but the problem statement instructed us to make this assumption.

Answers : $\boldsymbol{\eta}_{\mathrm{C}}=\boldsymbol{\eta}_{\mathrm{B}}+\eta_{\mathrm{A}}-\eta_{\mathrm{A}} \boldsymbol{\eta}_{\mathrm{B}}$


## "The best way to Learn Thermodynamics"

A Carnot Cycle operates between thermal reservoirs at $55^{\circ} \mathrm{C}$ and $560^{\circ} \mathrm{C}$. Calculate...
a.) The thermal efficiency, $\eta$, if it is a power cycle
b.) The COP if it is a refrigerator
c.) The COP if it is a heat pump

Read : This is a straightforward application of the definitions of efficiency and coefficient of performance.

| Given: | $\mathrm{T}_{\mathrm{H}}$ | 560 | ${ }^{\circ} \mathrm{C}$ |  |  | T ${ }_{\text {c }}$ | 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\mathrm{H}}$ | 833.15 | K |  |  | Tc | 328.15 |
| Find: | $\eta$ | ??? |  | $\mathrm{COP}_{\mathrm{R}}$ | ??? | $\mathrm{COP}_{\mathrm{HP}}$ | ??? |

Diagram: Not necessary for this problem.
Assumptions: None.

## Equations / Data / Solve:

Part a.) The thermal efficiency of a Carnot Cycle depends only on the temperatures of the thermal reservoirs with which it interacts. The equation that defines this relationship is :

$$
\begin{equation*}
\eta=1-\frac{T_{C}}{T_{H}} \tag{Eqn 1}
\end{equation*}
$$

Just be sure to use absolute temperature in Eqn 1! In this case, convert to Kelvin. Temperatures in Rankine will work also.
$\eta \quad 60.6 \%$
Part b.) The coefficient of performance of a Carnot Refrigeration Cycle also depends only on the temperatures of the thermal reservoirs with which it interacts. The equation that defines this relationship is :

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{R}}=\frac{1}{\frac{T_{H}}{T_{C}}-1}=\frac{T_{\mathrm{C}}}{T_{H}-T_{C}} \tag{Eqn 2}
\end{equation*}
$$

Using T in Kelvin yields:
$\mathrm{COP}_{\mathrm{R}}$
0.6498

This is an exceptionally $\underline{B A D} \mathbf{C O P}_{\mathbf{R}}$ because it is less than 1. This isn't terribly surprising when you consider that the refrigerator must reject heat to a thermal reservoir at $560^{\circ} \mathrm{C}$ !!

Part c.) The coefficient of performance of a Carnot Heat Pump Cycle also depends only on the temperatures of the thermal reservoirs with which it interacts. The equation that defines this relationship is :

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{HP}}=\frac{1}{1-\frac{T_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}}=\frac{\mathbf{T}_{\mathrm{H}}}{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}} \tag{Eqn 3}
\end{equation*}
$$

Using T in Kelvin yields :
$\mathrm{COP}_{\mathrm{HP}}$
1.6498

This is a BAD COP $_{\text {HP }}$ because it is just barely greater than $\mathbf{1}$. This isn't terribly surprising when you consider that the heat pump must put out heat to a reservoir at $560^{\circ} \mathrm{C}$ !!

Notice also that :
$\mathrm{COP}_{\mathrm{HP}}=\mathrm{COP}_{\mathrm{R}}+1$
This is always true for Carnot Cycles.
Verify: No assumptions to verify that were not given in the problem statement.
Answers : $\eta$
60.6\%

| COP $_{R}$ | 0.650 |
| :--- | :--- |

$\mathrm{COP}_{\mathrm{HP}}$
1.65


## Entropy

In this chapter, we use the Kelvin Relationship and the Carnot Pricniples to show that the Clausius Inequality is true. This leads to the definition of entropy. The TS Diagram will be used frequently in the remainder of this course because it provides a great deal of insight into the performance of processes and cycles. The Principle of Increasing Entropy leads to the concept of entropy generation.

The 1st and 2nd Gibbs Equations are introduced to facilitate the evaluation of changes in entropy associated with processes. We apply the Gibbs equations to incompressible liquids and ideal gases. This analysis leads to the Ideal Gas Entropy Function and to relative properties. These are tabulated in the Appendix.

The chapter concludes with a discussion of polytropic, isentropic and other special processes and their representation on PV and TS Diagrams.

## The Clausius Inequality

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq 0
$$

- Cyclic Integrals
$\checkmark$ Integrate through all the steps in a cycle and return to the initial state.
- Inexact Differentials: $\delta \mathbf{Q} \& \delta \mathbf{W}$
$\checkmark$ Used for path variables, Q and W
- Evaluating Cyclic Integrals
$\checkmark$ Example 1: Carnot HE


$$
\oint \delta \mathbf{Q}=\int_{1}^{2} \delta \mathbf{Q}+\int_{3}^{4} \delta \mathbf{Q}=\mathbf{Q}_{12}+\mathbf{Q}_{34}=\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathrm{C}}>\mathbf{0}
$$

$\diamond$ Example 2: Carnot HE

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\int_{1}^{2} \frac{\delta \mathbf{Q}}{\mathbf{T}}+\int_{3}^{4} \frac{\delta \mathbf{Q}}{\mathbf{T}}=\frac{\int_{1}^{2} \delta \mathbf{Q}}{\mathbf{T}_{\mathrm{H}}}+\frac{\int_{3}^{4} \delta \mathbf{Q}}{\mathbf{T}_{\mathrm{C}}}=\frac{\mathbf{Q}_{12}}{\mathbf{T}_{\mathrm{H}}}+\frac{\mathbf{Q}_{34}}{\mathbf{T}_{\mathrm{C}}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{rev}}}{\mathbf{T}_{\mathrm{C}}}
$$

- Example 2
$\diamond$ Because the Carnot Cycle is completely reversible, all heat transfer must occur through an infinitessimal temperature difference.
- Therefore, the temperature of the hot reservoir must be equal to the temperature of the working fluid in the system to which it transfers heat.
$\diamond$ And the temperature of the cold reservoir must be equal to the temperature of the working fluid in the system from which it receives heat.
$\diamond$ Since the reservoir temperatures are constant, the temperatures within the system where the heat exchange occurs must also be constant.


## Clausius: Int. Rev. and Irrev. Cycles

- Reversible Cycle, such as Carnot: $\oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\mathbf{Q}_{\mathrm{C}, \text { rev }}}{\mathbf{T}_{\mathrm{C}}}$
$\diamond$ Kelvin: $\quad \frac{\mathbf{Q}_{\mathrm{C}, \text { rev }}}{\mathbf{Q}_{\mathrm{H}}}=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}} \quad$ or: $\quad \frac{\mathbf{Q}_{\mathrm{C}, \text { rev }}}{\mathbf{T}_{\mathrm{C}}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}$

- Irreversible Cycles:

$$
\begin{aligned}
& \eta_{\text {rev }}>\eta_{\text {irr }} \\
& \mathbf{W}_{\text {rev }}>\mathbf{W}_{\text {irr }} \\
& \mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}, \mathrm{rev}}>\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}, \mathrm{irr}} \\
& \mathbf{Q}_{\mathrm{C}, \mathrm{rev}}<\mathbf{Q}_{\mathrm{C}, \mathrm{irr}} \\
& \oint \frac{\delta \mathbf{Q}_{\text {irr }}}{\mathbf{T}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{irr}}}{\mathbf{T}_{\mathrm{C}}}=\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{rev}}}{\mathbf{T}_{\mathrm{C}}}-\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{irr}}}{\mathbf{T}_{\mathrm{C}}}<\mathbf{0}
\end{aligned}
$$

$\diamond$ Definitio

## - All Cycles :

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq 0
$$

## - Conclusions

- The Clausius Inequality is TRUE! The equality applies for int. rev. cycles and the "less than" part applies for irreversible cycles.
$\checkmark$ Why relax the rule from reversible to just internally reversible? If the temperatures inside the system are NOT equal to the temperatures of the hot and cold reservoirs, then the heat exchange is NOT reversible.
- But, the Kelvin Relationship applies if the cycle is internally reversible.
$\diamond$ As long as the cycle is internally reversible, the equality in the Clausius Inequality applies.
- The temperature within the system at which heat exchange occurs does not need to be constant for the equality part of Clausius to hold true. It just makes it a WHOLE LOT easier to evaluate the cyclic integral.
- Cyclic integrals are new, but they are not scary or terribly difficult when applied to thermodynamic cycles.
- All you need to do is integrate through all the steps of the cycle, so that you begin and end in the same state.
- The funky " $\delta$ " is a common way of indicating that the differential is not an exact differential, " $\delta$ ", nor is it a partial differential, " $\partial$ ".
- It is absolutely crucial that you understand these two examples of how to evaluate a cyclic integral.
- Example 1
- In the cyclic integral, our sign convention applies, but in the tie-fighter diagram, both $\mathbf{Q}_{\mathbf{H}}$ and $\mathbf{Q}_{\mathbf{C}}$ are positive quantities.
$\checkmark$ When we evaluate the cyclic integral, we get something like $\mathbf{Q}_{12}+\mathbf{Q}_{23}+\mathbf{Q}_{34}+\mathbf{Q}_{41}$ for a Carnot cycle.
- In a Carnot Cycle, Steps 2-3 and 4-1 are adiabatic, so $\mathbf{Q}_{23}=\mathbf{Q}_{41}=\mathbf{0}$.
- So, the cyclic integral is just $\mathbf{Q}_{12}+\mathbf{Q}_{34}$.
$\checkmark$ Because of the sign convention conflict, $\mathbf{Q H}=\mathbf{Q}_{12}$ and $\mathbf{Q}_{\mathbf{C}}=-\mathbf{Q}_{34}$.
$\diamond$ Therefore, the cyclic integral is $\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathbf{C}}$.
$\diamond$ The 1st Law tells us that $\mathbf{Q}_{\mathbf{H}}=\mathbf{Q}_{\mathbf{C}}+\mathbf{W}_{\mathbf{H E}}$
$\checkmark$ Since $\mathbf{W}_{\mathbf{H E}}>\mathbf{0}, \mathbf{Q}_{\mathbf{H}}>\mathbf{Q}_{\mathrm{C}}$ and finally $\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathrm{C}}>\mathbf{0}$
- Reversible Cycles
$\checkmark$ Kelvin Relationship applies to reversible cycles like Carnot
- Depends on the fact that the temperature scale we use, the Kelvin Scale, is a thermodynamic temperature scale
- Irreversible Cycles:
- Consider an irreversible HE that operates between the same hot and cold thermal reservoirs and receives the same amount of heat from the hot reservoir, $\mathbf{Q}_{\mathbf{H}}$.
$\checkmark$ 1st Carnot Principle : the reversible HE is more efficient than the irreversible HE
- Thermal efficiency is defined as the ratio of the work output to $\mathbf{Q}_{\mathbf{H}}$.
- Since $\mathbf{Q}_{\mathbf{H}}$ is the same for both HE's and the efficiency of the reversible HE is greater, we conclude that the work output of the irreversible HE must be less than the work output of the reversible HE.
- The 1st Law allows us to replace the work output with $\mathbf{Q}_{\mathbf{H}}-\mathbf{Q}_{\mathbf{C}}$ for each HE.
$\checkmark$ The $\mathbf{Q}_{\mathbf{H}}$ term on each side of the inequality cancels leaving us with the fact that the irreversible HE must reject more heat to the cold reservoir than the reversible HE does.
- The Cyclic Integral
- We can now apply the cyclic integral of $\mathbf{d Q} / \mathbf{T}$ to the irreversible process.
- The key here is that we can use the Kelvin Relationship (applied to the reversible HE, not this irreversible one) to replace $\mathbf{Q}_{\mathbf{H}} / \mathbf{T}_{\mathbf{H}}$ with $\mathbf{Q}_{\mathbf{C}, \text { rev }} /$ $\mathrm{T}_{\mathrm{C}}$.
- We just showed that $\mathbf{Q}_{\mathbf{C}, \text { rev }}<\mathbf{Q}_{\mathrm{C}, \mathrm{irr}}$, so we conclude that the cyclic integral must be negative for all irreversible cycles !


## Entropy

- Cycle 1-A-2-B-1:

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\int_{1}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{A}}+\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{B}}=\mathbf{0}
$$

- Cycle 1-A-2-C-1:


- Subtract Eqns: $\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{T}\right)_{C}=\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{T}\right)_{B}$

$$
\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text {intrev }} \cdot \text { Does not depend on path ! }
$$

- Definition
of Entropy:

$$
\mathrm{dS}=\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{intrev}}
$$

- Cycles 1-A-B-2 and 1-A-C-2 are internally reversible, so the cyclic integral of
$d Q / T=0$.
- This means that the integral of $\mathbf{d Q}$ / $\mathbf{T}$ from state 2 to state 1 must be the same along paths B and C .
- Since we didn't specify anything special about paths B and C except that they are internally reversible.
- We didn't specify anything special at all about states 1 and 2.
- We can conclude that the integral of d $\mathbf{Q} / \mathbf{T}$ must be the same for ALL INTERNALLY REVERSIBLE paths between ANY two states.
- When the change in a quantity between two states does not depend on the path, we call it a state variable or property.
- This new property is called entropy and it is defined by the equation in the box.
- This equation really only tells how to calculate CHANGES in entropy.
- So, like enthalpy and elevation above sea level, we must choose a reference state for entropy.
$\checkmark$ In the Fluid and Thermal Property Tables of the NIST Webbook, they always list the reference state and it always includes the reference state for entropy. Check it out for yourself.


## $\Delta S$ : Int. Rev. and Irrev. Processes

- Change in Entropy: $\Delta S=S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{rev}}[=] \mathrm{kJ} / \mathrm{K}$

$$
\left(\mathbf{S}_{2}-\mathbf{S}_{1}\right)_{\text {intrev }}=\left(\mathbf{S}_{2}-\mathbf{S}_{1}\right)_{\text {irrev }}=\int_{1}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{rev}}
$$

- Problem: Since Int. Rev. processes do not exist, how do we evaluate $\Delta \mathrm{S}$ ?
- Special Case: Internally Reversible, Isothermal Processes

$$
\Delta \mathbf{S}=\int_{1}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\substack{\mathrm{int} \\ \mathrm{rev}}}=\frac{\mathbf{1}}{\mathbf{T}} \int_{1}^{2} \delta \mathbf{Q}_{\substack{\text { int } \\ \mathrm{rev}}}=\frac{\mathbf{Q}_{\text {int }} \mathrm{rev}}{\mathbf{r e v}}
$$

Especially useful for evaluating $\Delta S_{\text {reservoir }}$ because $T_{\text {reservoir }}=$ constant

- Although we have to follow an internally reversible path to evaluate $\Delta \mathbf{S}_{12}, \mathbf{S}_{2}-\mathbf{S}_{1}$ has the same value whether the process follows an internally reversible path or a IRREVERSIBLE path.
- This result is enormously important !
$\bullet$ In the real world, we won't analyze any internally reversible processes because they don't really exist.
- But, because entropy is a state variable or property, we can use it to analyze real, IRREVERSIBLE processes anyway!
- So, how do we evaluate $\Delta \mathbf{S}$ for processes OTHER THAN reservoirs?
- We cannot use reversible processes because they don't exist !
$\checkmark$ It turns out that $\Delta \mathbf{S}$ is related to changes in other properties that are easier to measure.
- In Lesson D, we will derive the Gibbs Equations and we will see how $\Delta \mathbf{S}$ can be calculated using the heat capacity and equations of state.


## Entropy of a Pure Substance

- $S=f x n(T, P$, phase $)$
- NIST Webbook
- Thermophysical Properties of Fluid Systems
$\checkmark$ Specific entropy is listed in the thermodynamic data tables
- Observations:

$$
\hat{\mathbf{S}}_{\text {sat vap }}>\hat{\mathbf{S}}_{\text {sat tiq }}
$$

$\diamond \quad$ All substances at all $\mathrm{T}: \quad \hat{\mathbf{S}} \uparrow$ with $\uparrow \mathbf{T}$
$\diamond \quad$ IG and many real gases: $\hat{\mathbf{S}} \downarrow$ with $\uparrow \mathbf{P}$
$\checkmark \quad$ Sat'd Mixtures: $\quad \hat{\mathbf{S}}_{\text {sat mix }}=\mathbf{x} \hat{\mathbf{S}}_{\text {sat rap }}+(\mathbf{1 - x}) \hat{\mathbf{S}}_{\text {sat liq }}$

- Subcooled Liquids:
$\hat{\mathbf{S}}_{\text {subcoled }}(\mathbf{T}, \mathbf{P}) \approx \hat{\mathbf{S}}_{\text {sat liq }}\left(\mathbf{T}, \mathbf{P}^{*}\right)$
Where $\mathrm{P}^{*}=$ vapor pressure $=\mathrm{P}_{\text {sat }}$

- Specific entropy is just another property that we can look up in tables of thermodynamic data.
- It is available in the NIST Webbook, in the back of the Schaum's Outline and in the tables you downloaded from Thermo-CD (most notably the tables for R-134a).
- A quick look at the thermodynamic tables should convince you that specific entropy increases with increasing $\mathbf{T}$ as long as a phase change does not occur.
- For ideal gases and most real gases at most values of $\mathbf{T} \& \mathbf{P}$, specific entropy decreases as pressure increases.
- You can use quality to calculate the specific entropy of a saturated mixture (just as you can for any other specific property).
- Subcooled Liquids
$\checkmark$ If data is available for subcooled liquids, then you should definitely use it.
- If data is not available, then you can approximate the specific entropy using the specific entropy of the saturated liquid AT THE SAME TEMPERATURE.
$\checkmark$ This is a reasonable approximation as long as the liquid is incompressible $\left(\mathbf{V}^{\wedge}=\right.$ constant and $\mathbf{C}_{\mathbf{P}}=\mathbf{C}_{\mathbf{V}}$ )
$\checkmark$ This approximation is most accurate if the actual pressure, $\mathbf{P}$, is not a great deal larger than the vapor pressure, $\mathbf{P}^{*}$.
- The T-S Diagram will be the most useful diagram in the remainder of this course.
- The good news and the bad news is that it looks very similar to the PV Diagram !
- Good news because you will learn how to use the diagram quickly.
- Bad news because it is easy to get the two confused!
- TS Diagrams look even more similar to TV Diagrams, but we have not used TV Diagrams much.
- The TS Diagram has isobars.
- Isobars go from lower left to upper right because specific entropy increases as T increases.
- Isobars are horizontal in the two-phase envelope because the phase transition entails a large change in the specific entropy, but occurs at a constant temperature.
- You are probably wondering WHY the TS Diagram is going to be so useful.
- Let's see what a Carnot Cycle looks like on a TS Diagram.


## Carnot Cycle

- Steps
$\checkmark$ 1-2: Isothermal expansion
$\diamond$ 2-3: Adiabatic expansion
$\diamond$ 3-4: Isothermal compression
$\diamond$ 4-1: Adiabatic compression
- Step 1-2: $S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{rev}}$


$$
=\frac{\mathbf{1}}{\mathbf{T}} \int_{1}^{2} \delta \mathbf{Q}_{\mathrm{rev}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}
$$

- Step 2-3: $S_{3}-S_{2}=\int_{2}^{3}\left(\frac{\delta Q^{7}}{T}\right)_{\text {rev }}=0 \quad$ Isentropic !
- Step 3-4: $\mathbf{S}_{4}-\mathbf{S}_{3}=\int_{3}^{4}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{rev}}=\frac{\mathbf{1}}{\mathbf{T}} \int_{3}^{4} \delta \mathbf{Q}_{\mathrm{rev}}=\frac{\mathbf{Q}_{34}}{\mathbf{T}_{\mathrm{C}}}=-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{T}_{\mathbf{C}}}$
- Step 4-1: $S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{rev}}=0 \quad$ Isentropic !
- We use the definition of entropy to evaluate changes in entropy for each step in the Carnot Cycle.
- Steps 2-3 and 4-1 are both adiabatic and reversible. Therefore there is NO
CHANGE in the entropy of the system during these steps.
$\checkmark$ Steps 2-3 and 4-1 are ISENTROPIC !
- Steps 1-2 and 3-4 occur at constant temperature.
$\checkmark$ So, the definition of entropy simplifies (just as it did for a reservoir).
$\Delta \Delta \mathbf{S}$ is just $\mathbf{Q} / \mathbf{T}$.
- So, what about work?


## Heat, Work and TS Diagrams

$\hat{\mathbf{Q}}_{\mathrm{H}}=\mathbf{T}_{\mathrm{H}}\left(\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}\right)$
$\hat{\mathbf{Q}}_{\mathrm{C}}=\mathbf{T}_{\mathrm{C}}\left(\hat{\mathbf{S}}_{3}-\hat{\mathbf{S}}_{4}\right)$

- $1^{\text {st }}$ Law Cycle
$\hat{\mathbf{Q}}_{\mathrm{H}}=\hat{\mathbf{W}}+\hat{\mathbf{Q}}_{\mathrm{C}}$
$\hat{\mathbf{W}}=\hat{\mathbf{Q}}_{\mathrm{H}}-\hat{\mathbf{Q}}_{\mathrm{C}}$

- $\quad Q_{H}=$ area under path for step 1-2
- $\quad Q_{C}=$ positive area under path for step 3-4
- $\quad W=$ area enclosed by the cycle !
- Areas under process paths on TS Diagrams represent heat transferred in reversible processes.
- Application of the 1 st Law lets us also associate work with the area enclosed by the cycle.
- This simple, tangible interpretation of area makes it much easier to understand and compare the performance of complex cycles that we will study later.
- For example, if we decrease $\mathbf{P}_{\mathbf{L O}}$, does the efficiency of this power cycle increase or decrease?


## Principle of Increasing Entropy

- Clausius: $\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq 0$
- Apply to Cycle 1-A-2-B

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\int_{\mathbf{1}}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathbf{A}}+\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathbf{B}}<\mathbf{0}
$$

- Introduce

Entropy: $\mathbf{S}_{1}-\mathbf{S}_{2}=\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text {intrec }}$


- Substitute into Clausius: $\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}+S_{1}-S_{2}<0$
- Rearrange:
$\mathbf{S}_{2}-\mathbf{S}_{1}>\int_{1}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{A}}$
- Differential Form:
$\mathrm{d} S \geq \frac{\delta \mathrm{Q}}{\mathrm{T}}$
- The entropy sneaks into the equation because path B is reversible.
- The result is that the entropy change from 1 to 2 is GREATER THAN (or equal to if process A were reversible) the integral of dQ / T from state 1 to state 2.
- This is the principle of increasing entropy.
$\diamond$ It does NOT mean that entropy cannot decrease!
- All you need to do to decrease the entropy of a system is to transfer some heat out of it !
- So, what does this principle tell us ?


## Entropy Generation

- Newest Statement of the $2^{\text {nd }}$ Law : $\quad \mathrm{d} S \geq \frac{\delta \mathrm{Q}}{\mathrm{T}}$
- Make Clausius into an equality: $\quad d S=\frac{\delta Q}{T}+d S_{g e n}$
- Entropy Generation, $\mathbf{S}_{\text {gen }}$
$\diamond$ Internally reversible processes:
$\mathbf{S}_{\mathrm{gen}}=0$
$\diamond$ Irreversible processes:
$\mathbf{S}_{\text {gen }}>0$
$\diamond$ Impossible processes:
$\mathbf{S}_{\text {gen }}<0$
- We define entropy generation by making the Clausius Inequality into an equality!
- One of the uses for entropy generation will be to allow us to quickly determine if a process is reversible, irreversible or impossible!
- This is the important implication of the Principle of Increasing Entropy.


## TS Diagram

- Area under the curve:
- But:

$$
\text { Area }=\int_{1}^{2} \mathrm{~T} d \hat{S}
$$

$$
\delta \hat{\mathbf{Q}}_{\mathrm{IntRev}}=\mathbf{T d} \hat{\mathbf{S}}
$$



- Irreversible

$$
\text { Area }=\int_{1}^{2} \delta \hat{\mathbf{Q}}_{\text {Int Rev }}=\hat{\mathbf{Q}}_{\text {Int Rev }}
$$

$$
\mathbf{d} \hat{\mathbf{S}}=\frac{\delta \hat{\mathbf{Q}}_{\text {Irrev }}}{\mathbf{T}}+\mathbf{d} \hat{\mathbf{S}}_{\mathrm{gen}}
$$

$$
\delta \hat{\mathbf{Q}}_{\text {Irrev }}=\mathbf{T} \mathbf{d} \hat{\mathbf{S}}-\mathbf{T} \mathbf{d} \hat{\mathbf{S}}_{\mathrm{gen}}
$$

$$
\hat{\mathbf{Q}}_{\text {Irrev }}=\mathbf{A r e a}-\int_{1}^{2} \mathbf{T d} \hat{\mathbf{S}}_{\mathrm{gen}}
$$

$$
\hat{\mathbf{Q}}_{\text {Irrev }}<\text { Area }
$$

- $\mathbf{S}_{\text {gen }}$ is a path variable! We must use $\delta \hat{S}_{\text {gen }}: \quad \mathrm{dS}=\frac{\delta Q}{T}+\delta \mathrm{S}_{\mathrm{gen}}$
- Any 2 states can be connected by both reversible and irreversible process paths.
- Reversible and irreversible paths result in different values for $\mathbf{S}_{\text {gen }}$.
- So, $\mathbf{S}_{\text {gen }}$ depends on the process path.
- $\mathbf{S}_{\text {gen }}$ is a path variable and therefore requires an inexact differential.


## Isolated Systems

- Entropy Statement of the $\mathbf{2}^{\text {nd }}$ Law: $\Delta S=\int \frac{\delta \mathbf{Q}}{T}+S_{\text {gen }}$
- Isolated Systems, $\delta \mathbf{Q}=0$, there- $\Delta S_{\text {isolated }}=S_{\text {gen }} \geq 0$
- The universe is an isolated system:

$$
\Delta \mathbf{S}_{\text {univ }}=\mathbf{S}_{\text {gen }} \geq 0
$$

The Principle of Increasing Entropy (a consequence of the $2^{\text {nd }}$ Law)

- Divide the universe into two regions
$\diamond$ The system and the surroundings:

$$
\Delta \mathbf{S}_{\text {univ }}=\Delta \mathbf{S}_{\text {sys }}+\Delta \mathbf{S}_{\text {surr }}=\mathbf{S}_{\text {gen }} \geq 0
$$

- The universe is an isolated system
$\diamond$ No mass enters or leaves
$\diamond$ There is nothing else with which to exchange heat!
$\diamond$ Any change in the entropy of the universe can only be attributed to entropy generation !
$\diamond$ Since the total $\mathbf{S}_{\mathbf{g e n}} \geq \mathbf{0}$ for any process, the entropy of the universe can only increase!
$\diamond$ Keep in mind that universe is just the combination of the system and all of its surroundings (including any reservoirs).


## The Gibbs Equations

- Definition of entropy:
$\delta \mathbf{Q}_{\text {Int Rev }}=\mathbf{T d S}$
- $1^{\text {st }}$ Law, closed system, $W_{b}$ only:
$\delta \mathbf{Q}-\delta \mathbf{W}=\mathbf{d} \mathbf{U}$
- Boundary work for an internally reversible process: $\delta \mathrm{W}_{\text {Itt Rev }}=P d V$
- $1^{\text {st }}$ Gibbs Equation:
$\mathbf{d U}=\mathbf{T d S}-\mathbf{P d V}$
- Definition of enthalpy:

$$
\begin{aligned}
\mathbf{d H} & =\mathbf{d U}+\mathbf{d}(\mathbf{P V}) \\
& =\mathbf{d U}+\mathbf{P d V}+\mathbf{V d P}
\end{aligned}
$$

- Substitute in the $1^{\text {st }}$ Gibbs Eqn:
$\mathbf{d H}=\mathbf{T d S}-\mathrm{PdV}+\mathrm{PdV}+\mathrm{VdP}$
- $2^{\text {nd }}$ Gibbs Eqn:
$\mathrm{dH}=\mathbf{T d S}+\mathrm{VdP}$
- BIG result !
$\diamond$ If we can determine $\mathbf{P}, \mathbf{V}, \mathbf{T}$ and $\mathbf{U}$ or $\mathbf{H}$, the Gibbs Eqns can be used to calculate $\Delta \mathbf{S}$ !
$\checkmark$ As a result, we can look up specific entropy in the NIST Webbook or in any thermodynamic table.
$\diamond$ We must still choose a reference state (T, $\mathbf{P}$ and phase) at which $\mathbf{S}=\mathbf{0}$.
- So, HOW do we use the Gibbs Eqns to evaluate changes in entropy?
$\checkmark$ We need an EOS to do this.
- Incompressible Liquids are the simplest, so we will consider them first.
- Ideal Gas EOS is the simplest EOS, so we will consider that next.
- More accurate, sophisticated EOS's are tougher to use to evaluate $\Delta \mathbf{S}$.
- Good news. This is beyond the scope of this course!
- If it is not an incompressible liquid or an ideal gas, we will always use the thermodynamic tables.


## Incompressible Liquids

- Assumptions: $\quad \tilde{V} \approx 0 \quad d \tilde{V}=0 \quad \tilde{\mathbf{C}}_{\mathrm{P}}=\tilde{\mathbf{C}}_{\mathrm{v}}=\tilde{\mathbf{C}}$
- Gibbs Equations:

$$
\begin{aligned}
& d \tilde{U}=T d \tilde{S}-P d \tilde{V} \\
& d \tilde{H}=T d \tilde{S}+\tilde{X} d P
\end{aligned}
$$

- Enthalpy, internal energy and heat capacity:

$$
d \tilde{U}=\tilde{\mathbf{C}}_{\mathrm{v}} \mathbf{d T}=\tilde{\mathbf{C}} \mathbf{d T}
$$

$$
\mathrm{d} \tilde{\mathbf{H}}=\tilde{\mathbf{C}}_{\mathrm{P}} \mathrm{dT}=\tilde{\mathbf{C}} \mathrm{dT}
$$

$$
d \tilde{S}=\frac{d H}{T}=\frac{d U}{T}=\frac{\tilde{C}}{T} d T
$$

- Result: $\mathrm{d} \tilde{\mathrm{S}}=\frac{\tilde{\mathrm{C}}}{\mathrm{T}} \mathrm{dT}$
- The molar volume of an incompressible liquid is constant.
- If we further assume that the molar volume is very, very small, The Gibbs Equations simplify even further.
- Remember that for a perfectly incompressible liquid, $\mathbf{C}_{\mathbf{P}}=\mathbf{C}_{\mathbf{v}}$.
- As a result, $\Delta \mathbf{H}=\Delta \mathbf{U}$.
- The result is that both Gibbs Equations reduce to the same equation...the one in the box.
- This makes it easy to evaluate changes in entropy of an incompressible liquid.
- It also means that the molar entropy of a subcooled liquid is the same as the molar entropy of a saturated liquid at the same temperature.
- The best part is that our best estimate of the heat capacity of a liquid is often just a constant.
- In which case, $\Delta \mathbf{S}=\mathbf{C} \mathbf{L n}(\mathbf{T} 2 / \mathbf{T 1})$
- It doesn't get much better than that !


## Ideal Gases

- Gibbs Equations:

$$
\begin{array}{ll}
d \tilde{U}=T d \tilde{S}-P d \tilde{V} & \Delta \tilde{S}=\int_{1}^{2} d \tilde{S}=\int_{1}^{2} \frac{d \tilde{U}}{T}+\int_{1}^{2} \frac{P}{T} d \tilde{V} \\
d \tilde{H}=T d \tilde{S}+\tilde{V} d P & \Delta \tilde{S}=\int_{1}^{2} d \tilde{S}=\int_{1}^{2} \frac{d \tilde{H}}{T}-\int_{1}^{2} \frac{\tilde{V}}{T} d P
\end{array}
$$

- Ideal Gas Heat Capacities and EOS:

$$
\begin{aligned}
& \Delta \tilde{S}=\int_{1}^{2} \frac{\tilde{C}_{\mathbf{V}}^{0}}{T} d T+\int_{1}^{2} \frac{P}{T} d \tilde{V}=\int_{1}^{2} \frac{\tilde{C}_{V}^{0}}{T} d T+\int_{1}^{2} \frac{R}{\tilde{V}} d \tilde{V} \\
& \Delta \tilde{S}=\int_{1}^{2} \frac{d \tilde{H}}{T}-\int_{1}^{2} \frac{\tilde{\mathbf{V}}}{T} d P=\int_{1}^{2} \frac{\tilde{C}_{P}^{0}}{T} d T-\int_{1}^{2} \frac{R}{P} d P
\end{aligned}
$$

- Integration yields:

| $\Delta \tilde{S}=\int_{1}^{2} \frac{\tilde{C}_{V}^{0}}{T} d T+R \operatorname{Ln}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]$ |
| :---: |
| $\Delta \tilde{S}=\int_{1}^{2} \frac{\tilde{C}_{\mathrm{P}}^{0}}{T} d T-R \operatorname{Ln}\left[\frac{P_{2}}{P_{1}}\right]$ |

- There are three ways to evaluate $\Delta \mathbf{S}$ using these ideal gas forms of the Gibbs Equations.
$\diamond$ Use the Shomate Equation from the NIST Webbook.
- Use the Ideal Gas Property Tables in Thermo-CD.
- Do not mix and match data from different sources without verifying that they use the same reference state !
- Use relative Pressure, also provided in the Ideal Gas Property Tables in Thermo-CD.
- We will cover this in the next class


## Using the Shomate Equation

- This method is accurate for ideal gases, but it is tedious.

$$
\begin{aligned}
\int_{1}^{2} \frac{\tilde{\mathbf{C}}_{P}^{0}}{T} d T & =\int_{T_{1}}^{T_{2}} \frac{1}{T}\left[A+\frac{B}{1000} T+\frac{C}{1000^{2}} T^{2}+\frac{D}{1000^{3}} T^{3}+1000^{2} \frac{E}{T^{2}}\right] d T \\
= & A \operatorname{Ln} \frac{T_{2}}{T_{1}}+\frac{B}{1000}\left(T_{2}-T_{1}\right)+\frac{C / 2}{1000^{2}}\left(T_{2}^{2}-T_{1}^{2}\right)+\ldots \\
& +\frac{D / 3}{1000^{3}}\left(T_{2}^{3}-T_{1}^{3}\right)-1000^{2} \frac{E}{2}\left(\frac{1}{T_{2}^{2}}-\frac{1}{T_{1}^{2}}\right) \\
\int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{V}}{0} d T & =\int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{P}^{0}-R}{T} d T=\int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{P}^{0}}{T} d T-R \operatorname{Ln}\left[\frac{T_{2}}{T_{1}}\right]
\end{aligned}
$$

- Using the Shomate Equation is a tiny bit different than when we used it before because we are evaluating the integral of $\mathbf{C}_{\mathbf{P}}$ over $\mathbf{T}$ with respect to $\mathbf{T}$ and NOT just the integral of $\mathbf{C}_{\mathbf{P}} \mathbf{d T}$.
$\checkmark$ Don't make this silly mistake !
- The calculations here are not hard, they are just tedious.
- We can use the fact that, for an ideal gas, $\mathbf{C}_{\mathbf{P}}=\mathbf{C}_{\mathbf{V}}+\mathbf{R}$ to help us evaluate the integral of $\mathbf{C}_{\mathbf{V}} \mathbf{d T}$ using the Shomate Equation, as shown here.
- The good news is that the Ideal Gas Properties Table essentially eliminates our reliance on the Shomate Equation for some common gases.


## Ideal Gas Entropy Function

- Definition: $\quad \tilde{\mathbf{S}}_{\mathrm{T}}^{0}=\int_{\mathrm{T}_{\text {ref }}}^{T} \frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{0}}{\mathbf{T}} \mathbf{d T} \quad \begin{aligned} & \text { Where } \mathrm{T}_{\text {ref }} \text { is the reference } \\ & \text { temperature and: }\end{aligned} \tilde{\mathbf{S}}_{\text {Tref }}^{0}=$


## - Relationship with Shomate Eqn : <br> $$
\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{0}}{\mathbf{T}} \mathbf{d T}=\tilde{\mathbf{S}}_{\mathrm{T}_{2}}^{0}-\tilde{\mathbf{S}}_{\mathrm{T}_{1}}^{0}
$$

- $1^{\text {st }}$ Gibbs Eqns for ideal gases :

$$
\begin{aligned}
\Delta \tilde{\mathbf{S}} & =\int_{1}^{2} \frac{\tilde{\mathbf{C}}_{\mathbf{V}}^{o}}{\mathbf{T}} \mathbf{d T}+\mathbf{R L n}\left[\frac{\tilde{\mathrm{V}}_{2}}{\tilde{\mathrm{~V}}_{1}}\right] \\
& =\int_{1}^{2} \frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{o}}{\mathbf{T}} \mathbf{d T}-\mathbf{R} \operatorname{Ln}\left[\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right]+\mathbf{R L n}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]
\end{aligned}
$$

- Substitute the Ideal Gas

Entropy Function :

$$
\Delta \tilde{\mathbf{S}}=\tilde{\mathbf{S}}_{\mathbf{T}_{2}}^{0}-\tilde{\mathbf{S}}_{\mathrm{T}_{1}}^{0}-\mathbf{R L n}\left[\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right]+\mathbf{R L n}\left[\begin{array}{l}
\tilde{\mathbf{V}}_{2} \\
\tilde{\mathbf{V}}_{1}
\end{array}\right]
$$

- The ideal gas entropy function, $\mathbf{S}^{\mathbf{0}}$ is tabulated for some gases in Thermo-CD.
- The table contains the results of many, many integrals of the Shomate Equation.
- Instead of integrating Shomate, you can simply interpolate to determine values of $\mathbf{S}^{\mathbf{0}}$.
- Then, we can re-write the ideal gas form of the 1st Gibbs Equation in terms of the ideal gas entropy function.
- The resulting equation in the box allows you to calculate $\Delta \mathbf{S}$ for an ideal gas as long as you know the initial and final $\mathbf{T}$ and molar volume.
- What if you only know T and P ?
- You could solve for $\mathbf{V}$ using the ideal gas EOS, or you could use the 2nd Gibbs Equation.
- See the next slide.


## Ideal Gas Entropy Function

- Definition: $\quad \tilde{\mathbf{S}}_{\mathrm{T}}^{o}=\int_{\mathrm{T}_{\text {ref }}}^{\mathrm{T}} \frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{0}}{\mathbf{T}} \mathbf{d T} \begin{aligned} & \text { Where } \mathrm{T}_{\text {ref }} \text { is the refe } \tilde{\mathscr{q}} \mathrm{\Phi} \text { nce } \mathbf{0} \\ & \text { temperature and: }\end{aligned}$
- Relationship with Shomate Eqn :

$$
\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{o}}{\mathbf{T}} \mathbf{d T}=\tilde{\mathbf{S}}_{\mathrm{T}_{2}}^{o}-\tilde{\mathbf{S}}_{\mathrm{T}_{1}}^{o}
$$

- $1^{\text {st }}$ Gibbs Eqns

$$
\Delta \tilde{\mathbf{S}}=\int_{1}^{2} \frac{\tilde{\mathbf{C}}_{\mathbf{P}}^{o}}{\mathbf{T}} \mathbf{d T}-\mathbf{R} \operatorname{Ln}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]
$$

- Substitute the Ideal Gas

Entropy Function : $\Delta \tilde{\mathbf{S}}=\tilde{\mathbf{S}}_{\mathrm{T}_{2}}^{0}-\tilde{\mathbf{S}}_{\mathrm{T}_{1}}^{0}-\mathbf{R L n}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]$

- We can also write Gibbs 2nd Equation in terms of the Ideal Gas Entropy Function, $\mathbf{S}^{\mathbf{0}}$.
- This gives us nice, neat, algebraic equation (no integrals) that allows us to compute $\Delta S$ for an ideal gas if we know the initial and final pressures.
- The combination of this result and the result on the previous page give us a complete toolkit of equations for calculating $\Delta \mathbf{S}$ for ideal gases!
- The OTHER columns in the Ideal Gas Property Tables are pretty useful as well.
$\vee \mathbf{H}^{\circ}$ is the integral from $\mathbf{T}_{\text {ref }}$ to $\mathbf{T}$ of $\mathbf{C}^{0}{ }_{\mathrm{p}}$.
$-\mathbf{U}^{\circ}$ is the integral from $\mathbf{T}_{\text {ref }}$ to $\mathbf{T}$ of $\mathbf{C}^{\circ}{ }_{v}$.
- There is no longer any reason to integrate the Shomate Equation for gases that appear in the Ideal Gas Property Tables !!
- Real gases require more sophisticated EOS's like the ones used to generated the steam tables and other thermodynamic tables.
- These complicated EOS's are used with the Gibbs Equations to generated the values of specific entropy that we find in the thermodynamic tables.
- The computations are beyond the scope of this course.
- We will just trust NIST and use the data that they provide for specific entropy.


## Relative Thermodynamic Properties

- Gibbs Equations for ideal gases:

$$
\Delta \tilde{\mathbf{S}}=\tilde{\mathbf{S}}_{\mathbf{T}_{2}}^{0}-\tilde{\mathbf{S}}_{\mathbf{T}_{1}}^{o}-\mathbf{R} \operatorname{Ln}\left[\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right]+\mathbf{R} \operatorname{Ln}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]
$$

$$
\Delta \tilde{\mathbf{S}}=\tilde{\mathbf{S}}_{\mathbf{T}_{2}}^{0}-\tilde{\mathbf{S}}_{\mathbf{T}_{1}}^{o}-\mathbf{R} \operatorname{Ln}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]
$$

- Consider an isentropic process from a reference state ( $\mathbf{T}_{\text {ref }}, \mathbf{P}_{\text {ref }}, \mathbf{V}_{\text {ref }}$ ) to any other state (T, P, V).
$\checkmark$ Note, $\tilde{\mathbf{S}}_{\text {Tref }}^{0}=\mathbf{0}$. Gibbs Eqns become:

$$
\mathbf{L n}\left[\frac{\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}_{\text {ref }}}\right]=\mathbf{L n}\left[\frac{\mathbf{T}}{\mathbf{T}_{\text {ref }}}\right]-\frac{\tilde{\mathbf{S}}_{\mathbf{T}}^{0}}{\mathbf{R}} \quad \frac{\tilde{\mathbf{S}}_{\mathbf{T}}^{0}}{\mathbf{R}}=\mathbf{L n}\left[\frac{\mathbf{P}}{\mathbf{P}_{\text {ref }}}\right]
$$

- Define Relative Properties: (IG Properties Tables, functions of T only)

$$
\mathbf{V}_{\mathrm{R}}=\frac{\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}_{\text {ref }}} \quad \mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\text {ref }}}
$$

- Advantage of using $\begin{array}{ll}\text { Advantage of using } \\ \text { Relative Properties: }\end{array} \quad \frac{\tilde{\mathbf{V}}_{1}}{\tilde{\mathrm{~V}}_{2}}=\frac{\mathrm{V}_{\mathrm{R}}\left(\mathrm{T}_{1}\right)}{\mathrm{V}_{\mathrm{R}}\left(\mathrm{T}_{2}\right)} \quad\left[\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{P}_{\mathrm{R}}\left(\mathrm{T}_{1}\right)}{\mathrm{P}_{\mathrm{R}}\left(\mathrm{T}_{2}\right)}\right.$
- Relative Thermodynamic Properties provide another way to analyze isentropic processes on ideal gases that lets us avoid the tedium of integrating the Shomate Equation.
- Limitations:
- Ideal Gases only
- Isentropic processes only
$\checkmark$ Tables are only available for seven common gases: air, $\mathbf{N}_{\mathbf{2}}, \mathrm{O}_{\mathbf{2}}, \mathrm{CO}_{\mathbf{2}}, \mathrm{CO}, \mathrm{H}_{\mathbf{2}}, \mathrm{H}_{\mathbf{2}} \mathbf{O}$.
$\checkmark$ For any other ideal gases, we must resort to integrating the Shomate Equation.


## Using Relative properties

- Advantage of using Relative Properties:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}_{\mathrm{R}}=\frac{\tilde{\mathbf{V}}}{\tilde{\mathrm{V}}_{\mathrm{ref}}} \\
\frac{\tilde{\mathbf{V}}_{1}}{\tilde{\mathrm{~V}}_{2}}=\frac{\mathbf{V}_{\mathrm{R}}\left(\mathrm{~T}_{1}\right)}{\mathrm{V}_{\mathrm{R}}\left(\mathrm{~T}_{2}\right)}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}_{\mathrm{R}}=\frac{\mathbf{P}}{\mathbf{P}_{\text {ref }}} \\
& \frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}=\frac{\mathbf{P}_{\mathrm{R}}\left(\mathbf{T}_{1}\right)}{\mathbf{P}_{\mathrm{R}}\left(\mathbf{T}_{2}\right)}
\end{aligned}
$$

- Example: $\quad$ Air expands in a turbine from 1000 K and 1 MPa to the surroundings at 100 kPa . If the air is an ideal gas and the turbine is isentropic, what is the temperature of the turbine exhaust?

$$
P_{R}\left(T_{2}\right)=P_{R}\left(T_{1}\right) \frac{P_{2}}{P_{1}}=86.792 \frac{100 \mathrm{kPa}}{1000 \mathrm{kPa}}=8.6792
$$

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{P}_{\mathrm{R}}$ |
| :---: | :---: |
| 540 | 8.3101 |
| $\mathrm{~T}_{2}$ | 8.6792 |
| 550 | 8.8893 | By interpolation :

$$
T_{2}=546.4 \mathrm{~K}
$$

## Isentropic Processes

- Assumptions: Ideal Gas with constant $\tilde{\mathbf{C}}_{\mathrm{P}}^{0}$ and $\tilde{\mathbf{C}}_{\mathrm{V}}^{o}$
- Results:

$$
\mathbf{T}_{1} \tilde{\mathbf{V}}_{1}^{\gamma-1}=\mathbf{T}_{2} \tilde{\mathbf{V}}_{2}^{\gamma-1}=\text { constant }
$$

$$
\mathbf{T}_{1} \mathbf{P}_{1}^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{2} \mathbf{P}_{2}^{\frac{1-\gamma}{\gamma}}=\text { constant }
$$

$$
\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}^{\gamma}=\mathbf{P}_{2} \tilde{\mathbf{V}}_{2}^{\gamma}=\mathbf{c o n s t a n t}
$$

- The derivation of the equations presented here is given in Thermo-CD.


## Polytropic Processes

## - Definition: $\quad P_{1} \tilde{\mathbf{V}}_{1}^{\delta}=P_{2} \tilde{\mathbf{V}}_{2}^{\delta}=$ constant

- Other relationships:

$$
\begin{aligned}
& \mathbf{T}_{1} \tilde{\mathbf{V}}_{1}^{\delta-1}=\mathbf{T}_{2} \tilde{\mathbf{V}}_{2}^{\delta-1}=\mathrm{constant} \\
& \mathbf{T}_{1} \mathbf{P}_{1}^{\frac{1-\delta \delta}{\delta}}=\mathbf{T}_{2} \mathbf{P}_{2}^{\frac{1-\delta}{\delta}}=\mathbf{c o n s t a n t}
\end{aligned}
$$

- An isentropic process is a polytropic process where: $\quad \delta=\gamma \quad \mathbf{P}_{1} \tilde{\mathbf{V}}_{1}^{\gamma}=\mathbf{P}_{2} \tilde{\mathbf{V}}_{2}^{\gamma}$
- Isobaric process:
$\delta=\mathbf{0} \quad \mathbf{P}_{1}=\mathbf{P}_{2}$
- Isothermal process: $\quad \delta=1 \quad P_{1} \tilde{V}_{1}=P_{2} \tilde{V}_{2}$
- Isochoric process: $\quad \delta=\infty \quad \tilde{\mathbf{v}}_{1}=\tilde{\mathbf{v}}_{2}$
- All of the equations on the previous slide also apply to any polytropic process.
- All we need to do is replace $\gamma$ with $\delta$.
- Isentropic processes for ideal gases with constant heat capacities are a special case or subset of the more general polytropic process.
- It also turns out that isobaric processes on ideal gases are just polytropic processes in which $\delta=\mathbf{0}$.
- Isothermal processes on ideal gases are just polytropic processes in which $\boldsymbol{\delta}=\mathbf{1}$.
- Isochoric processes on ideal gases are just polytropic processes in which $\delta=\infty$.


## Polytropic Process Paths: PV Diagram



- It is critical that you notice that this is a semi-logarithmic plot.
- Both the P axis and the V axis are logarithmic.
- The logarithmic axis has the same effect on the shape of the data plotted as taking the logarithm of your P data, but has the BIG advantage of not messing up the numbers.
$\checkmark$ You should always consider using a logarithmic axis instead of plotting the $\log$ of your data on an ordinary, linear axis.
$\diamond$ BUT areas on these logarithmic coordinates are not equal to WORK!
- Don't get caught in this trap.
- The cool part is that polytropic processes for ideal gases with constant heat capacities are straight lines on this plot.
$\diamond$ The slope $=-\delta$
$\checkmark$ Note, a line with a slope of $\infty$ is the same as a line with a slope of $-\infty$.


## Polytropic Process Paths: TS Diagram



- This plot is different. It is a semilogarithmic plot.
$\diamond$ The T axis is logarithmic and the S axis is an ordinary, linear axis.
- This plot also produces straight lines for all polytropic processes !
$\diamond$ But the slopes are different.
$\checkmark$ On the next slide, we will see why these paths are linear and how to determine their slopes.


## Polytropic Process Paths: TS Diagram

## - Gibbs Eqns, IG, Constant Heat Capacities:

$$
\begin{array}{r}
\Delta \tilde{\mathbf{S}}=\int_{1}^{2} \int_{\mathbf{C}}^{\tilde{\mathbf{C}}_{\mathbf{V}}^{0}} \mathbf{T} \mathbf{d T}+\mathbf{R L n}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right]=\tilde{\mathbf{C}}_{\mathbf{V}}^{0} \mathbf{L n}\left[\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right]+\mathbf{R L n}\left[\frac{\tilde{\mathbf{V}}_{2}}{\tilde{\mathbf{V}}_{1}}\right] \\
\Delta \tilde{\mathbf{S}}=\int_{1}^{2} \frac{\tilde{\mathbf{C}}_{\mathbf{P}}^{0}}{\mathbf{T}} \mathbf{d T}-\mathbf{R L n}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]=\tilde{\mathbf{C}}_{\mathbf{P}}^{0} \mathbf{L n}\left[\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right]-\mathbf{R L n}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right] \\
\operatorname{Slope}=\frac{\mathbf{L n}\left[\mathbf{T}_{2} / \mathbf{T}_{1}\right]}{\Delta \tilde{\mathbf{S}}}
\end{array}
$$

- Isentropic process:

| $\delta=\gamma$ | Slope $= \pm \infty$ |
| :--- | :--- |
| $\delta=0$ | Slope $=\frac{1}{\tilde{\mathbf{C}}_{\mathbf{P}}^{0}}$ |
| $\delta=1$ | Slope $=0$ |
| $\delta=\infty$ | Slope $=\frac{1}{\tilde{\mathbf{C}}_{\mathrm{V}}^{0}}$ |

- The key here is that our TS Diagram is semi-logarithmic.
$\diamond$ The T axis is logarithmic.
$\diamond$ This is equivalent to plotting $\mathbf{L n}[\mathbf{T}]$ vs. $\mathbf{S}$.
$\checkmark$ The slope of a line on such a plot would be: $\left\{\mathbf{L n}\left[\mathbf{T}_{2}\right]-\operatorname{Ln}\left[\mathbf{T}_{1}\right]\right\} /\left\{\mathbf{S}_{2}-\mathbf{S}_{1}\right\}$
- Or, by using properties of logarithms... slope $=\left\{\mathbf{L n}\left[\mathbf{T}_{2} / \mathbf{T}_{1}\right]\right\} /\left\{\mathbf{S}_{2}-\mathbf{S}_{1}\right\}$
- Now, let's use the two Gibbs Eqns to determine the slope of each of the special types of polytropic processes on a semi-
logarithmic TS Diagram.
$\checkmark$ Isentropic: $\Delta \mathbf{S}=\mathbf{0}$ and $\Delta \mathbf{S}$ is in the denominator of the slope, so the slope is $\infty($ or $-\infty)$
$\checkmark$ Isobaric: $\mathbf{P}_{2}=\mathbf{P}_{1}$, so the $\mathbf{R} \operatorname{Ln}\left[\mathbf{P}_{2} / \mathbf{P}_{\mathbf{1}}\right]$ term in the 2nd Gibbs Eqn is zero.
- When we then solve the 2nd Gibbs Eqn for the slope, we get $\mathbf{1 /} \mathbf{C}_{\mathbf{p}}^{\mathbf{0}}$.
$\checkmark$ Isothermal: $\mathbf{T}_{\mathbf{2}}=\mathbf{T}_{1}$, so the numerator of the slope is zero and the slope is therefore zero as well.
$\checkmark$ Isochoric: $\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}}$, so the $\mathbf{R} \operatorname{Ln}\left(\mathbf{V}_{\mathbf{2}} / \mathbf{V}_{\mathbf{1}}\right)$ term in the 1st Gibbs Eqn is zero.
- When we then solve the 1 st Gibbs Eqn for the slope, we get $\mathbf{1 /} \mathbf{C}^{\mathbf{0}}{ }_{\mathbf{v}}$.


## Boundary Work in Polytropic Processes

- Internally

Reversible Processes: $\quad \tilde{\mathbf{W}}_{\mathrm{b}}=\int_{1}^{2} \mathbf{P d} d \tilde{\mathbf{V}}=\int_{1}^{2} \frac{C}{\tilde{\mathbf{V}}^{\delta}} \mathbf{d} \tilde{\mathbf{V}}=\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}^{\delta} \int_{1}^{2} \frac{d \tilde{\mathbf{V}}}{\tilde{\mathbf{V}}^{\delta}}$

- $\delta=1$
$\checkmark$ If also an IG then Isothermal:

$$
\tilde{\mathbf{W}}_{\mathrm{b}}=\mathbf{P}_{1} \tilde{V}_{1} \int_{1}^{2} \frac{d \tilde{V}}{\tilde{\mathbf{V}}}=P_{1} \tilde{V}_{1} \operatorname{Ln}\left[\frac{\tilde{V}_{2}}{\tilde{\mathbf{V}}_{1}}\right]
$$

$\tilde{\mathbf{W}}_{\mathrm{b}, \mathrm{IG}}=\operatorname{RT} \mathbf{L n}\left[\begin{array}{l}\tilde{\mathbf{v}}_{2} \\ \tilde{\mathbf{V}}_{1}\end{array}\right]$

- $\delta \neq 1$ :
$\tilde{\mathbf{W}}_{\mathrm{b}}=\left.\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}^{\delta}\left[\frac{\tilde{\mathbf{V}}^{(\delta+1)}}{-\delta+\mathbf{1}}\right]\right|_{1} ^{2}=\frac{\mathbf{P}_{2} \tilde{\mathbf{V}}_{2}-\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}}{\mathbf{1}-\delta}$
$\tilde{\mathbf{W}}_{\mathrm{b}, \mathrm{IG}}=\frac{\mathbf{R}}{\mathbf{1 - \delta}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
- $\delta=\gamma$ : Isentropic:

$$
\tilde{\mathbf{W}}_{\mathrm{b}}=-\Delta \tilde{\mathbf{U}}=-\tilde{\mathbf{C}}_{\mathrm{V}}^{0}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)
$$

$$
\tilde{\mathbf{W}}_{\mathrm{b}, \mathrm{IG}}=\frac{\mathbf{R}}{1-\gamma}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)
$$

- It is pretty straightforward to integrate $\mathbf{P} \mathbf{d V}$ to obtain an equation for boundary work in an internally reversible, isothermal process.
- It is a bit more messy for polytropic processes that are not isothermal.
- Fortunately, the result is fairly simple.
- A process that is both internally reversible AND isentropic, must be ADIABATIC.
- So, we can use the 1st Law to evaluate the boundary work.


## Heat \& Work in Int. Rev. Polytropic Processes

How much boundary work, in $\mathbf{k J} / \mathbf{k g}$, does it take to increase the pressure on an ideal gas in a closed system from $\mathbf{2 0 0} \mathbf{~ k P a}$ to $\mathbf{4 0 0}$ $\mathbf{k P a}$ in an internally reversible, polytropic process? Assume the specific heats are
constant.
$\mathbf{P ~ V}^{\delta}=\mathbf{C}$
The answer depends on the value of $\boldsymbol{\delta}$.


- Working from right to left, each of these process paths requires more work to raise the pressure from 200 kPa to 400 kPa .
$\checkmark$ The $1^{\text {st }}$ path is isochoric $(\delta=\infty)$.The pressure rises because heat is transferred into the system.
$\diamond$ The $2^{\text {nd }}$ path is polytropic with $\delta=\mathbf{2}$. The boundary work for the process increased, but the heat transfer requirement decreased.
$\diamond$ The 3rd path from the right is polytropic with $\delta=\gamma=\mathbf{1 . 3 9 8 5}$. The boundary work for the process increased, but the heat transfer requirement is ZERO. This is the first process path that is genuinely a pure compression process. We are not using heat to raise the pressure.
$\checkmark$ The remaining paths are all polytropic with $\delta<\gamma$, including an isothermal path with $\delta=\mathbf{1}$. These paths can be considered to be pure compressions. They all require more work than the isentropic path and they must reject some heat.
$\checkmark$ We conclude that the isentropic path requires the least work of all of the "pure" compression processes.
$\checkmark$ This represents an opportunity for us to define some sort of efficiency.
$\diamond$ We will do that in the next chapter !

7A-1
Process Paths and Cyclic Integrals
Consider the cycle made of path A followed by path B shown below.


The following integrals have been evaluated.

$$
\begin{aligned}
& \int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}=-24.7 \mathrm{~kJ} / \mathrm{K} \\
& \int_{2}^{1}\left(\frac{\delta Q}{T}\right)_{B}=41.3 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Is this cycle reversible, irreversible or impossible?

Read : This is a straightforward application of the Clausius Inequality to a thermodynamic cycle interacting with two thermal reservoirs.

Diagram: See the problem statement.

Given: $\quad \int_{1}^{2}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathbf{A}}=$
-24.7 kJ/K

$$
\int_{2}^{1}\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{B}=
$$

$41.3 \mathrm{~kJ} / \mathrm{K}$

Find: Is this cycle reversible, irreversible or impossible?
Assumptions:
None.

## Equations / Data / Solve:

The Clausius Inequality is:

$$
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq 0
$$

Eqn 1

If the cyclic integral is ...
... positive, the cycle is impossible
... negative, the cycle is irreversible
... zero, the cycle is reversible
Since the cycle is made up of two steps, A \& B, we can expand Eqn 1 as follows:

$$
\begin{aligned}
& \oint \frac{\delta Q}{T}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}+\int_{2}^{1}\left(\frac{\delta Q}{T}\right)_{E} \\
& \oint \frac{\delta Q}{T}=16.6 \quad \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Now, we can plug in values from the problem statement. $\quad \oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\quad 16.6 \quad \mathrm{~kJ} / \mathrm{K}$
Because the cyclic integral is greater than zero, the cycle is impossible.
Verify: None.
Answers : Because the cyclic integral is greater than zero, the cycle is impossible.

7A-2
Properties of Cyclic Integrals
Consider the heat engine shown below. The cyclic integral of $\delta \mathbf{Q}$ is greater than zero. Does this violate the Clausius Inequality? Explain.


Read : This problem is designed to make you think very carefully about how to use a cyclic integral. The key is that the temperature is not the same for both of the heat transfer interactions in this cycle.

Diagram: See the problem statement.

| Given: | $\mathbf{T}_{\mathbf{H}}$ | 400 | $\mathbf{K}$ | $\mathbf{Q}_{\mathrm{H}}$ | 450 | $\mathbf{k J}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}_{\mathbf{C}}$ | 300 | $\mathbf{K}$ | $\mathbf{Q}_{\mathrm{C}}$ | -350 | $\mathbf{k J}$ |
|  |  |  | W | -100 | $\mathbf{k J}$ |  |
|  |  |  |  |  |  |  |

Find: Does the cycle violate the Clausius Inequality?
Assumptions: None.

## Equations / Data / Solve:

The Clausius Inequality is:

$$
\begin{equation*}
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq 0 \tag{Eqn 1}
\end{equation*}
$$

Because the cycle only exchanges heat with the hot and cold thermal reservoirs, the integrals can be simplified:

$$
\begin{equation*}
\oint \delta \mathbf{Q}=\mathbf{Q}_{\mathrm{H}}+\mathbf{Q}_{\mathrm{C}} \quad \text { Eqn } 2 \quad \oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}+\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}} \tag{Eqn 2}
\end{equation*}
$$

$$
\oint \delta \mathbf{Q}=\quad 100 \quad \mathrm{~kJ} \quad \oint \frac{\delta \mathbf{Q}}{\mathbf{T}}=\quad-0.04167 \mathrm{~kJ} / \mathrm{K}
$$

This cycle is irreversible because the cyclic integral in the Clausius Inequality is less than zero.
It is true that the cyclic integral of $\delta \mathbf{Q}>\mathbf{0}$. But the Clausius Inequality is still satisfied.
Confusion about the cyclic integrals sometimes arises if you mistakenly pull $\mathbf{T}$ out of the cyclic integral.

$$
\begin{equation*}
\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \neq \frac{\oint \delta \mathbf{Q}}{\mathbf{T}} \tag{Eqn 4}
\end{equation*}
$$

You could only pull $\mathbf{T}$ out of the cyclic integral if ALL of the heat exchange across the system boundary went to or from reservoirs that were ALL at the SAME temperature.

That is almost never going to happen. It is definitely not the case in this problem as the hot and cold reservoirs are at 400 K and 300 K , respectively.

Verify: None.
Answers: Yes, the cycle does indeed satisfy the Clausius Inequality.

Saturated ammonia vapor at $-10^{\circ} \mathrm{C}$ is compressed in an insulated piston-and-cylinder device until the pressure reaches 750 $\mathbf{k P a}$. Assuming the process is internally reversible, calculate the work for this process in $\mathrm{kJ} / \mathrm{kg}$.

Read: The key to solving this problem is to recognize that any process that is both adiabatic and reversible is ISENTROPIC. This means that $\mathbf{S}_{\mathbf{2}}=\mathbf{S}_{1}$ and this allows you to fix state 2 and evaluate $\mathbf{U}_{\mathbf{2}}$. Use $\mathbf{U}_{\mathbf{2}}$ in the 1st Law to evaluate W.

Given:

| $\mathbf{T}_{1}$ | -10 | ${ }^{\circ} \mathbf{C}$ |
| :--- | :--- | :--- |
| $\mathbf{P}_{2}$ | 750 | kPa |

Find:
W
???
kJ/kg

Diagram:

(2)


Assumptions:


Process is internally reversible.
Changes in kinetic and potential energies are negligible.
Boundary work is the only form of work that crosses the system boundary.

## Equations / Data / Solve:

Begin by applying the 1st Law to the process, assuming changes in kinetic and potential energies are negligible:

$$
\hat{\mathbf{Q}}-\hat{\mathbf{W}}=\Delta \hat{\mathbf{U}}
$$

The process is adiabatic so Eqn 1 can be simplified to :

$$
\begin{equation*}
\hat{W}=-\Delta \hat{\mathbf{U}}=\hat{\mathbf{U}}_{1}-\hat{\mathbf{U}}_{2} \tag{Eqn 2}
\end{equation*}
$$

Use the NIST Webbook to obtain properties for state 1 , saturated vapor at $-10^{\circ} \mathrm{C}$ :
$\mathrm{P}_{1}$
290.71
kPa
$\begin{array}{lll}\mathrm{U}_{1} & 1309.9 & \mathrm{~kJ} / \mathrm{kg} \\ \mathrm{S}_{1} & 5.4701 & \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\end{array}$
Because the process is both reversible and adiabatic, it is isentropic.
Therefore :
$S_{2}$
5.4701
kJ/kg-K

At this point we know values of two intensive variables for state 2, so we can use the NIST Webbook to determine the value of any other property. In this case, we need $\mathbf{U}_{2}$. First we need to determine the phases that exist at state 2.
At $\mathbf{P}_{\mathbf{2}}: \quad \mathbf{T}_{\text {sat }}$
$54.05{ }^{\circ} \mathrm{C}$

| $\mathrm{S}_{\text {sat vap }}$ | 4.7209 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- |
| $\mathrm{S}_{\text {sat liq }}$ | 1.5744 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Because $\mathbf{S}_{\mathbf{2}}>\mathbf{S}_{\text {sat vap }}$ at $\mathbf{P}_{\mathbf{2}}$, we can conclude that state 2 is a superheated vapor. We could have reached the same conclusion after careful consideration of a TS Diagram.

We can get the following data from the superheated Ammonia Tables or from the NIST Webbook :

| At $750 \mathrm{kPa}:$ | $\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ | $\mathrm{U}(\mathbf{k J} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: |
|  | 50 | 5.4388 | 1401.6 |
|  | $\mathbf{T}_{2}$ | 5.4701 | $\mathrm{U}_{2}$ |
|  | 75 | 5.6233 | 1449.4 |

Interpolation yields :

Now, we can plug values back into Eqn 2 :

| $\mathrm{T}_{2}$ | 54.25 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :--- |
| $\mathrm{U}_{2}$ | 1409.73 | $\mathrm{~kJ} / \mathrm{kg}$ |
| W | -99.80 | $\mathrm{~kJ} / \mathrm{kg}$ |

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.


## "The best way to Learn Thermodynamics"

An adiabatic turbine lets 10 Mpa steam down to 2.1 Mpa. Determine the maximum work output if the inlet temperature is $500^{\circ} \mathrm{C}$ and changes in kinetic and potential energies are negligible.

Read: The key to solving this problem is to recognize that any process that is both adiabatic and reversible is ISENTROPIC. This means that $\mathbf{S}_{2}=\mathbf{S}_{1}$ and this allows you to fix state 2 and evaluate $\mathbf{H}_{2}$. Use $\mathbf{H}_{2}$ in the 1st Law to evaluate $\mathbf{W}_{\mathbf{s}}$.

Given:

| $\mathbf{T}_{1}$ | 500 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: |
| $\mathbf{P}_{1}$ | 10000 | kPa |
| $\mathbf{P}_{\mathbf{2}}$ | 2100 | kPa |

$$
\text { Find: } \quad \mathrm{W}_{\mathrm{s}} \quad \text { ??? } \mathrm{kJ} / \mathrm{kg}
$$

gram:


Assumptions: $\mathbf{1 -} \quad$ The turbine is both adiabatic and reversible.
2- $\quad$ Changes in kinetic and potential energies are negligible.
3- Shaft work is the only form of work that crosses the system boundary.

## Equations / Data / Solve:

Begin by applying the 1st Law to the process, assuming changes in kinetic and potential energies are negligible:

$$
\begin{equation*}
\hat{\mathbf{Q}}-\hat{\mathbf{W}}_{\mathrm{s}}=\Delta \hat{\mathbf{H}} \tag{Eqn 1}
\end{equation*}
$$

The process is adiabatic so Eqn 1 can be simplified to :

$$
\begin{equation*}
\hat{\mathbf{W}}_{\mathrm{s}}=-\Delta \hat{\mathbf{H}}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2} \tag{Eqn 2}
\end{equation*}
$$

Use the NIST Webbook to obtain properties for state 1. First we have to determine the phases present.
At $\mathbf{P}_{\mathbf{1}}: \quad \mathbf{T}_{\text {sat }} \quad 311.00{ }^{\circ} \mathbf{C}$
Since $\mathbf{T}_{1}>\mathrm{T}_{\text {sat }}$, state 1 is a superheated vapor.
The superheated Steam Tables and the NIST Webbook yield :
$\mathrm{H}_{1}$
3375.1
kJ/kg
$S_{1}$
$6.5995 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Because the process is both reversible and adiabatic, it is isentropic.
Therefore, $\mathrm{S}_{2}=\mathrm{S}_{1}$ : $\quad \mathrm{S}_{2} \quad \mathbf{6 . 5 9 9 5} \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
At this point we know values of two intensive variables for state 2, so we can use the NIST Webbook to determine the value of any other property. In this case, we need $\mathbf{H}_{2}$. First, we need to determine the phases that exist at state 2.

| At $\mathbf{P}_{2}:$ | $\mathrm{T}_{\text {sat }}$ | $214.86{ }^{\circ} \mathrm{C}$ | $\mathrm{S}_{\text {sat vap }}$ | 6.3210 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\mathrm{S}_{\text {sat liq }}$ | 2.4699 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Because $S_{2}>S_{\text {sat vap }}$ at $\mathbf{P}_{2}$, we can conclude that state 2 is a superheated vapor. We could have reached the same conclusion after careful consideration of a TS Diagram.

We can get the following data from the superheated Steam Tables or from the NIST Webbook :

| At 2.1 MPa : | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: |
|  | 265 | 6.5903 | 2937.1 |
|  | $\mathrm{~T}_{2}$ | 6.5995 | $\mathrm{H}_{2}$ |
|  | 270 | 6.6133 | 2949.4 |

Interpolation yields:

Now, we can plug values back into Eqn 2 :

| $\mathrm{T}_{2}$ | 266.99 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :--- |
| $\mathrm{H}_{2}$ | 2941.99 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  |  |  |
| $\mathrm{W}_{\mathrm{S}}$ | 433.13 | $\mathrm{~kJ} / \mathrm{kg}$ |

Verify: $\quad$ None of the assumptions made in this problem solution can be verified.
Answers: W 433 kJ/kg

A piston-and-cylinder device with a free-floating piston contains 2.6 kg of saturated water vapor at $150^{\circ} \mathrm{C}$. The water loses heat to the surroundings until the cylinder contains saturated liquid water.

The surroundings are at $20^{\circ} \mathrm{C}$. Calculate... a.) $\Delta \mathrm{S}_{\text {water }}$, b.) $\Delta \mathrm{S}_{\text {surroundings }}$, c.) $\Delta \mathrm{S}_{\text {universe }}$

Read : Calculating $\Delta \mathbf{S}$ for the water in the cylinder is straightforward. The key to calculating $\Delta \mathbf{S}_{\text {surr }}$ is the fact that the surroundings behave as a thermal reservoir. The temperature of the surroundings does not change and there are no irreversibilities in the surroundings that are associated with the process. The key to calculating $\Delta \mathbf{S}_{\text {univ }}$ is the fact that the universe is made up of the combination of the system and the surroundings. Consequently, $\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$.

Given:

| m | 2.60 | kg |
| :--- | :---: | :--- |
| $\mathrm{~T}_{1}$ | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{x}_{1}$ | 1 | kg vap $/ \mathrm{kg}$ |
| $\mathrm{T}_{\text {surr }}$ | 20 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{1}=\mathrm{P}_{2}$ |  |  |
| $\mathrm{x}_{2}$ | 0 | $\mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ |

Find: $\quad \Delta \mathbf{S}_{\text {sys }} \quad$ ??? $\mathrm{kJ} / \mathrm{K}$
$\Delta \mathrm{S}_{\text {surr }} \quad$ ??? $\mathrm{kJ} / \mathrm{K}$
$\Delta \mathrm{S}_{\text {univ }} \quad$ ??? $\mathrm{kJ} / \mathrm{K}$

Diagram:
(1)



Assumptions: 1 - Changes in kinetic and potential energies are negligible.
2- Boundary work is the only form of work that crosses the system boundary.
3- The surroundings behave as a thermal reservoir.

## Equations / Data / Solve:

Part a.) Because both states are saturated we can obtain the specific entropies directly from the Steam Tables or the NIST Webbook.

At $\mathrm{T}_{1}=150^{\circ} \mathrm{C}$ :

| $\mathrm{S}_{1}$ | 6.8371 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- |
| $\mathrm{S}_{2}$ | 1.8418 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Therefore :

$$
\Delta \mathbf{S}_{\text {sys }}=\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{1}
$$

-4.9953
kJ/kg-K
kJ/K

Part b.) The surroundings behave as a thermal reservoir.
We can calculate $\Delta \mathbf{S}_{\text {surr }}$ from:

$$
\Delta \hat{\mathbf{S}}_{\text {surr }}=\int_{1}^{2}\left(\frac{\delta \hat{\mathbf{Q}}}{\mathbf{T}}\right)_{\mathrm{rev}}=\frac{1}{\mathbf{T}} \int_{1}^{2} \delta \hat{\mathbf{Q}}_{\text {rev }}=\frac{\hat{\mathbf{Q}}_{\text {surr }}}{\mathbf{T}_{\text {surr }}}=-\frac{\hat{\mathbf{Q}}_{\text {sys }}}{\mathbf{T}_{\text {surr }}}
$$

We can determine $\mathbf{Q}_{\text {sys }}$ by applying the 1st Law using the water within the cylinder as the system.

$$
\begin{aligned}
& \hat{\mathbf{Q}}_{\text {sys }}-\hat{\mathbf{W}}=\Delta \hat{\mathbf{U}} \\
& \hat{\mathbf{Q}}_{\mathrm{sys}}-\hat{\mathbf{W}}_{\mathrm{b}}+\hat{\mathbf{W}}_{\mathrm{s}}=\Delta \hat{\mathbf{U}}
\end{aligned}
$$

Because the process is isobaric, the boundary work is :

$$
\hat{\mathbf{W}}_{b}=P \Delta \hat{\mathbf{V}}
$$

Now, substitute Eqn 5 into Eqn 4 to get :

$$
\hat{\mathbf{Q}}_{\mathrm{sys}}=\mathbf{P} \Delta \hat{\mathbf{V}}+\Delta \hat{\mathbf{U}}=\Delta \hat{\mathbf{H}}
$$

We can look up enthalpy values for states $1 \& 2$ in the Saturated Steam Table or in the NIST Webbook.
At $\mathrm{T}_{1}=150^{\circ} \mathrm{C}$ :

| $\mathrm{H}_{1}$ | 2745.9 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 632.18 | $\mathrm{~kJ} / \mathrm{kg}$ |

Next plug $\mathbf{H}_{1}$ and $\mathbf{H}_{\mathbf{2}}$ into Eqn 6. $\mathbf{Q}_{\text {surr }}$ is equal in magnitude, but opposite in sign to $\mathbf{Q}_{\text {sys }}$ because the heat leaving the system enters the surroundings.

| $Q_{\text {sys }}$ | -2113.7 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathbf{Q}_{\text {surr }}$ | 2113.7 |
| :--- | :--- | :--- | :--- | :--- |
| Now, we can plug numbers into Eqn 2 to calculate $\Delta \mathrm{S}_{\text {surr }}$. | $\Delta \mathrm{S}_{\text {surr }}$ | $\mathbf{7 . 2 1 0 5}$ | $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$ |  |
|  |  | 18.747 | $\mathrm{~kJ} / \mathrm{K}$ |  |

Part c.) The universe is made up of the combination of the system and the surroundings. Therefore :

$$
\begin{equation*}
\Delta \mathbf{S}_{\mathrm{univ}}=\Delta \mathbf{S}_{\mathrm{sys}}+\Delta \mathbf{S}_{\mathrm{surr}} \tag{Eqn 7}
\end{equation*}
$$

So, all we need to do is plug values into Eqn 7 that we determined in parts (a) and (b).

$$
\Delta \mathbf{S}_{\text {univ }} \quad 5.7595 \quad \mathrm{~kJ} / \mathrm{K}
$$

$\Delta \mathbf{S}_{\text {univ }}>\mathbf{0}$ because the heat transfer to the surroundings was not reversible.
Verify: $\quad$ None of the assumptions made in this problem solution can be verified.
Answers:

| $\Delta \mathrm{S}_{\text {sys }}$ | -12.988 | $\mathrm{~kJ} / \mathrm{K}$ |
| :--- | :---: | :---: |
| $\Delta \mathrm{S}_{\text {surr }}$ | 18.747 | $\mathrm{~kJ} / \mathrm{K}$ |
| $\Delta \mathrm{S}_{\text {univ }}$ | 5.7595 | $\mathrm{~kJ} / \mathrm{K}$ |

## Calculate $\Delta \mathbf{S}_{\text {universe }}$ for the power cycle shown below. Is this cycle reversible, irreversible or impossible?



Read : The key to this problem is that the sign of $\boldsymbol{\Delta} \mathbf{S}_{\text {univ }}$ determines whether a process is impossible, reversible or irreversible. Use the definition of entropy to evaluate $\boldsymbol{\Delta S}$ for each reservoir and for the cycle and add them up to get $\Delta \mathrm{S}_{\text {univ }}$.

Diagram: See the problem statement.

|  |  |  | $\mathbf{Q}_{H}$ | 700 | kJ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Given: | $\mathbf{T}_{\mathbf{H}}$ | 450 | $\mathbf{K}$ | $\mathbf{Q}_{\mathbf{C}}$ | -350 | kJ |

Find: Is this cycle reversible, irreversible or impossible?
Assumptions: 1- The cycle only exchanges heat with the hot and cold reservoirs shown.

## Equations / Data / Solve:

In this problem, the universe consists of the cycle, the hot reservoir and the cold reservoir. We can calculate $\Delta S_{\text {univ }}$ from:

$$
\begin{equation*}
\Delta \mathbf{S}_{\text {univ }}=\Delta \mathbf{S}_{\text {cycle }}+\Delta \mathbf{S}_{\text {hot }}+\Delta \mathbf{S}_{\text {cold }} \tag{Eqn 1}
\end{equation*}
$$

Because the cycle begins and ends in the same state, $\mathbf{S}_{\text {init }}=\mathbf{S}_{\text {final }}$ and $\boldsymbol{\Delta} \mathbf{S}_{\text {cycle }}=\mathbf{0}$.

By definition, the temperatures of the thermal reservoirs remain constant and there are no irreversibilities within the reservoirs because no process takes place in either reservoir. As a result, it is relatively simple to calculate $\boldsymbol{\Delta} \mathbf{S}_{\text {hot }}$ and $\boldsymbol{\Delta} \mathbf{S}_{\text {cold }}$ using the following simplifications of the definition of entropy.

$$
\begin{array}{cccc}
\Delta \mathbf{S}_{\mathrm{hot}}=\oint \frac{\delta \mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}=\frac{-\mathbf{Q}_{\mathrm{H}}}{T_{\mathrm{H}}} & \Delta \mathbf{S}_{\text {cold }}=\oint \frac{\delta \mathbf{Q}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{C}}}=\frac{-\mathbf{Q}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{C}}} \\
\Delta \mathrm{~S}_{\mathrm{hot}} & -1.556 \quad \mathrm{~kJ} / \mathrm{K} & \Delta \mathrm{~S}_{\text {cold }} & 1.250 \\
\mathrm{~kJ} / \mathrm{K}
\end{array}
$$

Eqn 3

Now, we can plug values back into Eqn 1 to complete this problem.

| $\Delta S_{\text {univ }}$ | $-0.306 \quad \mathrm{~kJ} / \mathrm{K}$ |
| :--- | :--- | :--- |

If the $\boldsymbol{\Delta} \mathbf{S}_{\text {univ }}$ is ...
... negative, the cycle is impossible
... zero, the cycle is reversible
... positive, the cycle is irreversible
This cycle is impossible because $\boldsymbol{\Delta} \mathbf{S}_{\text {univ }}<\mathbf{0}$.
Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : This cycle is impossible because $\Delta \mathrm{S}_{\mathrm{univ}}<0$.

7D-1
$\Delta \mathrm{S}$ of H 2 in a Compression Process
In a piston-and-cylinder device, carbon dioxide $\left(\mathbf{C O}_{2}\right)$ gas is compressed from 110 kPa and 300 K to 1.4 MPa and 640 K . Determine the change in the specific entropy of the $\mathbf{C O}_{\mathbf{2}}$ assuming it behaves as an ideal gas. Use...
a.) The Shomate Heat Capacity Equation
b.) The Ideal Gas Entropy Function
c.) The NIST Webbook
d.) Compare your answers from parts (a) and (b) to your answer in part (c).

Read : $\quad$ This problem is an application of the 2nd Gibbs Equation. In part (a) we must evaluate the integal of $\mathbf{C}_{\mathbf{p}} / \mathbf{T} \mathbf{d T}$ ourselves using the Shomate Equation. The results we obtain should very closely match the results we get in part (b) when we use the the Ideal Gas Entropy Function (values obtained form the Ideal Gas Property Tables). Finally, in part (c) we can determine how much error was introduced by our ideal gas assumption using the NIST Webbook to evaluate the specific entropy change.

| Given: | $\mathbf{T}_{1}$ | 300 | $\mathbf{K}$ | $\mathbf{T}_{2}$ | 640 | $\mathbf{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{P}_{1}$ | 110 | $\mathbf{k P a}$ | $\mathbf{P}_{2}$ | 1400 | kPa |
| Find: | $\Delta \mathbf{S}$ | $? ? ?$ | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |  |  |  |

Diagram:


Assumptions: 1- The carbon dioxide behaves as an ideal gas.

## Equations / Data / Solve:

Part a.) The 2nd Gibbs Equation is the one best suited to this problem because we know the inlet and outlet pressures. The 2nd Gibbs Equation for ideal gases is:

$$
\Delta \hat{\mathbf{S}}=\frac{1}{\mathrm{MW}}\left[\int_{1}^{2} \widetilde{\mathrm{C}}_{\mathrm{P}} \frac{\mathrm{dT}}{\mathrm{~T}}-\mathbf{R} \operatorname{Ln}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right]
$$

The heat capacity is determined from the Shomate Equation.

$$
\begin{equation*}
\widetilde{\mathbf{C}}_{\mathrm{P}}^{0}=\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+E / \mathrm{T}^{2} \tag{Eqn 2}
\end{equation*}
$$

The values of the constants in the Shomate Equation for carbon dioxide are obtained from the NIST WebBook:

| T (K) | 298. $\mathbf{1 2 0 0 .}$ |
| :---: | :---: |
| A | 24.99735 |
| B | 55.18696 |
| C | -33.69137 |
| D | 7.948387 |
| E | -0.136638 |

Substituting the Eqn 2 into Eqn 1 and integrating yields:

$$
\begin{aligned}
\Delta \widetilde{S}= & A \cdot \operatorname{Ln} \frac{T_{2}}{T_{1}}+\left(\frac{B}{1000}\right)\left(T_{2}-T_{1}\right)+\left(\frac{(1 / 2) C}{1000^{2}}\right)\left(T_{2}^{2}-T_{1}^{2}\right) \\
& +\left(\frac{(1 / 3) D}{1000^{3}}\right)\left(T_{2}^{3}-T_{1}^{3}\right)-\left(\frac{(1 / 2) E}{1000^{-2}}\right)\left(T_{2}^{-2}-T_{2}^{-2}\right)-R \cdot \operatorname{Ln} \frac{P_{2}}{P_{1}}
\end{aligned}
$$

Eqn 3

We will need the value of the Universal Gas Constant and the molecular weight to determine the change in the specific entropy.
R
8.314
J/mole-K
MW
$44.010 \mathrm{~g} / \mathrm{mol}$

Now, we can substitute values into Eqn 3 to complete part (a) :

Now, we can plug values into Eqn 3 :

$$
\int_{T_{1}}^{T_{2}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ} \frac{\mathbf{d T}}{T}=
$$

$32.351 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
$R \operatorname{Ln} \frac{P_{2}}{P_{1}}=21.149 \mathrm{~J} /$ mole-K
$\Delta S$
$\Delta S$
$11.202 \mathrm{~J} /$ mole-K
$0.2545 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Part b.) In this part of the problem, we use the 2nd Gibbs Equation in terms of the Ideal Gas Entropy Function:

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \cdot \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

Properties are determined from Ideal Gas Property Tables:

Now, we can plug values into Eqn 4 :

| At $\mathrm{T}_{1}:$ | $\mathrm{S}^{\circ}{ }_{\mathrm{T} 1}$ | 0.0052249 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | ---: | :--- |
| At $\mathrm{T}_{2}:$ | $\mathrm{S}_{\mathrm{T} 2}^{\circ}$ | 0.74030 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
|  | $\Delta \mathrm{S}$ | 0.2545 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Part c.) The NIST Webbook yields the following values for the specific entropy of carbon dioxide:

|  | $\mathrm{S}_{1}$ | 2.7264 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- |
| Therefore : | $\mathrm{S}_{2}$ | 2.9796 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
|  | $\Delta \mathrm{S}$ | 0.2532 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Verify: The ideal gas assumption needs to be verified.
We need to determine the specific
volume at each state and check if :

$$
\begin{aligned}
& \widetilde{V}>20 \mathrm{~L} / \mathrm{mol} \\
& \widetilde{V}=\frac{R T}{P}
\end{aligned}
$$

Plugging in values gives us :

| $\mathrm{V}_{1}$ | 22.7 | $\mathrm{~L} / \mathrm{mol}$ |
| :--- | :--- | :--- |
| $\mathrm{V}_{2}$ | 3.80 | $\mathrm{~L} / \mathrm{mol}$ |

The specific volume at state $\mathbf{2}$ is much less than $\mathbf{2 0} \mathbf{L} / \mathrm{mol}$, so the ideal gas assumption is questionable at
Answers: a.)
b.)
c.)

| $\Delta \mathrm{S}$ | 0.255 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :---: | :---: | :---: |
| $\Delta \mathrm{S}$ | 0.255 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\Delta \mathrm{S}$ | 0.253 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Comparison:
The results in parts (a) and (b) are identical. This is not a surprise, assuming we integrated the Shomate Equation correctly !
The error in $\Delta S$ associated with the ideal gas assumption in this problem is: $0.53 \%$
We expected the error to be greater than $1 \%$ since the molar volume is much less than $20 \mathrm{~L} / \mathrm{mole}$.

Hydrogen $\left(\mathrm{H}_{2}\right)$ gas is compressed from 4.8 bar and 320 K to 15.4 bar and 1300K. Determine the change in the specific entropy of the $\mathbf{H}_{2}$, in $\mathrm{kJ} / \mathrm{kg}$, assuming the $\mathbf{H}_{\mathbf{2}}$ behaves as an ideal gas. Use...
a.) The Shomate Heat Capacity Equation

$$
\Delta \widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ} \frac{\mathbf{d T}}{\mathbf{T}}-\mathbf{R} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

b.) The Ideal Gas Entropy Function

$$
\Delta \widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\widetilde{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\widetilde{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-R \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

c.) with constant Heat Capacity, $\mathbf{C}_{\mathbf{P}}$, determined at 810 K and 10.1 bar.

$$
\Delta \widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\int_{\mathrm{T}_{1}}^{T_{2}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{0} \frac{\mathbf{d T}}{\mathbf{T}}-\mathbf{R} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

Read : All equations given are for the molar change in entropy. Make sure and divide your final answer by the molecular weight of hydrogen to obtain a final answer as the change in specific entropy, in $\mathbf{k J} / \mathbf{k g}-\mathbf{K}$.

## Given:

|  | $\mathbf{m}$ | 1 | kg |
| :--- | :--- | :---: | :--- |
|  | $\mathrm{T}_{1}$ | 320 | K |
| c.) | $\mathrm{P}_{1}$ | 4.8 | bar |
|  | $\mathrm{T}_{\mathrm{C}}$ | 810 | K |


| Hydrogen |  |  |
| :---: | :---: | :--- |
| $\mathbf{T}_{2}$ | 1300 | K |
| $\mathbf{P}_{2}$ | 15.4 | bar |
| $\mathbf{P}_{\mathrm{C}}$ | 10.1 | bar |

Find: Part (a)-(c) $\quad \Delta S \quad$ ??? $k J /(k g ~ K) ~$

Diagram:


Assumptions:
1 -
The system consists of one $\mathbf{k g}$ of hydrogen, which behaves as an ideal gas.

Equations / Data / Solve:
Part a.) Here, we use the equation given in the problem statement:

$$
\begin{equation*}
\Delta \widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\int_{\mathrm{T}_{1}}^{\boldsymbol{T}_{2}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ} \frac{\mathbf{d T}}{\mathbf{T}}-\mathbf{R L n} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \tag{Eqn 1}
\end{equation*}
$$

The heat capacity is determined from the Shomate Equation.

$$
\begin{equation*}
\tilde{\mathbf{C}}_{\mathrm{P}}^{0}=\mathbf{A}+\mathbf{B T}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+\mathbf{E} / \mathbf{T}^{2} \tag{Eqn 2}
\end{equation*}
$$

The values of the constants in the Shomate Equation for hydrogen are obtained from the NIST WebBook:

| $\mathbf{T}(\mathbf{K})$ | $298-$ |
| :---: | :---: |
| $\mathbf{A}$ | 3300 |
| $\mathbf{B}$ | -11.508 |
| C | 11.6093 |
| D | -2.8444 |
| $\mathbf{E}$ | -0.15967 |

Substituting Eqn 2 into Eqn 1 and integrating yields:

$$
\begin{aligned}
\Delta \widetilde{S}= & A \cdot \operatorname{Ln} \frac{T_{2}}{T_{1}}+\left(\frac{B}{1000}\right)\left(T_{2}-T_{1}\right)+\left(\frac{(1 / 2) C}{1000^{2}}\right)\left(T_{2}^{2}-T_{1}^{2}\right) \\
& +\left(\frac{(1 / 3) D}{1000^{3}}\right)\left(T_{2}^{3}-T_{1}^{3}\right)-\left(\frac{(1 / 2) E}{1000^{-2}}\right)\left(T_{2}^{-2}-T_{2}^{-2}\right)-R \cdot \operatorname{Ln} \frac{P_{2}}{P_{1}}
\end{aligned}
$$

Eqn 3

We will need the value of the Universal Gas Constant and the molecular weight to determine the change in the specific entropy.
R
8.314
J/mole-K
MW
2.016
g/mol

Now, we can substitute values into Eqn 3 to complete part (a) :

Now, we can plug values into Eqn 3 :

$$
\begin{aligned}
& \int_{T_{1}}^{T_{2}} \widetilde{C}_{P}^{\circ} \frac{d T}{T}=41.564 \\
& \text { J/mole-K } \\
& R \cdot \operatorname{Ln} \frac{P_{2}}{P_{1}}=9.6921 \quad \mathrm{~J} / \text { mole-K }
\end{aligned}
$$

$\Delta S$
$\Delta S$
$31.872 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
$15.810 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Part b.) In this part of the problem, we use the equation given in the problem statement:

$$
\Delta \tilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\widetilde{\mathbf{S}}_{\mathrm{T} 2}^{0}-\widetilde{\mathbf{S}}_{\mathrm{T} 1}^{0}-\mathbf{R L} \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}
$$

Eqn 4

| Properties are determined from Ideal Gas Entropy Tables: | At $\mathbf{T}_{1}$ <br> At $\mathbf{T}_{2}$ | $S^{\circ}{ }_{\text {T1 }}$ $S^{\circ}{ }_{\text {T2 }}$ | 1.0139 | kJ/kg-K <br> kJ/kg-K |
| :---: | :---: | :---: | :---: | :---: |
| Now, we can plug values into Eqn 4 : |  | $\Delta S$ | 15.809 | kJ/kg-K |

Part c.) Once again, we will use the equation given in the problem statement:

$$
\begin{equation*}
\Delta \widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}_{2}-\widetilde{\mathbf{S}}_{1}=\widetilde{\mathbf{C}}_{\mathrm{p}}^{0} \operatorname{Ln} \frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}-\mathbf{R} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \tag{Eqn 5}
\end{equation*}
$$

Heat capacity is determined from NIST WebBook:

$$
\text { At } 810 \mathrm{~K}: \quad \mathrm{C}_{\mathrm{P}}^{\circ}
$$

29.679
$\mathrm{J} /(\mathrm{mol} \mathrm{K})$

$$
\int_{T_{1}}^{T_{2}} \widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ} \frac{\mathrm{dT}}{\mathrm{~T}}=\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ} \cdot \operatorname{Ln}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)=
$$

Now, we can plug values into Eqn 5 :
$\Delta S$ $\Delta S$
$31.912 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
$15.830 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume at each state and check if :

$$
\widetilde{\mathrm{V}}>5 \mathrm{~L} / \mathrm{mol}
$$

(hydrogen is a diatomic gas).
Solving the Ideal Gas EOS for molar volume yields :

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Conversion Factors:

Plugging in values gives us :

| $1 \mathrm{~L}=$ | 0.001 | $\mathrm{~m}^{3}$ |
| ---: | :---: | :--- |
| $1 \mathrm{bar}=$ | 100000 | $\mathrm{~N} / \mathrm{m}^{2}$ |
| $1 \mathrm{~J}=$ | 1 | $\mathrm{~N}-\mathrm{m}$ |
| $\mathrm{V}_{1}$ | 5.54 | $\mathrm{~L} / \mathrm{mol}$ |
| $\mathrm{V}_{2}$ | 7.02 | $\mathrm{~L} / \mathrm{mol}$ |

The specific volume at each state is greater than $\mathbf{5 L / m o l}$ and therefore the ideal gas assumption is reasonable.

Answers: a.)
b.)
c.)

| $\Delta \mathrm{S}$ | 15.81 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :---: | :---: | :---: |
| $\Delta \mathrm{S}$ | 15.81 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\Delta \mathrm{S}$ | 15.83 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Comparison:
The results in parts (a) and (b) are identical. This is not a surprise, assuming we integrated the Shomate Equation correctly !

The error in $\Delta \mathrm{S}$ associated with the ideal gas assumption in this problem is: $0.13 \%$
We expected the error to be less than $1 \%$ since the molar volumes are greater than $5 \mathrm{~L} / \mathrm{mole}$.

Air contained in a piston-and-cylinder device undergoes a power cycle made up of three internally reversible processes.
Step 1-2: Adiabatic compression from 20 psia and $570^{\circ}$ R to 125 psia
Step 2-3: Isothermal expansion to 20 psia
Step 3-1: Isobaric compression
a.) Sketch the process path for this power cycle on both PV and TS diagrams
b.) Calculate $T_{3}$ in ${ }^{\circ} F$
c.) Calculate the boundary work in $\mathbf{B t u} / \mathbf{l b}_{\mathbf{m}}$
d.) Calculate the thermal efficiency of the power cycle

Read : For part (a) sketch the cycle first to get a better understanding of the processes.
For part (b) recall that the Process 2-3 is isothermal and therefore $\mathbf{T}_{3}=\mathbf{T}_{2}$. Determine $\mathbf{S}^{\circ}\left(\mathbf{T}_{2}\right)$ and look it up in the Ideal Gas Entropy Table for air to determine $\mathbf{T}_{2}$.
For part (c) determine the net work by determining the work for each process and then adding them together.
For part (d) determine the thermal efficiency as the ratio of the net work to the heat going into the system.
Given:

| $\mathbf{T}_{1}$ | 570 | ${ }^{\circ} \mathbf{R}$ |
| :--- | :---: | :--- |
| $\mathbf{P}_{1}$ | 20 | psia |


| $\mathbf{P}_{2}$ | 125 | psia |
| :--- | :--- | :--- |
| $\mathbf{P}_{3}$ | 20 | psia |

Find: $\quad$ Part (a) $\quad$ Sketch PV and TS diagrams
Part (b) $\quad \mathrm{T}_{3} \quad ? \quad{ }^{\circ} \mathrm{R}$

| Part (c) | $W_{\text {cycle }}$ | $?$ | Btu $/ \mathrm{lb}_{\mathrm{m}}$ |
| :---: | :---: | :---: | :---: |
| Part (d) | $\eta$ | $?$ |  |

## Diagram:




## Assumptions:

$$
\begin{array}{ll}
1 \text { - } & \text { The system is the air inside the cylinder. } \\
2 \text { - } & \text { The air is modeled as an ideal gas. } \\
3 \text { - } & \text { Each process is internally reversible. } \\
4- & \text { Boundary work is the only form of work that crosses the system boundary. } \\
5- & \text { There is no change in kinetic or potential energy for either of the two processes. }
\end{array}
$$

## Equations / Data / Solve:

Part b.) Since Process 2-3 is isothermal: $\quad \mathbf{T}_{\mathbf{3}}=\mathbf{T}_{\mathbf{2}}$
Eqn 1
So we should work on determining $\mathbf{T}_{2}$.
Let's apply the 2nd Gibbs Equation for ideal gases to Process 1-2 :

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \cdot \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

We can determine $\mathbf{T}_{\mathbf{2}}$ and thus $\mathbf{T}_{\mathbf{3}}$ from:

$$
\hat{\mathbf{S}}^{\circ}\left(\mathrm{T}_{2}\right)=\hat{\mathbf{S}}^{\circ}\left(\mathrm{T}_{1}\right)+\frac{\mathbf{R}}{\mathbf{M W}} \cdot \operatorname{Ln}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

| R | 1.987 | Btu/lbmol- ${ }^{\circ} \mathrm{R}$ | $\mathbf{S}^{\mathbf{O}}\left(\mathrm{T}_{2}\right)$ | 0.14007 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ - $^{\text {- }}$ R |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MW | 28.97 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol}$ |  |  |  |

Now that we know the value of $\mathbf{S}^{\circ}$ at $\mathbf{T}_{2}$, we can interpolate on the air Ideal Gas Property Table to determine $\mathbf{T}_{2}$.

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{S}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}} \mathrm{T}^{\circ} \mathrm{R}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 950 | 0.13939 |  |  |  |
| T | 0.14007 | Interpolation yields | $\mathrm{T}_{2}=\mathrm{T}_{3}=$ | 952.60 |
| 960 | 0.14202 |  |  | 492.93 |

Part c.) The net work is the sum of the work done during each process:

$$
\hat{\mathbf{W}}_{\text {cycle }}=\hat{\mathbf{W}}_{12}+\hat{\mathbf{W}}_{23}+\hat{\mathbf{W}}_{31}
$$

We need to determine the work involved in each process. Begin with Process 1-2.
Since Process 1-2 is adiabatic, and changes in internal and kinetic energies are negligible, the appropriate form of the 1st Law is :

$$
\begin{equation*}
\hat{\mathscr{Q}}_{12}-\hat{W}_{12}=\Delta \hat{U}_{+} \Delta \hat{E}_{\mathrm{kin}}+\Delta \hat{\boldsymbol{Z}}_{\mathrm{pot}} \quad \text { Eqn } 5 \quad \hat{W}_{12}=-\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}\right) \tag{Eqn 6}
\end{equation*}
$$

Because we know both $\mathbf{T}_{1}$ and $\mathbf{T}_{2}$, we can look up the $\mathbf{U}$ 's in the Ideal Gas Property Table:
At $\mathrm{T}_{1}=570^{\circ} \mathrm{R}$, no interpolation is required:

$$
\begin{array}{lll}
\mathrm{U}_{1} & 5.6705 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{U}^{\circ}\left(\mathrm{Btu} / \mathrm{b}_{\mathrm{m}}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 950 | 72.806 |  |  |  |  |
| 952.60 | $\mathrm{U}_{2}$ | Interpolation yields : | $\mathrm{U}_{2}$ | 73.281 | $\mathrm{Btu} / \mathrm{l}_{\mathrm{m}}$ |
| 960 | 74.631 |  |  |  |  |

Now, we can plug values back into Eqn 6 to determine $\mathbf{W}_{12}$ : $\quad \mathbf{W}_{12} \quad-67.610 \quad \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
Boundary work done by the system during Process 2-3 can be calculated from the definition of boundary work :

$$
\begin{equation*}
\hat{\mathbf{W}}_{23}=\int_{2}^{3} \mathbf{P d V} \tag{En 7}
\end{equation*}
$$

For an ideal gas substitute $\mathbf{P}=\mathbf{n R T} / \mathbf{V}$ into Eqn $7: \quad \quad \hat{\mathbf{W}}_{23}=\int_{2}^{3} \frac{\mathbf{R}}{\mathbf{M W}} \frac{\mathbf{T}}{\mathbf{V}} \mathbf{d V}$
Eqn 8

Integrate Eqn 2
(the process is isothermal, $\mathbf{T}_{2}=\mathbf{T}_{3}$ ) :

$$
\hat{W}_{23}=\frac{R}{M W} \mathbf{T}_{2} \operatorname{Ln} \frac{\mathbf{V}_{3}}{\mathbf{V}_{2}}
$$

Eqn 9

Since $\mathbf{P}_{2} \mathbf{V}_{2}=\mathbf{n R T} T_{2}$ and $\mathbf{P}_{3} \mathbf{V}_{3}=\mathbf{n R T}$ and
$T_{2}=T_{3}$, we conclude that $P_{2} V_{2}=P_{3} V_{3}$, or :
$\frac{\mathbf{V}_{3}}{\mathbf{V}_{2}}=\frac{\mathbf{P}_{2}}{\mathbf{P}_{3}}$
Eqn 10

Combining Eqn 10 and Eqn 9 yields :

$$
\begin{equation*}
\hat{\mathbf{W}}_{23}=\frac{\mathbf{R}}{\mathbf{M W}} \mathbf{T}_{2} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{3}} \tag{Eqn 11}
\end{equation*}
$$

We can plug numbers into Eqn 11 to evaluate $\mathbf{W}_{23}$ :
$\mathrm{W}_{23}$
119.74 Btu / lb ${ }_{m}$

Boundary work done by the system during Process 3-1 can be calculated from the definition of boundary work :

$$
\hat{W}_{31}=\int_{2}^{3} \mathrm{Pd} \hat{\mathrm{~V}}
$$

Since Process 3-1 is isobaric
( $\mathrm{P}=$ constant), Eqn 12 simplifies to :
$\hat{\mathbf{W}}_{31}=\mathbf{P}\left(\hat{\mathbf{V}}_{1}-\hat{\mathbf{V}}_{3}\right)$
Eqn 13

Since : $\quad \mathbf{P}_{\mathbf{1}} \hat{\mathbf{V}}_{1}=\frac{\mathbf{R T}_{1}}{\mathbf{M W}} \quad$ Eqn $14 \quad \mathbf{P}_{3} \hat{\mathbf{V}}_{3}=\frac{\mathbf{R} \mathbf{T}_{3}}{\mathbf{M W}}$
Eqn 15

And since $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{3}}$, Eqns 13, 14 \&
15 can be combined to obtain :

$$
\hat{\mathbf{W}}_{31}=\frac{\mathbf{R}}{\mathbf{M W}}\left(\mathrm{T}_{1}-\mathrm{T}_{3}\right)
$$

Eqn 16

Now, we can plug values into Eqn 16 to evaluate $\mathbf{W}_{31}$ :

$$
W_{31}
$$

-26.24 Btu / lb $\mathrm{m}_{\mathrm{m}}$
Now, we can calculate $\mathbf{W}_{\text {cycle }}$ from the sum of the work terms for each step, using Eqn 4 :

$$
W_{\text {cycle }}
$$

$25.88 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$

Part d.) The thermal efficiency of the cycle is defined by: $\quad \boldsymbol{\eta}=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{\text {in }}}$
We know $\mathbf{W}_{\text {cycle }}$, so we need to determine $\mathbf{Q}_{\text {in }}$. We also know that $\mathbf{Q}_{\mathbf{1 2}}=\mathbf{0}$ (adiabatic process) and from the TS Diagram it can be concluded that $\mathbf{Q}_{23}>\mathbf{0}$ and $\mathbf{Q}_{\mathbf{3 1}}<\mathbf{0}$. Therefore, $\mathbf{Q}_{\mathbf{i n}}=\mathbf{Q}_{23}$.

$$
\eta=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{23}}
$$

Eqn 18

Now we need to determine the heat transferred into the cycle during Process 2-3. Start from the definition of entropy :

$$
\begin{equation*}
\delta \hat{\mathbf{Q}}_{\text {intrev }}=\mathbf{T} \mathbf{d} \hat{\mathbf{S}} \tag{Eqn 19}
\end{equation*}
$$

Because Process 2-3 is internally reversible, we can integrate Eqn 19 to get:

$$
\hat{\mathbf{Q}}_{23}=\int_{2}^{3} \mathbf{T d} \hat{\mathbf{S}}
$$

Eqn 20
Now, because Process 2-3 is isothermal, the T

$$
\begin{equation*}
\hat{\mathbf{Q}}_{23}=\mathbf{T}\left(\hat{\mathbf{S}}_{3}-\hat{\mathbf{S}}_{2}\right) \tag{Eqn 21}
\end{equation*}
$$

Now, we can again apply the 2nd Gibbs Equation for ideal gases to Process $2-3$ to evaluate $\Delta \mathbf{S}$ :

$$
\begin{equation*}
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{3}-\hat{\mathbf{S}}_{2}=\hat{\mathbf{S}}_{\mathrm{T}}^{\mathbf{o}}-\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \cdot \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} \tag{Eqn 22}
\end{equation*}
$$

Since the process is isothermal: $\mathbf{S}^{\circ}\left(\mathbf{T}_{\mathbf{2}}\right)=\mathbf{S}^{\circ}\left(\mathbf{T}_{\mathbf{3}}\right)$ and Eqn 22 simplifies to:

$$
\begin{equation*}
\Delta \hat{\mathbf{S}}_{23}=-\frac{\mathbf{R}}{\mathbf{M W}} \cdot \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} \tag{Eqn 23}
\end{equation*}
$$

When we substitute Eqn 23 into Eqn 21 we get :

$$
\begin{equation*}
\hat{\mathbf{Q}}_{23}=\mathbf{T}_{2}\left(-\frac{\mathbf{R}}{\mathbf{M W}} \cdot \mathbf{L n} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}\right) \tag{Eqn 24}
\end{equation*}
$$

$\begin{array}{llllll}\Delta \mathbf{S}_{23} & 0.12569 & \text { Btu/lb } \\ \mathbf{m}^{-}{ }^{\circ} R & \mathbf{Q}_{23} & 119.74 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\end{array}$
Finally, we plug values back into Eqn 18 to evaluate the thermal efficiency of the cycle :

$$
\eta \quad 21.62 \%
$$

Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume
at each state and check if:
Air can be considered a diatomic gas.
Solving the Ideal Gas EOS for molar volume yields :

$$
\widetilde{\mathrm{V}}>80 \mathrm{ft}^{3} / \mathrm{lbmol}
$$

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

| Use : | R |  | 10.7316 | $\mathrm{psia}^{3} \mathrm{ft}^{3} / \mathrm{lbmol}^{\circ} \mathrm{R}$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathrm{V}_{1}$ | 305.85 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |
|  |  | $\mathrm{V}_{2}$ | 81.78 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |

$$
\begin{array}{lll}
\mathrm{V}_{3} & 511.15 & \mathrm{ft}^{3} / \mathrm{lbmol}
\end{array}
$$

The specific volume is greater than $\mathbf{8 0} \mathrm{ft}^{3} / \mathrm{lbmol}$ for all states so the ideal gas assumption is valid.
Answers:
a.)
b.)
See diagrams above.
b.)
c.)
d.)

| $\mathrm{W}_{\text {cycle }}$ | 25.9 | Btu/lb $\mathrm{b}_{\mathrm{m}}$ |
| :---: | :---: | :---: |
| $\eta$ | $21.6 \%$ |  |

Dr. B - LearnThermo.com

An ideal gas is contained in a piston－and－cylinder device in which the system moves from state 1 to state 2.
a．）If $T_{2}$ is greater than $T_{1}$ ，show that the $\Delta S_{12}$ is greater if the process is isobaric than if it is isochoric．Sketch the isobaric and isochoric process paths on PV and TS diagrams．
b．）Use your TS Diagram from part（a）to show that an isochoric path passing through a state has a greater slope than an isobaric path passing through the same state．
c．）If $\mathbf{P}_{2}$ is greater than $\mathbf{P}_{1}$ ，show that the ratio of $\Delta \mathbf{S}_{12}$ for an isothermal process to $\Delta \mathbf{S}_{12}$ for an isochoric process


Read：$\quad$ Sketch the process in parts（a），（b）and（c）first to get a better understanding of the processes．
For part（a）use equations relating entropy to $\mathbf{C}_{\mathrm{p}}$ and $\mathbf{C}_{\mathrm{v}}$ ．
For part（b）recall that the slope on a TS Diagram is（dT／dS）．
For part（c）determine $\Delta \mathbf{S}$ for each process and determine the ratio．
Given：A closed system consisting of an ideal gas with constant specific heat ratio $\gamma$ ．
Part（a）For the process where the $\mathbf{T}$ increases from $\mathbf{T}_{1}$ to $\mathbf{T}_{2}$ ：show that $\Delta \mathbf{S}$ is greater if the change in state
Find： occurs at constant $\mathbf{P}$ than if it occurs at constant $\mathbf{V}$ ．
Sketch PV and TS Diagrams for the process．
Part（b）Show on a TS Diagram that a line of constant specific volume passing through a state has a greater slope than a line of constant $\mathbf{P}$ ．
Part（c）For the process where the $\mathbf{P}$ increases from $\mathbf{P}_{1}$ to $\mathbf{P}_{2}$ ：show that the ratio of $\Delta \mathbf{S}$ for an isothermal process to $\Delta \mathbf{S}$ for a constant specific volume process is $(1-\gamma)$ ．
Sketch PV and TS Diagrams for the process．

## Diagram：

Part（a） and（b）：


Part（c）：


Part (a) and (b):

Part (c):


TS Diagram


Assumptions: 1- The system consists of an ideal gas with constant specific heats.

## Equations / Data / Solve:

Part a.) There are two key equations for calculating the entropy change of an ideal gas.

$$
\Delta \widetilde{\mathbf{S}}=\int \widetilde{\mathbf{C}}_{v}^{0} \frac{\mathbf{d T}}{\mathbf{T}}+\mathbf{R} \ln \left(\frac{\widetilde{\mathbf{V}}_{2}}{\widetilde{\mathbf{V}}_{1}}\right) \quad \mathrm{Eqn} 1 \quad \Delta \widetilde{\mathbf{S}}=\int \widetilde{\mathbf{C}}_{\mathrm{P}}^{0} \frac{\mathbf{d T}}{\mathbf{T}}-\mathbf{R} \ln \left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)
$$

For Process 1-A, specific volume is constant. For Process 1-B, pressure is constant.
We can apply Eqn 1 to Process 1-A and Eqn 2 to Process 1-B.

$$
\Delta \widetilde{\mathbf{S}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{\mathrm{A}}} \widetilde{\mathbf{C}}_{\mathrm{V}}^{\circ} \frac{\mathbf{d T}}{\mathbf{T}} \quad \text { Eqn } 3 \quad \Delta \widetilde{\mathbf{S}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{\mathrm{B}}} \widetilde{\mathbf{C}}_{\mathbf{P}}^{\circ} \frac{\mathbf{d T}}{\mathbf{T}}
$$

Eqn 4

Because the specific heats are constant, Eqns 3 \& 4 can be integrated to obtain :

$$
S_{A}-S_{1}=\widetilde{C}_{V}^{\circ} \operatorname{Ln} \frac{T_{2}}{T_{1}} \quad \text { Eqn } 5 \quad S_{B}-S_{1}=\widetilde{C}_{P}^{\circ} \operatorname{Ln} \frac{T_{2}}{T_{1}}
$$

Eqn 6

Notice that both the intial and final temperatures are the same: $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}=\mathrm{T}_{2}$.


Cancelling terms leaves us with :

$$
\frac{\mathbf{S}_{B}-\mathbf{S}_{1}}{\mathbf{S}_{\mathrm{A}}-\mathbf{S}_{1}}=\frac{\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ}}{\widetilde{\mathbf{C}}_{\mathrm{V}}^{\circ}}
$$

$$
\frac{\mathbf{S}_{B}-\mathbf{S}_{1}}{\mathbf{S}_{\mathrm{A}}-\mathbf{S}_{1}}=\frac{\widetilde{\mathbf{C}}_{V}^{o}+\mathbf{R}}{\widetilde{\mathbf{C}}_{V}^{\circ}}=\mathbf{1}+\frac{\mathbf{R}}{\widetilde{\mathbf{C}}_{V}^{\circ}}
$$

$$
\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\widetilde{\mathbf{C}}_{\mathrm{v}}^{\circ}+\mathbf{R}
$$

Because $\mathbf{R}$ and $\mathbf{C}_{\mathrm{v}}$ are both positive numbers, we can conclude that :

$$
\left(S_{B}-S_{1}\right)>\left(S_{A}-S_{1}\right)
$$

Part b.) Here, we compare, at state 1 ( $\mathbf{d T} / \mathrm{dS})_{\mathrm{V}}$ to (dT/dS) ${ }_{\mathrm{P}}$.
Since (dT/dS) at fixed $\mathbf{V}($ or fixed $P)$ is : $\quad \frac{\mathbf{d T}}{\mathbf{d S}}=\lim _{\Delta S \rightarrow 0} \frac{\Delta T}{\Delta S}$
Eqn 12

In part (a), we showed that, for the same $\Delta \mathbf{T}, \Delta \mathbf{S}$ at constant $\mathbf{P}$ is greater than $\Delta \mathbf{S}$ at constant $\mathbf{V}$.

Consequently :

$$
\left(\frac{\partial T}{\partial S}\right)_{V}>\left(\frac{\partial T}{\partial S}\right)_{\mathrm{P}}
$$

On a TS Diagram, a constant specific volume line passing through State 1 has a greater slope than a constant pressure line passing through the same state.

Part c.) For Process 1-A, temperature is constant. For Process 1-B, volume is constant.
Apply Eqn 2 to Process 1-A and Eqn 1 to Process 1-B.

$$
\begin{align*}
& \widetilde{S}_{A}-\widetilde{S}_{1}=-R \ln \left(\frac{P_{2}}{P_{1}}\right)  \tag{Eqn 14}\\
& \widetilde{S}_{B}-\widetilde{S}_{1}=\int_{T_{1}}^{T_{B}} \widetilde{\mathbf{C}}_{V}^{\circ} \frac{d T}{T}=\widetilde{C}_{V}^{o} \operatorname{Ln}\left[\frac{T_{B}}{T_{1}}\right] \tag{Eqn 15}
\end{align*}
$$

We need to consider the ratio of Eqn 14 to Eqn 15 and compare its value to $\mathbf{1}$ to determine which is greater, $\Delta \mathbf{S}_{1}$. A or $\Delta \mathbf{S}_{1-\mathrm{B}}$.

$$
\frac{\widetilde{\mathbf{S}}_{\mathrm{A}}-\widetilde{\mathbf{S}}_{1}}{\widetilde{\mathbf{S}}_{\mathrm{B}}-\widetilde{\mathbf{S}}_{1}}=\frac{-\mathbf{R L n}\left(\frac{\mathrm{P}_{2}}{\mathbf{P}_{1}}\right)}{\widetilde{\mathbf{C}}_{\mathrm{V}}^{0} \operatorname{Ln}\left(\frac{\mathrm{~T}_{\mathrm{B}}}{\mathrm{~T}_{1}}\right)}
$$

Eqn 16

But, for ideal gases undergoing a constant volume such as Process 1-B:

$$
\mathbf{P}_{\mathbf{1}} \mathbf{V}=\mathbf{n R ~ T}_{1} \quad \text { Eqn } 17 \quad \text { and }: \quad \mathbf{P}_{\mathbf{2}} \mathbf{V}=\mathbf{n} \mathbf{R} \mathbf{T}_{\mathrm{B}} \quad \text { Eqn } 18
$$

Therefore :

$$
\frac{P_{2}}{P_{2}}=\frac{T_{B}}{T_{1}}
$$

Eqn 19

Now, we can use Eqns 9 \& 19 to simplify Eqn 16 :

$$
\begin{equation*}
\frac{\widetilde{S}_{A}-\widetilde{S}_{1}}{\widetilde{\mathbf{S}}_{\mathrm{B}}-\widetilde{\mathbf{S}}_{1}}=\frac{-\left(\widetilde{\mathbf{C}}_{P}^{\circ}-\widetilde{\mathbf{C}}_{V}^{\circ}\right)}{\widetilde{\mathbf{C}}_{V}^{\circ}}=1-\frac{\widetilde{\mathbf{C}}_{v}^{o}}{\widetilde{\mathbf{C}}_{V}^{\circ}}=1-\gamma \tag{Eqn 20}
\end{equation*}
$$

Verify: The assumptions made in this solution cannot be verified with the given information.
Answers: Part a.) $\left(\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{1}\right)>\left(\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{1}\right)$
Part b.)

$$
\left(\frac{\partial \mathrm{T}}{\partial \mathrm{~S}}\right)_{\mathrm{V}}>\left(\frac{\partial \mathrm{T}}{\partial \mathrm{~S}}\right)_{\mathrm{P}}
$$

$$
\text { Part c.) } \frac{\widetilde{S}_{A}-\widetilde{S}_{1}}{\widetilde{S}_{B}-\widetilde{S}_{1}}=1-\gamma
$$

Compressed-Air-Driven Turbine
A small cylinder of compressed air stores energy, just like a battery. When you want to recover the energy from the compressed air, release the air through a turbine and vent the air to the surroundings.
Use the shaft work to generate electricity.
Consider a cylinder that contains air at 400 psia and $1000^{\circ} \mathrm{F}$. When the air in the cylinder flows out through the turbine, it produces 250 Btu of shaft work by the time the pressure
in the cylinder reaches 75 psia. The turbine exhausts to ambient pressure, 14.7 psia. Determine the volume of the cylinder in $\mathrm{ft}^{3}$.
Assume the air behaves as an ideal gas, the turbine and the cylinder are internally reversible, the entire process is adiabatic and changes in kinetic and potential energies are negligible.

Read : The key to this process is that it is entirely isentropic. This will let us determine the initial and final properties of the air in the tank, as well as the properties of the turbine exhaust. The best part is that the properties of the turbine exhaust do not change during the process.

| Given: | $\mathbf{P}_{1}$ | 400 | psia | $\mathbf{P}_{2}$ | 75 | psia |
| :--- | :--- | :---: | :--- | :--- | :---: | :--- |
|  | $\mathbf{T}_{1}$ | 1000 | ${ }^{\circ} \mathbf{F}$ | $\mathbf{P}_{\text {out }}$ | 14.7 | psia |
|  | $\mathbf{W}_{\mathbf{s}}$ | 250 | Btu |  |  |  |

Find:
v
? $\quad \mathrm{ft}^{3}$
Diagram:


Assumptions:
The system is shown in the diagram.
1- The syster
2- For the system, heat exchange with the surroundings is negligible.
3- Changes in kinetic and potential energies are negligible.
4- The process is reversible.
5- The air behaves as an ideal gas. This is a very questionable assumption at these pressures, but the problem statement instructed us to make it !

## Equations / Data / Solve:

We want to evaluate the volume of the tank in the absence of irreversibilities.
We can begin by applying the 1 st Law to this system.

$$
\begin{equation*}
\Delta U=Q^{\prime}-\mathbf{W}_{\mathbf{s}}+\mathbf{n}_{\text {in }}^{\prime} \tilde{\mathbf{H}}_{\text {in }}-\mathbf{n}_{\text {out }} \tilde{H}_{\text {out }} \tag{Eqn 1}
\end{equation*}
$$

We can simplify Eqn 1 because the process is adiabatic and we have assumed that changes in kinetic and potential energies are negligible and because there is no mass flow into the system.

$$
\begin{equation*}
\Delta \mathbf{U}=-\mathbf{W}_{\mathbf{s}}-\mathbf{n}_{\text {out }} \tilde{\boldsymbol{H}}_{\text {out }} \tag{Eqn 2}
\end{equation*}
$$

The mass conservation equation for this process is :

$$
\begin{equation*}
-\Delta n=n_{1}-n_{2}=n_{\text {out }} \tag{Eqn 3}
\end{equation*}
$$

Combining Eqns $1 \& 2$ yields :

$$
\begin{equation*}
\mathbf{W}_{\mathrm{s}}=-\Delta \mathbf{U}-\Delta \mathrm{n} \cdot \tilde{\mathrm{H}}_{\mathrm{out}} \tag{Eqn 4}
\end{equation*}
$$

Because the entire process is reversible and adiabatic, the process is isentropic. Therefore, $\mathbf{S}_{\text {out }}$ can be determined and does not change during the process. Because two intensive properties, $\mathbf{S}_{\text {out }}$ and $\mathbf{P}_{\text {out }}$, are constant, we can conclude that the state of the turbine exhaust is constant and, therefore, $\mathbf{T}_{\text {out }}$ and $\mathbf{H}_{\text {out }}$ are constant as well. Therefore, Eqn 4 becomes :

$$
\begin{equation*}
\mathbf{W}_{\mathrm{s}}=\tilde{\mathbf{U}}_{1} \mathbf{n}_{1}-\tilde{\mathbf{U}}_{2} \mathbf{n}_{2}+\tilde{H}_{\text {out }}\left(\mathbf{n}_{2}-\mathbf{n}_{1}\right) \tag{Eqn 5}
\end{equation*}
$$

The initial and final moles of air in the tank can be determined from the ideal gas EOS:

$$
\mathbf{P} \mathbf{V}=\mathbf{n} \mathbf{R} \mathbf{T}
$$

Eqn 6

$$
\begin{equation*}
\mathbf{n}=\frac{\mathbf{P V}}{R T} \tag{Eqn 7}
\end{equation*}
$$

Apply Eqn 7 to both the initial and final states of the tank contents and combine these with Eqn 5 to get:

$$
\mathbf{W}_{\mathrm{s}}=\tilde{\mathbf{U}}_{1}\left(\frac{\mathbf{P}_{1} \mathbf{V}}{\mathbf{R} \mathbf{T}_{1}}\right)-\tilde{\mathbf{U}}_{2}\left(\frac{\mathbf{P}_{2} \mathbf{V}}{\mathbf{R} \mathbf{T}_{2}}\right)+\tilde{\mathbf{H}}_{\text {out }}\left[\left(\frac{\mathbf{P}_{2} \mathbf{V}}{\mathbf{R T}}\right)-\left(\frac{\mathbf{P}_{1} \mathbf{V}}{\mathbf{R T}}\right)\right]
$$

Now, we can solve Eqn 8 for the unknown volume of the tank:

$$
\begin{align*}
& \mathbf{V}=\frac{\mathbf{W}_{\mathbf{s}} \mathbf{R}}{\left[\tilde{\mathbf{U}}_{1} \frac{\mathbf{P}_{1}}{\mathbf{T}_{1}}-\tilde{\mathbf{U}}_{2} \frac{\mathbf{P}_{2}}{\mathbf{T}_{2}}+\tilde{\mathbf{H}}_{\text {out }}\left[\frac{\mathbf{P}_{2}}{\mathbf{T}_{2}}-\frac{\mathbf{P}_{1}}{\mathbf{T}_{1}}\right]\right]}  \tag{Eqn 9}\\
& \mathbf{V}_{\text {tank }}=\frac{\mathbf{W}_{\mathbf{s}}(\mathbf{R} / \mathbf{M W})}{\frac{\mathbf{P}_{1}}{\mathbf{T}_{1}}\left(\hat{\mathbf{U}}_{1}-\hat{\mathbf{H}}_{\text {out }}\right)-\frac{\mathbf{P}_{2}}{\mathbf{T}_{2}}\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{H}}_{\text {out }}\right)}
\end{align*}
$$

Eqn 9a

The air remaining in the tank undergoes an isentropic expansion from $\mathbf{P}_{\mathbf{1}}, \mathbf{T}_{1}$ to $\mathbf{P}_{\mathbf{2}}, \mathbf{T}_{\mathbf{2}}$.
At this point, we can solve this problem by either of two methods. We can apply the 2nd Gibbs Equation for ideal gases and the Ideal Gas Entropy Function or we can use the Ideal Gas Relative Pressure, Pr.

Method 1: Use the Ideal Gas Entropy Function.
The 2nd Gibbs Equation for ideal gases in terms of the Ideal Gas Entropy Function is :

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}=\mathbf{0}
$$

Eqn 10

We can apply Eqn 10 to the process that the air inside the tank undergoes AND to the process that the air undergoes as it passes through the turbine:

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{\text {out }}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\text {Tout }}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{\text {out }}}{\mathbf{P}_{1}}=\mathbf{0}
$$

Eqn 11
We can solve Eqns 10 \& 11 for the unknowns $\mathbf{S}^{\circ}{ }_{\mathrm{T} 2}$ and $\mathbf{S}_{\text {Tout }}^{\circ}$ :

$$
\begin{align*}
& \hat{\mathbf{S}}_{\mathbf{T} 2}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}  \tag{Eqn 12}\\
& \hat{\mathbf{S}}_{\text {Tout }}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{\text {out }}}{\mathbf{P}_{1}}
\end{align*}
$$

Eqn 13

We can look up $\mathbf{S}^{\mathbf{T} 1}$ in the Ideal Gas Property Tables and use it with the known pressures in Eqn 13 to determine $\mathbf{S}^{\circ}{ }_{\text {T } 2}$ and $\mathbf{S}_{\text {Tout }}^{\circ}$ :

| T | $1459.67{ }^{\circ} \mathrm{R}$ | R <br> MW | $\begin{aligned} & 1.987 \\ & 28.97 \end{aligned}$ | Btu/lbmol- ${ }^{\circ}$ R <br> $\mathrm{lb}_{\mathrm{m}} / \mathrm{lbmol}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{T}\left({ }^{\circ} \mathbf{R}\right) \\ 1450 \end{gathered}$ | $\mathrm{S}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}\right)$ |  |  |  |  |
| 1459.67 | $\mathrm{S}^{\circ}{ }_{1}$ | Interpolation yields : | $\mathrm{S}^{\circ}{ }_{\text {1 }}$ | 0.24981 B | Btu/l $\mathrm{b}_{\mathrm{m}}{ }^{-} \mathbf{R}$ |
| 1500 | 0.25705 |  | $\begin{aligned} & \mathbf{S}_{\mathbf{T}^{2}}^{\circ} \\ & \mathbf{S}_{\text {Tout }}^{\circ} \end{aligned}$ | $\begin{aligned} & 0.13500 \\ & 0.02323 \end{aligned}$ | Btu/l $\mathrm{b}_{\mathrm{m}}{ }^{-} \mathrm{R}$ |
|  |  |  |  |  | Btu/ $/ \mathrm{b}_{\mathrm{m}}{ }^{-} \mathbf{R}$ |

Now, we can use $\mathbf{S}^{\mathbf{T} 2}{ }^{\mathbf{2}}$ and $\mathbf{S}_{\text {Tout }}^{\circ}$ and the Ideal Gas Property Tables to determine both $\mathbf{T}_{\mathbf{2}}$ and $\mathbf{T}_{\text {out }}$ and then $\mathbf{U}_{1}$, $\mathbf{U}_{2}$ and $\mathbf{U}_{\text {out }}$ by interpolation :

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathbf{U}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right.$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1450 | 167.28 |  |  |  |  |  |
| 1459.67 | $\mathbf{U}^{\circ}{ }_{1}$ |  | Interpolation yields : | $\mathbf{U}^{\mathbf{o}}{ }_{1}$ | 169.17 | Btu/lb ${ }_{\text {m }}$ |
| 1500 | 177.07 |  |  |  |  |  |
| T ( ${ }^{\circ} \mathrm{R}$ ) | $U^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ | $\mathrm{S}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\text {P }}\right.$ ) |  |  |  |  |
| 930 | 69.166 | 0.13406 |  |  |  |  |
| $\mathrm{T}_{2}$ | $\mathrm{U}^{\circ}{ }_{2}$ | 0.13500 | Interpolation yields : | $\mathrm{T}_{2}$ | 933.51 | ${ }^{0} \mathrm{R}$ |
| 940 | 70.985 | 0.13674 |  | $\mathbf{U}^{\mathbf{o}}$ | 69.804 | Btu/lb ${ }_{\text {m }}$ |

And at the turbine outlet :

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathbf{H}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ | $\mathrm{S}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\text {® }}\right.$ R $)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 590 | 49.533 | 0.022643 |  |  |  |
| $\mathrm{T}_{\text {out }}$ | $\mathbf{H}^{\circ}$ out | 0.02323 | $\mathrm{T}_{\text {out }}$ | 591.44 | ${ }^{\circ} \mathrm{R}$ |
| 600 | 51.934 | 0.026678 | $\mathrm{H}^{\text {out }}$ | 49.880 | Btu/lb ${ }_{\text {m }}$ |

We can plug all of the given and determined values back into Eqns 3, 7, $8 \& 9$ to evaluate $\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}, \Delta \mathbf{n}$, and finally, V :

| $R$ | 10.7316 | psia-ft $^{3} /$ lbmol $^{\circ} R$ | $V$ | 2.979 | $\mathrm{ft}^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{n}_{1}=$ | 0.07606 | lbmol | $\mathrm{m}_{1}=$ | 2.204 | $\mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{n}_{2}=$ | 0.02230 | lbmol | $\mathrm{m}_{2}=$ | 0.646 | $\mathrm{lb}_{\mathrm{m}}$ |
| $\Delta \mathrm{n}=$ | -0.05376 | lbmol | $\Delta \mathrm{m}=$ | -1.558 | $\mathrm{lb}_{\mathrm{m}}$ |

Method 2: Use the Ideal Gas Relative Pressure.
When an ideal gas undergoes an isentropic process : $\quad \frac{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{2}}\right)}{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{1}}\right)}=\frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{P}_{\mathbf{1}}}$
Eqn 14

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look up in the Ideal Gas Property Table for air.

We can solve Eqn 14 For $\mathbf{P}_{\mathrm{r}}\left(\mathbf{T}_{2}\right)$, as follows :

$$
P_{r}\left(T_{2}\right)=\frac{P_{2}}{P_{1}} P_{r}\left(T_{1}\right)
$$

Look-up $\mathbf{P}_{r}\left(\mathbf{T}_{1}\right)$ and use it in Eqn 15 To determine $\mathbf{P}_{r}\left(\mathbf{T}_{2}\right)$ :

| $\mathbf{T}\left({ }^{\circ} R\right)$ | $\mathbf{P}_{\mathrm{r}}$ |
| :---: | :---: |
| 1450 | 37.310 |
| 1459.67 | $\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{1}\right)$ |
| 1500 | 42.521 |
| Once we know $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)$ we |  |
| We can then use $\mathrm{T}_{1}$ and |  |
| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{U}^{\circ}\left(\mathrm{Btu} / \mathrm{lb} \mathrm{b}_{\mathrm{m}}\right)$ |
| 1450 | 167.28 |
| 1459.67 | $\mathbf{U}^{\circ}{ }_{1}$ |
| 1500 | 177.07 |

Interpolation yields :
$\mathrm{U}^{\mathbf{o}}{ }_{1} \quad 169.17 \quad \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
$P_{r}\left(T_{1}\right) \quad 38.318$
$P_{r}\left(T_{2}\right)$
7.185

Once we know $P_{r}\left(T_{2}\right)$ we can determine $T_{2}$ by interpolation on the the Ideal Gas Property Table. We can then use $\mathbf{T}_{1}$ and $\mathbf{T}_{2}$ to determin $\mathbf{U}_{1}$ and $\mathbf{U}_{2}$ from the Ideal Gas Property Tables.

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $U^{\circ}\left(\mathrm{Btu} / \mathrm{lb} \mathrm{b}_{\mathrm{m}}\right.$ ) |  | $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{Pr}_{\mathrm{r}}$ | $U^{\circ}$ (Btu/l $\mathrm{b}_{\mathrm{m}}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1450 | 167.28 |  | 930 | 7.0696 | 69.166 |
| 1459.67 | $\mathbf{U}^{\circ}{ }_{1}$ |  | $\mathrm{T}_{2}$ | 7.185 | $\mathbf{U}^{\circ}{ }_{2}$ |
| 1500 | 177.07 |  | 940 | 7.3513 | 70.985 |
| Interpolation yields : |  |  | Interpolation yields : |  |  |
| $\mathbf{U}^{\circ}{ }_{1}$ | 169.17 | $B t u / b_{m}$ | T | 934.08 | ${ }^{0} \mathrm{R}$ |
|  |  |  | $\mathrm{U}^{\circ}{ }_{2}$ | 69.909 | Btu/lb ${ }_{\text {m }}$ |

Because the turbine is also an isentropic process, we can determine the relative pressure of the turbine effluent:

$$
\begin{equation*}
\frac{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{\text {out }}\right)}{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{1}\right)}=\frac{\mathbf{P}_{\text {out }}}{\mathbf{P}_{1}} \tag{Eqn 16}
\end{equation*}
$$

Rearranging: $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\text {out }}\right)=\frac{\mathbf{P}_{\text {out }}}{\mathbf{P}_{1}} \mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{1}\right)$
Eqn 17

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{r}}\left(\mathrm{~T}_{\text {out }}\right) & 1.4082
\end{array}
$$

Now, we can use $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\text {out }}\right)$ to determine $\mathbf{T}_{2}$ and then $\mathbf{H}_{\text {out }}$ using the Ideal Gas Property Tables:

| T ( ${ }^{\circ} \mathrm{R}$ ) | $\mathrm{P}_{\mathrm{r}}$ | $H^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 590 | 1.3914 | 49.533 |  |  |  |  |
| T ${ }_{\text {out }}$ | 1.4082 | $\mathrm{H}^{\circ}$ out | Interpolation yields: | $\mathrm{T}_{\text {out }}$ | 591.99 | ${ }^{\circ} \mathrm{R}$ |
| 600 | 1.4758 | 51.934 |  | $\mathrm{H}^{\circ}$ out | 50.010 | Btu/lb ${ }_{\text {m }}$ |

We can plug all of the given and determined values back into Eqns $3,7,8 \& 9$ to evaluate $\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}, \Delta \mathbf{n}$, and finally, V :

| $R$ | 10.7316 | psia-ft $^{3} /$ lbmol $^{\circ} R$ | $V$ | 2.982 | $\mathrm{ft}^{3}$ |
| :--- | ---: | :--- | :--- | ---: | :--- |
| $\mathrm{n}_{1}=$ | 0.07614 | lbmol | $\mathrm{m}_{1}=$ | 2.206 | $\mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{n}_{2}=$ | 0.02231 | lbmol | $\mathrm{m}_{2}=$ | 0.646 | $\mathrm{lb}_{\mathrm{m}}$ |
| $\Delta \mathrm{n}=$ | -0.05383 | lbmol | $\Delta \mathrm{m}=$ | -1.560 | $\mathrm{lb}_{\mathrm{m}}$ |

Verify: $\quad$ The ideal gas assumption needs to be verified. We need to determine the specific volume at each state and check if:
Air can be considered a diatomic gas.
Solving the Ideal Gas EOS for molar volume yields :

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Use : R $\quad \mathbf{1 0 . 7 3 1 6}$ psia-ft ${ }^{3} /$ lbmol $^{\circ}{ }^{\circ}$ R

| $\mathrm{V}_{1}$ | 39.16 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |
| :--- | :---: | :---: |
| $\mathrm{V}_{2}$ | 133.57 | $\mathrm{ft}^{3} / \mathrm{lbmol}$ |

$\begin{array}{lll}V_{3} & 431.78 & \mathrm{ft}^{3} / \mathrm{lbmol}\end{array}$
The specific volume at state 2 and at the turbine effluent is greater than $80 \mathrm{ft}^{3} / \mathrm{lbmol}$. Air can be considered to be a diatomic gas, so the ideal gas assumption is valid here. The ideal gas assumption is not valid in state 1 and this makes the solution somewhat questionable, but we were instructed to make the ideal gas assumption in the problem statement.

Answers:

|  |  | Method 1 | Method 2 |
| :--- | :--- | :---: | :---: |
| The volume of the tank is: | V | 2.979 | 2.982 |
| $\mathrm{ft}^{3}$ |  |  |  |

The difference between the two methods is caused by the following issues (ranked from most important to least important).

1- Errors associated with linearly interpolating between values of a functions that are not really linear.
3- Round-off error in the Ideal Gas Property Tables.

7E-1
Minimum Work for Compression of R-134a
4 pts
$\mathbf{R}$-134a vapor enters an adiabatic compressor at $-20^{\circ} \mathrm{C}$ and leaves at 700 kPa . If the $\mathbf{R}-134 \mathrm{a}$ is saturated when it enters the compressor, determine the minimum shaft work required by the compressor in $\mathbf{k J} / \mathbf{k g}$.

Read: We must apply the 1st Law to the compressor. We can get $\mathbf{H}_{1}$ from the R-134a tables or the NIST Webbook, but we do not know $\mathbf{H}_{2}$. The key to solving this problem is that a process that requires the minimum shaft work is an isentropic process. Knowing that $\mathbf{S}_{2}=\mathbf{S}_{1}$ gives us the value of a 2 nd intensive variable for state 2. This allows us to use the R-134a tables or NIST Webbook to detemine $\mathbf{H}_{2}$. We can then plug $\mathbf{H}_{2}$ into the 1st Law to determine the work requirement per $\mathbf{k g}$ of R-134a.

| Given: | $\mathrm{T}_{1}$ | -20 | ${ }^{\circ} \mathrm{C}$ | Find: | $\mathrm{W}_{\mathrm{s}}$ | ??? | $\mathrm{kJ} / \mathrm{kg}$ |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{x}_{1}$ | 1 | kg vap/kg |  |  |  |  |
|  | $\mathrm{P}_{2}$ | 700 | kPa |  |  |  |  |

Diagram:


Assumptions:
The compressor is isentropic.
The compressor operates at steady-state.
Changes in kinetic and potential energies are negligible.
Shaft work and flow work are the only types of work that cross the system boundary.

Apply the 1st Law to the compressor to determine the shaft work requirement.
For a steady-state, single-inlet, single outlet system with no heat transfer and negligible kinetic and potential energy changes, the 1st Law is:

$$
\begin{equation*}
\hat{W}_{\mathrm{s}}=\frac{\dot{\mathbf{W}}_{\mathrm{s}}}{\dot{\mathrm{~m}}}=\left(\hat{\mathrm{H}}_{1}-\hat{H}_{2}\right) \tag{Eqn 1}
\end{equation*}
$$

We can get $\mathbf{H}_{1}$ from the R-134a tables or the NIST Webbook because we know the temperature and we know it is a saturated vapor:
$\begin{array}{lll}\mathrm{H}_{1} & 386.6 \mathrm{~kJ} / \mathrm{kg}\end{array}$
The compressor is isentropic, so $\mathbf{S}_{\mathbf{2}} \mathbf{=} \mathbf{S}_{\mathbf{1}}$ and we can get $\mathbf{S}_{\mathbf{1}}$ from the R-134a tables or the NIST Webbook.
$\begin{array}{llllll}\mathrm{S}_{1} & 1.7413 & \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} & \mathrm{S}_{2} & 1.7413 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\end{array}$
Now, we know the values of two intensive properties at state 2, so we can use the R-134a tables or the NIST Webbook to evaluate any other properties by interpolation. Here, we are interested in $\mathbf{H}_{\mathbf{2}}$.

At $P=700 \mathrm{kPa}$ :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |
| :---: | :---: | :---: |
| 30 | 416.60 | 1.7269 |


| $\mathrm{T}_{2}$ | $\mathrm{H}_{2}$ | 1.7413 | $\mathrm{~T}_{2}$ | 34.39 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 426.72 | 1.7598 | $\mathrm{H}_{2}$ | 421.0 | $\mathrm{~kJ} / \mathrm{kg}$ |

Now, we can plug values back into Eqn 1: $\quad \mathrm{W}_{\mathrm{S}} \quad-34.49 \mathrm{~kJ} / \mathrm{kg}$
Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: $\quad \mathrm{W}_{\mathrm{S}} \quad-34.5 \quad \mathrm{~kJ} / \mathrm{kg}$

Consider the Carnot Power Cycle shown in the PV Diagram，below．The working fluid is air and the specific heat ratio，$\gamma$ ，is constant．


Show that．．．
a．）$V_{2} / V_{1}=V_{3} / V_{4}$
b．）$\left(T_{2} / T_{3}\right)^{\gamma}=\left(P_{2} / P_{3}\right)^{(\gamma-1)}$
c．）$T_{2} / T_{3}=\left(V_{3} / V_{2}\right)^{(\gamma-1)}$
Read：（a）Note that $\eta=W_{\text {cycle }} / \mathbf{Q}_{\text {in }}=\left(\mathbf{W}_{12}+W_{34}\right) / \mathbf{Q}_{12}$ because $\mathbf{Q}_{23}$ and $\mathbf{Q}_{41}$ are equal and have opposite signs． Determine $\mathbf{W}_{12}$ in terms of $\mathbf{V}_{1}, \mathbf{V}_{2}$ ，and $\mathbf{T}_{\mathbf{H}}$（temperature of high temp reservoir）and also $\mathbf{W}_{34}$ in terms of $\mathbf{V}_{3}, \mathbf{V}_{4}$ ， and $\mathbf{T}_{\mathbf{C}}$ ．Note the relationship between $\mathbf{Q}_{12}$ and $\mathbf{W}_{12}$ determined from an energy balance during step 1－2． Compare $\eta$ obtained this way with the Carnot cycle efficicency and you will arrive at the desired conclusion．
（c）Easier to do part（c）before（b）．Apply the 1st Law to step 2－3．Note that $\mathbf{d U}=\mathbf{m} \mathbf{C}_{\mathrm{V}} \mathrm{dT}, \mathrm{C}_{\mathrm{V}}=(\mathrm{R} / \mathrm{MW}) /(\gamma-1)$ ， $\mathbf{P V}=\mathbf{n R T}$ and $\mathbf{d W}=\mathbf{P d V}$ ．You will arrive at the form（1／T）dT and（1／V）dV on both sides．Integrate to obtain the desired result．
（b）Just use the result from part（c）along with the ideal gas EOS to convert $\mathbf{V}$ to $\mathbf{P}$ ．
Given：

| $\mathbf{Q}_{23}$ | 0 | kJ |
| :--- | :---: | :--- |
| $\mathbf{Q}_{41}$ | 0 | kJ |
|  |  |  |
| Step： | $1-2$ | Isothermal Expansion |
|  | $2-3$ | Adiabatic Exapansion |
|  | $3-4$ | Isothermal Compression |
|  | $4-1$ | Adiabatic Compression |

Find：
Show that：（a） $\mathrm{V}_{4} \mathrm{~V}_{2}=\mathrm{V}_{1} \mathrm{~V}_{3}$
（b） $\mathrm{T}_{2} / \mathrm{T}_{3}=\left(\mathrm{P}_{2} / \mathrm{P}_{3}\right)^{((r-1) / \gamma}$
（c） $\mathrm{T}_{2} / \mathrm{T}_{3}=\left(\mathrm{V}_{3} / \mathrm{V}_{2}\right)^{\gamma-1}$
Diagram：Given in the problem statement．

Assumptions:

| $1-$ | The system consists of an ideal gas. |
| :--- | :--- |
| $2-$ | The specific heat ratio is constant (required in part (b) only). |
| $3-$ | The cycle is executed in a closed system ( not required, but it makes the solution <br> simpler). |
| $4-$ | Changes in kinetic and potential energies are negligible. |
| $5-$ | Boundary work is the only type of work that crosses the system boundary. |
| $6-$ | The system undergoes a Carnot cycle (reversible). |

## Equations / Data / Solve:

Part a.) It may be hard to determine where to start with the proof but following the provided hints will help you.
Starting with the thermal effiicency:

$$
\begin{equation*}
\eta=\frac{W_{\text {cycle }}}{Q_{\text {in }}}=\frac{W_{12}+W_{34}}{Q_{12}} \tag{Eqn 1}
\end{equation*}
$$

Now we need to determine $\mathbf{W}_{12}$ in terms of $\mathbf{V}_{1}, \mathbf{V}_{2}$, and $\mathbf{T}_{\mathbf{H}}$ and also $\mathbf{W}_{34}$ in terms of $\mathbf{V}_{3}, \mathbf{V}_{4}$, and $\mathbf{T}_{\mathbf{C}}$.
PV work done by the system during the isothermal expansion and compression processes can be evaluated as follows:

$$
W_{12}=\int_{1}^{2} P d V
$$

Eqn 2
Assuming the system consists of an ideal gas substitute $\mathbf{P}=\mathbf{n R T} / \mathbf{V}$ :

$$
\mathbf{W}_{12}=\int_{1}^{2} \frac{\mathbf{n R} \mathbf{T}_{\mathrm{H}}}{\mathbf{V}} \mathbf{d V} \quad \text { Eqn } 3 \quad \mathbf{W}_{34}=\int_{3}^{4} \frac{\mathbf{n R} \mathbf{T}_{\mathrm{C}}}{\mathbf{V}} \mathbf{d V}
$$

Eqn 5
Integrating:

$$
\mathbf{W}_{12}=\mathbf{n R T}_{H} \operatorname{Ln}\left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \quad \text { Eqn } 4 \quad \mathbf{W}_{34}=\mathbf{n R} T_{\mathrm{C}} \operatorname{Ln}\left(\mathrm{~V}_{4} / \mathrm{V}_{3}\right)
$$

Apply the 1st Law for a closed system with negligible changes in kinetic and potential energies to get $\mathbf{Q}_{12}$ :

$$
\begin{equation*}
\Delta \mathbf{U}_{12}=\mathbf{Q}_{12}-\mathbf{W}_{12} \tag{Eqn 7}
\end{equation*}
$$

Since the internal energy of an ideal gas depends on temperature only and the temperature is constant along Process 1-2, $\mathbf{U}_{2}=\mathbf{U}_{1}$ and the energy balance reduces to:

$$
\begin{equation*}
Q_{12}=W_{12} \tag{Eqn 8}
\end{equation*}
$$

We already determined $W_{12}$ in Eqn 4.
Substituting expressions for $\mathbf{W}_{12}, \mathbf{W}_{23}$ and $\mathbf{Q}_{12}=\mathbf{W}_{12}$ into the thermal efficiency equation, Eqn $\mathbf{1}$, yields:

$$
\begin{align*}
\eta & =\frac{W_{12}+W_{34}}{Q_{12}}=\frac{W_{12}+W_{34}}{W_{12}} \\
& =1+\frac{W_{34}}{W_{12}}=1+\frac{n R T_{C} \operatorname{Ln}\left(V_{4} / V_{3}\right)}{n R T_{H} \operatorname{Ln}\left(V_{2} / V_{1}\right)}=1+\left(\frac{\operatorname{Ln}\left(V_{4} / V_{3}\right)}{\operatorname{Ln}\left(V_{2} / V_{1}\right)}\right) \frac{T_{C}}{T_{H}} \tag{Eqn 9}
\end{align*}
$$

Recall that the thermal efficiency of a Carnot Cycle is:

$$
\eta=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}}
$$

Eqn 10

Substituting Eqn 10 into Eqn 9 yields:

$$
\begin{equation*}
1-\frac{T_{C}}{T_{H}}=1-\left(\frac{\operatorname{Ln}\left(V_{4} / V_{3}\right)}{\operatorname{Ln}\left(V_{2} / V_{1}\right)}\right) \frac{T_{C}}{T_{H}} \tag{Eqn 11}
\end{equation*}
$$

Eqn 11 simplifies to:

$$
\frac{\operatorname{Ln}\left(V_{4} / V_{3}\right)}{\operatorname{Ln}\left(V_{2} / V_{1}\right)}=-1
$$

Eqn 12

A little algebra finishes the job:

$$
\operatorname{Ln}\left(V_{4} / V_{3}\right)=\operatorname{Ln}\left(V_{1} / V_{2}\right)
$$

Eqn 13

$$
\begin{equation*}
V_{4} / V_{3}=V_{1} / V_{2} \tag{Eqn 14}
\end{equation*}
$$

$$
V_{4} V_{2}=V_{3} V_{1}
$$

Part c.) First we will apply the 1 st Law to adiabatic process 2-3 with no changes in kinetic or potential energy.

$$
\Delta \mathbf{U}_{23}=-\mathbf{W}_{23}
$$

Put Eqn 16 into differential form: $\quad \mathbf{d U}_{23}=-\delta \mathbf{W}_{23}$
Substitute the definitions of boundary work and heat capacity:

$$
\begin{aligned}
& \mathbf{d} \mathbf{U}_{23}=\mathbf{n} \tilde{\mathbf{C}}_{V}^{o} \mathbf{d T} \\
& \delta \mathbf{W}_{23}=\mathbf{P d V}
\end{aligned}
$$

But, for an ideal gas:

$$
\tilde{\mathbf{C}}_{\mathrm{v}}^{\circ}=\frac{R}{\gamma-1}
$$

Eqn 20

And the ideal gas EOS tells us that: $\quad \mathbf{P}=\frac{\mathbf{n R} \mathbf{T}}{\mathbf{V}}$
Eqn 21
Now, plug Eqns 18-20 back into Eqn 17 to get :

$$
\begin{equation*}
n \frac{R}{\gamma-1} d T=-\frac{n R T}{V} d V \tag{Eqn 22}
\end{equation*}
$$

Rearrange Eqn 22 to get : $\quad\left(\frac{1}{\gamma-1}\right) \frac{1}{T} d T=-\frac{1}{V} d V$
Eqn 23

Integrate Eqn 23 from state 2 to state 3 :

$$
\begin{equation*}
\left(\frac{1}{\gamma-1}\right) \operatorname{Ln}\left(T_{3} / T_{2}\right)=-\operatorname{Ln}\left(V_{3} / V_{2}\right) \tag{Eqn 24}
\end{equation*}
$$

Simplify algebraically :

$$
\begin{equation*}
\operatorname{Ln}\left(T_{3} / T_{2}\right)=\operatorname{Ln}\left(V_{2} / V_{3}\right)^{\gamma-1} \tag{Eqn 25}
\end{equation*}
$$

$$
\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{3}}\right)^{\gamma-1}
$$

Part b.) $\quad$ Substitute the ideal gas EOS in the form: $\quad \mathbf{V}=\frac{\mathbf{n R} \mathbf{T}}{\mathbf{P}}$
into the result from part (c), Eqn 26 to get:

$$
\frac{T_{3}}{T_{2}}=\left(\frac{n \mathcal{R} T_{2} / P_{2}}{n \mathcal{R} T_{3} / P_{3}}\right)^{\gamma-1}
$$

Cancelling terms in Eqn 28 yields: $\quad \frac{\mathbf{T}_{3}}{\mathbf{T}_{2}}=\left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{3}} \frac{\mathbf{P}_{\mathbf{3}}}{\mathbf{P}_{2}}\right)^{\gamma-1}$
Multiply through by $\left(\mathbf{T}_{3} / \mathbf{T}_{2}\right)^{1-\gamma}$ to get : $\quad\left(\frac{\mathbf{T}_{3}}{\mathbf{T}_{2}}\right)^{\gamma}=\left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}\right)^{\gamma-1}$

A little more algebra yields :

$$
\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}=\left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}\right)^{\frac{\gamma-1}{\gamma}}
$$

Eqn 30

Verify: The assumptions made in this solution cannot be verified with the given information.
Answers: Part a.) $\quad \mathrm{V}_{4} \mathrm{~V}_{2}=\mathrm{V}_{3} \mathrm{~V}_{1}$

$$
\begin{array}{ll}
\text { Part b.) } \frac{\mathbf{T}_{3}}{\mathbf{T}_{2}}=\left(\frac{\mathbf{V}_{2}}{\mathbf{V}_{3}}\right)^{\gamma-1} & \text { Part c.) } \frac{\mathbf{T}_{3}}{\mathbf{T}_{2}}=\left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}\right)^{\frac{\gamma-1}{\gamma}} \\
\hline
\end{array}
$$

Argon gas is compressed in a piston and cylinder device from 20 psia and $55^{\circ} \mathrm{F}$ to 120 psia . The compression is internally reversible and the helium behaves as an ideal gas with a constant heat capacity of $C_{P}=(5 / 2) R$.
Determine the work in Btu/lb $\mathrm{m}_{\mathrm{m}}$ and $\mathbf{\Delta S}$ in $\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathbf{R}$ and sketch the process path on both PV and TS Diagrams assuming the compression is...
a.) Polytropic with $\delta=1.5$
b.) Adiabatic
c.) Isothermal

Read: $\quad$ For part (a) start with the equation for PV work for internally reversible, polytropic processes for ideal gases. When determining $\Delta \mathbf{S}$ assume the heat capacity is constant. Since argon is monatomic use $\mathbf{C}_{\mathrm{p}}=(\mathbf{5 / 2}) \mathbf{R}$.

For part (b) determine work by applying an energy balance (where $\mathbf{Q}=\mathbf{0}$ ). Assume constant heat capacity $\Delta \mathbf{U}=\mathbf{C}_{\mathbf{V}} \Delta \mathbf{T}$ where $\mathbf{C}_{\mathbf{V}}=\mathbf{C}_{\mathbf{P}}-\mathbf{R}$ and $\mathbf{C}_{\mathrm{p}}=\mathbf{( 5 / 2 )} \mathbf{R}$. Determine $\mathbf{T}_{\mathbf{2}}$ from an entropy balance. Recall that internally reversible, adiabatic processes are also isentropic.

For part (c) start with the definition of PV work, substitute in the ideal gas EOS for pressure and integrate. Remember the process is isothermal (this simplifies the analysis of both the work and change in entropy).

| Given: | $\mathrm{P}_{1}$ | 20 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{~T}_{1}$ | 55 | ${ }^{\circ} \mathrm{F}$ |
|  |  | 514.67 | ${ }^{\circ} \mathrm{R}$ |

Find: $\quad$ Part (a) - (c) :
W
? Btu
$\Delta S$
120
$\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$
8.4
$l^{l} b_{m}$
Part (a) $\delta$
1.5

Diagram:




Assumptions:
As shown in the diagram, the system is the gas.
2- The gas is modeled as an ideal gas.
3- The compression is internally reversible.
4- Boundary work is the only form of work that crosses the system boundary.
5- Changes in kinetic and potential energies are negligible.
6 - Argon has a constant heat capacity of $C_{P}=(5 / 2) R$.

| $\mathbf{R}$ | 1.986 | Btu/lbmol- $^{\circ} \mathbf{R}$ |
| :---: | :---: | :--- |
| MW | 39.948 | $\mathbf{l b}_{\mathrm{m}} / \mathrm{lbmol}$ |

## Equations / Data / Solve:

Part a.) In part (a) we must determine the work and the change in entropy for a polytropic process.
For polytopic, internally reversible processes with ideal gases:

$$
\mathbf{W}_{12}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R}}{1-\delta}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)
$$

Eqn 1

The problem at this point is that we do not know $\mathbf{T}_{2}$. But, we do know that the process is polytropic !
In Lesson 7E we learned that :

$$
\mathbf{T}_{1} \mathbf{P}_{1}^{(1-\delta) / \delta}=\mathbf{T}_{\mathbf{2}} \mathbf{P}_{2}^{(1-\delta) / \delta}
$$

Eqn 2

Eqn 3
We can solve Eqn 2 for $\mathbf{T}_{\mathbf{2}}$ :

$$
T_{2}=T_{1}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(\delta-1) / \delta}
$$

Substitute Eqn 3 for $\mathbf{T}_{\mathbf{2}}$ into Eqn 1 and rearrange the result to get :

$$
\mathbf{W}_{12}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R T}_{1}}{1-\delta}\left(\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(\delta-1) / \delta}-1\right)
$$

Now, we can plug values into Eqns 12 \& 10 or Eqn 13 :

$\Delta \mathbf{S}$ can be determined by applying the 2nd Gibbs Equation for ideal gases:

$$
\Delta S=\frac{m}{M W} \int_{1}^{2} \widetilde{C}_{P} \frac{d T}{T}-\frac{m}{M W} R \operatorname{Ln}\left(\frac{P_{2}}{P_{1}}\right)
$$

If we assume the heat capacity is constant: $\quad \Delta S=\frac{\mathbf{m}}{\mathbf{M W}}\left[\widetilde{C}_{P} \operatorname{Ln} \frac{T_{2}}{T_{1}}-R \operatorname{Ln} \frac{P_{2}}{P_{1}}\right]$
Since argon is a montomic gas we can assume : $\quad \widetilde{\mathbf{C}}_{\mathrm{P}}^{0}=\mathbf{( 5 / 2 )} \mathbf{R}$

Subtituting $\mathbf{C}_{\mathbf{P}}$ and other values into Eqn 6 yields :

| $\mathrm{C}_{\mathrm{P}}$ | 4.965 | Btu/lbmol- ${ }^{\circ} \mathrm{R}$ |
| :---: | :---: | :---: |
| $\Delta$ S | -0.12471 | $\mathrm{Btu} /{ }^{\circ} \mathrm{R}$ |

Part b.) Here we must determine the work and the change in entropy for an adiabatic process.
The 1st Law for an adiabatic process with negligible changes in kinetic and potential energies is:

$$
\mathbf{W}_{12}=-\mathbf{m} \Delta \hat{U}_{12}
$$

We can evaluate the change in the internal energy using $\mathrm{C}_{\mathrm{v}}$ and :

$$
\Delta \hat{\mathbf{U}}_{12}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \hat{\mathbf{C}}_{\mathrm{V}}^{0} \mathrm{dT}
$$

Assuming the heat capacity is constant, Eqn 9 simplifies to :

$$
\begin{equation*}
\Delta \hat{U}_{12}=\hat{C}_{\mathrm{V}}^{\circ}\left(T_{2}-T_{1}\right)=\frac{\widetilde{\mathbf{C}}_{\mathrm{V}}^{\circ}}{M W}\left(T_{2}-T_{1}\right) \tag{Eqn 10}
\end{equation*}
$$

The following relationship applies to ideal gases :

$$
\begin{equation*}
\widetilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\widetilde{\mathbf{C}}_{\mathrm{V}}^{\circ}+\mathbf{R} \tag{Eqn 11}
\end{equation*}
$$

We can combine this with Eqn 7 to get :

$$
\widetilde{\mathbf{C}}_{P}^{\circ}=(3 / 2) R
$$

Eqn 12
$\mathrm{C}_{\mathrm{v}}$
2.979

Btu/lbmol- ${ }^{\circ}$ R
At this point, the only obstacle to using Eqns 18 \& 16 to evaluate $\mathbf{W}_{12}$ is that we do not know $\mathbf{T}_{\mathbf{2}}$.
We need to make use of the fact that the process is adiabatic and internally reversible to determine $\mathbf{T}_{2}$.
An adiabatic process that is also internally reversible is isentropic: $\quad \Delta \Delta \mathbf{S} \quad \mathbf{0} \quad \mathbf{B t u} /^{\circ} \mathbf{R}$
We can use this fact with the 2nd Gibbs Equation for ideal gases with constant heat capacities to determine $\mathrm{T}_{\mathbf{2}}$ as follows:

$$
\Delta S=\frac{m}{M W}\left[\widetilde{C}_{P} \operatorname{Ln} \frac{T_{2}}{T_{1}}-R \operatorname{Ln} \frac{P_{2}}{P_{1}}\right]
$$

Eqn 13

Solve Eqn 13 for $\mathbf{T}_{\mathbf{2}}$ using $\mathbf{\Delta S}=0$ :

$$
0=\frac{m}{M W}\left[\widetilde{C}_{P} \operatorname{Ln} \frac{T_{2}}{T_{1}}-R \operatorname{Ln} \frac{P_{2}}{P_{1}}\right]
$$

Eqn 14

$$
\begin{equation*}
\widetilde{C}_{P} \operatorname{Ln} \frac{T_{2}}{T_{1}}=R \operatorname{Ln} \frac{P_{2}}{P_{1}} \tag{Eqn 15}
\end{equation*}
$$

$\operatorname{Ln} \frac{T_{2}}{T_{1}}=\operatorname{Ln}\left(\frac{P_{2}}{P_{1}}\right)^{R / \tilde{C}_{P}}=\operatorname{Ln}\left(\frac{P_{2}}{P_{1}}\right)^{\left(\tilde{\mathrm{C}}_{P}-\tilde{\mathrm{C}}_{\mathrm{V}}\right) / \tilde{\mathrm{C}}_{P}}$
Hey, we already KNEW this ! $\quad \mathbf{T}_{\mathbf{2}}=\mathbf{T}_{\mathbf{1}}\left(\frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{P}_{\mathbf{1}}}\right)^{(\gamma-1) / \gamma}$
Eqn 17

Where :

$$
\begin{equation*}
\gamma=\frac{\tilde{\mathbf{C}}_{p}^{\circ}}{\tilde{\mathbf{C}}_{V}^{\circ}}=\frac{(5 / 2) R}{(5 / 2) R}=\frac{5}{3} \tag{Eqn 18}
\end{equation*}
$$

| $\gamma$ | 1.667 |  |
| :--- | :---: | :--- |
| $\mathrm{~T}_{2}$ | 1053.88 | ${ }^{\circ} \mathrm{R}$ |
| $\Delta \mathrm{U}_{12}$ | 40.21 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{W}_{12}$ | -337.76 | Btu |

Part c.) Determine the work from the definition of boundary work :

$$
\mathbf{W}_{12}=\int_{1}^{2} \mathbf{P d V}
$$

Eqn 19

For an ideal gas substitute $\mathbf{P}=\mathbf{n R T} / \mathbf{V}$ into Eqn 19 :

$$
\begin{equation*}
\mathbf{W}_{12}=\int_{1}^{2} \frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathrm{RT}}{\mathbf{V}} \mathrm{dV} \tag{Eqn 20}
\end{equation*}
$$

Integrate Eqn 2 (the process is isothermal, $\mathbf{T}_{1}=\mathbf{T}_{\mathbf{2}}=\mathbf{T}$ ) : $\quad \mathbf{W}_{12}=\frac{\mathbf{m}}{\mathbf{M W}} \mathbf{R T} \mathbf{L n} \frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}$
Eqn 21

We don't know $\mathbf{V}_{1}$ or $\mathbf{V}_{\mathbf{2}}$ but we can determine the values from the Ideal Gas EOS ( $\left.\mathbf{T}_{\mathbf{1}}=\mathbf{T}_{\mathbf{2}}=\mathbf{T}\right)$ :

$$
\begin{equation*}
\mathbf{V}_{1}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R T}}{\mathbf{P}_{1}} \quad \text { Eqn } 22 \quad \mathbf{V}_{2}=\frac{\mathbf{m}}{\mathbf{M W}} \frac{\mathbf{R T}}{\mathbf{P}_{2}} \tag{Eqn 23}
\end{equation*}
$$

Dividing Eqn 22 by Eqn 23 we obtain :

$$
V_{2} / V_{1}=P_{1} / P_{2}
$$

Eqn 24

Now, substitute Eqn 24 back into Eqn 21 to get :

$$
\mathbf{W}_{12}=\frac{\mathbf{m}}{\mathbf{M W}} \operatorname{RT} \operatorname{Ln} \frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}
$$

Eqn 25

Plug values into Eqn 25 :

$$
\begin{array}{lll}
\hline W_{12} & -385.10 & B t u \\
\hline
\end{array}
$$

$\Delta \mathbf{S}$ can be determined by applying the 2nd Gibbs Equation for ideal gases:

$$
\Delta S=\frac{\mathrm{m}}{\mathrm{MW}} \int_{1}^{2} \widetilde{\mathrm{C}}_{\mathrm{P}} \frac{\mathrm{dT}}{\mathrm{~T}}-\frac{\mathrm{m}}{\mathrm{MW}} \mathrm{R} \operatorname{Ln}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

For an isothermal process Eqn 26 reduces to:

$$
\Delta S=-\frac{\mathbf{m}}{\mathbf{M W}} \operatorname{RLn}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)
$$

Now, we can plug values into Eqn 27 :
$\Delta S \quad-0.74824$
Verify: The ideal gas assumption needs to be verified.
We need to determine the specific volume at each state and check if

$$
\widetilde{\mathrm{V}}>80 \mathrm{ft}^{3} / \mathrm{lbmol}
$$

(Argon is a noble gas).
Solving the Ideal Gas EOS for molar volume yields :

$$
\widetilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Use: $\quad \mathbf{R}$
10.7316 psia-ft ${ }^{3} /$ Ibmol $^{\circ}{ }^{\circ}$ R

$$
\begin{aligned}
& V_{1}=V_{2 C} \\
& V_{2 A}
\end{aligned}
$$

$$
276.16 \quad \mathrm{ft}^{3} / \mathrm{lbmol}
$$

$$
83.64
$$

$$
94.25 \mathrm{ft}^{3} / l \mathrm{bmol}
$$

The specific volume at each state is greater than $\mathbf{8 0} \mathrm{ft}^{3} / \mathrm{lbmol}$, therefore the ideal gas assumption is reasonable.

Answers: a.)

| $\mathrm{W}_{12}$ | -351 | Btu <br> $\Delta \mathrm{S}$ |
| :---: | :---: | :---: |
| -0.125 | $\mathrm{Btu} /{ }^{\circ} \mathrm{R}$ |  | C

The isentropic process requires the least work!

The isothermal process requires the most work!

How can $\boldsymbol{\Delta S}$ be negative in parts (a) and (c)?
Heat transfer from the system to the surroundings occurs. So, although $\Delta \mathbf{S}_{\text {system }}<\mathbf{0}, \Delta \mathbf{S}_{\text {surr }}>\mathbf{0}$ by an even larger amount so that $\boldsymbol{\Delta} \mathbf{S}_{\text {universe }}>\mathbf{0}$ and the 2nd Law is not violated.

## 7E-4

Performance of an Ideal Gas Cycle
10 pts
An ideal gas contained in a piston-and-cylinder device undergoes a thermodynamic cycle made up of three quasi-equilibrium processes.
Step 1-2: Adiabatic compression from $20^{\circ} \mathrm{C}$ and 110 kPa to 400 kPa
Step 2-3: Isobaric cooling
Step 3-1: Isothermal expansion
a.) Carefully draw this process in a traditional piston-and-cylinder schematic
b.) Sketch the process path for this cycle on a PV Diagram.

Put a point on the diagram for each state and label it. Be sure to include and label all the important features for a complete
PV $\Delta$ iagram for this system
c.) Calculate Q, W, $\mathbf{\Delta U}$ and $\Delta \mathbf{H}$, in $\mathrm{J} / \mathrm{mole}$,
for each step in the process and for the entire cycle. Assume that $C_{P}=(\mathbf{5 / 2}) \mathbf{R}$.
d.) Is this cycle a power cycle or a refrigeration cycle? Explain. Calculate the thermal efficiency or COP of the cycle, whichever is appropriate.

Read: Sketch carefully. Understanding what is going on in the problem is half the battle. Apply the 1st Law, the definitions of boundary work, $\mathbf{C}_{\mathrm{P}}$ and $\mathbf{C}_{\mathrm{v}}$ to a cycle on an ideal gas with constant heat capacities. Take advantage of the fact that step 1-2 is both adiabatic and reversible, so it is isentropic. Power cycles produce a net amount of work and proceed in a clock-wise direction on a PV Diagram.

Given:

| $\mathrm{T}_{1}$ | 20 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :--- |
|  | 293.15 | K |
| $\mathrm{~T}_{3}$ | 20 | ${ }^{\circ} \mathrm{C}$ |
|  | 293.15 | K |
| $\mathbf{Q}_{12}$ | 0 | $\mathrm{~J} /$ mole |


| $\mathrm{P}_{1}$ | 110 | kPa |
| :--- | :---: | :--- |
| $\mathrm{P}_{2}$ | 400 | kPa |
| $\mathrm{P}_{3}$ | 400 | kPa |
| R | 8.314 | $\mathrm{~J} / \mathrm{mole-K}$ |
| $\mathrm{C}_{\mathrm{P}}$ | 20.785 | $\mathrm{~J} /$ mole-K |
|  |  |  |
| $\Delta \mathrm{U}$ | $? ? ?$ | $\mathrm{~J} /$ mole |
| $\Delta \mathrm{H}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mole}$ |
| $\mathbf{Q}$ | $? ? ?$ | $\mathrm{~J} / \mathrm{mole}$ |
| W | $? ? ?$ | $\mathrm{~J} /$ mole |

Diagram:
Part a.)


Part b.)


Assumptions:

1 -
2 -
3 -
4 -
5 -

Step 1-2 is adaibatic, Step 2-3 is isobaric, Step 3-1 is isothermal.
The entire cycle and all of the steps in the cycle are internally reversible. Changes in kinetic and potential energies are negligible.
Boundary work is the only form of work interaction during the cycle.
The PVT behavior of the system is accurately described by the ideal gas EOS.

## Equations / Data / Solve:

Part c.) Let's begin by analyzing step 1-2, the adiabatic compression.
Begin by applying the 1st Law for closed systems to each step in the Carnot Cycle. Assume that changes in kinetic and potential energies are negligible.

$$
\tilde{\mathbf{W}}_{12}=-\Delta \tilde{\mathbf{U}}=\tilde{\mathbf{U}}_{1}-\tilde{\mathbf{U}}_{2}
$$

Because internal energy is not a function of pressure for an ideal gas, we can determine $\Delta \mathbf{U}$ by integrating the equation which defines the constant volume heat capacity. The integration is simplified by the fact that the heat capacity for the gas in this problem has a constant value.
$\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}=\left(\frac{\mathbf{d} \tilde{\mathbf{U}}}{\mathrm{dT}}\right)_{v}$
Eqn 2

$$
\tilde{\mathbf{U}}_{1}-\tilde{\mathbf{U}}_{2}=\int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \tilde{\mathbf{C}}_{\mathrm{v}}^{\circ} \mathrm{dT}=\tilde{\mathbf{C}}_{\mathrm{v}}^{\circ}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \quad \text { Eqn 3 }
$$

Combining Eqns $1 \& 3$ yields:

$$
\tilde{\mathbf{W}}_{12}=\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)
$$

The problem is that we do not know $\mathbf{T}_{2}$. So, our next task is to determine $\mathbf{T}_{2}$.
Since the entire cycle is reversible and this step is also adiabatic, this step is isentropic.
The fastest way to determine $\mathbf{T}_{2}$ is to use one of the PVT relationships for isentropic processes.

Solve Eqn 5 for $\mathrm{T}_{2}$ :

$$
\begin{equation*}
\mathbf{T}_{1} \mathbf{P}_{1}^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{2} \mathbf{P}_{2}^{\frac{1-\gamma}{\gamma}} \tag{Eqn 5}
\end{equation*}
$$

$$
\mathbf{T}_{2}=\mathbf{T}_{1}\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{\frac{1-\gamma}{\gamma}}
$$

Now, we need to evaluate $\gamma$ :

$$
\gamma=\frac{\tilde{\mathbf{C}}_{\mathrm{P}}^{\circ}}{\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}}
$$

But for ideal gases :

$$
\tilde{\mathbf{C}}_{\mathrm{P}}^{\circ}=\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}+\mathbf{R}
$$

Solving Eqn 8 for $\mathbf{C}_{\mathbf{v}}$ yields :

$$
\tilde{\mathbf{c}}_{v}^{\circ}=\tilde{\mathbf{C}}_{\mathrm{p}}^{\circ}-\mathbf{R}
$$

Now, plug values into Eqn 5 to get $\mathbf{T}_{2}$ and plug that into Eqn 4 to get $\mathbf{W}_{12}: \mathbf{T}_{\mathbf{2}}$ $W_{12}$ $\Delta \mathbf{U}_{12}$
491.31 K
-2471.3 J/mole
$2471.3 \mathrm{~J} / \mathrm{mole}$

Now, we can get $\Delta \mathrm{H}$ from its definition :

$$
\Delta \tilde{\mathrm{H}}=\Delta \tilde{\mathrm{U}}+\Delta(\tilde{\mathrm{P}})
$$

But, the gas is an ideal gas:

$$
\mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T}
$$

Combining Eqns $10 \& 11$ gives us :

$$
\Delta \tilde{H}=\Delta \tilde{U}+R\left(T_{2}-T_{1}\right)
$$

Eqn 11

Eqn 12

Now, we can plug values into Eqn 12 :
$\Delta \mathrm{H}_{12}$
$4118.8 \mathrm{~J} / \mathrm{mole}$
Next, let's analyze step 2-3, isobaric cooling.

| $\mathrm{T}_{2}$ | 491.31 | K |
| :--- | :--- | :--- |
| $\mathrm{~T}_{3}$ | 293.15 | K |

The appropriate form of the 1 st Law is:

$$
\tilde{\mathbf{Q}}_{23}-\tilde{\mathbf{W}}_{23}=\Delta \tilde{\mathbf{U}}_{23}
$$

Eqn 13
Because we assumed that boundary work is the only form of work that crosses the system boundary, we can determine work from its definition.

$$
\tilde{\mathbf{W}}_{23}=\int_{2}^{3} \mathbf{P d} \mathbf{d} \tilde{\mathbf{V}} \quad \text { Eqn } 14 \quad \text { process: } \quad \tilde{\mathbf{W}}_{23}=\mathbf{P}\left(\tilde{\mathbf{V}}_{3}-\tilde{\mathbf{V}}_{2}\right)
$$

Eqn 15

Because the system contains and ideal gas:

$$
\tilde{\mathbf{W}}_{23}=\mathbf{R}\left(\mathbf{T}_{3}-\mathbf{T}_{2}\right)
$$

Eqn 16
$\mathrm{W}_{23} \quad-1647.5 \mathrm{~J} / \mathrm{mole}$

Next we can calculate $\Delta \mathbf{U}$ by applying Eqn 3 to step 2-3:

$$
\begin{equation*}
\tilde{\mathbf{U}}_{3}-\tilde{\mathbf{U}}_{2}=\tilde{\mathbf{C}}_{\mathrm{V}}^{\circ}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \tag{Eqn 17}
\end{equation*}
$$

$\Delta \mathbf{U}_{23}$

$$
\tilde{\mathbf{Q}}_{23}=\tilde{\mathbf{W}}_{23}+\Delta \tilde{\mathrm{U}}_{23}
$$

-2471.3 J/mole

Eqn 18
Now, solve Eqn 13 to determine $\mathbf{Q}_{23}$ :

$$
\mathbf{Q}_{23}
$$

$$
-4118.8 \mathrm{~J} / \mathrm{mole}
$$

Now, we apply Eqn 12 to step 2-3 to determine $\Delta \mathbf{H}$ :

$$
\begin{equation*}
\Delta \tilde{H}=\Delta \tilde{\mathbf{U}}+\mathbf{R}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=\Delta \tilde{\mathbf{U}}_{+} \tilde{\mathbf{W}}_{23}=\tilde{\mathbf{Q}}_{23} \tag{Eqn 19}
\end{equation*}
$$

$\Delta H_{23}$
-4118.8 J/mole
Next, we analyze step 3-1, isothermal expansion.
For ideal gases, $\mathbf{U}$ and $\mathbf{H}$ are functions of $\mathbf{T}$ only. Therefore :
$\Delta \mathbf{U}_{31}$
$\Delta \mathbf{H}_{31}$
$0.0 \quad \mathrm{~J} / \mathrm{mole}$
$0.0 \mathrm{~J} / \mathrm{mole}$

The appropriate form of the 1st Law is:

$$
\tilde{\mathbf{Q}}_{31}-\tilde{\mathbf{W}}_{31}=\Delta \tilde{\mathbf{U}}_{31}
$$

But since $\boldsymbol{\Delta} \mathbf{U}_{31}=\mathbf{0}$, Eqn 20 becomes :

$$
\begin{equation*}
\tilde{\mathbf{Q}}_{31}=\tilde{\mathbf{W}}_{31} \tag{Eqn 21}
\end{equation*}
$$

Again, because we assumed that boundary work is the only form of work that crosses the system boundary, we can determine work from its definition.

$$
\begin{equation*}
\tilde{\mathbf{W}}_{31}=\int_{3}^{1} \mathbf{P d} \tilde{\mathbf{V}} \quad \text { Eqn } 22 \quad \text { |deal Gas EOS: } \quad \mathbf{P} \tilde{\mathbf{V}}=\mathbf{R} \mathbf{T} \tag{Eqn 23}
\end{equation*}
$$

Solve Eqn 23 for $\mathbf{P}$ and substitute the result into Eqn 22 to get :


Eqn 24

$$
\tilde{\mathbf{W}}_{31}=\int_{3}^{1} \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{v}}} \mathbf{d} \tilde{\mathbf{V}}
$$

Eqn 25

Integrating Eqn 25 yields :

$$
\tilde{\mathbf{W}}_{31}=\mathbf{R} \mathbf{T}_{1} \mathbf{L n}\left[\begin{array}{l}
\tilde{\mathbf{v}}_{1} \\
\tilde{\mathbf{V}}_{3}
\end{array}\right]
$$

Eqn 26

We can use the Ideal Gas EOS to avoid calculating $\mathbf{V}_{1}$ and $\mathbf{V}_{\mathbf{3}}$ as follows:

Apply Eqn 23 to both states 3 and 1 :

$$
\frac{\mathbf{P}_{1} \tilde{\mathbf{V}}_{1}=\mathbf{R} \mathbf{T}_{1}}{\mathbf{P}_{3} \tilde{\mathbf{V}}_{3}=\mathbf{R} \mathbf{T}_{3}}
$$

Cancelling terms and rearranging leaves:

$$
\begin{equation*}
\frac{\tilde{\mathbf{V}}_{1}}{\tilde{\mathbf{V}}_{3}}=\frac{\mathbf{P}_{3}}{\mathbf{P}_{1}} \tag{Eqn 28}
\end{equation*}
$$

Use Eqn 27 to eliminate the V's from Eqn 25 :

$$
\begin{equation*}
\tilde{\mathbf{W}}_{31}=\mathbf{R} \mathrm{T}_{1} \operatorname{Ln}\left[\frac{\mathbf{P}_{3}}{\mathbf{P}_{1}}\right] \tag{Eqn 29}
\end{equation*}
$$

Now, plug values into Eqn 28 and then Eqn 20 :

$$
\begin{array}{lll}
\mathrm{W}_{31} & 3146.5 & \mathrm{~J} / \mathrm{mole} \\
\mathrm{Q}_{31} & 3146.5 & \mathrm{~J} / \mathrm{mole}
\end{array}
$$

Finally, we can calculate $\mathbf{Q}_{\text {cycle }}$ and $\mathbf{W}_{\text {cycle }}$ from :

$$
\tilde{\mathbf{W}}_{\text {cycle }}=\tilde{\mathbf{W}}_{12}+\tilde{\mathbf{W}}_{23}+\tilde{\mathbf{W}}_{31} \quad \text { Eqn } 30
$$

Plugging values into Eqns 29 \& 30 yields :

$$
\tilde{\mathbf{Q}}_{\text {cycle }}=\tilde{\mathbf{Q}}_{12}+\tilde{\mathbf{Q}}_{23}+\tilde{\mathbf{Q}}_{31}
$$

$$
\begin{aligned}
& \mathbf{W}_{\text {cycle }} \\
& \mathbf{Q}_{\text {cycle }}
\end{aligned}
$$ -972.3 J/mole -972.3 J/mole

This result confirms what an application of the 1st Law to the entire cycle tells us: $\mathbf{Q}_{\text {cycle }}=\mathbf{W}_{\text {cycle }}$

Part d.) The cycle is a refrigeration cycle because both $\mathbf{W}_{\text {cycle }}$ and $\mathbf{Q}_{\text {cycle }}$ are negative.
The coefficient of performance of a refrigeration cycle is defined as :

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{R}}=\frac{\tilde{\mathbf{Q}}_{\mathrm{c}}}{\tilde{\mathbf{W}}} \tag{Eqn 32}
\end{equation*}
$$

$\mathbf{Q}_{\mathbf{C}}$ is the heat absorbed by the system during the cycle. In this case, $\mathbf{Q}_{\mathbf{C}}=\mathbf{Q}_{\mathbf{3 1}}$.
$\mathbf{W}$ is the net work input to the system during the cycle. In this case, $\mathbf{W}=-\mathbf{W}_{\text {cycle }}$.
Therefore:
$3146.5 \mathrm{~J} / \mathrm{mole}$
$972.3 \mathrm{~J} / \mathrm{mole}$
Plug values into Eqn 31 to get:
$\mathrm{COP}_{\mathrm{R}}$
3.236

Verify: The ideal gas assumption needs to be verified.

$$
\begin{equation*}
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}} \tag{Eqn 33}
\end{equation*}
$$

We need to determine the specific volume at each state and check if :

$$
\tilde{\mathrm{V}}>5 \mathrm{~L} / \mathrm{mol}
$$

| $\mathrm{V}_{1}$ | 22.16 | $\mathrm{~L} / \mathrm{mol}$ |
| :---: | :---: | :---: |
| $\mathrm{V}_{2}$ | 10.21 | $\mathrm{~L} / \mathrm{mol}$ |
| $\mathrm{V}_{3}$ | 6.09 | $\mathrm{~L} / \mathrm{mol}$ |

The specific volume at each state is greater than $\mathbf{5 L / m o l}$ for all states and the working fluid is a diatomic gas, so the ideal gas assumption is valid.

Answers: a.)
See diagram above.
b.)

See diagram above.
c.)

| Step | $\Delta U$ | $\Delta H$ | $\mathbf{Q}$ | $\mathbf{W}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | All values in |  |  |  |
| $1-2$ | 2471 | 4119 | $\mathbf{0}$ | -2471 |
| $2-3$ | -2471 | -4119 | -4119 | -1648 |
| this table |  |  |  |  |
| $3-1$ | 0 | 0 | 3146 | 3146 |
| are in |  |  |  |  |
| Cycle | 0 | 0 | -972 | -972 |

d.) Refrigeration or Heat Pump Cycle.

| $\mathrm{COP}_{\mathrm{R}}$ | 3.2 | COP $_{\mathrm{HP}}$ |
| :--- | :--- | :--- |

## Consider the internally reversible ammonia compressor shown below. The compression process is polytropic with

 $\delta=1.27$.

Determine $\mathbf{W}_{\mathbf{s}}$ and $\mathbf{Q}$ in $\mathbf{k W}$.

Read: The path equation given in the problem statement tells you that the compression process follows a polytropic path with $\delta=1.27$. All the properties of state 1 can be determined using the Ammonia Tables or the NIST Webbook. The polytropic path equation allows us to determine the specific volume at state 2 . This is the 2nd known intensive property at state 2 , so we can evaluate the other properties using the Ammonia Tables or the NIST Webbook. Determine the shaft work based on the polytropic path and then apply the 1st Law to evaluate $\mathbf{Q}$.

Given:

| $\mathrm{P}_{1}$ | 140 | kPa |
| :--- | :---: | :--- |
| $\mathrm{V}_{1, \text { dot }}$ | 25 | $\mathrm{~L} / \mathrm{s}$ |
| $\mathrm{x}_{1}$ | 1 | $\mathrm{~kg} \mathrm{vap} / \mathrm{kg}$ |
| $\mathrm{P}_{2}$ | 750 | kPa |
| $\delta$ | 1.27 |  |

a.)
( $\left.W_{s}\right)_{\text {int rev }}$
???
kW
b.)
Q
???
kW

Find:
1 -
1- The compressor operates at steady-state.
2 - $\quad$ Changes in kinetic and potential energies are negligible.
3 - The compression is internally reversible.
4- The compression process follows a polytropic process path with $\delta=1.08$.
5- Shaft work and flow work are the only forms of work that cross the system boundary.

## Equations / Data / Solve:

Part a.) Work for an internally reversible, polytropic process is given by :

$$
\left(\dot{\mathbf{W}}_{\mathrm{s}}\right)_{\text {int rev }}=-\dot{\mathbf{m}} \frac{\delta}{\delta-1}\left[\mathbf{P}_{2} \hat{\mathbf{V}}_{2}-\mathbf{P}_{1} \hat{\mathbf{V}}_{1}\right]
$$

We can determine the mass flow rate from the volumetric flow rate using:

$$
\dot{\mathbf{m}}=\frac{\dot{\mathbf{V}}_{1}}{\hat{\mathbf{V}}_{1}}
$$

We can use the Ammonia Tables or the NIST Webbook to evaluate $\mathbf{V}_{\mathbf{1}}$ because it is a saturated vapor at a known pressure of 140 kPa .

| $\mathbf{T}_{1}-26.682$ | ${ }^{\circ} \mathrm{C}$ | $\mathrm{V}_{1}$ | 0.83074 | $\mathrm{~m}^{3} / \mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathrm{H}_{1}$ | 1409.0 | $\mathrm{~kJ} / \mathrm{kg}$ |
| Next, plug values back into Eqn 2 : | $\mathrm{m}_{\text {dot }}$ | 0.0301 | $\mathrm{~kg} / \mathrm{s}$ |  |

Now, we need to determine $\mathbf{V}_{2}$. We can make use of the fact that the compression process follows a polytropic process path with $\delta=1.08$.

$$
\mathbf{P}_{2} \hat{\mathbf{V}}_{2}^{\delta}=\mathbf{P}_{1} \hat{\mathbf{V}}_{1}^{\delta}
$$

Solve Eqn 3 for $\mathbf{V}_{2}$ :

$$
\begin{equation*}
\hat{\mathbf{V}}_{2}=\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{1 / \delta} \hat{\mathbf{V}}_{1} \tag{Eqn 4}
\end{equation*}
$$

Now, we can plug numbers into Eqn 4 and then Eqn 1 to complete this part of the problem.

|  | 0.22156 | $\mathrm{~m}^{3} / \mathrm{kg}$ | $\left(\mathrm{W}_{\mathrm{s}}\right)_{\text {int rev }}$ | -7.059 | kW |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Part b.) To determine the heat transfer rate for the compressor, we must apply the 1st Law for steady-state, SISO processes. For this compressor, changes in kinetic and potential energies are negligible and only flow work and shaft work cross the system boundaries. The appropriate form of the 1st Law for this compressor is :

$$
\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}\right)
$$

We can solve Eqn 5 for the heat transfer rate:

$$
\dot{\mathbf{Q}}=\dot{\mathbf{W}}_{\mathbf{s}}+\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}\right)
$$

Eqn 6

In part (a) we evaluated all of the unknowns on the right-hand side of Eqn 6 except $\mathbf{H}_{\mathbf{2}}$. So, now we need to evaluate $\mathbf{H}_{2}$.
For state 2, we know the values of two intensive properties: $\mathbf{P}_{\mathbf{2}}$ and $\mathbf{V}_{\mathbf{2}}$. Therfore, we can use the Ammonia Tables or the NIST Webbook to evaluate any other properties of interest, in this case, $\mathbf{H}_{2}$.
$\begin{array}{lll}\text { We begin by determining the phases present. } & \text { At } P=750 \mathrm{kPa}: & V_{\text {sat liq }} \\ \mathrm{V}_{\text {sat vap }} & 0.0016228 \mathrm{~m}^{3} / \mathrm{kg} \\ 0.169798 \mathrm{~m}^{3} / \mathrm{kg}\end{array}$
Since $\mathbf{V}_{\mathbf{2}}>\mathrm{V}_{\text {sat vap }}$, state $\mathbf{2}$ is a superheated vapor.

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: |
| 75 | 0.21661 | 1611.9 |
| $\mathrm{~T}_{2}$ | 0.22156 | $\mathrm{H}_{2}$ |
| 100 | 0.23469 | 1672.2 |


| $\mathrm{T}_{2}$ | 81.85 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :--- |
| $\mathrm{H}_{2}$ | 1628.4 | $\mathrm{~kJ} / \mathrm{kg}$ |

Finally, we can plug values back into Eqn 5 to evaluate $\mathbf{Q}$ and complete this problem:

| $\mathbf{Q}$ | -0.4586 | kW |
| :--- | :--- | :--- |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.)
b.)

| $\left(W_{s}\right)_{\text {int rev }}$ | -7.06 | kW |
| :---: | :---: | :---: |
| $\mathbf{Q}$ | -0.459 | kW |



## Thermodynamics

 of Flow ProcessesThe concept of entropy generation allows us to write entropy balance equations for both closed and open systems. Combination of the 1st and 2nd Laws and the 2nd Gibbs Equation leads to the Mechanical Energy Balance Equation, the Bernoulli Equation and a surprising relationship between shaft work, pressure and volume. Equations are derived for the shaft work of various polytropic processes.

This leads to the definition of isentropic efficiencies for turbines, nozzles and compressors. Isentropic efficiency is best visualized on an HS Diagram. Multi-stage compression with intercooling is discussed and represented on an HS Diagram.

The utility of the concept of entropy generation lies in its relationship to lost work. Equations relating entropy generation to lost work are derived for processes and cycles. Second Law Efficiency of a process is defined and discussed.

## Entropy Balance: Closed System

\author{

- $1^{\text {st }}$ Law: <br> $\mathbf{d U}=\delta \mathbf{Q}-\delta \mathbf{W}$ <br> - $2^{\text {nd }}$ Law, Internally Reversible Processes: <br> $\delta Q=\mathbf{T d S}$ <br> - Boundary Work, Internally Reversible Processes: <br> $W_{b}=\mathbf{P d V}$ <br> - Gibbs $1^{\text {st }}$ Equation: <br> $\mathbf{d U}=\mathbf{T d S}-\mathbf{p d V}$ <br> - Entropy Balance Equation <br> $\diamond$ Integral Form: <br> $\mathbf{S}_{2}-\mathbf{S}_{1}=\int_{1}^{2} \frac{\delta \mathbf{Q}}{\mathbf{T}}+\mathbf{S}_{\mathrm{gen}}$ <br> $\diamond$ Differential Form: <br> $\mathbf{d S}=\frac{\delta \mathbf{Q}}{\mathbf{T}}+\delta \mathbf{S}_{\text {gen }}$ <br> $\diamond$ Rate Form: <br> $\frac{\mathrm{dS}}{\mathrm{dt}}=\frac{\dot{\mathbf{Q}}}{\mathbf{T}}+\dot{\mathbf{S}}_{\text {gen }}$
}
- We start with closed systems, just to be thorough. The interesting application of the 2nd Law is for open systems.
- This is a quick run down of all the equations that apply to closed systems.
- The new part is the entropy balance equation.
- The integral form is the one we will use most for closed systems.
- It is essentially the definition of entropy generation.
- It is not really new.
- The rate form is a nice lead in to entropy balances on open systems.


## Entropy Balance: Open System

- General:

$$
\frac{\mathbf{d S}}{\mathbf{d y}}=\sum^{\text {inlets }} \dot{\mathbf{m}}_{\text {in }} \hat{\mathbf{S}}_{\text {in }}-\sum^{\text {outlets }} \dot{\mathbf{m}}_{\text {out }} \hat{\mathbf{S}}_{\text {out }}+\sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\text {sys }}}+\dot{\mathbf{S}}_{\text {gen }}
$$

- Steady-state, SISO:

$$
\dot{\mathbf{m}}\left(\hat{\mathbf{S}}_{\text {out }}-\hat{\mathbf{S}}_{\mathrm{in}}\right)=\sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\mathrm{sys}}}+\dot{\mathbf{S}}_{\mathrm{gen}}
$$

- Entropy generation within the system:

$$
\dot{\mathbf{S}}_{\mathrm{gen}}=\dot{\mathbf{m}}\left(\hat{\mathbf{S}}_{\text {out }}-\hat{\mathbf{S}}_{\mathrm{in}}\right)-\sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\mathrm{sys}}}
$$

- The general entropy balance equation can be simplified a great deal for a SISO system operating at steady-state.
- Often, our objective is to determine the rate of entropy generation in a system.
- You will see why this is a key quantity later in this chapter.
- It is very important to realize that this is ONLY the entropy generation within the system.
- What about the reservoirs and the surroundings ?
- Irreversible heat exchange leads to additional external entropy generation.
- The general form of the entropy balance equation states that the entropy of the system changes for four different reasons.
- Mass entering and leaving the system carries entropy with it.
- The rate at which the entropy of the system changes as a result is equal to the rate at which mass flow carries entropy into the system minus the rate at which mass flow carries entropy out of the system.
- Heat transfer to and from the system results in a change in the entropy of the system.
- Each place in the system where heat transfer occurs changes the entropy of the system at a rate of $\mathbf{Q}_{\text {dot }} / \mathbf{T}$, where $\mathbf{T}$ is the temperature of the system at the particular location where heat transfer occurs.
- The net rate at which heat transfer changes the entropy of the system is the sum of all the individual $\mathbf{Q}_{\text {dot }} / T$ terms. For example: $\mathbf{Q}_{\mathbf{H}} / \mathbf{T}_{\mathrm{sys}, \mathbf{H}}-\mathbf{Q}_{\mathbf{C}} /$ $\mathbf{T}_{\text {sys, }}$ for a heat engine with an evaporator operating at $\mathbf{T}_{\mathrm{sys}, \mathrm{H}}$ and a condenser operating at $\mathbf{T}_{\text {sys, }}$.
- Note: These T's are the temperatures within the system and NOT the temperatures of the


## $1^{\text {st }}$ Law and Entropy

## - $\mathbf{1}^{\text {st }}$ Law, Steady-state,

Internally Reversible, SISO:

$$
\begin{aligned}
& \dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\text {not } \mathrm{b}}=\dot{\mathbf{m}}\left[\Delta \mathbf{H}+\frac{\Delta \mathbf{v}^{2}}{2 \mathrm{~g}_{\mathrm{c}}}+\frac{\mathrm{g}}{\mathbf{g}_{\mathrm{C}}} \Delta \mathrm{z}\right] \\
& -\frac{\dot{\mathbf{W}}_{\text {not }}}{\dot{\mathbf{m}}}=-\frac{\dot{\mathbf{Q}}}{\dot{\mathbf{m}}}+\left[\Delta \mathbf{H}+\frac{\Delta \mathbf{v}^{2}}{2 \mathbf{g}_{\mathrm{c}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{c}}} \Delta \mathbf{z}\right]
\end{aligned}
$$

- From the definition of entropy:

$$
\hat{\mathbf{Q}}=\frac{\dot{\mathbf{Q}}}{\dot{\mathbf{m}}}=\int_{\text {in }}^{\text {out }} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}
$$

- Gibbs $2^{\text {nd }}$ Equation: $\mathbf{T d} \hat{\mathbf{S}}=\mathbf{d} \hat{\mathbf{H}}-\hat{\mathbf{V}} \mathbf{d P}$
- Integrating for an open system:
- When we apply the 1 st Law to a SISO, internally reversible, steady-state process, the work term includes all forms of work OTHER THAN boundary work.
- In this course, that usually this means shaft work.
- Our goal here is to derive an equation that will let us determine the shaft work for the process, so we begin by solving for $\mathbf{W}_{\text {not }}$.
- We divide by m-dot to get the specific work on the left-hand side of the equation.
- The heat transfer is the key that connects the 1st Law to the 2nd Law.
- We can manipulate the definition of entropy and use it to eliminate Q from the 1st Law.
- Then, we can use Gibbs 2nd Equation to express $\mathbf{T} \mathbf{d S}$ as $\mathbf{d H} \mathbf{- V} \mathbf{d P}$.
- This helps us get S out of the equation. This is a good thing because entropy is notoriously difficult to measure.
- On the next slide, we put all of these equations together to eliminate $\mathbf{Q}$ and then $\mathbf{S}$.


## Mechanical Energy Balance Equation

- Combine all the equations from the previous slide:
$-\frac{\dot{\mathbf{W}}_{\text {not b }}}{\dot{\mathbf{m}}}=-\left[\Delta \hat{\boldsymbol{H}}-\int_{\text {in }}^{\text {out }} \hat{\mathbf{V}} \mathrm{dP}\right]+\left[\Delta \boldsymbol{A}+\frac{\Delta \mathrm{v}^{2}}{2 \mathrm{~g}_{\mathrm{C}}}+\frac{\mathrm{g}}{\mathrm{g}_{\mathrm{C}}} \Delta \mathrm{z}\right]$
- The MEBE:

$$
\left.-\frac{\dot{\mathbf{W}}_{\text {notb }}}{\dot{\mathbf{m}}}=\int_{\text {in }}^{\text {out }} \hat{\mathbf{V}} \mathbf{d P}+\frac{\Delta \mathbf{v}^{2}}{2 \mathrm{~g}_{\mathrm{C}}}+\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}} \Delta \mathrm{z} \right\rvert\, \begin{aligned}
& \text { Reversible } \\
& \text { Steady-State } \\
& \text { SISO }
\end{aligned}
$$

- If $\mathbf{W}_{\text {not } b}=0$ :

$$
\mathbf{0}=\int_{\text {in }}^{\text {out }} \hat{\mathbf{V}} \mathrm{dP}+\frac{\Delta \mathbf{v}^{2}}{2 \mathrm{~g}_{\mathrm{C}}}+\frac{\mathrm{g}}{\mathbf{g}_{\mathrm{C}}} \Delta \mathrm{z}
$$

Bernoulli Equation

$$
0=\frac{\Delta P}{\rho}+\frac{\Delta v^{2}}{2 g_{C}}+\frac{g}{g_{C}} \Delta z
$$

Bernoulli Equation (incompressible fluid)

- If $\Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\mathrm{pot}}=0$ :

$$
-\frac{\dot{\mathbf{W}}_{\text {not }}}{\frac{\dot{\mathbf{m}}}{}}=-\hat{\mathbf{W}}_{\text {notb }}=\int_{\text {in }}^{\text {out }} \hat{\mathbf{V}} \mathbf{d P}
$$

Usually, $\mathbf{W}_{\text {not b }}=\mathbf{W}_{\text {sh }}$

- This is a surprising and all too often confusing result.
- Look at it VERY carefully.
$\checkmark$ It says that the specific non-boundary (usually SHAFT) work is equal to the integral of $\mathbf{V}_{\text {hat }} \mathbf{d P}$ from the inlet to the outlet pressure.
$\diamond$ This is CONFUSING sometimes because we found a similar looking result earlier in this course:
- Specific BOUNDARY work is the integral of $\mathbf{P} \mathbf{d} \mathbf{V}_{\text {hat }}$.
$\diamond$ This is NOT a typo!
$\diamond$ What does this result look like on a PV Diagram?
- The first cool thing that happens is that $\Delta \mathbf{H}$ drops out.
$\diamond$ This is good because $\mathbf{H}$ is also a bit difficult to measure.
- The result is the Mechanical Energy Balance Equation or MEBE.
$\diamond$ This is a very useful equation in fluid mechanics.
- But it does not take friction into account because we started this analysis by assuming that the process was internally reversible.
- Another famous equation is the Bernoulli Equation.
$\diamond$ It is just the MEBE with no work at all.
$\diamond$ Bernoulli is especially useful for analyzing flow in pipes.
$\checkmark$ If the fluid flowing through the pipes is an incompressible liquid, then Bernoulli can be simplified even further.
- In this case it is customary to use

$$
\rho=1 / V_{\text {hat }}
$$

- The result that we will use most frequently in this course applies when changes in kinetic and potential energies are negligible.


## Shaft Work and PV Diagrms

$-\frac{\dot{\mathbf{W}}_{\text {sh }}}{\dot{\mathbf{m}}}=-\hat{\mathbf{W}}_{\text {sh }}=\int_{\text {in }}^{\text {out }} \hat{\mathbf{V}} \mathbf{d P}$

## - Polytropic Processes

$\mathbf{P} \hat{\mathbf{V}}^{\delta}=\mathbf{C} \quad$ or: $\quad \hat{\mathbf{V}}=\left(\frac{\mathbf{C}}{\mathbf{P}}\right)^{1 / \delta}$

$\hat{\mathbf{W}}_{\text {sh }}=-\int_{\text {in }}^{\text {out }}\left(\frac{\mathbf{C}}{\mathbf{P}}\right)^{1 / \delta} \mathrm{dP}=-\mathbf{C}^{1 / \delta} \int_{\text {in }}^{\text {out }} \frac{\mathbf{d P}}{\mathbf{P}^{1 / \delta}}$

- $\delta \neq 1$ :

$$
\hat{\mathrm{W}}_{\mathrm{sh}}=-\frac{\delta}{\delta-1}\left(\mathbf{P}_{2} \hat{\mathbf{V}}_{2}-\mathbf{P}_{1} \hat{\mathbf{V}}_{1}\right)
$$

- $\delta=1$ :
$\hat{\mathbf{W}}_{\text {sh }}=-\mathbf{P}_{1} \hat{\mathbf{V}}_{1} \operatorname{Ln}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]$
- On a PV diagram, shaft work is equal to the area to the LEFT of the process path FOR...
$\checkmark$ Steady-state.
- Internally reversible
- SISO
- Shaft work and flow work only
$\diamond \Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$
- For a known process path, such as a polytropic process path, we can evaluate the shaft work by direct integration.
$\checkmark$ Results are shown here for $\boldsymbol{\delta}=\mathbf{1}$ and $\boldsymbol{\delta} \neq \mathbf{1}$.
$\checkmark$ Keep in mind that $\boldsymbol{\delta}=\mathbf{1}$ does not necessarily imply an isothermal process here !
- The results shown here apply when the assumptions listed above are valid: SISO, SS, Int. Rev, $\Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\text {pot }}=\mathbf{0} \&$ polytropic.
- The equations apply for all fluids.
- Liquids, real gases, and ideal gases.
- If the fluid is an ideal gas and $\mathbf{d}=\mathbf{1}$, then the process is isothermal.


## PV Diagram for Polytropic Processes



- Assumptions
- Steady-state.
- Internally reversible
- SISO
$\checkmark$ Shaft work and flow work only
$\Delta \Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$
- This diagram shows how the value of $\delta$ effects the shape of the polytropic process path on a PV Diagram.
- As $\delta$ increases, the process path becomes more steep and the specific volume changes by a smaller and smaller amount for the same change in pressure.
- Observations
$\checkmark$ I have shown $\delta=\mathbf{1}$ following the red isotherm.
$\checkmark$ This is ONLY the case for an ideal gas with constant heat capacities.
$\diamond$ The path for $\delta=\gamma$ is only isentropic if the fluid is an ideal gas and its heat capacities are constant.
$\checkmark$ The isochoric process requires the most shaft work to raise the pressure from $\mathbf{P}_{1}$ to $\mathbf{P}_{2}$. With all of the assumptions we have made, no shaft work can be done in an isobaric process.
$\checkmark$ Keep in mind that boundary work and flow work can still be done.
- In the next slide, I present equations for specific $\mathbf{W}_{\mathbf{S h}}$ for various polytropic processes for real fluids and ideal gases.

| Summary: $W_{\text {sh }}$ Polytropic Processes |  |  |
| :---: | :---: | :---: |
| Process Type | Real Fluids | Ideal Gases |
| $\delta=0$ | $\hat{\mathbf{W}}_{\text {sh }}=\mathbf{0}$ | $\hat{\mathbf{W}}_{\text {sh }}=0$ |
| $\delta=1$ | $\hat{\mathbf{W}}_{\text {sh }}=-\mathbf{P}_{1} \hat{\mathbf{V}}_{1} \mathbf{L n}\left[\mathbf{P}_{2} / \mathbf{P}_{1}\right]$ | $\left\lvert\, \begin{aligned} & \text { Isothermal } \\ & \hat{\mathbf{W}}_{\text {sh }}=-\frac{\mathbf{R ~ T}_{1}}{\mathbf{M W}} \mathbf{L n}\left[\mathbf{P}_{2} / \mathbf{P}_{1}\right]\end{aligned}\right.$ |
| $\overline{\delta \neq 1:}$ <br> Polytropic | $\hat{\mathbf{W}}_{\text {sh }}=-\frac{\delta}{\delta-1}\left(\mathbf{P}_{2} \hat{\mathbf{V}}_{2}-\mathbf{P}_{1} \hat{\mathbf{V}}_{1}\right)$ | $\hat{W}_{\text {sh }}=-\frac{\delta}{\delta-1} \frac{R}{M W}\left(T_{2}-T_{1}\right)$ |
| ס= $\gamma=$ const. | $\hat{\mathbf{W}}_{\text {sh }}=-\frac{\gamma}{\gamma-1}\left(\mathbf{P}_{2} \hat{\mathbf{V}}_{2}-\mathbf{P}_{1} \hat{\mathbf{V}}_{1}\right)$ | Isentropic $\hat{\mathbf{W}}_{\text {sh }}=-\frac{\gamma}{\gamma-1} \frac{\mathbf{R}}{\mathrm{MW}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$ |
| $\begin{aligned} & \hline \delta=\infty: \\ & \text { Isochoric } \end{aligned}$ | $\hat{\mathbf{W}}_{\text {sh }}=-\hat{\mathbf{V}}\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)$ | $\hat{\mathbf{W}}_{\text {sh }}=-\frac{R}{M W}\left(T_{2}-T_{1}\right)$ |
| $\mathrm{W}_{\text {sh }}$ is actually all work other than flow work. |  |  |

- Here are all of the most useful equations for calculating shaft work for polytropic processes.
- Once again, the assumptions we made are:
- Steady-state.
- Internally reversible
- SISO
$\diamond$ Shaft work and flow work only
$\Delta \Delta \mathbf{E}_{\text {kin }}=\Delta \mathbf{E}_{\text {pot }}=\mathbf{0}$
- The ideal gas column adds the assumption that the fluid behaves as an ideal gas.
$\diamond$ In order for $\delta=\gamma$ to mean that an IG is undergoing an isentropic process, the heat capacities ( and therefore $\gamma$ ) must be constant.


## Isentropic Efficiency: $\boldsymbol{\eta}_{\mathbf{s}}$

- Compare work input or output of a real device to to that of an isentropic device.
- Adiabatic Turbines:

$$
\eta_{\mathrm{s}, \text { turb }}=\frac{\dot{\mathbf{W}}_{\text {Sh,act }}}{\dot{\mathbf{W}}_{\text {Sh }, \text { isen }}} \quad\left\{\begin{array}{l}
\mathbf{Q}=\mathbf{0} \\
\Delta \mathbf{E}_{\mathrm{pot}}=\Delta \mathbf{E}_{\mathrm{kin}}=0
\end{array}\right\} \quad \eta_{\mathrm{s}, \text { turb }}=\frac{\hat{\mathbf{H}}_{\mathrm{in}}-\hat{\mathbf{H}}_{\mathrm{out}, \text { act }}}{\hat{\mathbf{H}}_{\mathrm{in}}-\hat{\mathbf{H}}_{\mathrm{out}, \text { isen }}}
$$

- Adiabatic Nozzles:

$$
\eta_{\mathrm{s}, \mathrm{noz}}=\frac{\mathbf{v}_{\text {out,act }}^{2} / 2 g_{\mathrm{C}}}{\mathbf{v}_{\text {out, isen }}^{2} / 2 g_{\mathrm{C}}} \quad\left\{\begin{array}{l}
\mathbf{A}_{1} \gg \mathbf{A}_{2} \\
\mathbf{v}_{1} \ll \mathbf{v}_{2}
\end{array}\right\} \quad \eta_{\mathrm{s}, \mathrm{noz}} \approx \frac{\hat{\mathbf{H}}_{\text {in }}-\hat{H}_{\text {out, act }}}{\hat{H}_{\text {in }}-\hat{H}_{\text {out,isen }}}
$$

- Adiabatic Compressors:

$$
\eta_{\mathrm{s}, \text { comp }}=\frac{-\dot{\mathbf{W}}_{\mathrm{Sh}, \text { isen }}}{-\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}} \quad\left\{\begin{array}{l}
\mathbf{Q}=\mathbf{0} \\
\Delta \mathbf{E}_{\mathrm{pot}}=\Delta \mathbf{E}_{\text {kin }}=0
\end{array}\right\} \quad \eta_{\mathrm{s}, \text { comp }}=\frac{\hat{\mathbf{H}}_{\mathrm{out}, \text { isen }}-\hat{\mathbf{H}}_{\mathrm{in}}}{\hat{\mathbf{H}}_{\mathrm{out}, \mathrm{act}}-\hat{\mathbf{H}}_{\mathrm{in}}}
$$

- Isentropic efficiency is a bit odd for nozzles because there is no shaft work involved
$\diamond$ The goal of a nozzle is to increase the kinetic energy of the flowing fluid.
$\diamond$ So, we define the isentropic efficiency of a nozzle as the ratio of the specific kinetic energy of the effluent for an actual or real nozzle to the specific kinetic energy of the effluent from an isentropic nozzle.
- Real nozzles are not isentropic primarily because of friction within the fluid and between the fluid and the wall of the nozzle.
- IF the outlet velocity is MUCH MUCH greater than the inlet velocity, then we get a simpler form of the equation for the isentropic efficiency of a nozzle in terms of the enthalpy of the fluid.
- We will apply the concept of isentropic efficiency to turbines, compressors, pumps and nozzles.
- Pumps are not listed here because the equation is the same as the one for the compressor.
- An isentropic turbine produces the most work possible beginning from the real inlet state and ending at the same outlet pressure as the real turbine.
- An isentropic compressor requires the least work possible beginning from the real inlet state and ending at the same outlet pressure as the real compressor.
- We define the isentropic efficiency of a turbine as the ratio of the actual work output to the work output of an isentropic turbine with the same inlet conditions and same outlet pressure.
- IF the REAL turbine is also adiabatic, then The 1st Law is: $\mathbf{W}_{\text {S,act }}=\mathbf{m}_{\text {dot }}\left(\mathbf{H}_{\text {in }}-\mathbf{H}_{\text {out,act }}\right)$.
- The isentropic efficiency is the ratio of the change in the specific enthalpy for the actual or real turbine to the change in the specific enthalpy of the isentropic turbine.
- We define the isentropic efficiency of a compressor as the ratio of the isentropic work input to the actual work input of a compressor with the same inlet conditions and same outlet pressure.
- IF the REAL compressor is also adiabatic, then:
- The 1st Law is: $\mathbf{W}_{\mathbf{S}, \mathrm{act}}=\mathbf{m}_{\text {dot }}\left(\mathbf{H}_{\text {in }}-\mathbf{H}_{\text {out,act }}\right)$.
- The isentropic efficiency is the ratio of the change in the specific enthalpy for the isentropic compressor to the change in the specific enthalpy of the actual or real compressor.


## TS \& HS Diagrams for Turbines



$$
\dot{\mathbf{S}}_{\mathrm{gen}}=\dot{\mathbf{m}}\left(\hat{\mathbf{S}}_{\mathrm{out}}-\hat{\mathbf{S}}_{\mathrm{in}}\right)-\sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\mathrm{sys}}}
$$



- TS \& HS Diagrams look deceptively similar for turbines, compressors pumps and nozzles.
- If the turbine is adiabatic, then $\mathbf{S}^{\wedge}$ cannot decrease because that would result in $\mathbf{S}_{\text {gen }}<\mathbf{0}$.
- Therefore, the effluent of an adiabatic turbine can only occupy states to the right of $\mathbf{S}_{1}{ }^{\wedge}$.
- The isentropic path is the best case.
- The isothermal path is the WORST case.
- The enthalpy actually goes UP! How does that happen ?
- Irreversibilities within the turbine are so bad that you have to put shaft work INTO the system !
- It isn't really a turbine anymore. But it isn't really a compressor either.
- It is not a device you would want to buy.
- It converts shaft work and PV work into relatively low value internal energy.


## PV Diagram for a Compressor



- Isothermal process requires less shaft work for an adiabatic compressor.
- An isentropic compressor requires less shaft work input than an actual, adiabatic compressor.But, if we could build an isothermal compressor, that was also adiabatic, it would require even LESS work input than an isentropic compressor.I hope that seems suspicious to you.


## HS Diagram for a Compressor



- Isothermal process for an adiabatic compressor violates the $2^{\text {nd }}$ Law !
- The problem is that a compressor that is BOTH isothermal AND ADIABATIC is not possible.
$\checkmark$ Its process path moves into states that are not "accessible".
$\checkmark$ An isothermal, adiabatic compressor leads to negative values for $\mathbf{S}_{\text {gen }}$ and that is a violation of the $2^{\text {nd }}$ Law.
- Unlike turbines, we DON'T WANT our compressor to be adiabatic.
- It seems weird that we actually WANT our compressor to LOSE heat so that its performance and efficiency improve.
- But we do!
- IN the BEST case, we can RECOVER this heat and use it somewhere else in our car/airplane/factory/ system.
- We can let our compressors lose heat to the air that surrounds them.
- We can give them a "cooling jacket" with cool water circulating through it.
- Or we can use multiple compressors and cool the working fluid between the compression steps.


## Two-Stage Compression with Intercooling

- The single compressor can be replaced by $\mathbf{2}$ compresors and a HEX, called an intercooler.
- This scheme is called a 2 -stage compression with intercooling.

- It is easy to visualize the savings in shaft work when a 2 -stage compressor train is used instead of 1 big compressor.
- The intercooler keeps the specific volume of the gas lower.
- 3-stage compression trains are common when you must get a gas up to a very high pressure.

HS Diagram for Multi-Stage Compression

Multistage Compression with Intercooling: 2-Stage (1 intercooler).


- Remember that the increase in enthalpy is how much shaft work you must put into the compression process.
- This HS Diagram makes it very clear why multi-stage compression can dramatically reduce the shaft work requirement for a compression process.
- Isothermal Efficiency
$\checkmark$ Only used for multi-stage compressors.
- Compare a multi-stage compressor to one isothermal compressor.


## 2-Stage Compressor Power Requirement

## Assume:

$\diamond$ Each compressor is isentropic (polytropic with $\delta=\gamma$ )
$\diamond$ The working fluid is an ideal gas in all states in the process.

- The heat capacities of the working fluid are constant.
- Intercooler returns the fluid to $\mathbf{T}_{\mathbf{1}}$.

$$
\begin{aligned}
\frac{-\dot{\mathbf{W}}_{\mathrm{s}, \text { tot }}}{\dot{\mathbf{m}}} & =\frac{\gamma}{\frac{\gamma-1}{\gamma-1}\left(\frac{\mathbf{R}}{\mathbf{M W}}\right) \mathbf{T}_{1}\left[\left(\frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}-\mathbf{1}\right]+\ldots}+ \\
& +\frac{\gamma}{\gamma-1}\left(\frac{\mathbf{R}}{\mathbf{M W}}\right) \mathbf{T}_{1}\left[\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{\mathrm{x}}}\right)^{\frac{\gamma-1}{\gamma}}-\mathbf{1}\right]
\end{aligned}
$$



Compressor \#2

- With a few assumptions we can determine the shaft work requirement and the total shaft work requirement for the system.
- The equation can be simplified if we use the intercooler to return the fluid temperature to the temperature of the feed, $\mathbf{T}_{1}$.
- The big question is how to decide how much shaft work to put into the $1^{\text {st }}$ compressor and how much to put into the $2^{\text {nd }}$ one?
$\checkmark$ More to the point, what is $\mathbf{P}_{\mathbf{X}}$ ?
$\checkmark$ Do we make $\mathbf{P}_{\mathbf{x}}=$ average of $\mathbf{P}_{1}$ and $\mathbf{P}_{2}$ ?
$\diamond$ Why? How do we decide?


## Two-Stage Compressor Design

- Calculus to the rescue !

$$
\frac{\mathbf{d}}{\mathbf{d P}_{\mathrm{x}}}\left(\frac{-\dot{\mathbf{W}}_{\mathrm{Sh}, \text { tot }}}{\dot{\mathbf{m}}}\right)=\mathbf{0}
$$

- Solve for $\mathbf{P}_{\mathbf{X}}$ !
- (check the $2^{\text {nd }}$ derivative to be sure you found a minimum and not a maximum!)
- Solution: $\quad \frac{\mathbf{P}_{1}}{\mathbf{P}_{\mathrm{X}}}=\frac{\mathbf{P}_{\mathrm{X}}}{\mathbf{P}_{2}} \quad$ or: $\quad \mathbf{P}_{\mathbf{x}}=\sqrt{\mathbf{P}_{1} \mathbf{P}_{2}}$


## Lost Work

- Definition: $\quad \dot{\mathbf{W}}_{\mathrm{s}, \text { lost }}=\dot{\mathbf{W}}_{\mathrm{s}, \text { rev }}-\dot{\mathbf{W}}_{\mathrm{s}, \text { act }}$
- Applies to any device, so watch the signs carefully.
- $\mathrm{W}_{\mathrm{S}, \text { rev }}$
- Rate at which work is done by or on a completely reversible process operating between the same initial state AND the same final state as the actual process.
- Assume for now that heat exchange only occurs with the surroundings and not with a thermal reservoir.
- We determine the value of $\mathbf{P}_{\mathbf{X}}$ that minimizes the specific shaft work requirement for the entire process by...
$\diamond$ Taking the derivative of the specific shaft work requirement for the entire process with respect to $\mathbf{P}_{\mathbf{X}} \ldots$
- Setting the derivative equal to zero...
$\diamond$ And solving the resulting equation for $\mathbf{P}_{\mathbf{x}}$.
- We need to make sure that the extreme point that we found is a minimum and not a maximum by making sure that the sign of the $2^{\text {nd }}$ derivative is positive.
- The results are nice and simple. That seems surprising.
- We do NOT set $\mathbf{P}_{\mathbf{X}}$ at the algebraic average of $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{2}$.
- We set PX at the GEOMETRIC average of $\mathbf{P}_{1}$ and $\mathbf{P}_{2}$.
$\checkmark$ The square-root of $\mathbf{P}_{1}$ times $\mathbf{P}_{2}$ is called the geometric average.
- Real compressors are not isentropic and frequently the gases are not ideal, but the geometric average pressure is a good starting point for choosing the intermediate pressure in a 2 -stage compressor system.
- Are there 3 -stage compressor trains? Yes, they are fairly common.
- Are there 4 -stage compressor trains? Very few.
$\checkmark$ The costs of all the extra equipment and its maintenance usually outweigh the savings due to improved efficiency.
- Lost work is the difference between the work of a reversible process between the real states 1 and 2 and the work of the real process between real states 1 and 2 .


## $2^{\text {nd }}$ Law Efficiency

- $2^{\text {nd }}$ Law Efficiency:

$$
\eta_{\mathrm{ii}, \text { comp }}=\frac{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{rev}}}{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}}
$$

$$
\eta_{\mathrm{ii}, \text { turb }}=\frac{\dot{\mathbf{W}}_{\mathrm{Sh}, \text { act }}}{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{rev}}}
$$

$\diamond$ More fair than $\eta_{S}$ because initial and final states are the same.
$\diamond$ Best measure of performance for processes that produce or consume work.

- In terms of Lost Work:

$$
\eta_{\mathrm{ii}, \text { comp }}=\frac{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}+\dot{\mathbf{W}}_{\text {Sh,lost }}}{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}}
$$

$$
\eta_{\mathrm{ii}, \text { turb }}=\frac{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}}{\dot{\mathbf{W}}_{\mathrm{Sh}, \mathrm{act}}+\dot{\mathbf{W}}_{\mathrm{Sh}, \text { lost }}}
$$

- We begin by analyzing a real process from state 1 to state 2 that only exchanges heat with the surroundings and NOT with any thermal reservoir.
$\checkmark$ This is just to make things simpler.
$\checkmark$ Later we will consider processes that exchange heat with reservoirs.
- The $2^{\text {nd }}$ Law efficiency compares the work of a real process to the work of a reversible process
$\bigcirc$ Both processes begin at state 1 and end at the exact same state 2.
$\checkmark$ In this case we are comparing apples to apples, so to speak.
- For the isentropic efficiency, we compared apples and oranges.
$\checkmark$ We compared a real process from state 1 to state 2 to an isentropic process that began at state 1 , but ended at a different state, state 2 S .
- The isentropic efficiency is a much more fair and reasonable measure of the performance of a process than isentropic efficiency.
- Unfortunately, $2^{\text {nd }}$ Law Efficiency is only defined for processes that produce or consume work, like pumps, compressors, turbines and thermodynamic cycles!
- As we will see in a minute, Lost Work is relatively easy to calculate, so it is often convenient to express the $2^{\text {nd }}$ Law Efficiency in terms of lost work.
- Now, let's see how to evaluate lost work.


## Apply $1^{\text {st }}$ law \& Definition of Entropy

- $\mathbf{1}^{\text {st }}$ Law:
$\dot{\mathbf{Q}}-\dot{\mathbf{W}}_{\text {sn }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$
- Solve for $\mathbf{W}_{\mathrm{S}}$ :
$\dot{\mathbf{W}}_{\mathrm{sh}}=\dot{\mathbf{Q}}-\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$
- From the definition of entropy:
$\frac{\dot{\mathbf{Q}}_{\text {intrev }}}{\dot{\mathbf{m}}}=\int_{1}^{2} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}=\mathbf{T} \Delta \hat{\mathbf{S}}=\mathbf{T}_{\text {surr }} \Delta \hat{\mathbf{S}}$

$$
\left(T_{\text {sys }}=T_{\text {surrr }} \text {, completely reversible }\right)
$$

- For a reversible process:

$$
\dot{\mathbf{W}}_{\mathrm{sh}, \mathrm{rev}}=\dot{\mathbf{m}}\left(\mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}}-\Delta \hat{\mathbf{H}}\right)
$$

- For the actual process: $\quad \dot{\mathbf{W}}_{\text {sh, act }}=\dot{\mathbf{Q}}_{\text {act }}-\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$
- Lost Work:

$$
\dot{\mathbf{W}}_{\mathrm{sh}, \text { lost }}=\left(\dot{\mathbf{m}} \mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}}-\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}\right)-\left(\dot{\mathbf{Q}}_{\text {act }}-\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}\right)
$$

- Canceling terms gives: $\quad \dot{\mathbf{W}}_{\text {sh,lost }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }} \Delta \hat{\mathbf{S}}-\dot{\mathbf{Q}}_{\text {act }}$
- Here, we apply the $1^{\text {st }}$ Law to both the reversible and actual processes from state 1 to state 2.
- Entropy enters into the equations in order to eliminate $\mathbf{Q}_{\text {rev }}$.
- Here, it is absolutely critical to understand that heat transfer must ALSO be reversible in the completely reversible process.
- Therefore, $\mathbf{T}_{\text {sys }}=\mathbf{T}_{\text {surr }}$ in the completely reversible process.
- Once we eliminate $\mathbf{Q}_{\text {rev }}$ from the $1^{\text {st }}$ Law for the reversible process, we are ready to determine $\mathbf{W}_{\mathrm{Sb}, \text { lost }}$.
- We solve the two $1^{\text {st }}$ Law equations (reversible and actual) for $\mathbf{W}_{\text {Sh }}$.
- Lost work is just the reversible work minus the actual work.
- When we put all of the equations together, a cool thing happens.
- The $\Delta \mathbf{H}$ terms cancel.
- This leaves us with the equation in the box.
- We can compute $\mathbf{W}_{\text {Sh,lost }}$ from the actual heat exchange with the surroundings, $\Delta \mathbf{S}$ for the process and the temperature of the surroundings.
- This is a useful equation, but we know that $\Delta \mathbf{S}$ is related to entropy generation, so we need to work the $2^{\text {nd }}$ Law into this analysis


## $2^{\text {nd }}$ Law and External $S_{\text {gen }}$

- $\mathbf{2}^{\text {nd }}$ Law:
$\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}=\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {act }}}+\dot{\mathbf{S}}_{\text {gen,int }}$
- Algebraic slight of hand:
$\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {act }}}=\dot{\mathbf{Q}}_{\text {act }}\left[\frac{1}{T_{\text {surr }}}+\frac{1}{\mathbf{T}_{\text {act }}}-\frac{1}{\mathbf{T}_{\text {surr }}}\right]$
- More algebra:
$\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {act }}}=\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}+\dot{\mathbf{Q}}_{\text {act }}\left[\frac{1}{\mathbf{T}_{\text {act }}}-\frac{1}{\mathbf{T}_{\text {surr }}}\right]$
- Substitute back into the $2^{\text {nd }}$ Law:
- External Entropy

Generation:
$\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}=\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}+\dot{\mathbf{Q}}_{\text {atc }}\left[\frac{1}{\mathbf{T}_{\text {act }}}-\frac{1}{\mathbf{T}_{\text {surr }}}\right]+\dot{\mathbf{S}}_{\text {gen }, \text { int }}$
$\dot{\mathbf{S}}_{\text {gen,ext }}=\dot{\mathbf{Q}}_{\text {act }}\left[\frac{\mathbf{1}}{\mathbf{T}_{\text {act }}}-\frac{\mathbf{1}}{\mathbf{T}_{\text {surr }}}\right]$

- A more robust statement of the $2^{\text {nd }}$ Law:
- Here is our old friend the $2^{\text {nd }}$ Law.
$\diamond$ Notice that I have replaced the integral of $d Q / T$ with $Q_{\text {act }} / T_{\text {act }}$.
$\checkmark$ This is only allowed when the temperature of the system at which heat exchange occurs is CONSTANT, at Tact.
- Now, things get a bit weird.
- I have done some algebra to split
$\mathbf{Q}_{\text {act }} / \mathbf{T}_{\text {act }}$ into two parts.
- I claim that $\mathbf{Q}_{\text {act }}$ times $\left[\mathbf{1} / \mathbf{T}_{\text {act }}-\mathbf{1} / \mathbf{T}_{\text {surr }}\right]$ is the external entropy generation due to irreversible heat transfer.
- Why is this true ?
$\checkmark$ Look at the boxed equation.
$\checkmark$ If heat exchange between the system and the surroundings is reversible, then
$\mathbf{T}_{\text {act }}=\mathbf{T}_{\text {surr }}$.
$\diamond$ Consequently, $\mathbf{S}_{\text {gen }}=\mathbf{0}$.
$\checkmark$ The equation in the box becomes the 1st equation on this page...the $2^{\text {nd }}$ Law!
$\checkmark$ I will show why this is true using a different approach in an example at the end of this lesson.


## Lost Work

- $\mathbf{2}^{\text {nd }}$ Law:

$$
\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}=\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}+\dot{\mathbf{S}}_{\text {gen }, \text { ext }}+\dot{\mathbf{S}}_{\text {gen, int }}=\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}+\dot{\mathbf{S}}_{\text {gen, tot }}
$$

- Total Entropy Generation: $\quad \dot{\mathbf{S}}_{\text {gen,tot }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}}$
- Lost Work revisited:

$$
\dot{\mathbf{W}}_{\mathrm{s}, \text { lost }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }} \Delta \hat{\mathbf{S}}-\dot{\mathbf{Q}}_{\text {act }}
$$

- Algebra:

$$
\mathbf{T}_{\text {surr }} \dot{\mathbf{S}}_{\text {gen }, \text { tot }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }} \Delta \hat{\mathbf{S}}-\dot{\mathbf{Q}}_{\mathrm{act}}
$$

- BIG result:

$$
\dot{\mathbf{W}}_{\mathrm{s}, \text { lost }}=\mathbf{T}_{\text {surr }} \dot{\mathbf{S}}_{\mathrm{gen}, \text { tot }}
$$

- What does $\mathbf{T}_{\text {surr }}$ have to do with lost work.
$\checkmark \mathbf{T}_{\text {surr }}$ is the temperature of a reservoir in the dead state.
- This reservoir has infinite capacity to give and receive heat without changing in temperature.
- Heat exchange with this reservoir has no cost.
- Anything that has no cost and infinite supply has NO VALUE.
- Hence the name "dead state".
- Now, let's make the connection between entropy generation and lost work.
- Define the total entropy generation as the sum of the internal and external entropy generation.
- Solve the form of the $2^{\text {nd }}$ Law that we derived on the previous page for the total entropy generation.
- Next, recall the equation we derived for lost work (2 slides back).
- When we compare the equation for the total entropy generation with the equation for lost work we find an extraordinarily simple relationship.
- Lost work is the product of the temperature of the surroundings and the lost work !
- This equation applies even for complicated processes or cycles that interact with reservoirs!
- The boxed equation even applies for processes that do NOT exchange heat with the surroundings !
- The example at the end of this lesson should shed some light on why this is true.
This is so cool, so simple and so elegant !
- This is the reason we care about calculating $\mathbf{S}_{\mathrm{gen}}$ !
$\checkmark$ We can also use $\mathbf{W}_{\text {Sbl, lost }}$ to compute the $2^{\text {nd }}$ Law Efficiency.


## Lost Work for a Cycle

- Total entropy generation for a cycle:

$$
\dot{\mathbf{S}}_{\text {gen }, \text { tot }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\sum_{\mathrm{i}}^{\text {Processes }} \frac{\dot{\mathbf{Q}}_{\mathrm{act}, \mathrm{i}}}{\mathbf{T}_{\text {res }, \mathrm{i}}}
$$

- Lost Work for a cycle:

$$
\dot{\mathbf{W}}_{\text {sh, lost }}=\mathbf{T}_{\text {surr }} \sum_{\mathrm{i}}^{\text {Processess }}\left[\dot{\mathbf{S}}_{\text {gen,tot }}\right]_{\mathrm{i}}
$$

$$
\dot{\mathbf{W}}_{\mathrm{sb}, \text { lost }}=\mathbf{T}_{\text {surr }} \sum_{\mathrm{i}}^{\text {Proceses }} \frac{-\dot{\mathbf{Q}}_{\text {act }, \mathrm{i}}}{\mathbf{T}_{\mathrm{res}, \mathrm{i}}}
$$ (adiabatic pump, turbine

$$
\dot{\mathbf{W}}_{\text {sh, lost }}=\mathbf{T}_{\text {surr }}\left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}, \text { act }}}{\mathbf{T}_{\mathrm{C}, \text { res }}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}, \text { act }}}{\mathbf{T}_{\mathrm{H}, \text { res }}}\right)
$$ compressor etc. HEX only with thermal reservoirs.)

- The lost work for a cycle is particularly useful to us and it isn't very difficult to calculate.
- We just apply our new and improved form of the $2^{\text {nd }}$ Law in terms of the total entropy generation to the entire cycle.
- $\Delta \mathbf{S}_{\text {cycle }}=\mathbf{0}$. It's a cycle!
- The result is the equation in the box.
- All you need to do to compute the lost work is evaluate all the heat transfer terms for the cycle.
- And know the T's for the reservoirs and the surroundings, of course.
And you know $\mathbf{W}_{\text {S,lost }}$.
$\checkmark$ This is cool and relatively straightforward.
$\checkmark$ You have just GOT to watch the signs !
- The Q's here are NOT all positive.
- They follow the sign convention !
- Next, we'll try a simple example that will clear this up.


## Example \#1

- Consider the HE shown here:
$Q_{H}=800 \mathrm{~J} \quad Q_{C}=300 \mathrm{~J} \quad W_{\text {sh,act }}=500 \mathrm{~J}$
$\mathrm{T}_{\mathrm{H}}=1000 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{C}}=300 \mathrm{~K} \quad \mathrm{~T}_{\text {surr }}=300 \mathrm{~K}$
- Determine both the reversible and the lost work.

- Method \#1:

$$
\begin{gathered}
\eta_{\text {rev }}=\frac{\mathbf{W}_{\text {Sh,rev }}}{Q_{\text {H }}}=1-\frac{\mathbf{T}_{\mathrm{C}}}{T_{\mathrm{H}}}=\mathbf{1}-\frac{\mathbf{3 0 0}}{\mathbf{1 0 0 0}}=\mathbf{0 . 7} \\
\mathbf{W}_{\text {Sh, rev }}=\mathbf{0 . 7} \mathbf{Q}_{\mathrm{H}}=\mathbf{0 . 7}(\mathbf{8 0 0} \mathrm{J})=\mathbf{5 6 0 ~ J} \\
\mathbf{W}_{\text {Sh,lost }}=\mathbf{W}_{\mathrm{S}, \text { rev }}-\mathbf{W}_{\mathrm{S}, \text { act }}=\mathbf{5 6 0} \mathrm{J}-\mathbf{5 0 0} \mathrm{J}=\mathbf{6 0 ~ J}
\end{gathered}
$$

Method \#2:

$$
\dot{\mathbf{W}}_{\text {Sh,lost }}=\mathbf{T}_{\text {surr }}\left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}, \text { act }}}{\mathbf{T}_{\mathbf{C}, \text { res }}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}, \text { act }}}{\mathbf{T}_{\mathrm{H}, \text { res }}}\right)
$$

$$
\dot{\mathbf{W}}_{\text {sh,lost }}=300 \mathrm{~K}\left(\frac{300 \mathrm{~J}}{300 \mathrm{~K}}-\frac{800 \mathrm{~J}}{100 \mathrm{~K}}\right)=300(1-0.8) \mathrm{J}=60 \mathrm{~J}
$$

## Example \#2

- Why is there lost work for irreversible heat transfer ?
- How can we calculate the lost work for irreversible heat transfer?

- By allowing the heat to flow spontaneously from $T_{1}$ to $\mathbf{T}_{\mathbf{2}}$, we lost the opportunity to recover work.
- We call this "Lost Work". $\mathbf{W}_{\text {HE }}>\mathbf{W}_{\text {HP }} \quad \mathbf{W}_{\text {lost }}>0$
- We can determine the lost work by building the hypothetical system, shown at right.
- This system includes 2 reversible cycles... one HE and one HP.
- The HE is more efficient than the reversed version of the HP because $\mathbf{T}_{1}>\mathbf{T}_{\mathbf{2}}$.
- As a result, the HE produces more work than the HP requires.
- Remember that both of these cycles are reversible!
- The difference between $\mathbf{W}_{\mathbf{H E}}$ and $\mathbf{W}_{\mathbf{H P}}$ is work that we COULD have gotten out of $\mathbf{Q}_{\text {waste }}$ if we had used it instead of letting it spontaneously dribble away into the cold reservoir.
- We call this lost work.
- $\mathbf{W}_{\text {lost }}=\mathbf{W}_{\text {HE }}-\mathbf{W}_{\text {HP }}$.
- Now, let's determine exactly how much work we lost.


## Lost Work

- $1^{\text {st }}$ Law, Reversible HE:

$$
\mathbf{W}_{\mathrm{HE}}=\mathbf{Q}_{\text {waste }}-\mathbf{Q}_{\mathrm{C}, \mathrm{HE}}=\mathbf{Q}_{\text {waste }}\left(1-\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{HE}}}{\mathbf{Q}_{\text {waste }}}\right)=\mathbf{Q}_{\text {waste }}\left(1-\frac{\mathbf{T}_{\text {surr }}}{\mathbf{T}_{1}}\right)
$$

- $1^{\text {st }}$ Law, Reversible HP:

$$
\mathbf{W}_{\mathrm{HP}}=\mathbf{Q}_{\text {waste }}-\mathbf{Q}_{\mathrm{C}, \mathrm{HP}}=\mathbf{Q}_{\text {waste }}\left(1-\frac{\mathbf{Q}_{\mathrm{C}, \mathrm{HP}}}{\mathbf{Q}_{\text {waste }}}\right)=\mathbf{Q}_{\text {waste }}\left(1-\frac{\mathbf{T}_{\text {surr }}}{T_{2}}\right)
$$

## - Lost Work:

$$
\mathbf{W}_{\text {lost }}=\mathbf{W}_{\mathrm{HE}}-\mathbf{W}_{\mathbf{H P}}
$$

$$
W_{\text {lost }}=Q_{\text {waste }} T_{\text {surr }}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$




- We can determine $\mathbf{W}_{\mathbf{H E}}$ and $\mathbf{W}_{\mathbf{H P}}$ in terms of Q's by applying the 1st Law to the HE and the HP, as shown here.
- The catch is that we now apply Kelvin's Principle, remembering to use absolute T when it comes time to plug in numbers.
- Now, we substitute these equations for $\mathbf{W}_{\mathbf{H E}}$ and $\mathbf{W}_{\mathbf{H P}}$ into our definition of lost work.
- The result is simple, sweet and familiar !
- No tricks. This is how much WORK we could have gotten out of $\mathbf{Q}_{\text {waste }}$ if we didn't let it spontaneously dribble away into the cold reservoir.
- Now, let's look at this problem from another angle.


## $S_{\text {gen }}$ and $\Delta S_{\text {univ }}$

- Definition: $\mathbf{S}_{\mathrm{gen}}=\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {res }, 1}+\Delta \mathrm{S}_{\text {res }, 2}$
- Reservoirs are isothermal and internally reversible:

$$
\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{\text {surr }}
$$

$$
\Delta \mathbf{S}_{\mathrm{res}, 1}=\frac{-\mathbf{Q}_{\text {waste }}}{\mathbf{T}_{1}} \quad \Delta \mathbf{S}_{\mathrm{res}, 2}=\frac{\mathbf{Q}_{\text {waste }}}{\mathbf{T}_{2}}
$$



- In this system, the universe is made up of just two reservoirs.
$\diamond$ No heat is exchanged with the surroundings.
- We can easily calculate $\Delta \mathbf{S}$ for each reservoir because they are isothermal.
- The result is the same one presented on slide \#5.
$\diamond$ This is the entropy generation associated with heat exchange.
$\checkmark$ It is often considered to be $\mathbf{S}_{\text {gen,ext }}$ in more complicated processes.


## Conclusion

- Lost Work:

$$
\mathbf{W}_{\text {lost }}=\mathbf{Q}_{\text {waste }} T_{\text {surr }}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

- Entropy Generation:

$$
S_{\text {gen }}=\Delta S_{\text {univ }}=Q_{\text {waste }}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

## - Conclusion:

$$
\mathbf{W}_{\text {lost }}=\mathbf{T}_{\text {surr }} \mathbf{S}_{\text {gen }}
$$

- Now, we put everything in this approach together.
- We found the 1 st equation for lost work two slides back.
- On the previous slide we found the second boxed equation for $\mathbf{S}_{\text {gen }}$.
- The big conclusion is the last boxed equation.
- Lost work really IS the product of $\mathbf{T}_{\text {surr }}$ and the total entropy generation !
- Even if the process does not exchange heat with the surroundings !!
- This is weird and very cool!

8A-1 Entropy Generation and Thermal Efficiency in Power Cycles 5 pts
A power cycle exchanges heat with only two thermal reservoirs at $500^{\circ} \mathrm{R}$ and $2000^{\circ} \mathrm{R} . \mathrm{Q}_{\mathrm{H}}=4500 \mathrm{Btu} / \mathrm{h}$.
For each of the following, calculate the rate of entropy generation in $B t u /^{\circ} R$ and state whether the power cycle is internally reversible, internally irreversible or impossible. a.) $\eta=83 \%$, b.) $\eta=75 \%$, c.) $\eta=44 \%$

Read : The key equations for this problem are the defintion of entropy generation and thermal efficiency. Because the process operates in a cycle, $\boldsymbol{\Delta S}=\mathbf{0}$. The other key point is that we are only asked to decide whether the process is internally reversible. That means we don't have to worry about whether heat exchange with the reservoirs is reversible. The main point is that the temperatures of the regions that exchange heat with the reservoirs must remain constant. This allows us to directly evaluate the integral of $\delta \mathbf{Q} / \mathbf{T}$ and evaluate the entropy generation.

| Given: | $\mathbf{T}_{H}$ | 2000 | ${ }^{\circ} \mathbf{R}$ | a.) | $\eta_{A}$ | 0.83 |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | $\mathbf{Q}_{H}$ | 4500 | Btu | b.) | $\eta_{B}$ | 0.75 |
|  | $\mathbf{T}_{\mathbf{C}}$ | 500 | ${ }^{\circ} \mathbf{R}$ | c.) | $\eta_{C}$ | 0.44 |

Diagram:


Find: Parts a-c.) $\quad \mathrm{S}_{\text {gen }} \quad$ ??? Btu/ ${ }^{\circ} \mathrm{R}$
Internally Reversible? Internally Irreversible? Impossible?
Assumptions: 1- The system undergoes a power cycle while receiving $\mathbf{Q}_{\mathbf{H}}$ at $\mathbf{T}_{\mathbf{H}}$ and discharging $\mathbf{Q}_{\mathbf{C}}$ at $\mathrm{T}_{\mathrm{c}}$.
2- The region of the system that receives heat from the hot reservoir remains at a constant temperature of $\mathrm{T}_{\mathrm{H}}=2000^{\circ} \mathrm{R}$.
3- The region of the system that rejects heat to the cold reservoir remains at a constant temperature of $\mathrm{T}_{\mathrm{C}}=500^{\circ} \mathrm{R}$.

Entropy generation is defined by:

$$
\begin{align*}
& \Delta \mathbf{S}=\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\mathbf{S}_{\mathrm{gen}}  \tag{Eqn 1}\\
& \mathbf{S}_{\mathrm{gen}}=\Delta \mathbf{S}-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)
\end{align*}
$$

$$
\text { Eqn } 2
$$

Since we are dealing with a cycle, $\Delta \mathbf{S}=\mathbf{0}$ and Eqn $\mathbf{2}$ becomes:

$$
\mathbf{S}_{\mathrm{gen}}=-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)
$$

We can solve Eqn 1 for $\mathbf{S}_{\text {gen }}$ :

Eqn 3

In our process, the system receives heat, $\mathbf{Q}_{\mathrm{H}}$, at a constant temperature, $\mathbf{T}_{\mathbf{H}}$, and rejects heat, $\mathbf{Q}_{\mathrm{C}}$, at a constant temperature, $\mathbf{T}_{\mathbf{c}}$. Because the temperatures are constant, they can be pulled out of the integral in Eqn 3 leaving :

$$
\begin{equation*}
\mathbf{S}_{\text {gen }}=-\left(\frac{\int \delta \mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\int \delta \mathbf{Q}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}}\right)=-\left(\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}}\right) \tag{Eqn 4}
\end{equation*}
$$

In Eqn 4, notice that $\delta \mathbf{Q}$ becomes $\boldsymbol{+} \delta \mathbf{Q}_{\boldsymbol{H}}$ and $-\delta \mathbf{Q}_{\mathbf{C}}$ because of the sign convention that heat transfer into the system is positive.

The only variable in Eqn 4 that we don't already know is $\mathbf{Q}_{\mathbf{C}}$. But we are given the value of the thermal efficiency of the power cycle in each part of this problem.

The definition of thermal efficiency is:

$$
\eta=1-\frac{Q_{c}}{Q_{H}}
$$

Eqn 5

Rearranging Eqn 5 to solve for $\mathbf{Q}_{\mathbf{c}}$ yields :

$$
\begin{equation*}
Q_{\mathrm{c}}=(1-\eta) Q_{\mathrm{H}} \tag{Eqn 6}
\end{equation*}
$$

Now, we can plug numbers into Eqn 6 to determine $\mathbf{Q}_{\mathbf{C}}$ and then plug $\mathbf{Q}_{\mathbf{C}}$ and the given values of $\mathbf{Q}_{\mathbf{H}}, \mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$ into Eqn 4 to complete the solution.

| Part (a) | $\mathrm{Q}_{\mathrm{C}}$ | 765 | Btu | $\mathbf{S}_{\text {gen }}$ | -0.72 | $\mathrm{Btu} /{ }^{\circ} \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part (b) | $Q_{C}$ | 1125 | Btu | $\mathrm{S}_{\text {gen }}$ | 0.00 | $\mathrm{Btu} /{ }^{\circ} \mathrm{R}$ |
| Part (c) | $\mathbf{Q}_{\mathrm{C}}$ | 2520 | Btu | $\mathbf{S}_{\text {gen }}$ | 2.79 | $\mathrm{Btu} /{ }^{\circ} \mathrm{R}$ |

We can now determine whether the cycle in each part of the problem is internally reversible, reversible or impossible using the following rules based on the definition of entropy generation.

$$
\begin{array}{ll}
\text { If } \mathbf{S}_{\text {gen }}=\mathbf{0} & \text { the cycle is internally reversible. } \\
\text { If } \mathbf{S}_{\text {gen }}>0 & \text { the cycle is internally irreversible. } \\
\text { If } \mathbf{S}_{\text {gen }}<\mathbf{0} & \text { the cycle is impossible. }
\end{array}
$$

Verify: The assumptions made in this solution cannot be verified with the given information.


Two power cycles operate between the same two thermal reservoirs, as shown below. Cycle $\mathbf{R}$ is reversible and cycle $\mathbf{I}$ is irreversible.


They each absorb the same amount of heat from the hot reservoir, $\mathbf{Q}_{\mathbf{H}}$, but produce different amounts of work, $\mathbf{W}_{\mathbf{R}}$ and $\mathbf{W}_{\mathbf{l}}$, and reject different amounts of heat to the cold reservoir, $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{Q}^{\mathbf{c}}$.
a.) Derive an equation for $\mathbf{S}_{\text {gen }}$ for the irreversible cycle in terms of $\mathbf{W}_{\mathbf{l}}, \mathbf{W}_{\mathbf{R}}$, and $\mathbf{T}_{\mathbf{C}}$ only.
b.) Show that $\mathbf{W}_{\mathbf{I}} \mathbf{W}_{\mathrm{R}}$ and $\mathbf{Q}_{\mathrm{C}} \mathbf{Q}_{\mathrm{C}}$.

Read : Start with the equation for the entropy generated and do an energy balance on both the reversible and irreversible cycles. Put the equations together and simplify to get an equation in the desired terms.

Given: A reversible power cycle, R, and an irreversible power cycle, I, operate between the same two reservoirs.
Find: $\quad$ Part (a) Evaluate $\mathbf{S}_{\text {gen }}$ for cycle $\mathbf{I}$ in terms of $\mathbf{W}_{\mathbf{l}}, \mathbf{W}_{\mathbf{R}}$, and $\mathbf{T}_{\mathbf{C}}$.
Part (b) Show that: $\quad \mathbf{W}_{1}<\mathbf{W}_{\mathrm{R}} \quad$ and $\quad \mathbf{Q}_{\mathrm{C}}>\mathbf{Q}_{\mathrm{C}}$.
Diagram: The diagram in the problem statement is adequate.

Assumptions:

## 1 2 -

The systems shown undergo power cycles. $\mathbf{R}$ is reversible and $\mathbf{I}$ is irreversible. Each system receives $\mathbf{Q}_{\mathbf{H}}$ at a constant temperature region at $\mathbf{T}_{\mathbf{H}}$ from the hot reservoir and rejects heat, $\mathbf{Q}_{\mathbf{C}}$, at a constant temperature region at $\mathbf{T}_{\mathbf{C}}$ to the cold reservoir.

Equations / Data / Solve:
Part a.) Let's begin with the defintion of entropy generation:

$$
\begin{align*}
& \Delta \mathbf{S}=\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\mathbf{S}_{\mathrm{gen}}  \tag{Eqn 1}\\
& \mathbf{S}_{\mathrm{gen}}=\Delta \mathbf{S}-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)
\end{align*}
$$

Eqn 2
We can solve Eqn 1 for $\mathbf{S}_{\text {gen }}$ :

$$
\mathbf{S}_{\mathrm{gen}}=-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)
$$

In the irreversible process, the system receives heat, $\mathbf{Q}_{\mathbf{H}}$, at a constant temperature, $\mathbf{T}_{\mathbf{H}}$, and rejects heat, $\mathbf{Q}_{\mathbf{c}}$, at a constant temperature, $\mathbf{T}_{\mathbf{c}}$. Because the temperatures are constant, they can be pulled out of the integral in Eqn 3 leaving :

$$
\Delta \mathbf{S}=-\left(\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}-\frac{\mathbf{Q}_{\mathrm{C}}^{\prime}}{\mathbf{T}_{\mathrm{C}}}\right)
$$

The 1st Law for cycles is:

$$
\mathbf{Q}_{\text {cycle }}=\mathbf{W}_{\text {cycle }}
$$

We can apply Eqn 5 to both the reversible and the irreversible cycles, as follows :

$$
\begin{equation*}
\mathbf{Q}_{\mathrm{H}}=\mathbf{W}_{\mathbf{R}}+\mathbf{Q}_{\mathrm{C}} \tag{Eqn 7}
\end{equation*}
$$

Eqn 6

$$
\mathbf{Q}_{\mathrm{H}}=\mathbf{W}_{\mathbf{1}}+\mathbf{Q}_{\mathrm{C}}^{\prime}
$$

We can combine Eqns 6 \& 7 to obtain :

$$
\mathbf{W}_{\mathrm{R}}+\mathbf{Q}_{\mathrm{C}}=\mathbf{W}_{\mathbf{1}}+\mathbf{Q}_{\mathrm{C}}^{\prime}
$$

$$
\text { Eqn } 8
$$

Now, solve Eqn 8 for $\mathbf{Q}^{\prime}$ :

$$
\mathbf{Q}_{\mathrm{C}}^{\prime}=\mathbf{Q}_{\mathrm{c}}+\mathbf{W}_{\mathrm{R}}-\mathbf{W}_{\mathbf{l}}
$$

Next, we can use Eqn 9 to
eliminate $\mathbf{Q}_{\mathbf{c}}$ from Eqn 4 to get :

We can rearrange Eqn 10 slightly to make it more clear how to proceed :

Because $\mathbf{R}$ is a reversible cycle and we use the Kelvin Temperature Scale :

Eqn 12 can be rearranged to help simplify Eqn 11 :

This yields:

$$
\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{Q}_{\mathrm{H}}}=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}
$$

$$
\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}}
$$

Eqn 13

$$
\mathbf{S}_{\text {gen }}=\frac{\mathbf{W}_{\mathrm{R}}-\mathbf{W}_{\mathbf{1}}}{T_{\mathrm{C}}}
$$

Eqn 14

Part b.) Because irreversibilities are present in cycle I:

$$
\mathbf{S}_{\mathrm{gen}}=\frac{\mathbf{W}_{\mathrm{R}}-\mathbf{W}_{\mathrm{I}}}{\mathbf{T}_{\mathrm{C}}}>0
$$

Rearranging Eqn 15 gives us:
Finally, we can rearrange Eqn 9 to help us determine whether $\mathbf{Q}^{\prime}{ }_{C}$ or $\mathbf{Q}_{\mathbf{C}}$ is larger :

Since Eqn 16 tells us that $\mathbf{W}_{\mathrm{R}}>\mathbf{W}_{\mathrm{l}}$, Eqn 17 tells that :
$\mathrm{W}_{\mathrm{R}}>\mathrm{W}_{\mathrm{I}}$
$\mathbf{Q}_{\mathrm{C}}^{\prime}-\mathbf{Q}_{\mathrm{C}}=\mathbf{W}_{\mathrm{R}}-\mathbf{W}_{\mathbf{i}} \quad$ Eqn 17
$\mathbf{Q}_{\mathrm{c}}^{\prime}>\mathbf{Q}_{\mathrm{c}}$

Eqn 16

Eqn 18

Verify: The assumptions made in this solution cannot be verified with the given information.
Answers : Part a.) $\quad \mathbf{S}_{\text {gen }}=\frac{\mathbf{W}_{\mathrm{R}}-\mathbf{W}_{\mathbf{1}}}{\mathbf{T}_{\mathrm{C}}} \quad$ Part b.) $\quad \mathbf{W}_{\mathrm{R}}>\mathbf{W}_{\mathbf{1}} \quad \mathbf{Q}_{\mathrm{C}}^{\prime}>\mathbf{Q}_{\mathrm{C}}$

The initial and final states of a sealed, insulated, rigid tank are shown below.Each side of the tank contains a different incompressible liquid at a different temperature, $\mathbf{T}_{1}$ and $\mathbf{T}_{\mathbf{2}}$.


The mass of liquid initally on each side of the tank is the same: $\mathbf{m}_{1}=\mathbf{m}_{\mathbf{2}}=\mathbf{m} / \mathbf{2}$. The barrier between the two sides of the tank is removed and the two liquids mix and eventually reach the final equilibrium state.
Assume each liquid has a constant heat capacity and there are no thermal effects due to the mixing of the fluids.
a.) Show that $\mathbf{S}_{\text {gen }}$ is given by the following equation:

$$
S_{\text {gen }}=m C \operatorname{Ln}\left[\frac{T_{1}+T_{2}}{2\left(T_{1} T_{2}\right)^{1 / 2}}\right]
$$

b.) Show that $\mathbf{S}_{\text {gen }}$ must be positive.

Read : For part (a) Perform an entropy balance to determine an equation for $\mathbf{S}_{\mathbf{g e n}}$. Then perform an energy balance to determine an expression for the final temperature and substitute the expression into $\mathbf{S}_{\mathbf{g e n}}$ and simplify.

Given:

Initial State:
Final State :
Chamber 1: $\quad T_{1}$
Chamber 2: $\quad \mathrm{T}_{2}$
Incompressible fluids with $\mathbf{C}_{\mathrm{P}}=\mathbf{C}_{\mathrm{v}}=\mathbf{C}$.
$\begin{array}{ll}\text { Chamber 1: } & \mathrm{T}_{\text {eq }} \\ \text { Chamber 2: } & \mathrm{T}_{\text {eq }}\end{array}$

Find: Part (a) Show that the amount of entropy generated is:

$$
S_{g e n}=m C \operatorname{Ln}\left[\frac{T_{1}+T_{2}}{2\left(T_{1} T_{2}\right)^{1 / 2}}\right]
$$

Part (b) Demonstrate that $\mathbf{S}_{\text {gen }}$ must be positive.
Diagram: The diagram in the problem statement is adequate.
Assumptions:

| 1- | The system consists of the total mass of liquid in the entire tank. |
| :--- | :--- |
| 2- | The system is isolated (adiabatic and closed). |
| 3 - | The liquid is incompressible with constant specific heat, C. |
| 4- | No work crosses the sytem boundary. |

Let's begin with the defintion of entropy generation:

$$
\text { We can solve Eqn } 2 \text { for } \mathbf{S}_{\text {gen }} \text { : }
$$

$$
\begin{array}{rlr}
\Delta \mathbf{S}=\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\mathbf{S}_{\text {gen }} & \text { Eqn 2 } \\
\mathbf{S}_{\text {gen }} & =\Delta \mathbf{S}-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right) & \text { Eqn 3 } \\
\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)=\mathbf{0} & \text { Eqn 4 } \\
\mathbf{S}_{\text {gen }} & =\Delta \mathbf{S} & \text { Eqn 5 } \\
\Delta \mathbf{S} & =\mathbf{m} \hat{\mathbf{S}}_{\text {final }}-\mathbf{m} \hat{\mathbf{S}}_{\text {init }} & \text { Eqn 6 } \\
\Delta \mathbf{S}=\mathbf{m} \hat{\mathbf{S}}_{\text {final }}-\left[\frac{\mathbf{m}}{\mathbf{2}} \hat{\mathbf{S}}_{1}+\frac{\mathbf{m}}{\mathbf{2}} \hat{\mathbf{S}}_{\mathbf{2}}\right] & \text { Eqn 7 }
\end{array}
$$

Since the system is isolated, there is no heat transferred:

We can use Eqn 4 to simplify Eqn 3, yielding :

The change in the entropy of the system is :

We can rearrange Eqn 7 to show that the total change in entropy for the system is the sum of the changes in entropy of each of the two fluids.

$$
\Delta \mathbf{S}=\frac{\mathbf{m}}{\mathbf{2}}\left[\left(\hat{\mathbf{S}}_{\text {final }}-\hat{\mathbf{S}}_{1}\right)+\left(\hat{\mathbf{S}}_{\text {final }}-\hat{\mathbf{S}}_{2}\right)\right] \quad \text { Eqn } 8
$$

The entropy change for an incompressible fluid depends only on temperature.

$$
\begin{equation*}
\Delta \hat{\mathbf{S}}=\int_{\mathrm{T}_{\text {init }}}^{\mathrm{T}_{\text {final }}} \frac{\hat{\mathbf{C}}}{\mathbf{T}} \mathrm{dT} \tag{Eqn 9}
\end{equation*}
$$

Because the heat capacity in this problem is a constant, it is relatively easy to integrate Eqn 9 to get:

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{C}}_{\text {avg }} \operatorname{Ln}\left[\frac{\mathbf{T}_{\text {final }}}{\mathbf{T}_{\text {init }}}\right]
$$

Eqn 10

Next, apply Eqn 10 to determine the entropy change of each fluid in this process and substitute the result into Eqn 8 :

Properties of logarithms let us rearrange Eqn 11 to :

$$
\begin{equation*}
\Delta S=\frac{m}{2} \hat{C}\left[\operatorname{Ln} \frac{T_{\text {final }}}{T_{1}}+\operatorname{Ln} \frac{T_{\text {final }}}{T_{2}}\right] \tag{Eqn 11}
\end{equation*}
$$

Combining Eqn 12 with Eqn 5 gives us :

$$
\begin{aligned}
& \Delta S=\frac{m}{2} \hat{C} \operatorname{Ln}\left[\frac{T_{\text {final }}^{2}}{T_{1} T_{2}}\right] \\
& S_{\text {gen }}=\frac{m}{2} \hat{C} \operatorname{Ln}\left[\frac{T_{\text {final }}^{2}}{T_{1} T_{2}}\right]
\end{aligned}
$$

To complete this derivation, we must eliminate $\mathbf{T}_{\text {final }}$ from Eqn 13. We can determine $\mathbf{T}_{\text {final }}$ in terms of $\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$ by applying the 1st Law to this process.

$$
\begin{equation*}
\mathbf{\Delta} \mathbf{U}=\mathbf{Q}-\mathbf{W} \tag{Eqq 14}
\end{equation*}
$$

No work or heat crosses the system boundary, so Eqn 14 becomes : $\quad \boldsymbol{\Delta U}=\mathbf{0}$
Eqn 15

Now, use the constant specific heat of the incompressible fluid to determine $\Delta \mathbf{U}$ :

$$
\frac{\mathbf{m}}{\mathbf{2}}\left[\left(\hat{\mathbf{U}}_{\text {final }}-\hat{\mathbf{U}}_{1}\right)+\left(\hat{\mathbf{U}}_{\text {final }}-\hat{\mathbf{U}}_{2}\right)\right]=\mathbf{0}
$$

$$
\frac{\mathbf{m}}{\mathbf{2}} \hat{\mathbf{C}}\left[\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{1}\right)+\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{2}\right)\right]=0
$$

Eqn 17

Now, solve Eqn 17 for $T_{\text {final }}$ :

$$
\mathrm{T}_{\text {tinal }}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}
$$

Eqn 18

Now, we can use Eqn 18 to eliminate $\mathrm{T}_{\text {final }}$ from Eqn 13 :

$$
S_{\text {gen }}=\frac{m}{2} \hat{C} \operatorname{Ln}\left[\frac{1}{T_{1} T_{2}}\left(\frac{T_{1}+T_{2}}{2}\right)^{2}\right]
$$

Simplify Eqn 19 algebraically :

$$
\begin{gathered}
S_{g e n}=\frac{m}{2} \hat{C}\left[2 \cdot \operatorname{Ln}\left[\frac{1}{\left(T_{1} T_{2}\right)^{1 / 2}}\left(\frac{T_{1}+T_{2}}{2}\right)\right]\right] \\
S_{g e n}=m \hat{C} \operatorname{Ln}\left[\frac{T_{1}+T_{2}}{2\left(T_{1} T_{2}\right)^{1 / 2}}\right]
\end{gathered}
$$

Eqn 20

Eqn 21
Finally :

$$
m \hat{C} \operatorname{Ln}\left[\frac{T_{1}+T_{2}}{2\left(T_{1} T_{2}\right)^{1 / 2}}\right] \geq 0
$$

Eqn 22

The values of $\mathbf{m}$ and $\mathbf{C}$ must be positive so, $\mathbf{S}_{\text {gen }}$ is non-negative when :

$$
\frac{\mathbf{T}_{1}+\mathrm{T}_{2}}{2\left(\mathrm{~T}_{1} \mathrm{~T}_{2}\right)^{1 / 2}} \geq \mathbf{1}
$$

Eqn 23

Simplify Eqn 23 by algebraic manipulation, as follows :

$$
\mathrm{T}_{1}+\mathrm{T}_{2} \geq \mathbf{2}\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)^{1 / 2}
$$

Squaring both sides of Eqn 24 yields:

$$
\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)^{2} \geq \mathbf{4}\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)
$$

( This is OK because $\mathrm{T}_{1}>0 \mathrm{~K}$ and $\mathrm{T}_{2}>0 \mathrm{~K}$ )
Expand the left-hand side of Eqn 25 :

$$
\begin{aligned}
& T_{1}^{2}+2 T_{1} T_{2}+T_{2}^{2} \geq 4 T_{1} T_{2} \\
& T_{1}^{2}-2 T_{1} T_{2}+T_{2}^{2} \geq 0 \\
& \left(T_{1}-T_{2}\right)^{2} \geq 0
\end{aligned}
$$

Finally, we get :
The inequality in Eqn 28 is satisfied for either $\mathbf{T}_{1}>\mathbf{T}_{2}$ or $\mathbf{T}_{2}>\mathbf{T}_{1}$.
The equality in Eqn 28 is satisfied only when $\mathbf{T}_{1}=\mathbf{T}_{\mathbf{2}}$.
Verify: The assumptions made in this solution cannot be verified with the given information.

## Answers: Part a.)

$$
S_{\text {gen }}=\mathbf{m} \hat{C} \operatorname{Ln}\left[\frac{T_{1}+T_{2}}{2\left(T_{1} T_{2}\right)^{1 / 2}}\right]
$$

Part b.) $\mathrm{S}_{\text {gen }} \geq \mathbf{0}$ when : $\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)^{2} \geq \mathbf{0} \quad$ which is ALWAYS true !

## "The best way to Learn Thermodynamics"

Four kilograms Saturated $\mathbf{R}-134$ a vapor at $-20^{\circ} \mathrm{C}$ is compressed in a piston-and-cylinder device until the pressure reaches 500 kPa .
During the process, 26.3 kJ of heat is lost to the surroundings, resulting in an increase in the specific entropy of the surroundings of $0.095 \mathrm{~kJ} / \mathrm{K}$.
Assuming the process is completely reversible, calculate the work for this compression process in $\mathbf{k J}$.

Read : Use the 2nd Law and the fact that the process is completely reversible to determine $\mathbf{S}_{2}$. This gives you the second intensive property you need to evaluate $\mathbf{U}_{2}$. Then, use the 1st Law to determine $\mathbf{W}_{\mathrm{b}}$ for the compression process.

Diagram:


| Given: $\begin{array}{ll}\mathbf{m} \\ & \mathbf{x}_{1} \\ & \mathbf{T} \\ & \mathbf{P}\end{array}$ | 4 | kg | $\mathrm{P}_{2}$ | 500 | kPa |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | kg vap/kg | Q | -26.3 | kJ |
|  | -20 | ${ }^{\circ} \mathrm{C}$ | $\Delta \mathrm{S}_{\text {surr }}$ | 0.095 | kJ/K |
|  | 132.73 | kPa |  |  |  |
| Find: $\quad \mathbf{W}_{\text {b }}$ | ??? | kJ |  |  |  |
| Assumptions: | 1 - | As shown in the diagram, the system is the R-134a inside the cylinder. Boundary work is the only form of work that crosses the system boundary. Changes in kinetic and potential energies are negligible. |  |  |  |
|  | 2 - |  |  |  |  |
|  | 3 - |  |  |  |  |
|  | 4 - | The compression process is completely reversible, so there is no entropy generated and no entropy change of the universe. |  |  |  |

## Equations / Data / Solve:

To determine the work required we need to apply the 1st Law for closed systems:

$$
\begin{equation*}
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}+\Delta E_{k}+\Delta E_{P} \tag{En 1}
\end{equation*}
$$

When we assume that changes in kinetic and potential energies are negligible and we assume boundary work is the only form of work, Eqn 1 becomes:

$$
\begin{equation*}
\mathbf{Q}-\mathbf{W}_{\mathrm{b}}=\Delta \mathbf{U}=\mathbf{m} \cdot\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}\right) \tag{Eqn 2}
\end{equation*}
$$

We can now solve Eqn 2 for $\mathbf{W}_{\mathrm{b}}$ :

$$
\begin{equation*}
\mathbf{W}_{\mathrm{b}}=\mathbf{Q}-\mathbf{m} \cdot\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}\right) \tag{Eqn 3}
\end{equation*}
$$

All we need to do is determine $\mathbf{U}_{2}$ and $\mathbf{U}_{1}$ and then we can use Eqn 3 to calculate $\mathbf{W}_{b}$ and complete this problem.
Start with $\mathbf{U}_{1}$ because we were given $\mathbf{T}_{1}$ and and it is a saturated vapor, so we can immediately look-up $\mathbf{U}_{1}$ in the Saturated R-134a Table.

$$
\begin{array}{lll}
\mathrm{U}_{1} & 366.99 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

We know $\mathbf{P}_{2}$, but we need to know the value of two intensive properties before we can use the $\mathbf{R}$-134a Tables to look-up $\mathrm{U}_{2}$.

Because the process is completely reversible:

$$
\begin{equation*}
\mathbf{S}_{\text {gen }}=\Delta \mathbf{S}_{\text {univ }}=0 \tag{Eqn 4}
\end{equation*}
$$

In this case, the universe consists of two parts: the system and the surroundings. As a result, Eqn 4 becomes:

$$
\begin{equation*}
\Delta \mathbf{S}_{\text {univ }}=\Delta \mathbf{S}_{\text {sys }}+\Delta \mathbf{S}_{\text {surr }}=\mathbf{0} \tag{Eqn 5}
\end{equation*}
$$

We were given $\boldsymbol{\Delta} \mathbf{S}_{\text {surr }}$, so we need to consider $\boldsymbol{\Delta} \mathbf{S}_{\text {sys }}$ further in order to use Eqn 5.
We can express the entropy change of the system in terms of the initial and final states as follows.

$$
\begin{equation*}
\Delta \mathbf{S}_{\text {sys }}=\mathbf{m} \cdot\left(\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}\right) \tag{Eqn 6}
\end{equation*}
$$

Next, we can combine Eqn 5 and Eqn 6 and solve for $\mathbf{S}_{\mathbf{2}}$.
$\mathbf{m} \cdot\left(\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}\right)+\Delta \mathbf{S}_{\text {surr }}=\mathbf{0}$
Eqn 7
$\hat{\mathbf{S}}_{2}=\hat{\mathbf{S}}_{1}-\frac{\Delta \mathbf{S}_{\text {surr }}}{\mathbf{m}}$

Eqn 8
We can evaluate $\mathbf{S}_{1}$ because we were given $\mathbf{T}_{1}$ and and it is a saturated vapor.

|  | $\mathbf{S}_{1}$ | 1.7413 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- |
| Now, we can plug values into Eqn 8 to evaluate $\mathrm{S}_{2}$ : | $\mathbf{S}_{2}$ | 1.7176 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

This gives us the value of a second intensive property for state $\mathbf{2}$ which allows us to calculate $\mathbf{U}_{2}$.
At $\mathrm{P}=500 \mathrm{kPa}$ :
$\begin{array}{lll}\mathrm{S}_{\text {sat liq }} & 1.0759 & \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\ \mathrm{S}_{\text {sat vap }} & 1.7197 & \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\end{array}$
Since $\mathbf{S}_{\text {sat liq }}<\mathbf{S}_{2}<\mathbf{S}_{\text {sat vap }}$, state 2
is a saturated mixture.

Determine $\mathbf{x}_{2}$ from the specific entropy, using:

$$
\mathbf{x}_{2}=\frac{\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{\text {satliq }}}{\hat{\mathbf{S}}_{\text {sat vap }}-\hat{\mathbf{S}}_{\text {satliq }}}
$$

Then, we can use the quality to determine $\mathrm{H}_{5 \mathrm{~s}}$, using:

$$
\hat{\mathbf{U}}_{2}=\mathbf{x}_{2} \hat{\mathbf{U}}_{\text {sat vap }}+\left(1-\mathbf{x}_{2}\right) \hat{\mathbf{U}}_{\text {satliq }}
$$

$$
\begin{array}{lll}
\mathrm{U}_{\text {sat liq }} & 221.10 & \text { Btu/l } \mathrm{b}_{\mathrm{m}} \\
\mathrm{U}_{\text {sat vap }} & 386.91 & \text { Btu/lb } \mathrm{b}_{\mathrm{m}}
\end{array}
$$

Eqn 9

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers : $\mathrm{W}_{\mathrm{b}} \quad$-104 kJ


8A-5
Entropy Production for the Adiabatic Compression of Air
Air is compressed in an adiabatic piston-and-cylinder device, as shown below, from 200 kPa and 360 K to 800 kPa .

a.) Calculate the final temperature, $\mathbf{T}_{2}$, and the boundary work if the process is internally reversible.
b.) Calculate $\mathbf{T}_{2}$ and the entropy generation if a real piston-and-cylinder device requires $15 \%$ more work than the internally reversible device.

Read: Assume ideal gas behavoir for air. Apply an energy balance and an entropy balance.
Notice that in part (a) the problem asks for the "work required", therefore our answer will be positive.
To get $\mathbf{S}$ and $\mathbf{U}$ data, use the 2nd Gibbs Equation in terms of the Ideal Gas Entropy Function.

| Given: | $\mathrm{T}_{1}$ |  | 360 | K |  |  | m | 2.9 | kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{1}$ |  | 200 | kPa |  |  | Q | 0 | KJ |
|  | $\mathrm{P}_{2}$ |  | 800 | kPa |  | Part (b) | $\mathbf{W}_{\text {part (b) }}=$ | 15\% | $>\mathrm{W}_{\text {part (a) }}$ |
| Find: | Part (a) | T 2 S |  | ??? | K | Part (b) | T ${ }_{2}$ | ??? | K |
|  |  | $-W_{b}$ |  | ??? | kJ |  | $\mathrm{S}_{\text {gen }}$ | ??? | kJ/K |
|  |  |  |  |  |  |  | $\mathrm{W}_{\text {lost }}$ | ??? | kJ |

Diagram:


| $1-$ | As shown in the diagram, the system is the air inside the cylinder. |
| :--- | :--- |
| 2- | Air is modeled as an ideal gas. |
| 3- | No heat transfer occurs. |
| 4- | Boundary work is the only form of work that crosses the system boundary. |
| 5 - | Changes in kinetic and potential energies are negligible. |
| $\mathbf{6 -}$ | For Part (a), there is no entropy generated. |

## Equations / Data / Solve:

Part a.) To determine the work required we need to apply the 1st Law for closed systems:

$$
\begin{equation*}
\mathbf{Q}-\mathbf{W}=\Delta \mathbf{U}+\Delta \mathrm{E}_{\mathrm{K}}+\Delta \mathrm{E}_{\mathrm{p}} \tag{Eqn 1}
\end{equation*}
$$

Because the process is adiabatic and we assume that changes in kinetic and potential energies are negligible and we assume boundary work is the only form of work, Eqn 1 becomes:

$$
\Delta \mathbf{U}=-\mathbf{W}_{\mathrm{b}} \quad \text { Eqn } 2 \quad \text { or: } \quad-\mathbf{W}_{\mathrm{b}}=\mathbf{m}\left(\hat{\mathbf{U}}_{2}-\hat{\mathbf{U}}_{1}\right)
$$

Eqn 3

So, in order to answer part (a), we need to determine $\mathbf{U}$ for both the initial and final states.
Use the Ideal Gas Property Table for air to evaluate $\mathbf{U}_{1}$ and $\mathbf{U}_{2}$, but first we must know $\mathbf{T}_{1}$ and $\mathbf{T}_{2}$.
Because this process is both adiabatic and internally reversible, the process is isentropic.
In this problem, we have air and we assume it behaves as an ideal gas.
We can solve this problem using the ideal gas entropy function.

The 2nd Gibbs Equation in terms of the $\mathbf{S}^{\mathbf{o}}$ is:

$$
\begin{equation*}
\hat{S}_{2}-\hat{S}_{1}=\hat{S}_{\mathrm{T} 2}^{\circ}-\hat{S}_{\mathrm{T} 1}^{\circ}-\frac{R}{M W} \operatorname{Ln} \frac{P_{2}}{P_{1}} \tag{Eqn 4}
\end{equation*}
$$

Since part (a) is an isentropic process, Eqn 4 becomes:

$$
\begin{equation*}
\mathbf{0}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \tag{Eqn 5}
\end{equation*}
$$

The final temperature, $\mathbf{T}_{2}$, can be determined from determining $\mathbf{S}^{\circ}\left(\mathbf{T}_{2}\right)$ and then interpolating on the Ideal Gas Properties Table for air.

Solving Eqn 5 for $\mathbf{S}^{\circ}\left(\mathbf{T}_{2}\right)$ yields:

$$
\begin{equation*}
\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \tag{Eqn 6}
\end{equation*}
$$

Properties for state 1 are determined from Ideal Gas Properties Table for air.

|  | $S^{\circ}\left(T_{1}\right)$ | 0.189360 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :---: | :--- |
| Now, we can plug values into Eqn 3: | $\mathrm{U}\left(\mathrm{T}_{1}\right)$ | 44.3940 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  | R | 8.314 | $\mathrm{~kJ} / \mathrm{kmol}$ K |
|  | MW | 28.97 | $\mathrm{~kg} / \mathrm{kmol}$ |
|  | $\mathbf{S}^{\circ}\left(\mathrm{T}_{2}\right)$ | 0.58721 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Now, we can go back to the Ideal Gas Properties Table for air and determine $\mathbf{T}_{2}$ and $\mathbf{U}_{2}$ by interpolation.

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{U}^{\circ} \mathrm{kJ} / \mathrm{kg}$ | $\mathrm{S}^{\circ} \mathrm{kJ} / \mathrm{kg}-\mathrm{K}$ |
| :---: | :---: | :---: |
| 520 | 163.42 | 0.56803 |
| $\mathrm{~T}_{2}$ | $\mathrm{U}_{2}$ | 0.58721 |
| 530 | 171.04 | 0.58802 |

Put values into Eqn 3 to finish this part of the problem:

| $\mathrm{T}_{2}$ | 529.59 | K |
| :--- | :--- | :--- |
| $\mathrm{U}_{2}$ | 170.73 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  | $-\mathrm{W}_{\mathrm{b}}$ | 366.38 |

Part b.) The actual work is $15 \%$ greater than the work determined in Part (a):

$$
\begin{array}{rr}
-W_{\text {part }(\mathrm{b})}=1.2\left(-W_{\text {part }(\mathrm{a})}\right) & \text { Eqn } 7 \\
-W_{b} & 421.33 \quad \mathrm{~kJ}
\end{array}
$$

In this part of the problem, we know the actual work, but we don't know $\mathbf{T}_{2}$ or $\mathbf{U}_{2}$.
We can solve Eqn 3 for $\mathbf{U}_{2}$ interms of the known variables $\mathbf{m}, \mathbf{W}_{\mathrm{b}}$ and $\mathrm{U}_{1}$ :

$$
\hat{\mathbf{U}}_{2}=\frac{-\mathbf{W}_{\text {part(b) }}}{\mathbf{m}}+\hat{\mathbf{U}}_{1}
$$

Eqn 8

Plugging values into Eqn 7 yields :
$\mathrm{U}_{2}$
$189.68 \mathrm{~kJ} / \mathrm{kg}$
Next, we can determine $\mathbf{T}_{2}$ and $\mathbf{S}^{\mathbf{0}}\left(\mathbf{T}_{2}\right)$ by interpolating on the Ideal Gas Properties Table for air.

| $\mathrm{U}^{\circ} \mathrm{kJ} / \mathrm{kg}$ | $\mathrm{T}(\mathrm{K})$ | $\mathrm{S}^{\circ} \mathrm{kJ} / \mathrm{kg}-\mathrm{K}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 186.36 | 550 | 0.62702 |  |  |  |
| 189.68 | $\mathrm{~T}_{2}$ | $\mathrm{~S}^{\circ}\left(\mathrm{T}_{2}\right)$ | $\mathrm{T}_{2}$ | 554.3 | K |
| 194.05 | 560 | 0.64605 | $\mathrm{~S}^{\circ}\left(\mathrm{T}_{2}\right)$ | 0.63524 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

The 2nd Law in terms of the

$$
\mathbf{S}_{\mathrm{gen}}=\Delta \mathbf{S}-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)
$$

Since there is no heat transfer in this problem:

$$
\begin{array}{r}
\mathbf{S}_{\text {gen }}=\Delta \mathbf{S}=\mathbf{m} \cdot \Delta \hat{\mathbf{S}} \\
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{0}-\frac{\mathbf{R}}{\mathbf{M W}} \mathbf{L n} \frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{P}_{\mathbf{1}}}
\end{array}
$$

Now, we can plug values into Eqns 9 \& 10 to determine the entropy generated:

Verify: The ideal gas assumption needs to be verified.

$$
\begin{array}{lll}
\mathrm{S}_{\text {gen }} & 0.04803 \mathrm{~kJ} / \mathrm{K}
\end{array}
$$

The entropy change can be determined from Eqn 4:

Eqn 10

路

$$
\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}
$$

Eqn 12

We need to determine the specific volume at each state and check if :

$$
\tilde{\mathrm{V}}>5 \mathrm{~L} / \mathrm{mol}
$$

| $\mathrm{V}_{1}$ | 14.97 | $\mathrm{~L} / \mathrm{mol}$ |
| :---: | :---: | :---: |
| $\mathrm{V}_{2 \mathrm{~A}}$ | 5.50 | $\mathrm{~L} / \mathrm{mol}$ |

$$
V_{2 B}
$$

$$
5.76
$$

L/mol
The specific volume at each state is greater than $5 \mathrm{~L} / \mathrm{mol}$ for all states and the working fluid can be treated as a diatomic gas, so the ideal gas assumption is valid.

Answers: Part a.)

| $\mathrm{T}_{2 \mathrm{~s}}$ | 530 | K |
| :---: | :---: | :---: |
| $-\mathrm{W}_{\mathrm{b}}$ | 366 | kJ |

Part b.)

| $\mathrm{T}_{2}$ | 554 | K |
| :---: | :---: | :---: |
| $\mathrm{~S}_{\text {gen }}$ | 0.0480 | $\mathrm{~kJ} / \mathrm{K}$ |

Consider the rigid tank shown below. It is divided into two equal volumes by a barrier. The left-hand side (LHS) is a perfect vacuum and the right-hand side (RHS) contains 5 kg of ammonia at 300 kPa and $-10^{\circ} \mathrm{C}$.


When the barrier is removed, the ammonia expands and fills the entire tank.


When the ammonia reaches equilibrium, the pressure in the tank is 200 kPa . Calculate $\boldsymbol{\Delta S}$ for the ammonia and $\mathbf{Q}$ for this process.

Read : The key to this problem is that the mass of ammonia in the system does not change and the volume doubles. We can use the Ammonia Tables to determine the specific volume and specific entropy at state 1 because we know $\mathbf{T}_{1}$ and $\mathbf{P}_{1}$. We can use the specific volume at state 1 and the known mass and volume relationships to determine the specific volume at state 2 . This gives us the values of two intensive properties at state $\mathbf{2}, \mathbf{P}_{\mathbf{2}}$ and specific volume, and allows us to use the Ammonia Tables to determine the specific entropy and the total entropy at state 2. $\Delta \mathbf{S}=\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}$ and we are done.

The 2nd Law and the fact that entropy generation must be positive will allow us to determine the direction of heat transfer or if the process could be adiabatic.

| Given: | m | 5 | kg |  | $\mathrm{P}_{2}$ | 200 | kPa |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{1}$ | -10 | ${ }^{\circ} \mathrm{C}$ |  | $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$ |  |  |
|  | $\mathrm{P}_{1}$ | 300 | kPa |  |  |  |  |
| Find: | $\Delta \mathrm{S}$ | ??? | kJ/K | Determine whether: | $\mathrm{Q}=0, \mathrm{Q}>0$ | Q < 0 |  |

Diagram: See the problem statement.
Assumptions: 1- The system is the contents of the entire tank.
2- No work or mass crosses the system boundary.
3- $\quad$ Changes in kinetic and potential energies are negligible.

The change in entropy can be calculated using:

$$
\begin{equation*}
\Delta \mathbf{S}=\mathbf{m}\left(\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}\right) \tag{Eqn 2}
\end{equation*}
$$

We know both $\mathbf{T}_{1}$ and $\mathbf{P}_{1}$, so we can look up $\mathbf{S}_{1}$ in the Subcooled Liquid Table of the Ammonia Tables or in the NIST Webbook.

$$
\begin{array}{lll}
\mathrm{S}_{1} & 0.54252 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
\end{array}
$$

At state 2, we only know the value of one intensive variable, $\mathbf{P}_{2}$. So, we need to determine the value of another intensive variable before we can use the Ammonia Tables to determine $\mathbf{S}_{2}$.

We can determine the
specific volume at state 2 as follows: $\quad \mathbf{V}_{1}=\mathbf{m} \hat{\mathbf{V}}_{\mathbf{1}}$
Eqn 3

We can obtain specific volume at state 1 from the Ammonia Tables or the NIST Webbook :

| $\mathbf{V}_{1}$ | 0.0015336 | $\mathrm{~m}^{3} / \mathrm{kg}$ | $\mathbf{V}_{1}$ |
| :--- | :--- | :--- | ---: |
| Then, we can use the given relationship in Eqn 1 to determine $\mathbf{V}_{2}:$ | $\mathbf{V}_{2}$ | $0.0076680 \mathrm{~m}^{3}$ |  |

Then, determine the specific volume at state 2 using: $\quad \hat{\mathbf{V}}_{2}=\frac{\mathbf{V}_{\mathbf{2}}}{\mathbf{m}}$
Eqn 4

$$
\mathrm{V}_{2} \quad 0.0030672 \mathrm{~m}^{3} / \mathrm{kg}
$$

Now, we know the values of two intensive variables, so we can go back to the Ammonia Tables or NIST Webbook and determine $\mathbf{S}_{\mathbf{2}}$ by interpolation.

$$
\begin{array}{llrl}
\text { At } P_{2}=200 \mathrm{kPa}: & \mathbf{V}_{\text {sat liq }} & 0.0015068 \mathrm{~m}^{3} / \mathrm{kg} & \text { Since } V_{\text {sat liq }}<V_{2}<V_{\text {sat vap }}, \text { state } 2 \\
& \mathbf{V}_{\text {sat vap }} & 0.5946 \mathrm{~m}^{3} / \mathrm{kg} & \text { is a saturated mixture. }
\end{array}
$$

We can determine $\mathbf{x}_{\mathbf{2}}$ from the specific volume, using: $\quad \mathbf{x}_{2}=\frac{\hat{\mathbf{V}}_{2}-\hat{\mathbf{V}}_{\text {sat liq }}}{\hat{\mathbf{V}}_{\text {sat vap }}-\hat{\mathbf{V}}_{\text {sat liq }}}$
$\mathrm{x}_{2} \quad 0.002631 \mathrm{~kg} \mathrm{vap} / \mathrm{kg}$
Then, we can use the quality to determine $\mathbf{S}_{\mathbf{2}}$, using:

$$
\begin{equation*}
\hat{S}_{2}=x_{2} \hat{S}_{\text {sat vap }}+\left(1-x_{2}\right) \hat{S}_{\text {sat liq }} \tag{Eqn 6}
\end{equation*}
$$

At $P_{2}=200 \mathrm{kPa}$ :
$\mathbf{S}_{\text {sat liq }}$
$0.387505 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
$S_{\text {sat vap }}$
$5.5998 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
$S_{2}$
$0.40122 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Finally, we can plug values into Eqn 2 :

The 2nd Law tells us that:

$$
\Delta \mathbf{S}=\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)+\mathbf{S}_{\mathrm{gen}}
$$

where $\mathbf{S}_{\text {gen }}>\mathbf{0}$ and $\mathbf{T}>\mathbf{0}$ because it is a thermodynamic temperature scale, such as the Kelvin scale.
Therforefore, the only way for $\Delta \mathbf{S}$ to be negative is if $\delta \mathbf{Q}<\mathbf{0}$.
We conclude that heat must have been transferred out of the system during this process !
We could apply the 1 st Law to evaluate $\mathbf{Q}$, but it is not required. I got $\mathbf{Q}=\mathbf{- 1 8 4 . 6} \mathbf{k J}$.
Verify: The assumptions made in the solution of this problem cannot be verified with the given information.


## "The best way to Learn Thermodynamics"

## 8B-1

Entropy Generation in a Compressor
Consider the compressor shown below.


Determine the entropy generation rate within the compressor in $\mathbf{k W} / \mathbf{K}$. Is this compressor internally reversible, internally irreversible or impossible?

Read : This is a straightforward application of the 2nd Law in the form of an entropy balance on an open system. Use $\mathbf{T}_{\text {surf }}$ in the 2nd Law equation to determine $\mathbf{S}_{\text {gen }}$ for only the turbine. Finish this problem by using the sign of $\mathbf{S}_{\text {gen }}$ to determine whether the compressor is impossible, internally reversible or internally rreversible.

Diagram: See the problem statement.

| Given: | m | 0.41 | kg/s | Q | -27 | kW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | 1.42 | kJ/kg-K | $\mathrm{T}_{\text {surf }}$ | 410 | K |
|  | $\mathrm{S}_{2}$ | 1.23 | kJ/kg-K | $\mathrm{W}_{\text {s }}$ | 128 | kW |
| Find: | $\mathbf{S}_{\text {gen }}$ | ??? | kW/K |  |  |  |

Assumptions:
The compressor operates at steady-state.
Kinetic and potential energy changes are negligible.
-
3- Shaft work and flow work are the only forms of work that cross the system
4- Heat loss from the compressor occurs at a constant and uniform temperature of 410 K .

## Equations / Data / Solve:

We can determine the entropy generation from an entropy balance on the compressor.
The entropy balance equation for a SISO process operating at steady-state that exchanges heat only with the surroundings is:

$$
\begin{equation*}
\left(\hat{\mathbf{S}}_{\text {gen }}\right)_{\text {comp }}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}-\frac{\hat{\mathbf{Q}}}{\mathbf{T}_{\mathrm{HT}}} \tag{Eqn 1}
\end{equation*}
$$

Because we are interested only in the entropy generation inside the turbine, the temperature at which heat transfer occurs is the surface temperature of the turbine, 410 K . If we used $\mathrm{T}_{\mathrm{HT}}=\mathrm{T}_{\text {surr }}$, we would obtain the total entropy generation for the process. This would include both the entropy generated inside the turbine and the entropy generated due to the irreversible nature of heat transfer through a finite temperature difference, that is between $T_{\text {surf }}$ and $T_{\text {surr }}$.

We were given the values of all the variables on the right-hand side of Eqn 1, so we can immediately evaluate ( $\left.\mathrm{S}_{\text {gen }}\right)_{\text {comp }}$.
$\left(\mathrm{S}_{\text {gen }}\right)_{\text {comp }} \quad-0.01205 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
If the $\left(\mathbf{S}_{\text {gen }}\right)_{\text {comp }}$ is ...
... negative, the compressor is impossible
... zero, the compressor is reversible
... positive, the compressor is irreversible
This compressor is impossible because $\boldsymbol{\Delta}\left(\mathbf{S}_{\text {gen }}\right)_{\text {comp }}<0$.
Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : This compressor is impossible because $\Delta\left(\mathrm{S}_{\text {gen }}\right)_{\text {comp }}<0$.

8B-2
Entropy Generation in a Steam Turbine
The outer surface of a steam turbine is at an average temperature of $160^{\circ} \mathrm{C}$ and the surroundings are at $20^{\circ} \mathrm{C}$. Calculate the internal, external and total entropy generation for the turbine in $\mathbf{k J} / \mathbf{k g} \mathbf{- K}$.
The operating parameters for the turbine are given in the figure below.


Read : $\quad$ Apply the 1st Law to determine $\mathbf{Q}$ and the 2 nd Law to get $\mathbf{S}_{\text {gen }}$. Properties come from the Steam Tables or the NIST Webbook. The key is that the heat losses occur at the constant, average surface temperature and this must be taken into account when evaluating $\mathbf{S}_{\text {gen }}$ for the turbine.

| Given: | $\mathbf{P}_{1}$ | 2000 | $\mathbf{k P a}$ | $\mathbf{x}_{2}$ | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
|  | $\mathrm{~T}_{1}$ | 450 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{HT}}$ | 160 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{P}_{2}$ | 180 | kPa | $\mathrm{T}_{\text {surr }}$ | 20 | ${ }^{\circ} \mathrm{C}$ |
|  |  |  |  | $\mathrm{W}_{\mathrm{s}}$ | 500 | $\mathrm{~kJ} / \mathrm{kg}$ |

Find: $\quad\left(\mathrm{S}_{\text {gen }}\right)_{\text {turb }} \quad$ ??? $\quad \mathrm{kJ} / \mathrm{kg}-\mathrm{K}$
Diagram: The diagram in the problem statement is adequate.
Assumptions: 1- The turbine operates at steady-state.
2- Kinetic and potential energy changes are negligible.
3- Shaft work and flow work are the only forms of work that cross the system boundary.
4- Heat loss from the turbine occurs at a constant and uniform temperature of $160^{\circ} \mathrm{C}$.

## Equations / Data / Solve:

We can determine the entropy generation from an entropy balance on the turbine.
The entropy balance equation for a SISO process operating at steady-state that exchanges heat only with the surroundings is:

$$
\begin{equation*}
\left(\hat{S}_{\text {gen }}\right)_{\text {turb }}=\hat{S}_{2}-\hat{S}_{1}-\frac{\hat{\mathbf{Q}}}{\mathbf{T}_{\mathrm{HT}}} \tag{Eqn 1}
\end{equation*}
$$

Because we are interested only in the entropy generation inside the turbine, the temperature at which heat transfer occurs is the surface temperature of the turbine $160^{\circ} \mathrm{C}$. If we used $\mathrm{T}_{\mathrm{HT}}=\mathrm{T}_{\text {surr }}$, we would obtain the total entropy generation for the process. This would include both the entropy generated inside the turbine and the entropy generated due to the irreversible nature of heat transfer through a finite temperature difference, that is between $\mathbf{T}_{\boldsymbol{H} T}$ and $\mathrm{T}_{\text {surr }}$.

We can lookup $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ in the Steam Tables or the NIST Webbook because states $\mathbf{1}$ and $\mathbf{2}$ are completely determined by the information given in the problem statement.

| $\mathrm{S}_{1}$ | 7.2866 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ | $\mathrm{S}_{2}$ | 7.1621 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Now, use the 1st Law for a steady-state process with negligible changes in kinetic and potential energies to determine $\mathbf{Q}$.

$$
\begin{equation*}
\hat{\mathbf{Q}}-\hat{\mathbf{W}}_{\mathrm{s}}=\Delta \hat{\mathbf{H}} \tag{Eqn 2}
\end{equation*}
$$

Solve Eqn 2 for $\mathbf{Q}$ :

$$
\begin{equation*}
\hat{\mathbf{Q}}=\hat{\mathbf{W}}_{\mathrm{s}}+\hat{\mathbf{H}}_{2}-\hat{H}_{1} \tag{Eqn 3}
\end{equation*}
$$

We can now lookup $\mathbf{H}_{1}$ and $\mathbf{H}_{\mathbf{2}}$ in the Steam Tables or the NIST Webbook because, again, states $\mathbf{1}$ and $\mathbf{2}$ are completely determined by the information given in the problem statement.

| $\mathrm{H}_{1}$ | 3358.2 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{H}_{2}$ | 2701.4 |
| :--- | :--- | :--- | :--- | :--- |
| kJ/kg |  |  |  |  |
| Now we can plug values into Eqn 2 to evaluate $\mathbf{Q}:$ | Q | -156.81 | $\mathrm{~kJ} / \mathrm{kg}$ |  |

We can now evaluate the entropy generation within the turbine using Eqn 1.
$\left(\mathrm{S}_{\text {gen }}\right)_{\text {turb }} \quad 0.2375 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers :

| $\mathbf{Q}$ | -157 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |


| $\mathrm{S}_{\text {gen }}$ | 0.237 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :---: | :---: | :---: |

The effluent from an air compressor is cooled by contacting with water in a heat exchanger. The operating parameters for this system are given in the diagram, below.


Assume air behaves as an ideal gas and heat losses to the surroundings are negligible.
a.) Calculate the power requirement for the compressor and the required cooling water mass flow rate for the heat
b.) Calculate the entropy production rate for the compressor and for the heat exchanger separately.

Read: Use the ideal gas EOS and the volumetric flow rate to determine the mass flow rate. Use an energy balance to determine the work for the compressor in kW.
To determine the water flow rate, draw the control volume enclosing the heat exchanger. This control volume has four mass flows entering or leaving but no $\mathbf{Q}$ or $\mathbf{W}$. An energy balance on this control volume yields the water flow rate.
Very important point: the air and the water DO NOT MIX in the heat exchanger!
For the enthalpy of the cooling water, use $\mathbf{H}(\mathbf{T})$ for saturated liquid water from the Steam Tables.
Part (b) Don't forget about the cooling water when you calculate the entropy generated. Use S(T) for saturated liquid water from the Steam Tables.

Given:

| $\mathrm{T}_{\mathrm{A}}$ | 15 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :--- |
| $\mathrm{T}_{\mathrm{B}}$ | 35 | ${ }^{\circ} \mathrm{C}$ |
| $\mathbf{P}_{1}$ | 104 | ${ }^{\mathbf{k P P a}}$ |
| $\mathrm{T}_{1}$ | 30 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{m}_{\text {air }}$ | 35 | $\mathbf{k g} / \mathbf{m i n}$ |

Find:

| Part (a) | $\mathrm{W}_{\mathrm{s}}$ | ??? | kW |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{m}_{\mathrm{cw}}$ | $? ? ?$ | $\mathrm{~kg} / \mathrm{s}$ |

Part (b)
$\mathrm{S}_{\text {gen, comp }}$
???
kW/K
$\mathbf{S}_{\text {gen, HEX }}$
???
kW/K
Diagram:
Diagram already provided in the problem statement.

Assumptions: $\mathbf{1 -} \quad$ Both the compressor and heat exchanger operate at steady-state.
2- Heat exchange between the equipment in this process and the surroundings is negliqible.
3- There is no shaft work in the heat exchanger.
4- Kinetic and potential energy changes are negligible.
5- The air behaves as an ideal gas.
6 - The properties of the cooling water are the same as the properties of saturated liquid water at the same temperature.

Equations / Data / Solve:
$\begin{array}{lcccccc}\text { Part a.) } & \mathbf{R} & 8.314 & \mathrm{~kJ} / \mathrm{kmol} \text { K } & & & \\ & \text { MW } & 28.97 & \mathrm{~kg} / \mathrm{kmol} & \mathrm{m}_{\text {air }} & 0.5833 \quad \mathrm{~kg} / \mathrm{s}\end{array}$
We can determine the properties of air at all three states by interpolating on the Ideal Gas Property Tables for air because all three temperatures are given in the problem statement.

| $\mathrm{T}_{1}$ | 303.15 | K | $\mathrm{~T}(\mathrm{~K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg}) \mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{2}$ | 416.15 | K | 300 | 87.410 | 0.0061681 |  |  |  |
| $\mathrm{~T}_{3}$ | 338.15 | K | 310 | 97.396 | 0.038914 | $\mathrm{H}_{1}$ | 90.556 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  |  |  | 410 | 198.63 | 0.32178 |  |  |  |
|  |  |  | 420 | 208.88 | 0.34649 | $\mathrm{H}_{2}$ | 204.93 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  |  |  | 330 | 117.45 | 0.10159 |  |  |  |
|  |  | 340 | 127.51 | 0.13163 | $\mathrm{H}_{3}$ | 125.65 | $\mathrm{~kJ} / \mathrm{kg}$ |  |

Now, we can plug values back into Eqn 1 to evaluate $\mathbf{W}_{\mathbf{s}}$ :
$\mathrm{W}_{\mathrm{S}} \quad-66.72$
kW
The mass flow rate of the cooling water can be determined by an energy balance on the heat exchanger. For a steady-state process with negligible heat transfer, kinetic and potential energy changes and no shaft work:

$$
\begin{equation*}
\mathcal{Q}^{\hat{A}}-\mathbf{Y W}_{\mathrm{s}}=\sum_{\mathrm{j}=1}^{\text {outlets }} \mathbf{m}_{\mathrm{out}, \mathrm{j}} \hat{\mathbf{H}}_{\mathrm{out}, \mathrm{j}}-\sum_{\mathrm{i}=1}^{\text {inlets }} \mathbf{m}_{\mathrm{in}, \mathrm{i}} \hat{\mathbf{H}}_{\mathrm{in}, \mathrm{i}} \tag{Eqn 3}
\end{equation*}
$$

Eqn 3 can be simplified because no shaft work crosses the system boundary and when we use the entire HEX as the system, there is no heat transfer across the system boundary either.

$$
\begin{equation*}
\mathbf{0}=\dot{\mathbf{m}}_{\mathrm{air}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}\right)+\dot{\mathbf{m}}_{\mathrm{cw}}\left(\hat{\mathbf{H}}_{\mathrm{A}}-\hat{\mathbf{H}}_{\mathrm{B}}\right) \tag{Eqn 4}
\end{equation*}
$$

Now, we can solve Eqn 4 for $\mathbf{m}_{\text {cw }}$ :

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{cw}}=\left(\frac{\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}}{\hat{\mathrm{H}}_{\mathrm{B}}-\hat{\mathrm{H}}_{\mathrm{A}}}\right) \dot{\mathrm{m}}_{\mathrm{air}} \tag{Eqn 5}
\end{equation*}
$$

We do not know the pressure of the cooling water, so we cannot look up its properties. Therefore, we assume that the enthalpy of the cooling water is the same as the enthalpy of saturated liquid water at the same temperature. This assumption is accurate as long as water is nearly an incompressible liquid. The properties of saturated liquid water were determined from NIST WebBook:

Saturated liquid water at $\mathbf{T}_{\mathbf{A}}$ :
Saturated liquid water at $\mathbf{T}_{\mathbf{B}}$ :
Now, we can plug values into Eqn 5 and evaluate $\mathbf{m}_{\mathrm{cw}}$ :

| $\mathrm{H}_{\text {A }}$ | 62.981 | kJ/kg |
| :---: | :---: | :---: |
| $\mathrm{H}_{\mathrm{B}}$ | 146.63 | kJ/kg |
| $\mathrm{m}_{\mathrm{cw}}$ | 0.5529 | kg/s |

Part b.) Entropy generation is defined by: $\quad \mathbf{S}_{\text {gen }}=\Delta \mathbf{S}-\int\left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)$

No heat transfer crosses the system boundary for either the compressor or the HEX, so Eqn 6 simplifes to:

$$
\mathrm{S}_{\mathrm{gen}}=\Delta \mathrm{S}
$$

Eqn 7
We can determine the entropy change for air (ideal gas) in the compressor from the 2nd Gibbs Equation:

$$
\hat{\mathbf{S}}_{\mathrm{gen}}=\Delta \hat{\mathrm{S}}=\hat{\mathrm{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathrm{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathrm{R}}{\mathrm{MW}} \operatorname{Ln} \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}
$$

Eqn 8

Therefore, the rate at which entropy is generated in the compressor is:

$$
\begin{equation*}
\left(\dot{S}_{\text {gen }}\right)_{\text {comp }}=\dot{\mathbf{m}}_{\text {air }} \hat{\mathrm{S}}_{\text {gen }}=\dot{\mathbf{m}}_{\text {air }}\left[\hat{\mathrm{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathrm{S}}_{\mathrm{T} 1}^{\circ}-\frac{R}{\mathrm{MW}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right] \tag{Eqn 9}
\end{equation*}
$$

We can determine the properties of air at all three states by interpolating on the Ideal Gas Property Tables for air because all three temperatures are given in the problem statement.

| $S^{\circ}\left(\mathrm{T}_{1}\right)$ | 0.016483 | kJ/kg-K |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}^{\circ}\left(\mathrm{T}_{2}\right)$ | 0.33698 | kJ/kg-K | $\mathrm{S}^{\mathbf{0}}\left(\mathrm{T}_{3}\right)$ | 0.12607 | kJ/kg-K |
| Now, we can plug values back into Eqn 9 |  |  | $\mathrm{S}_{\text {gen, comp }}$ | 0.03681 | kW/K |

The entropy generated in the HEX must take into account the entropy change of BOTH the air and the cooling water.

$$
\left(\dot{S}_{\text {gen }}\right)_{\text {HE }}=\dot{\mathbf{m}}_{\text {air }}\left[\hat{\mathrm{S}}_{\mathrm{T} 3}^{\circ}-\hat{\mathrm{S}}_{\mathrm{T} 2}^{\circ}-\frac{\mathbf{R}}{\mathrm{MW}} \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}\right]+\dot{\mathrm{m}}_{\mathrm{cw}}\left[\hat{\mathrm{~S}}_{\mathrm{cw}}\left(\mathrm{~T}_{\mathrm{B}}\right)-\hat{\mathrm{S}}_{\mathrm{cw}}\left(\mathrm{~T}_{\mathrm{A}}\right)\right]
$$

Eqn 10

Again, we assume that the entropy of the cooling water is the same as the entropy of saturated liquid water at the same temperature. The properties of saturated liquid water were determined from NIST WebBook:

Saturated liquid water at $\mathbf{T}_{\mathbf{A}}$ :
Saturated liquid water at $\mathbf{T}_{\mathbf{B}}$ :
Now, we can plug value into Eqn 10 :

| $\mathrm{S}\left(\mathrm{T}_{\mathrm{A}}\right)$ | 0.22446 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- |
| $\mathrm{S}\left(\mathrm{T}_{\mathrm{B}}\right)$ | 0.50513 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\mathrm{S}_{\text {gen, HEX }}$ | 0.03215 | $\mathrm{~kW} / \mathrm{K}$ |

Verify: Check the Ideal Gas Assumption: $\quad \tilde{\mathbf{V}}=\frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}$

$$
\begin{array}{lll}
\mathrm{V}_{1}= & 24.23 & \mathrm{~L} / \text { mole } \\
\mathrm{V}_{2}= & 13.57 & \mathrm{~L} / \text { mole } \\
\mathrm{V}_{3}= & 11.03 & \mathrm{~L} / \text { mole }
\end{array}
$$

Since air can be considered to be a diatomic gas and all three molar volumes are greater than $\mathbf{5 L} / \mathrm{mole}$, it is accurate to treat the air as an ideal gas.

Answers: Part a.)

| $\mathrm{W}_{\mathrm{s}}$ | -66.7 | kW |
| :--- | :--- | :--- |
| $\mathrm{~m}_{\mathrm{cw}}$ | 0.553 | $\mathrm{~kg} / \mathrm{s}$ |

Part b.)

| $\mathrm{S}_{\text {gen, comp }}$ | 0.0368 | $\mathrm{~kW} / \mathrm{K}$ |
| :--- | :--- | :--- |
| $\mathrm{S}_{\text {gen, HEX }}$ | 0.0321 | $\mathrm{~kW} / \mathrm{K}$ |

## "The best way to Learn Thermodynamics"

8B-4
Calculate $\mathbf{Q}$ \& $\mathbf{W}_{\mathbf{s}}$, in $\mathbf{k J} / \mathbf{k g}$, when ambient air at $104 \mathbf{k P a}$ and 320 K is compressed polytropically to 950 kPa . Assume $\delta=1.38$ for this process path and that air behaves as an ideal gas.

Read : $\quad$ The key to this problem is the fact that the process is polytropic and that the air can be assumed to be an ideal gas. Because the process is polytropic, we can determine $\mathbf{T}_{2}$ and $\mathbf{W}_{\mathbf{s}}$. Because the gas is ideal, we can use the Ideal Gas Property Tables to evaluate $H_{1}$ and $\mathbf{H}_{2}$. Finish by using $\mathbf{W}_{\mathbf{s}}, \mathbf{H}_{1}$ and $\mathbf{H}_{2}$ to evaluate $\mathbf{Q}$.

Given:

| $\mathrm{P}_{1}$ | 104 | kPa |
| :--- | :--- | :--- |
| $\mathrm{T}_{1}$ | 320 | K |
| $\delta$ | 1.38 |  |
| $\mathrm{P}_{2}$ | 950 | kPa |

Find:
$W_{s}$
??? $\quad \mathrm{kJ} / \mathrm{kg}$
Q ??? $\mathrm{kJ} / \mathrm{kg}$

Assumptions:
1 -
The compressor operates at steady-state.
2- Kinetic and potential energy changes are negligible.
3- Shaft work and flow work are the only forms of work that cross the system boundary.
4- Air is modeled as an ideal gas.
Diagram:


## Equations / Data / Solve:

We can determine the shaft work for a polytropic process on an ideal gas using:

$$
\hat{W}_{s}=-\frac{\delta}{\delta-1} \frac{R}{M W}\left(T_{2}-T_{1}\right)
$$

We can determine $\mathbf{T}_{2}$ using the following PVT relationship for polytropic processes:

$$
\begin{equation*}
\mathbf{T}_{1} \mathbf{P}_{1}^{\frac{1-\delta}{\delta}}=\mathbf{T}_{2} \mathbf{P}_{2}^{\frac{1-\delta}{\delta}}=\text { constant } \tag{Eqn 2}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{T}_{2}=\mathbf{T}_{1}\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{\frac{1-\delta}{\delta}} \tag{Eqn 3}
\end{equation*}
$$

Solve Eqn 2 for $\mathbf{T}_{2}$ :
Eqn 3

We can now either evaluate $\mathbf{T}_{2}$ or use Eqn 3 to eliminate $\mathbf{T}_{2}$ from Eqn 1.

$$
\hat{W}_{s}=-\frac{\delta}{\delta-1} \frac{\mathbf{R T}_{1}}{\mathbf{M W}}\left(\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{\frac{1-\delta}{\delta}}-1\right)
$$

Now, we can plug values into Eqns 3 \& 4 to complete the first part of this problem.
MW
R
29.0
8.314
$\mathrm{g} / \mathrm{mol}$
J/mol-K
$\mathrm{T}_{2}$
$\mathrm{W}_{\mathrm{s}} \quad-279.75 \mathrm{~kJ} / \mathrm{kg}$

In order to determine the specific heat transfer for the compressor, we must apply the 1st Law for steady-state, SISO processes. For this compressor, changes in kinetic and potential energies are negligible and only flow work and shaft work cross the system boundaries. The appropriate form of the 1st Law for this compressor is :

Solve Eqn 5 for $\mathbf{Q}$ :

$$
\hat{\mathbf{Q}}-\hat{\mathbf{W}}_{\mathrm{s}}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}
$$

$$
\hat{\mathbf{Q}}=\hat{\mathbf{W}}_{\mathrm{s}}+\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}
$$

Eqn 6
Because we know both $\mathbf{T}_{1}$ and $\mathbf{T}_{2}$ and we assumed that air behaves as an ideal gas in this process, we can use the Ideal Gas Property Table for air to evaluate $\mathbf{H}_{1}$ and $\mathbf{H}_{2}$.

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: |
| 590 | 386.57 |
| 588.42 | $\mathrm{H}_{2}$ |
| 600 | 397.21 |


| $\mathrm{H}_{1}$ | $\mathbf{1 0 7 . 4 1}$ | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 384.89 | $\mathrm{~kJ} / \mathrm{kg}$ |
|  |  | $\mathrm{kJ} / \mathrm{kg}$ |

Verify: Check the Ideal Gas Assumption:

$$
\tilde{V}=\frac{R T}{P}
$$

|  | 25.58 | $\mathrm{~L} / \mathrm{mole}$ | $\mathrm{V}_{2}=$ | $5.15 \mathrm{~L} / \mathrm{mole}$ |
| :--- | :--- | :--- | :--- | :--- |

Since air can be considered to be a diatomic gas and both molar volumes are greater than $5 \mathrm{~L} / \mathrm{mole}$, it is acceptable to consider the air an ideal gas.

Answers: Part a.)

| $\mathrm{W}_{\text {s }}$ | -280 | kJ/kg |  |
| :---: | :---: | :---: | :---: |
| Q | -2.27 | kJ/kg | Q > $\mathbf{0}$, the compressor loses heat to the surroundings. |

Determine the specific shaft work required for the air compressor shown below if the compression is...

a.) Isothermal
b.) Isentropic
c.) Polytropic with $\delta=1.24$
d.) A 2-stage compressor with intercooling with $\delta=1.24$ is used instead. Calculate the isothermal efficiency of this system.


Assume air behaves as an ideal gas with constant heat capacities and all the compressors are internally reversible.

Read: Parts (a) through (c) are direct applications of equations derived for shaft work in polytropic processes. Part (a) requires us to assume the fluid is an ideal gas with constant heat capacities so that we can assume $\delta=\gamma$. Part (d) is the application of equations for the internally reversible, polytropic compression of of an ideal gas. The key is to to determine the optimal intermediate pressure, $\mathbf{P}_{\mathbf{x}}$, and use it to to determine the shaft work for each compressor.

Given:

| $P_{1}$ | 90 | $k P a$ |
| :---: | :---: | :--- |
| $T_{1}$ | 310 | K |
| $\mathbf{P}_{2}$ | 1250 | kPa |

Find: $\quad$ For each part of the problem...
$-W_{S} / m_{\text {dot }}$
??? $\quad \mathrm{kJ} / \mathrm{kg}$
Compare results.

Diagram: See the problem statement.

## Assumptions:

| 1- | All compressors operate at steady-state. |
| :--- | :--- |
| 2- | Air behaves as an ideal gas. |
| 3- | The heat capacities of the air are constant. |
| 4- | The intercooler in part (d) returns the air to the inlet temperature, $\mathbf{T}_{1}$. |
| 5 - | All compressors are internally reversible. |

## Equations / Data / Solve:

The key equation for parts (a), (c) and (d) is the equation for the specific shaft work in steady-state, polytropic processes.

$$
\frac{-\dot{W}_{s}}{\dot{m}}=\frac{\delta}{\delta-1}\left(\frac{R}{M W}\right) T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\delta-1}{\delta}}-1\right]
$$

Part a.) When $\delta=\mathbf{1}$ for a polytropic process on an ideal gas, the process is isothermal.
In this case, Eqn 1 does not apply. Instead, we must use :

$$
\frac{-\dot{\mathrm{W}}_{\mathrm{s}}}{\dot{\mathrm{~m}}}=-\frac{\mathrm{R} \mathrm{~T}_{1}}{\mathrm{MW}} \operatorname{Ln}\left[\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right]
$$

Plugging values into Eqn 2 yields :

| $-W_{\mathrm{S}} / \mathrm{m}_{\text {dot }}$ | 234.1 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Part b.) Plug values into Eqn 1 :

| R | 8.314 | $\mathrm{~J} / \mathrm{mole}-\mathrm{K}$ |
| :--- | :---: | :---: |
| MW | 28.97 | $\mathrm{~g} / \mathrm{mole}$ |
| $-\mathrm{W}_{\mathrm{S}} / \mathrm{m}_{\text {dot }}$ | 349.0 | $\mathrm{~kJ} / \mathrm{kg}$ |

Part c.) Plug values into Eqn 1 :

| $-\mathrm{W}_{\mathrm{s}} / \mathrm{m}_{\text {dot }}$ | 305.2 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

Part d.) The total work per unit mass of flowing fluid (air in this case) in a 2-stage compression process is the sum of the specific work for each compressor. The resulting equation is just the application of Eqn 1 to each compressor.

$$
\frac{-\dot{\mathrm{W}}_{\mathrm{s}, \text { tot }}}{\dot{\mathrm{m}}}=\frac{\delta}{\delta-1}\left(\frac{\mathrm{R}}{\mathrm{MW}}\right) \mathrm{T}_{1}\left[\left(\frac{\mathbf{P}_{\mathrm{x}}}{\mathbf{P}_{1}}\right)^{\frac{\delta-1}{\delta}}-1\right]+\frac{\delta}{\delta-1}\left(\frac{\mathrm{R}}{\mathrm{MW}}\right) \mathrm{T}_{1}\left[\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{\mathrm{x}}}\right)^{\frac{\delta-1}{\delta}}-1\right]
$$

Where $\mathbf{P}_{\mathbf{x}}$ is the intermediate pressure between the two compressors.
The optimal value of the intermediate pressure can be determined using:

$$
\mathbf{P}_{\mathrm{x}}=\sqrt{\mathbf{P}_{1} \mathbf{P}_{\mathbf{2}}}
$$

Now, we can plug values into Eqns 4 \& 3 :

|  | $\mathrm{P}_{\mathrm{x}}$ | 335.4 | kPa |
| :---: | :---: | :---: | :---: |
| Compressor \#1: | $-W_{s} / m_{\text {dot }}$ | 133.29 | kJ/kg |
| Compressor \#2: | $-W_{s} / m_{\text {dot }}$ | 133.29 | kJ/kg |
| Total : | $-\mathrm{W}_{\mathrm{S}} / \mathrm{m}_{\text {dot }}$ | 266.6 | kJ/kg |

Notice that when the optimal value of $\mathbf{P}_{\mathbf{x}}$ is used the compression ratio across each compressor is the same.

$$
\frac{\mathbf{P}_{1}}{\mathbf{P}_{\mathrm{x}}}=\frac{\mathbf{P}_{\mathrm{x}}}{\mathbf{P}_{2}}
$$

As a result, the specific shaft work for each compressor is the same as well.
The isothermal efficiency of the 2-stage compressor can be determined from :

$$
\eta_{T, \text { multi }}=\frac{-\dot{\mathrm{W}}_{\mathrm{s}, \text { iso-T }}}{-\dot{\mathrm{W}}_{\mathrm{s}, \text { act }}}
$$

Plugging values into Eqn 6 yields :
$\eta_{T} \quad 87.81 \%$

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: Part a.)
$-\mathrm{W}_{\mathrm{s}} / \mathrm{m}_{\text {dot }} \quad 234 \mathrm{~kJ} / \mathrm{kg}$

This is the standard against which the other compressors are compared. The problem is that an isothermal compressor cannot be built.

Part b.)
$-\mathrm{W}_{\mathrm{s}} / \mathrm{m}_{\text {dot }} \quad 349 \quad \mathrm{~kJ} / \mathrm{kg}$

This value seems high, but this compressor does not require any heat exchange because it is adiabatic.

Part c.)
$-\mathrm{W}_{\mathrm{s}} / \mathrm{m}_{\text {dot }} \quad 305 \mathrm{~kJ} / \mathrm{kg}$

This polytropic compressor must reject some heat to accomplish the compression with less power input than the isentropic compressor.

Part d.)
$-\mathrm{W}_{\mathrm{s}} / \mathrm{m}_{\text {dot }} \quad 267 \quad \mathrm{~kJ} / \mathrm{kg}$

|  | $\eta_{T}$ |
| :--- | :--- |

The 2-stage compressor with intercooling reduces the power requirement by about $13 \%$ compared to the compressor in part (c).

A flash drum is a vessel in which gravity is allowed to separate a liquid and a gas. A throttling device can be used to reduce the pressure on a liquid stream to produce a two-phase mixture.

The two-phase mixture enters the flash drum where the liquid settles to the bottom and the vapor rises to the top. Because the vapor and liquid phases are allowed to reach equilibrium, the vapor and liquid leaving a flash drum
are both saturated.
Consider the system in the diagram shown below.


Calculate the power output of the turbine and the entropy generation rate for the valve, for the flash drum and for the turbine. Which unit or units generate a large amount of entropy?

Read : This is a complicated problem just because it is an ensemble of three processes. Drawing a good flow diagram that includes all the given information is essential. Fortunately, the problem statement includes a good flow diagram.

Start from State 1 because you know a lot of information about this stream. The valve behaves as a throttling valve. Apply mass and energy balances to the flash drum to determine $\mathbf{m}_{3}$ and $\mathbf{m}_{4}$. Use the isentropic efficiency to calculate $\mathbf{H}_{5}$ and then use $\mathbf{H}_{5}$ to get $\mathbf{x}_{5}$. Application of the 1st Law to the turbine yields $\mathbf{W}_{\text {turb }}$.

To get the correct entropy generated, you must be very accuarate in your calculations. Do not round off until the very end. Save the intermediate results in your calculator memory or use Excel.

Given:

| $\mathrm{P}_{1}$ | 240 | $1 b_{f} /$ in ${ }^{2}$ | $\mathrm{P}_{2}$ | 70 | $1 b_{f} / \mathrm{in}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{1}$ | 80 | ${ }^{\circ} \mathrm{F}$ | $\mathrm{P}_{3}$ | 70 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ |
| $\mathrm{m}_{1}$ | 5 | $\mathrm{lb}_{\mathrm{m}} / \mathbf{s}$ | $\mathrm{P}_{4}$ | 70 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ |
| $\eta_{\mathrm{s}, \text { turb }}$ | 0.88 |  | $\mathrm{P}_{5}$ | 20 | $1 b_{f} / \mathrm{in}^{2}$ |

Find:
a.)
$\mathbf{W}_{\text {turb }}$
?
Btu/s
b.) $\quad\left(S_{\text {gen }}\right)_{\text {valve }}$
$\left(\mathrm{S}_{\mathrm{gen}}\right)_{\text {flash }}$
( $\left.\mathrm{S}_{\text {gen }}\right)_{\text {turb }}$
?
Btu / s- ${ }^{\circ}$ R
?
Btu / s- ${ }^{\circ}$ R
Btu / s- ${ }^{\circ}$ R

Diagram: The necessary flow diagram was provided in the problem statement.

Assumptions: flowing fluid and the surroundings.
2- Kinetic and potential energy changes are negligible.
3- The expansion across the valve is an isenthalpic throttling process.
Equations / Data / Solve:
Part a.) Let's begin by applying the steady-state mass balance equation to the valve, the flash drum and the turbine, one unit at a time.
$\dot{\mathbf{m}}_{1}=\dot{\mathbf{m}}_{2}$
Eqn 1
$\dot{\mathbf{m}}_{2}=\dot{\mathbf{m}}_{3}+\dot{\mathbf{m}}_{4}$
Eqn 2
$\dot{\mathrm{m}}_{4}=\dot{\mathrm{m}}_{5}$
Eqn 3

Next, apply the 1st Law to the turbine. The turbine is a steady-state, SISO process with negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\begin{equation*}
\dot{\mathbf{Q}}_{\text {turb }}-\dot{\mathbf{W}}_{\text {turb }}=\dot{\mathbf{m}}_{5} \hat{\mathbf{H}}_{5}-\dot{\mathbf{m}}_{4} \hat{\mathbf{H}}_{4}=\dot{\mathbf{m}}_{4}\left(\hat{\mathbf{H}}_{5}-\hat{\mathbf{H}}_{4}\right) \tag{Eqn 4}
\end{equation*}
$$

In Eqn 4, $\mathbf{m}_{5}$ was eliminated using Eqn 3. Because the turbine is also assumed to be adiabatic, $\mathbf{Q}_{\text {turb }}=\mathbf{0}$ and Eqn 4 becomes:

$$
\begin{equation*}
\dot{\mathbf{W}}_{\mathrm{turb}}=-\dot{\mathbf{m}}_{4}\left(\hat{\mathbf{H}}_{5}-\hat{\mathbf{H}}_{4}\right) \tag{Eqn 5}
\end{equation*}
$$

We can lookup $\mathbf{H}_{4}$ in the Ammonia Tables or NIST Webbook because we know it is a saturated vapor at 70 psia.

$$
\begin{array}{lll}
\mathrm{H}_{4} & 622.25 \quad \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

We must use the isentropic efficiency of the turbine to determine $\mathbf{H}_{5}$ because we only know the value of one intensive variable at state $5\left(\mathbf{P}_{5}\right)$.
Isentropic efficiency applied to our turbine is defined by:

$$
\begin{equation*}
\eta_{\mathrm{s}, \text { turb }}=\frac{\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{5}}{\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{5 \mathrm{~s}}} \tag{Eqn 6}
\end{equation*}
$$

We can solve Eqn 6 for $\mathbf{H}_{5}$, as follows:

$$
\begin{equation*}
\hat{H}_{5}=\hat{H}_{4}-\eta_{s, \text { turb }}\left(\hat{H}_{4}-\hat{H}_{5 s}\right) \tag{Eqn 7}
\end{equation*}
$$

$\mathbf{H}_{5 S}$ is the enthalpy of the effluent (at $\mathbf{P}_{2}$ ) from an adiabatic, isentropic turbine that has the same feed as the actual turbine. Because this hypothetical turbine is isentropic: $\mathbf{S}_{5 \mathrm{~s}}=\mathbf{S}_{\mathbf{4}}$

We can look up $\mathbf{S}_{4}$ in the Ammonia Tables or the NIST Webbook : $\quad \mathbf{S}_{\mathbf{4}} \quad \mathbf{1 . 2 6 5 1} \mathbf{B t u ~ l b}_{\mathrm{m}}=^{\mathbf{0}} \mathbf{R}$ $\mathrm{S}_{5 \mathrm{~s}} \quad 1.2651 \quad \mathrm{Btu} \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$
Now, we know the values of two intensive properties at state 5 S , so we can determine the values of other properties at this state, such as $\mathbf{T}_{5 S}$ and $\mathbf{H}_{5 S}$, by interpolating on the Ammonia Tables or the NIST Webbook. We begin by determining the phases present.


Then, we can use the quality to determine $\mathbf{H}_{5 s}$, using:

$$
\hat{H}_{5 s}=X_{5 s} \hat{H}_{\text {sat vap }}+\left(1-X_{5 s}\right) \hat{H}_{\text {sat liq }}
$$

At $P=20$ psia :

$$
\mathbf{H}_{\text {sat liq }}
$$

$$
\begin{array}{lll}
H_{\text {sat vap }} & 605.98 & B t u / l b_{m}
\end{array}
$$

| $\mathrm{H}_{5 \mathrm{~S}}$ | 559.90 | Btu/lb ${ }_{m}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{5}$ | 567.38 | Btu/lb $\mathrm{m}_{\mathrm{m}}$ |

Now, we can use Eqn 7 to evaluate $\mathbf{H}_{5}$ :

$$
\mathbf{H}_{5}
$$

567.38
$\dot{\mathbf{m}}_{4}=\dot{\mathbf{m}}_{1}-\dot{\mathbf{m}}_{3}$
Eqn 10
Next, we need to evaluate $\mathbf{m}_{\mathbf{4}}$. Combine Eqns $1 \& 2$ to get :
We know $\mathbf{m}_{1}$, so we need to find $\mathbf{m}_{3}$ to calculate $\mathbf{m}_{\mathbf{4}}$.
We can determine $\mathbf{m}_{\mathbf{3}}$ by applying the 1st Law to the flash drum. The flash drum is adiabatic, operates at steadystate, no shaft work crosses it boundaries and changes in kinetic and potential energies are negligible. Therefore, the appropriate form of the 1st Law is:

$$
\begin{equation*}
\mathbf{0}=\dot{\mathbf{m}}_{2} \hat{\mathbf{H}}_{2}-\dot{\mathbf{m}}_{3} \hat{\mathbf{H}}_{3}-\dot{\mathbf{m}}_{4} \hat{\mathbf{H}}_{4} \tag{Eqn 11}
\end{equation*}
$$

Use Eqn 10 to eliminate $m_{4}$ from Eqn 11 and use Eqn 1 to eliminate $\mathbf{m}_{\mathbf{2}}$ from Eqn 11 and you are left with:

$$
0=\dot{m}_{1} \hat{H}_{2}-\dot{m}_{3} \hat{H}_{3}-\left(\dot{m}_{1}-\dot{m}_{3}\right) \hat{H}_{4}
$$

Eqn 12

$$
\begin{equation*}
\dot{\mathrm{m}}_{3}=\dot{\mathrm{m}}_{1}\left[\frac{\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{4}}{\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4}}\right] \tag{Eqn 13}
\end{equation*}
$$

We can solve Eqn 12 for $\mathbf{m}_{3}$, as follows:

| $\mathrm{m}_{3}$ | 4.56 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{s}$ |
| :--- | :---: | ---: |
| $\mathrm{m}_{4}$ | 0.44 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{s}$ |
| $\mathrm{W}_{\text {turb }}$ | 24.39 | $\mathrm{Btu} / \mathrm{s}$ |

Part b.) The entropy generation rate is defined in the 2nd Law as:

$$
\begin{equation*}
\dot{S}_{\text {gen }}=\sum^{\text {outlets }} \dot{\mathrm{m}} \hat{\mathrm{~S}}-\sum^{\text {inlets }} \dot{\mathrm{m}} \hat{\mathrm{~S}}-\int \frac{\delta \dot{\mathbf{Q}}}{\mathbf{T}} \tag{Eqn 14}
\end{equation*}
$$

Since we assumed that each of our three processes was adiabatic, Eqn 14 simplifies to:

$$
\dot{\mathrm{S}}_{\mathrm{gen}}=\dot{\mathrm{m}} \Delta \hat{\mathrm{~S}}
$$

Eqn 15

Apply Eqn 15 to each of the three processes:

$$
\begin{aligned}
& \left(\dot{S}_{\text {gen }}\right)_{\text {valve }}=\dot{m}_{1}\left(\hat{S}_{2}-\hat{S}_{1}\right) \\
& \left(\dot{S}_{\text {gen }}\right)_{\text {flash }}=\dot{\mathbf{m}}_{4} \hat{S}_{4}+\dot{\mathbf{m}}_{3} \hat{S}_{3}-\dot{\mathrm{m}}_{2} \hat{\mathrm{~S}}_{2} \\
& \left(\dot{\mathrm{~S}}_{\text {gen }}\right)_{\text {turb }}=\dot{\mathrm{m}}_{4}\left(\hat{S}_{5}-\hat{\mathrm{S}}_{4}\right)
\end{aligned}
$$

$$
\text { Eqn } 16
$$

Eqn 17

Eqn 18

At this point, we have determined the state of all five streams in this process, so we can use the Ammonia Tables or the NIST Webbook to evaluate the entropy of each.

The specific entropies of streams 1, 3 and 4 come straight out of the Ammonia Tables or NIST Webbook.
$S_{1}$
0.27391 Btu / $\mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$
$\mathrm{S}_{3}$
0.18317
Btu / $\mathrm{lb}_{\mathrm{m}}$ - $^{0}$ R
$S_{4}$
1.2651
Btu / $\mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$

For $\boldsymbol{S}_{5}$, we must first determine the quality using:
$x_{5}=\frac{\hat{H}_{5}-\hat{H}_{\text {sat liq }}}{\hat{H}_{\text {sat vap }}-\hat{H}_{\text {sat liq }}}$
$\mathrm{x}_{5} \quad 0.9336 \quad \mathrm{lb} \mathrm{m}_{\mathrm{m}}$ vap $/ \mathrm{lb} \mathrm{b}_{\mathrm{m}}$

Then we can evaluate $\mathbf{S}_{5}$ using :

$$
\hat{S}_{5}=x_{5} \hat{S}_{\text {sat vap }}+\left(1-x_{5}\right) \hat{S}_{\text {sat liq }}
$$

$\begin{array}{ll}\mathrm{S}_{5} & 1.2820\end{array}$
Btu $/ \mathrm{lb}_{\mathrm{m}}$ - $^{\mathbf{0}} \mathbf{R}$

In order to determine $\mathbf{S}_{2}$, we must apply the 1st Law to the valve. We assume the valve operates at steady-state, is adiabatic, exhibits negligible changes in kinetic or potential energies and involves no shaft work. Under these conditions, the 1st Law tells us that the valve is an isenthalpic throttling device.

$$
\hat{H}_{2}=\hat{H}_{1} \quad \text { Eqn 21 } \quad \mathbf{H}_{2} \quad 131.96 \quad \text { Btu/lb } b_{m}
$$

Now, we know the values of two intensive properties at state 2, so we can determine the values of other properties at this state, such as $\mathbf{S}_{\mathbf{2}}$, by interpolating on the Ammonia Tables or the NIST Webbook. We begin by determining the phases present.
At $\mathbf{P}=70$ psia :
$H_{\text {sat liq }}$
$H_{\text {sat vap }}$
84.109 Btu/lb ${ }_{m}$
622.25 Btu/lb ${ }_{m}$
Since $H_{\text {sat liq }}<H_{2}<H_{\text {sat vap }}$, state 2 is a saturated mixture.

Determine $\mathbf{x}_{\mathbf{2}}$ from the specific entropy, using:

$$
x_{2}=\frac{\hat{H}_{2}-\hat{H}_{\text {sat liq }}}{\hat{H}_{\text {sat vap }}-\hat{H}_{\text {sat liq }}}
$$

Eqn 22
$\begin{array}{lll}\mathrm{x}_{2} & 0.08892 \quad \mathrm{lb} \\ \mathrm{m} & \text { vap/lb } \\ m\end{array}$
Then, we can use the quality to determine $\mathbf{S}_{\mathbf{2}}$, using:

$$
\begin{equation*}
\hat{S}_{2}=x_{2} \hat{S}_{\text {sat vap }}+\left(1-x_{2}\right) \hat{S}_{\text {sat liq }} \tag{Eqn 23}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { At } P=70 \text { psia : } & S_{\text {sat liq }} \\
& S_{\text {sat vap }}
\end{array}
$$

$$
\text { 0.18317 Btu/lb } \mathrm{m}_{\mathrm{m}}-^{\circ} \mathbf{R}
$$

$$
\text { 1.2651 Btu/lb }{ }_{m}-{ }^{\circ} \mathbf{R}
$$

$S_{2}$
0.27938

Btu/lb ${ }_{m}{ }^{-}{ }^{0} R$
Finally, we have all the values necessary to plug into Eqns 16-18 to evaluate the entropy generation in each device and then Eqn 24 to evaluate the lost work in each device.

| $\left(S_{\text {gen }}\right)_{\text {valve }}$ | 0.02734 | Btu / s- ${ }^{\circ} \mathrm{R}$ | $\left(S_{\text {gen }}\right)_{\text {turb }}$ | 0.00751 | Btu / s- ${ }^{\circ} \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathbf{S}_{\text {gen }}\right)_{\text {flash }}$ | 0.00000 | Btu / s- ${ }^{\circ} \mathrm{R}$ |  |  |  |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers: a.)

| $\mathrm{W}_{\text {turb }}$ | 24.4 | Btu/s |  |
| :---: | :---: | :---: | :---: |
| $\left(S_{\text {gen }}\right)_{\text {valve }}$ | 0.0273 | Btu/ s- ${ }^{\text {P }}$ | The expansion valve generates the most entropy. |
| $\begin{aligned} & \left(\mathbf{S}_{\text {gen }}\right)_{\text {flash }} \\ & \left(\mathbf{S}_{\text {gen }}\right)_{\text {turb }} \end{aligned}$ | $\begin{aligned} & 0.00000 \\ & 0.00751 \end{aligned}$ | $\begin{aligned} & \mathrm{Btu} / \mathrm{s}-^{\circ} \mathrm{R} \\ & \mathrm{Btu} / \mathrm{s}^{\circ} \mathrm{R} \end{aligned}$ |  |

## "The best way to Learn Thermodynamics"

8C-3
Isentropic Efficiency of an Ideal Gas Compressor
7 pts
Consider the adiabatic air compressor shown below.

a.) Calculate the minimum power input required and $\mathbf{T}_{2}$
b.) The outlet temperature from a real, adiabatic compressor that accomplishes the same compression is 520K. Calculate the actual power input and the isentropic efficiency of the real compressor.

Read : Determine $\mathbf{S}^{0}\left(\mathbf{T}_{2}\right)$ for an isentropic process and then interpolate to obtain both $\mathbf{T}_{2 s}$ and $\mathbf{H}_{2 s}$. Then, an energy balance will give you $\left(W_{s}\right)_{\text {min }}$. Use the isentropic efficiency and $\left(W_{s}\right)_{\text {min }}$ to determine $\left(W_{s}\right)_{\text {act }}$.

Given:

| $\mathbf{m}$ | 9.5 | $\mathrm{~kg} / \mathbf{s}$ |
| :--- | :--- | :--- |
| $\mathbf{P}_{1}$ | 110 | kPa |
| $\mathbf{T}_{1}$ | 310 | K |
| $\mathbf{P}_{2}$ | 550 | kPa |
| $\mathbf{T}_{2, \text { part (b) }}$ | 520 | K |

Find:
a.) $\quad\left(W_{S}\right)_{\text {min }}$
???
kW
$\mathrm{T}_{2 \mathrm{~S}}$ ???
b.) $\quad\left(\mathrm{W}_{\mathrm{S}}\right)_{\text {act }} \quad$ ??? kW
$\mathrm{T}_{2, \text { part (b) }}$
520 K

$$
29
$$

???

Diagram: The diagram in the problem statement is adequate.
Assumptions: $\mathbf{1 -} \quad$ The compressor operates at steady-state and there is no significant heat transfer.
2- Kinetic and potential energy changes are negligible.
3- Air is modeled as an ideal gas.
Equations / Data / Solve:
Part a.) An isentropic compressor requires the minimum power input.
We can determine the isentropic work by applying the 1st Law to an isentropic compressor that takes in the same feed and yields an effluent at the same pressure.

For a steady-state, single-inlet, single outlet system with negligible heat transfer, kinetic and potential energy changes, the 1st Law is:

$$
\left(\dot{W}_{\mathrm{s}}\right)_{\min }=\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\text {isen }}=\dot{\mathrm{m}}\left(\hat{\mathrm{H}}_{1}-\hat{\mathrm{H}}_{2 \mathrm{~s}}\right)
$$

The entropy change for this process can determined using the 1st Gibbs Equation in terms of the Ideal Gas Entropy Function.

$$
\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
$$

We can also apply Eqn 2 to our hypothetical, isentropic compressor:


Eqn 3

We can solve Eqn 3 for the unknown $\mathbf{S}^{\mathbf{0}}{ }_{\mathbf{T} 2 \mathrm{~S}}$ :


Eqn 4

We can evaluate $\mathbf{S}^{\circ}{ }_{T 1}$ using the Ideal Gas Property Tables:
$S^{0}\left(T_{1}\right) \quad 0.0061681 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
We can get $\mathbf{H}^{\circ}{ }_{\mathrm{T} 1}$ while we are looking in the Ideal Gas Property Tables because we will need it later when we evaluate Eqn 1.

| Now, we can plug values into Eqn 4: | $\mathrm{H}_{\mathbf{1}}$ | $\mathbf{8 7 . 4 1 0}$ | $\mathrm{kJ} / \mathrm{kg}$ |
| :--- | :--- | ---: | :--- |
|  | $\mathbf{R}$ | 8.314 | $\mathrm{~kJ} / \mathrm{kmol}-\mathrm{K}$ |
|  | MW | 28.97 | $\mathrm{~kg} / \mathrm{kmol}$ |
|  | $\mathrm{S}^{\circ}\left(\mathrm{T}_{2 \mathrm{~S}}\right)$ | 0.46806 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Now, we can use $\mathbf{S}^{0}{ }_{T 2 S}$ and the Ideal Gas Property Tables to determine $\mathbf{T}_{2 S}$ and $\mathbf{H}_{2 S}$ by interpolation.

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 470 | 260.49 | 0.46258 |  |  |  |
| $\mathrm{~T}_{2 \mathrm{~S}}$ | $\mathrm{H}_{2 \mathrm{~S}}$ | 0.46806 | $\mathrm{~T}_{2 \mathrm{~S}}$ | $\mathbf{4 7 2 . 5 0}$ | K |
| 480 | 270.88 | 0.48445 | $\mathrm{H}_{2 \mathrm{~S}}$ | $\mathbf{2 6 3 . 0 9}$ | $\mathrm{~kJ} / \mathrm{kg}$ |

Part b.) We can determine the actual power input for the compressor by applying the 1 st Law to the real compressor, just as we did in Eqn 1 for the isentropic compressor.

$$
\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2}\right)
$$

Eqn 5

We can evaluate $\mathbf{H}^{\circ}{ }_{\mathbf{T} 2}$ using the Ideal Gas Property Tables:

Now, we can evaluate $\mathbf{W}_{\text {s,act }}$ using Eqn 5:

| $\mathrm{T}_{2, \text { part (b) }}$ | 520 | K |
| :--- | :---: | ---: |
| $\mathrm{H}_{2}$ | 312.65 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\left(\mathrm{W}_{\mathrm{S}}\right)_{\text {act }}$ | -2139.78 | kW |

The isentropic efficiency of a compressor is defined by:

$$
\begin{equation*}
\eta_{\mathrm{s}, \text { comp }}=\frac{\dot{\mathrm{W}}_{\mathrm{s}, \text { isen }}}{\dot{\mathrm{W}}_{\mathrm{s}, \text { act }}} \tag{Eqn 6}
\end{equation*}
$$

Since we determined the isentropic work in part (a) and the actual work in part (b), we are ready to plug numbers into Eqn 6 and wrap up this problem.

| Check the Ideal Gas assumption:$\tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}$ | $\eta_{\text {s, comp }}$ | 78.00\% |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{1}=$ | 23.43 | L/mole |
|  | $\mathrm{V}_{2}=$ | 7.86 | L/mole |

Since air can be considered to be a diatomic gas and both molar volumes are greater than $5 \mathrm{~L} / \mathrm{mole}$, it is accurate to treat the air as an ideal gas.

Answers: Part a.)

| $\left(\mathrm{W}_{\mathrm{S}}\right)_{\min }$ | -1670 | kW |
| :---: | :---: | :---: |
| $\mathrm{~T}_{2 \mathrm{~S}}$ | 473 | K |

Part b.)

| $\left(W_{\text {S }}\right)_{\text {act }}$ | -2140 | $k W$ |
| :---: | :---: | :---: |
| $\eta_{\mathrm{s}, \text { comp }}$ | $78.0 \%$ |  |

A thermal reservoir at 1550 K transfers $10,000 \mathrm{~kJ}$ of heat to a thermal reservoir at 350 K . The temperature of the surroundings is 298 K . Determine the lost work for this process based on...
a.) The performance characteristics of Carnot Cycles.
b.) The total entropy generation of this process.

Read : Heat transfer through a finite temperature difference is irreversible. It results in entropy generation and represents a lost opportunity to do work. Part (a) is more challenging because we need to build a hypothetical process out of reversible HE's, Ref's and HP's that accomplishes the same net heat transfer as the real process and then determine how much work we COULD have obtained using these reversible devices. Part (b) is a straightforward application of the definition of entropy generation, the entropy change for an isothermal process such as a thermal reservoir and the relationship between lost work and entropy generation.

| Given: | Q | 10000 | kJ | $\mathrm{T}_{\mathrm{H}}$ | 1550 | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\text {surr }}$ | 298 | K | $\mathrm{T}_{\mathrm{C}}$ | 350 | K |
| Find: | $\mathrm{W}_{\mathrm{s}, \text { lost }}$ | ??? | kJ |  |  |  |
| Assum |  |  |  | se te | oes | hange as |

## Diagram: Actual Process



## Hypothetical Process



## Equations / Data / Solve:

## Part a.) The definition of lost work is :

$$
\mathrm{W}_{\mathrm{s}, \text { lost }}=\mathrm{W}_{\mathrm{s}, \text { rev }}-\mathrm{W}_{\mathrm{s}, \text { act }}
$$

In our actual process, no shaft work is produced, so : $\mathbf{W}_{\text {s,act }} \quad \mathbf{0} \quad$ kJ
So, we need to evaluate the reversible work in order to determine the lost work.
In order to evaluate the reversible work, we must setup a reversible process that accomplishes the same thing as the actual process.

The hypothetical process must result in a transfer of 10000 kJ of heat from the hot reservoir to the cold reservoir.

We can build the hypothetical process from Carnot Cycles. The diagram of the hypothetical process I have chosen includes a heat engine and a heat pump, both of which are reversible.

The HE must absorb the 1000 kJ from the hot reservoir and the HP must reject 10000 kJ to the cold reservoir. In this way, the hypothetical process does indeed accomplish the same thing as the real process. The work that this hypothetical (reversible) process produces is the reversible work and Eqn 1 tells us that is also the lost work because the actual work is zero.

So, now we need to use the Carnot Efficiency and COP to evaluate the lost work.

The Carnot Efficiency of our HE is :

$$
\begin{align*}
& \eta_{\mathrm{R}}=1-\frac{T_{\text {surr }}}{T_{H}}=\frac{W_{H E}}{Q_{H}}  \tag{Eqn 2}\\
& \eta_{\mathrm{R}} \\
& W_{H E}=\eta_{\mathrm{R}} \mathbf{Q}_{\mathrm{H}} \tag{Eqn 3}
\end{align*}
$$

Solving Eqn 2 for the work produced by the HE yields :

The COP of a Carnot HP is :
8077 kJ

$$
\mathrm{COP}_{\mathrm{R}}=\frac{1}{1-\frac{T_{\text {surr }}}{T_{\mathrm{C}}}}=\frac{Q_{H}}{W_{H P}}
$$

Solving Eqn 4 for the work required by the HP yields :

$$
W_{H P}=\frac{Q_{H}}{\mathbf{C O P}_{\mathrm{R}}}
$$

$$
\begin{array}{lll}
\mathrm{W}_{\mathrm{HP}} & 1486 & \mathrm{~kJ}
\end{array}
$$

The reversible work, and therefore the lost work, is equal to the difference between the work produced by the reversible HE and the work required by the reversible HP.

$\mathrm{W}_{\mathrm{s}, \text { rev }} 6592 \mathrm{~kJ} \quad$|  | $\mathrm{W}_{\mathrm{s}, \text { lost }}$ | 6592 | kJ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Part b.) The entropy generation by the real process is equal to the entropy change of the universe resulting from the process. The entropy change of the universe is made up of the entropy increase of the cold reservoir and the entropy decrease of the hot reservoir because of the transfer of 1000 kJ .

$$
\mathbf{S}_{\text {gen }}=\Delta \mathbf{S}_{\text {univ }}=\Delta \mathbf{S}_{\text {hot }}+\Delta \mathbf{S}_{\text {cold }}=-\frac{\mathbf{Q}}{\mathbf{T}_{\mathrm{H}}}+\frac{\mathbf{Q}}{\mathbf{T}_{\mathrm{c}}}
$$

Lost work is related to the total entropy generation by :

$$
\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{lost}}=\mathbf{T}_{\text {surf }} \dot{\mathbf{S}}_{\text {gen }}
$$

$\mathrm{W}_{\mathrm{s} \text {,lost }} 6592$
We can combine Eqns 6 \& 7 to obtain a convenient equation for calculating the lost work associated with heat transfer through a finite temperature difference.

$$
\mathbf{W}_{\mathrm{s}, \text { lost }}=\mathbf{Q} \mathbf{T}_{\text {surr }}\left\{\frac{\mathbf{T}_{\mathrm{H}}-\mathbf{T}_{\mathrm{c}}}{\mathbf{T}_{\mathbf{H}} \mathbf{T}_{\mathbf{c}}}\right\}
$$

Note: In this equation $\mathbf{Q}$ is the absolute value of the amount of heat transferred (a positive quantity).
Verify: None of the assumptions made in this problem solution can be verified.
Answers: Parts a \& b:
$\mathrm{W}_{\mathrm{s}, \text { lost }} \quad 6592 \mathrm{~kJ}$

8D-2 Sgen and Wlost for a Compressor with Heat Losses

The outer surface of a air compressor is at an average temperature of 485 K and the surroundings are at 300 K . The operating parameters for the compressor are given in the figure below.

a.) Calculate the internal, external and total entropy generation rates for the compressor in $\mathbf{k W} / \mathbf{K}$.
b.) Calculate the internal, external and total lost work for the compressor in kW.
c.) Show that the total lost work determined in part (b) is the difference between the power requirement of a completely reversible compressor that accomplishes the same change in state of the air stream and the actual work for the real compressor.

Read : Equations for evaluating total and external entropy generation can be obtained from Lesson 8D. You could just take the difference between these to determine the internal entropy generation. But it is useful to understand how the position of the system boundary can be manipulated to directly yield an equation for the internal entropy generation.
The keys are to use the 1st Law to determine $\mathbf{Q}$ and to use the 2nd Gibbs Equation and the Ideal Gas Entropy Function to evaluate $\Delta \mathbf{S}$.

Once the entropy generation rates are known, it is easy to determine the lost work rates.
In order to verify the definition of lost work, we must determine the amount of work a reversible compressor would require to accomplish the same compression process. $\mathbf{Q}_{\text {rev }}$ must be different from $\mathbf{Q}_{\text {act }}$. The key to this part of the problem is that total entropy generation rate for the reversible compressor must be zero.

| Given: | $\mathrm{P}_{1}$ | 96 | kPa |  |  | T | 310 | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{2}$ | 1200 | kPa |  |  | T | 640 | K |
|  | m | 1.30 | kg/s |  |  | $\mathrm{T}_{\text {surf }}$ | 485 | K |
|  | $\mathrm{W}_{\text {s,act }}$ | -555 | kW |  |  | $\mathrm{T}_{\text {surr }}$ | 300 | K |
| Find: | a.) | $\mathbf{S}_{\text {gen, int }}$ | ??? | kW/K | b.) | $\mathrm{W}_{\text {lost, int }}$ | ??? | kW |
|  |  | $S_{\text {gen,ext }}$ | ??? | kW/K |  | $\mathrm{W}_{\text {lost, ext }}$ | ??? | kW |
|  |  | $\mathbf{S}_{\text {gen,tot }}$ | ??? | kW/K |  | $\mathrm{W}_{\text {lost, tot }}$ | ??? | kW |

$$
\text { c.) } \quad \text { Show that : } \quad \dot{\mathrm{W}}_{\mathrm{s}, \mathrm{lost}}=\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{rev}}-\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{act}}
$$

Assumptions:

1 -

2- The compressor operates at steady-state with negligible changes in kinetic and potential energies.
3- Air behaves as an ideal gas.

Diagram: The diagram in the problem statement is adequate.

## Equations / Data / Solve:

Part a.) We can use the following equations to evaluate the internal and total entropy generation rates.

$$
\begin{equation*}
\dot{\mathbf{S}}_{\text {gen,tot }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\frac{\dot{\mathbf{Q}}_{\text {act }}}{\mathbf{T}_{\text {surr }}} \tag{Eqn 2}
\end{equation*}
$$

If we place the system boundary far from the surface of the compressor, then ALL of the irreversibilities are inside the system because the temperature at the system boundary is the same as the temperature of the surroundings. So, heat exchange between this big system and the surroundings is reversible.


This explains why using $\mathbf{T}_{\text {surr }}$ in Eqn 2 tells us that we are computing the TOTAL entropy generation rate. Because with this big system, there are no irreversibilities OUTSIDE the system boundary. Notice that heat transfer from this system does occur, but it occurs with zero temperature driving force, so it is reversible!

$$
\begin{equation*}
\dot{\mathbf{S}}_{\text {gen }, \text { int }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\frac{\dot{\mathbf{Q}}_{\mathrm{act}}}{\mathbf{T}_{\text {surf }}} \tag{Eqn 3}
\end{equation*}
$$

Using our usual system boundary, right at the surface of the compressor, heat exchange with the surroundings is irreversible. So, by using Eqn 3, with $\mathbf{T}_{\text {surf }}$ instead of $\mathbf{T}_{\text {surr }}$, we have excluded the external irreversibility due to heat transfer through a finite temperature difference. So, this entropy generation equation gives us the INTERNAL entropy generation only !


The external entropy generation rate is equal to the rate at which the entropy of the universe (compressor and surroundings) changes due only to the heat transfer from the compressor to the surroundings.

$$
\dot{\mathrm{S}}_{\text {gen,ext }}=\dot{\mathrm{S}}_{\text {univ }}=\dot{\mathrm{S}}_{\text {comp }}+\dot{\mathrm{S}}_{\text {surr }}=\frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\text {surf }}}-\frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\text {surr }}}
$$

Eqn 4

The minus sign appears in Eqn 4 because the sign of $\mathbf{Q}$ from the perspective of the system is negative, but from the perspective of the surroundings, $\mathbf{Q}>\mathbf{0}$ because heat is entering the surroundings !

Eqn 4 can be rearranged to give us :

$$
\dot{\mathbf{S}}_{\text {gen,ext }}=\dot{\mathbf{Q}}\left\{\frac{\mathbf{T}_{\text {surf }}-\mathbf{T}_{\text {surr }}}{\mathbf{T}_{\text {surf }} T_{\text {surr }}}\right\}
$$

Eqn 5

Let's begin by determing $\Delta \mathbf{S}$ for the working fluid using the 2nd Gibbs Equation and the Ideal Gas Property Table for air.

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{\mathbf{T}_{2}}^{\circ}-\hat{\mathbf{S}}_{\mathbf{T}_{1}}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \mathbf{L n}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]
$$

Eqn 6

| $\mathrm{S}_{1}{ }_{1}$ | 0.038914 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ | $\mathrm{S}_{2}^{\circ}$ | 0.78826 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :---: | :--- | :---: | ---: | :--- |
| R | 8.314 | $\mathrm{~J} / \mathrm{mole}-\mathrm{K}$ |  |  |  |
| MW | 28.97 | $\mathrm{~g} / \mathrm{mole}$ | $\Delta \mathrm{S}$ | 0.02450 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Next, we need to evaluate $\mathbf{Q}$, the rate of heat loss from the compressor. We can do this using the 1st Law for open systems operating at steady-state with negligible changes in kinetic and potential energies.

$$
\begin{equation*}
\dot{\mathbf{Q}}-\dot{\mathrm{W}}_{\mathrm{s}}=\dot{\mathbf{m}} \Delta \hat{\mathbf{H}}=\dot{\mathrm{m}}\left(\hat{\mathrm{H}}_{2}-\hat{\mathrm{H}}_{1}\right) \tag{Eqn 7}
\end{equation*}
$$

We can solve Eqn 7 for $\mathbf{Q}: \quad \dot{\mathbf{Q}}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}\right)+\dot{\mathbf{W}}_{\mathbf{s}}$
Eqn 8

Now, we can use the Ideal Gas Property Table for air to evaluate $\mathbf{H}_{1}$ and $\mathbf{H}_{\mathbf{2}}$.

| $\mathbf{H}^{\circ} \mathbf{1}^{97.396}$ | $\mathbf{k J} / \mathbf{k g}$ | $\mathbf{H}_{\mathbf{2}}$ | $\mathbf{4 3 9 . 9 8}$ | $\mathbf{k J} / \mathbf{k g}$ |
| :--- | :--- | :--- | :--- | :--- |
| Plug values back into Eqn 7 to evaluate $\mathbf{Q}:$ | $\mathbf{Q}$ | $\mathbf{- 1 0 9 . 6 4}$ | $\mathbf{k W}$ |  |

Now, we are able to plug values back into Eqns 2, 3\&5 to evaluate the entropy generation rates.

| S $_{\text {gen,int }}$ | 0.25791 | $\mathrm{~kW} / \mathrm{K}$ |
| :--- | :--- | :--- |
| $\mathrm{S}_{\text {gen,ext }}$ | 0.13941 | $\mathrm{~kW} / \mathrm{K}$ |

$\mathbf{S}_{\text {gen,tot }}$
0.39731 kW/K

Double check your calculations using :

$$
\dot{\mathbf{S}}_{\text {gen,tot }}=\dot{\mathrm{S}}_{\text {gen,int }}+\dot{\mathrm{S}}_{\text {gen,ext }}
$$

Eqn 9

Part b.) Once we have completed part (a), part (b) is a straightforward application of the relationship between lost work and entropy generation.

$$
\dot{\mathbf{W}}_{\mathrm{s}, \text { lost }}=\mathbf{T}_{\text {surr }} \dot{\mathbf{S}}_{\mathrm{gen}}
$$

Eqn 10
Eqn 10 applies for internal, external and total entropy generation and lost work.

| $\mathbf{W}_{\text {lost,int }}$ | 77.37 kW |  |
| :--- | :--- | :--- |
| $\mathbf{W}_{\text {lost,ext }}$ | 41.82 kW | $\mathbf{W}_{\text {lost,tot }}$ |

119.19 kW

Part c.) Here we must verify that our answer from part (b) is consistent with the defintion of lost work.

$$
\begin{equation*}
\mathbf{W}_{\mathrm{s}, \text { lost }}=\mathbf{W}_{\mathrm{s}, \mathrm{rev}}-\mathbf{W}_{\mathrm{s}, \mathrm{act}} \tag{Eqn 11}
\end{equation*}
$$

In order to do this, we must evaluate $\mathbf{W}_{\mathrm{s}, \text { rev }}$.
The key to doing this is to understand that the reversible process still operates between state 1 and state 2.
The values of $\mathbf{Q}$ and $\mathbf{W}_{\mathbf{s}}$ are different from those for the real compressor.
The fact that ties this part of the problem together and allows us to determine $\mathbf{Q}$ and $\mathbf{W}_{\mathbf{s}}$ for the reversible compressor is that :

$$
\dot{\mathbf{S}}_{\text {gen,tot,rev }}=\mathbf{0}
$$

We can use this fact and solve Eqn 2 for $\mathbf{Q}_{\text {rev }}$ :

$$
\dot{\mathbf{Q}}_{\mathrm{rev}}=\dot{\mathbf{m}} \mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}}
$$

Eqn 13

| $Q_{\text {rev }}$ | 9.55 | $k W$ |
| :--- | :--- | :--- |

Next, we can apply the 1 st Law to the reversible compressor to evaluate $\mathbf{W}_{\mathrm{S}, \text { rev }}$.
We can solve Eqn 7 for $\mathbf{W}_{\text {s,rev }}$. The result is :

$$
\begin{gathered}
\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{rev}}=\dot{\mathbf{Q}}_{\mathrm{rev}}-\dot{\mathrm{m}}\left(\hat{\mathrm{H}}_{2}-\hat{\mathbf{H}}_{1}\right) \\
\mathrm{W}_{\mathrm{s}, \mathrm{rev}} \\
\mathbf{W}_{\mathrm{s}, \mathrm{rev}}-\mathrm{W}_{\mathrm{s}, \mathrm{act}}= \\
-435.81 \mathrm{~kW} \\
\end{gathered}
$$

$$
\text { Eqn } 14
$$

Plugging values into Eqn 14 yields :
Finally, put values into the right-hand side of Eqn 11 :
This matches our result for lost work from part (b). So, we have confirmed the relationship between reversible work, actual work and lost work.

Verify: None of the assumptions made in this problem solution can be verified.
Answers: a.)

| $\mathrm{S}_{\text {gen,int }}$ | $0.258 \mathrm{~kW} / \mathrm{K}$ |
| :--- | :--- |
| $\mathrm{S}_{\text {gen,ext }}$ | $0.139 \mathrm{~kW} / \mathrm{K}$ |
|  |  |
| $\mathrm{S}_{\text {gen,tot }}$ | $0.397 \mathrm{~kW} / \mathrm{K}$ |

b.)

| $\mathrm{W}_{\text {lost,int }}$ | 77.4 kW |
| :--- | :--- |
| $\mathrm{~W}_{\text {lost,ext }}$ | 41.8 kW |

$\mathrm{W}_{\text {lost,tot }} \quad 119.2 \mathrm{~kW}$
c.)
$\mathrm{W}_{\mathrm{s}, \text { rev }}-\mathrm{W}_{\mathrm{s}, \text { act }}=119.2 \mathrm{~kW}$

A steam turbine lets 2000 psia steam down to 60 psia. The inlet steam temperature is $1500^{\circ} \mathrm{F}$ and the isentropic efficiency is $88 \%$.
a.) Calculate $\mathbf{W}_{\mathrm{s}, \mathrm{act}}$ in $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
b.) Calculate the 2nd Law Efficiency of the turbine. Assume $\mathrm{T}_{\text {surr }}=75^{\circ} \mathrm{F}$.

Read: $\quad$ The key to this problem is to assume that the turbine is adiabatic.
We can calculate the isentropic work of the turbine because $\mathbf{S}_{2}=\mathbf{S}_{1}$ gives us the additional intensive variable value that we need to fix the state of the outlet stream. Then we can calculate the actual work from the isentropic work and the isentropic efficiency.

The 2nd Law Efficiency is the ratio of the actual work that we found in part (a) to the reversible work. We need to know the actual entropy of the outlet stream in order to determine the reversible work for the turbine. We can use the actual work and the 1st Law to determine the actual enthalpy of the effluent. This gives us the second intensive property we need in order to use the Steam Tables to evaluate $\mathbf{S}_{\mathbf{2}}$.

| Given: | $\eta_{s}$ | 88\% |  | Find: | $\mathrm{W}_{\text {s,act }}$ | ??? | Btu/lb ${ }_{\text {m }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{1}$ | 2000 | psia |  | $\eta_{\text {ii }}$ | ??? | \% |
|  | $\mathrm{T}_{1}$ | 1500 | ${ }^{\circ} \mathrm{F}$ |  |  |  |  |
|  | $\mathrm{P}_{2}$ | 60 | psia |  |  |  |  |
|  | $\mathrm{T}_{\text {surr }}$ | 75 | ${ }^{\circ} \mathrm{F}$ |  |  |  |  |

Diagram:


Assumptions: 1- The turbine is assumed to be adiabatic.
2- $\quad$ Changes in kinetic and potential energies are negligible.
Equations / Data / Solve:
Part a.) The isentropic efficiency of an adiabatic turbine is defined by:
$\eta_{\mathrm{s}}=\frac{\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}}{\hat{\mathbf{W}}_{\mathrm{s}, \text { isen }}}=\frac{\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2, \text { act }}}{\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2 \mathrm{~s}}}$

We can solve Eqn 1 for $\mathbf{W}_{\mathrm{s}, \mathrm{act}}$ :

$$
\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}=\eta_{\mathrm{s}} \cdot \hat{\mathbf{W}}_{\mathrm{s}, \text { isen }}=\eta_{\mathrm{s}}\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2 \mathrm{~s}}\right)
$$

Because we know the values of two intensive properties at state 1, we can use the Steam Tables or the NIST Webbook to look-up $H_{1}$. Because $T_{1}>T_{\text {critical }}\left(1165 . \mathbf{3}^{\circ} \mathbf{R}\right)$, we need to look in the superheated vapor table for properties at state 1.

| $\mathrm{H}_{1}$ | 1779.2 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :--- | :--- |

The key to determining $\mathbf{H}_{25}$ is the fact that $\mathbf{S}_{2 S}=\mathbf{S}_{1}$ and we can determine $\mathbf{S}_{1}$ from the Steam Tables or the NIST Webbook.

| $\mathrm{S}_{1}$ | 1.7406 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ |
| :--- | :--- | :--- |
| $\mathrm{S}_{2 \mathrm{~S}}$ | 1.7406 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{-} \mathrm{R}$ |

Now, we know the values of two intensive properties at state $2 \mathbf{S}$, so we can determine the values of other properties at this state, such as $\mathbf{T}_{2 s}$ and $\mathbf{H}_{2 s}$, by interpolating on the Steam Tables or the NIST Webbook. We begin by determining the phases present.

$$
\begin{array}{lllll}
\text { At } P=60 \text { psia : } & \mathrm{S}_{\text {sat liq }} & 0.4276 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathbf{R} & \text { Since } \mathrm{S}_{2}>\mathrm{S}_{\text {sat vap, }} \text {, state } 2 \mathrm{~S} \text { is a } \\
& \mathrm{S}_{\text {sat vap }} & 1.6454 & {\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{-} \mathrm{R}} & \text { superheated vapor. }
\end{array}
$$

Interpolation within the 60 psia superheated steam table is required.
At $P=60$ psia : $\quad \mathrm{T}\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{H}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \mathrm{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{R}\right)$

Now, we can plug values back into Eqn 2 to evaluate $\mathbf{W}_{\mathrm{S}, \text { act }}$ :

| $\mathrm{T}_{2 \mathrm{~S}}$ | 449.9 | ${ }^{\circ} \mathrm{F}$ |
| :--- | :---: | :--- |
| $\mathrm{H}_{2 \mathrm{~S}}$ | 1259.1 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{W}_{\mathrm{s}, \text { act }}$ | 457.7 | Btu/lb $_{\mathrm{m}}$ |

Part b.) The 2nd Law Efficiency of a turbine is defined as:

$$
\eta_{\mathrm{iii}, \text { turb }}=\frac{\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}}{\hat{W}_{\mathrm{s}, \text { rev }}}
$$

Eqn 3

The reversible work can be determined from :

$$
\hat{W}_{\mathrm{s}, \mathrm{rev}}=\mathrm{T}_{\text {surr }} \Delta \hat{\mathrm{S}}-\Delta \hat{H}
$$

Eqn 4
We could determine $\mathbf{S}_{2}$ if we knew $\mathbf{H}_{2}$. We can determine $\mathbf{H}_{\mathbf{2}}$ from and $\mathbf{W}_{\mathbf{S}, \text { act }}$ by applying the 1 st Law to the actual, adiabatic process where changes in kinetic and potential energies are negligible.

$$
\hat{\mathbf{Q}}-\hat{\mathbf{W}}_{\mathrm{s}}=\Delta \hat{H}
$$

Eqn 5
or:
$\hat{\mathbf{H}}_{2}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{W}}_{\mathrm{s}, \text { act }}$
Eqn 6
Plugging values into Eqn 6 yields:
$\mathrm{H}_{2}$
1321.5 Btu/lb $\mathrm{m}_{\mathrm{m}}$

Now that we know the values of two intensive variables at state 2, $\mathbf{P}_{2}$ and $\mathbf{H}_{2}$, we can interpolate on the Steam Tables or NIST Webbook data to determine $\mathbf{S}_{2}$. Because $\mathbf{H}_{2}>\mathbf{H}_{2 S}$, and state 2 S is a superheated vapor, we know that the actual state 2 is a superheated vapor.
At $\mathrm{P}=60 \mathrm{psia}$ :
$\begin{array}{ccc}\mathrm{T}\left({ }^{\circ} \mathrm{F}\right) & \mathrm{H}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \mathrm{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}\right) \\ 400 & 1234.5 & 1.7149 \\ \mathrm{~T}_{2} & 1321.51 & \mathrm{~S}_{2} \\ 600 & 1333.1 & 1.8181\end{array}$

| $\mathrm{T}_{2}$ | 576.5 | ${ }^{\circ} \mathrm{F}$ |
| :--- | :---: | :--- |
| $\mathrm{S}_{2}$ | 1.8059 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ |

Now, using $T_{\text {surr }}=75^{\circ} \mathrm{F}$, we can use Eqn 4 to calculate $\mathrm{W}_{\mathrm{S}, \text { rev }}$ and then use Eqn 3 to evaluate the 2nd Law Efficiency of the turbine.
$\begin{array}{lll}\mathrm{T}_{\text {surr }} & 534.67 & { }^{\circ} \mathrm{R}\end{array}$

| $\mathrm{W}_{\mathrm{s}, \text { rev }}$ | $492.6 \quad \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :---: | :---: |
| $\eta_{\mathrm{ii}}$ | $92.9 \%$ |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

| Answers: Part a.) | $\mathrm{W}_{\text {s,act }}$ | 458 | Btu/lb ${ }_{\text {m }}$ | Part b.) | $\eta_{i i}$ | 92.9\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dr. B-LearnT |  |  | Ex | Copyright B-Cubed 2014, all rights reserved |  |  |

8D-4
2nd Law Efficiency and Lost Work in an Air Compressor

a.) The actual, reversible and lost work in kW
b.) The 2nd Law efficiency

Assume air behaves as an ideal gas and the temperature of the surroundings is 310 K .

Read : We can calculate the isentropic work requirement of the compressor because $\mathbf{S}_{2}=\mathbf{S}_{1}$ gives us the additional intensive variable value that we need to fix the state of the effluent stream. Then we can calculate the actual work from the isentropic work using the isentropic efficiency.

We need to know the actual entropy of the effluent in order to determine the reversible work for the turbine. We can use the actual work and the 1st Law to determine the actual enthalpy of the effluent. This gives us the second intensive property we need in order to interpolate on the Ideal Gas Property Table for air to evaluate $\mathbf{S}^{\circ}{ }_{2}$. Once we know $\mathbf{S}^{\circ}$, we can use the 2nd Gibbs Equation to determine $\mathbf{S}_{2}$. Use $\mathbf{S}_{\mathbf{2}}$ to evaluate $\mathbf{W}_{\mathrm{S}, \text { lost. }}$. The 2nd Law Efficiency is the ratio of the actual work to the reversible work that we found in part (a).

| Given: | $\eta_{\mathbf{s}}$ | $72 \%$ |  |
| :--- | :--- | :---: | :--- |
|  | $\mathbf{P}_{1}$ | 105 | $\mathbf{k P a}$ |
|  | $\mathbf{T}_{1}$ | 310 | K |
|  | $\mathbf{P}_{2}$ | 4250 | $\mathbf{k P a}$ |
|  | $\mathbf{m}_{\text {dot }}$ | 1.4 | $\mathbf{k g} / \mathbf{s}$ |
|  | $\mathbf{T}_{\text {surr }}$ | 310 | K |


| Find: | $\mathrm{W}_{\mathrm{s}, \text { act }}$ | ??? | kW |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{W}_{\mathrm{s}, \text { rev }}$ | ??? | kW |
|  | $\mathrm{W}_{\mathrm{s}, \text { lost }}$ | ??? | kW |
|  | $\eta_{\mathrm{ii}}$ | $? ? ?$ | $\%$ |

Diagram: The diagram in the problem statement is adequate.
Assumptions:

| $1-$ | The compressor operates at steady-state. |
| :--- | :--- |
| $2-$ | The compressor is adiabatic. |
| 3 - | Changes in kinetic and potential energies are negligible. |

Equations / Data / Solve:
Part a.) The isentropic efficiency of an adiabatic compressor is defined by:

$$
\begin{equation*}
\eta_{\mathrm{s}}=\frac{-\hat{\mathbf{W}}_{\mathrm{s}, \text { sen }}}{-\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}}=\frac{\hat{\mathbf{H}}_{2 \mathrm{~s}}-\hat{\mathbf{H}}_{1}}{\hat{H}_{2, \text { act }}-\hat{\mathbf{H}}_{1}} \tag{Eqn 1}
\end{equation*}
$$

Eqn 2
We can solve Eqn 1 for $\mathbf{W}_{\text {S,act }}$ :


Because we assumed air is an ideal gas and we know $\mathbf{T}_{1}$, we can look-up $\mathbf{H}_{1}$ in the Ideal Gas Property Table for air.

$$
\begin{array}{lll}
\mathrm{H}_{1} & 97.396 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Next, we need to determine $T_{2 s}$ so we can look-up $\mathrm{H}_{2 \mathrm{~s}}$ in the Ideal Gas Properties Table for air. We can either use the Ideal Gas Entropy Function or the Relative Pressure Method.

Method 1: Use the Ideal Gas Entropy Function.
The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function is :

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2 \mathrm{~S}}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}=\mathbf{0}
$$

Eqn 3

We can solve Eqn 3 for the unknown $\mathbf{S}^{\circ}{ }_{\mathrm{T} 2}$ :

$$
\begin{equation*}
\hat{\mathbf{S}}_{\mathrm{T} 2 \mathrm{~S}}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \tag{Eqn 4}
\end{equation*}
$$

We can look up $\mathbf{S}^{\circ}{ }_{\mathbf{T} 1}$ in the Ideal Gas Property Table for air and use it with the known pressures in Eqn 4 to determine $\mathbf{S}_{\mathbf{T} \mathbf{2}}^{0}$.

| R | 8.314 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ | $\mathrm{S}^{\circ}{ }_{\mathrm{T} 1}$ | $0.038914 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- | :---: | :--- |
| MW | 28.97 | $\mathrm{~g} / \mathrm{mol}$ | $\mathrm{S}_{\mathrm{T} 2 \mathrm{~S}}$ | $1.1010 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Now, we can use $\mathbf{S}^{\circ}{ }_{\mathbf{T} 2}$ and the Ideal Gas Property Table for air to determine $\mathbf{T}_{2}$ and then $\mathbf{H}_{2}$ by interpolation :

| $\mathbf{T}(\mathrm{K})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 840 | 1.0850 | 658.42 |  |  |  |
| $\mathrm{~T}_{2 \mathrm{~S}}$ | 1.1010 | $\mathrm{H}_{2 \mathrm{~S}}$ |  |  |  |
| 860 | 1.1112 | 680.67 | $\mathrm{~T}_{2 \mathrm{~S}}$ | 852.19 | K |
|  |  | $\mathrm{H}_{2 \mathrm{~S}}$ | 671.98 | $\mathrm{~kJ} / \mathrm{kg}$ |  |
|  |  |  |  |  |  |
| Now, we can plug values back into Eqn 2 to get : | $\mathrm{W}_{\mathrm{s}, \text { act }}$ | $\mathbf{- 7 9 8 . 0 4}$ | $\mathrm{kJ} / \mathrm{kg}$ |  |  |

The rate at which work is actually done can be determined using :

$$
\dot{\mathbf{W}}=\dot{\mathbf{m}} \hat{\mathbf{W}}_{\mathrm{s}}
$$

Eqn 5

Method 2: Use the Ideal Gas Relative Pressure.
When an ideal gas undergoes an isentropic process : $\quad \frac{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{2 S}}\right)}{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{1}}\right)}=\frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{P}_{\mathbf{1}}}$
Eqn 6

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.

We can solve Eqn 6 For $\mathbf{P}_{r}\left(\mathbf{T}_{2 \mathrm{~S}}\right)$, as follows :

$$
P_{r}\left(T_{2 s}\right)=\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{1}\right)
$$

Eqn 7

Look-up $\mathbf{P}_{\mathrm{r}}\left(\mathbf{T}_{1}\right)$ and use it in Eqn 7 To determine $\mathbf{P}_{\mathrm{r}}\left(\mathbf{T}_{2 \mathrm{~s}}\right)$ :

| $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{1}\right)$ | $\mathbf{1 . 1 4 5}$ |
| :--- | :---: |
| $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{2 \mathrm{~S}}\right)$ | 46.353 |

46.353

We can now determine $\mathbf{T}_{2 s}$ by interpolation on the the Ideal Gas Property Table for air. Then, we use $\mathbf{T}_{2 s}$ to determine $\mathbf{H}_{2 s}$ from the Ideal Gas Property Table for air.

| T (K) | $\mathrm{Pr}_{\mathrm{r}}$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 840 | 43.852 | 658.42 |  |  |  |
| $\mathrm{T}_{2 \mathrm{~S}}$ | 46.353 | $\mathrm{H}_{2}$ | $\mathrm{T}_{2 \mathrm{~S}}$ | 851.95 | K |
| 860 | 48.039 | 680.67 | $\mathrm{H}_{2 \mathrm{~S}}$ | 671.71 | kJ/kg |
| Now, we can plug values back into Eqn 2 to get : |  |  | $\mathrm{W}_{\text {s,act }}$ | -797.66 | kJ/kg |

Then, use Eqn 5 to determine the rate at which shaft work is actually done :

$$
\begin{array}{lr}
\hline \mathrm{W}_{\mathrm{s}, \text { act }} & -1116.73 \\
\hline
\end{array}
$$

kW
The two key equations for determining lost and reversible work are :

$$
\begin{equation*}
\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\mathrm{lost}}=\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\mathrm{rev}}-\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\mathrm{act}} \tag{Eqn 8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\text {lost }}=\dot{\mathrm{m}} \mathrm{~T}_{\text {surr }} \hat{\mathrm{S}}_{\text {gen }}=\dot{\mathrm{m}} \mathrm{~T}_{\text {surr }} \Delta \hat{\mathrm{S}}-\dot{\mathbf{Q}}_{\mathrm{act}}\left(\frac{\mathrm{~T}_{\text {surr }}}{\mathrm{T}_{\mathrm{HT}}}\right) \tag{Eqn 9}
\end{equation*}
$$

Because the process is adiabatic, Eqn 9 simplifies to :

$$
\left(\dot{\mathrm{W}}_{\mathrm{s}}\right)_{\text {lost }}=\dot{\mathbf{m}} \mathbf{T}_{\text {surr }}\left(\hat{\mathrm{S}}_{2}-\hat{\mathrm{S}}_{1}\right)
$$

Eqn 10

We can determine $\mathbf{S}_{1}$ from the Ideal Gas Property Table for air but we still need to know $\mathbf{S}_{2}$.
Since we know $\left(W_{s}\right)_{\text {act }}$, we can determine $\mathbf{H}_{2, \text { act }}$ by applying the 1st Law. The appropriate form of the 1st Law for this adiabatic, open system, operating at steady-state with negligible changes in kinetic and potential energies is :

$$
\begin{equation*}
-\left(\hat{\mathbf{W}}_{\mathrm{s}}\right)_{\mathrm{act}}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1} \tag{Eqn 11}
\end{equation*}
$$

Solve Eqn 11 for $\mathbf{H}_{2}$ :

$$
\begin{equation*}
\hat{\mathbf{H}}_{2}=\hat{\mathbf{H}}_{1}-\left(\hat{\mathbf{W}}_{\mathrm{s}}\right)_{\mathrm{act}} \tag{Eqn 12}
\end{equation*}
$$

Plug numbers into Eqn 12 :

| Method 1, $\mathrm{S}^{\circ}: \mathrm{H}_{2}$ | 895.43 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | ---: | :--- |
| Method 2, $\mathrm{P}_{\mathrm{r}}: \mathrm{H}_{2}$ | 895.06 | $\mathrm{~kJ} / \mathrm{kg}$ |

We already obtained $\mathbf{S}^{\circ}{ }_{\mathrm{T} 1}$ from the Ideal Gas Property Table for air : $\quad \mathrm{S}^{\circ}{ }_{\mathrm{T} 1} \quad 0.038914 \mathrm{~kJ} / \mathrm{kg}$
Now, we can interpolate on the Ideal Gas Property Table for air to determine $\mathbf{T}_{\mathbf{2}}$ and $\mathbf{S}^{\circ}{ }_{\mathrm{T} 2}$ :

| T (K) | $\mathrm{S}^{\circ}$ (kJ/kg-K) | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1040 | 1.3257 | 883.90 |  | Method 1 | Method 2 |  |
| T | $\mathrm{S}^{\circ}{ }_{\text {2 }}$ | $\mathrm{H}_{2}$ | $\mathrm{T}_{2}$ | 1050.1 | 1049.7 | K |
| 1060 | 1.3475 | 906.80 | $\mathrm{S}^{\mathbf{1}}{ }^{\text {2 }}$ | 1.3367 | 1.3363 | kJ/kg- |

Now, we apply Eqn 3 to the actual turbine to evaluate $\Delta \mathbf{S}$ :
$\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \mathbf{L n} \frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{P}_{1}}$

Now, plug values back into Eqns 10 \& 8 to get :

Part b.) The 2nd Law Efficiency of a turbine is defined as:

$$
\begin{array}{lcc} 
& \frac{\text { Method } 1}{0.23571} & \frac{\text { Method 2 }}{0.23535} \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
\Delta \mathrm{~S} & \frac{\text { Method } 1}{102.30} & \frac{\text { Method 2 }}{102.14} \mathrm{~kW} \\
\mathrm{~W}_{\text {s,lost }} & -1015.0 & -1015.1 \mathrm{~kW}
\end{array}
$$

$$
\begin{equation*}
\eta_{\mathrm{ii}, \mathrm{comp}}=\frac{\dot{\mathrm{W}}_{\mathrm{s}, \mathrm{rev}}}{\dot{\mathrm{~W}}_{\mathrm{s}, \mathrm{act}}} \tag{Eqn 14}
\end{equation*}
$$

Method 1 Method 2
Plugging values into Eqn 14 gives us:
$\eta_{\text {li }} \quad \mathbf{9 0 . 8 4 \%} \quad \mathbf{9 0 . 9 0 \%}$

Note: We could have determined the reversible work from :

$$
\hat{W}_{\mathrm{s}, \text { rev }}=\mathrm{T}_{\text {surr }} \Delta \hat{\mathrm{S}}-\Delta \hat{H}
$$

Verify: Check the Ideal Gas Assumption: $\quad \tilde{\mathbf{V}}=\frac{\mathbf{R T}}{\mathbf{P}}$
$\mathrm{V}_{1}=24.55 \mathrm{~L} / \mathrm{mole} \quad \mathrm{V}_{2}=\quad 2.05 \mathrm{~L} / \mathrm{mole}$
Air can be considered to be a diatomic gas, but the molar volume at state 2 is not greater than $5 \mathrm{~L} / \mathrm{mole}$. So, it is not accurate to treat the air as an ideal gas.

Answers: Part a.)

| $\mathrm{W}_{\mathrm{s}, \text { act }}$ | -1117 | kW |
| :--- | :--- | :--- |
| $\mathrm{W}_{\mathrm{s}, \text { lost }}$ | 102.3 | kW |
| $\mathrm{W}_{\mathrm{s}, \text { rev }}$ | -1015 | kW |

90.8\%


This chapter focuses on practical aspects of power generation using heat engines. In particular, we look at how the efficiency of power cycles can be increased.

The first part of the chapter covers the Rankine vapor power cycle. Five variations on the Rankine Cycle that increase the thermal efficiency of the cycle are discussed in detail.

In the second half of this chapter, gas power cycles are discussed. Many gas power cycles exist, but we limit our discussion to the Air-Standard Brayton Power Cycle. Four variations on the Air-Standard Brayton Power Cycle that increase the thermal efficiency of the cycle are discussed.

The impact of process irreversibilties on the thermal efficiencies of these cycles are also discussed.

## Vapor and Gas Power Systems

- Vapor Cycles
$\diamond$ Use evaporator and condenser for isothermal heat transfer steps
- Gas Cycles
$\diamond$ No phase changes
$\diamond$ Use isobaric heat exchangers for heat transfer steps
- Closed Cycles
$\diamond$ Not piston-and-cylinder devices
$\diamond$ Working fluid remains inside the system
$\diamond$ Use two HEX's to absorb and reject heat
$\diamond$ Power generation turbines
- Open Cycles
$\diamond$ Fresh working fluid drawn into the cycle
$\diamond$ Spent working fluid discarded after 1 pass through the cycle
$\diamond$ Usually air is the working fluid
$\diamond$ Only 1 HEX because the fluid doesn't actually complete the cycle - Automobile and jet engines
- Power systems use a high-temperature heat source to produce work, usually shaft work.
- So far, we have only discussed closed cycles.
- The working fluid is recycled.
$\diamond$ Open cycles are often used in transportation systems, such as cars and planes.
- The working fluid is almost always air.
- This type of cycle eliminates the heat exchanger in which the working fluid is cooled or condensed to complete the cycle and return to the original state.
- Instead, fresh working fluid is drawn into the system put through 3 steps of the cycle and then flows out of the system.
- Think of automobile exhaust or jet engine contrails and you will have the right idea.
- We will model open cycles as if they were really closed cycles.
- This makes it easier to see the similarities between cycles.
- It also simplifies the analysis somewhat.
- More about open cycles in Lessons 9E \& 9F.


## PV Diagram: Power Cycles

- This is a PV Diagram of a Gas Power Cycle
- A Vapor Power Cycle looks the same, but the 2-phase envelope is also shown on the plot.


$$
\frac{\dot{\mathbf{W}}_{\text {Sh, cycle }}}{\dot{\mathbf{m}}}=-\int_{1}^{2} \hat{\mathbf{V}} \mathbf{d P}-\int_{2}^{3} \hat{\mathbf{V}} \mathbf{d P}-\int_{3}^{4} \hat{\mathbf{V}} \mathbf{d P}-\int_{4}^{1} \hat{\mathbf{V}} \mathbf{d P}=\text { Enclosed Area }
$$

- In Vapor or Gas Power Cycles, the area enclosed by the cycle path is equal to the specific shaft work produced by the cycle.
- We learned in Ch 8 that for internally reversible, SISO processes operating at steady-state with negligible changes in kinetic and potential energies...
$\checkmark$ The specific shaft work for a process is minus the integral of $\mathrm{V}^{\wedge} \mathrm{dP}$.
- We apply this to each of the four processes that make up a Carnot Cycle and find that...
- The area enclosed by the cycle path is equal to the specific shaft work produced by the cycle.
$\checkmark$ Remember that power cycles proceed clockwise around the cycle path on PV Diagrams.


## TS Diagram: Power Cycles

- This is a TS Diagram of a Vapor Power Cycle
- A Gas Power Cycle looks the same, but the 2-phase envelope is

$$
\begin{aligned}
& \dot{\mathbf{Q}}_{\text {cycle }}=\dot{\mathbf{W}}_{\text {sh, cycle }} \\
& \dot{\mathbf{m} \mathbf{d} \hat{\mathbf{S}}=\int\left(\frac{\delta \dot{\mathbf{Q}}}{\mathbf{T}}\right)_{\text {intrev }}} \\
& \frac{\dot{\mathbf{W}}_{\text {Sh, }, \text { cyce }}}{\dot{\mathbf{m}}}=\int_{1}^{2} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}+\int_{2}^{3} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}+\int_{3}^{4} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}+\int_{4}^{1} \mathbf{T} \mathbf{d} \hat{\mathbf{S}}=\text { Enclosed Area }
\end{aligned}
$$



- In Vapor or Gas Power Cycles, the area enclosed by the cycle path is, once again, equal to the specific shaft work produced by the cycle.
-The 1st Law for a cycle tells us that $\mathrm{Q}_{\text {cycle }}=\mathrm{W}_{\text {cycle }}$.
- The definition of entropy allows us to evaluate Q for each step in our reversible Carnot Cycle as the integral of T dS.
- When we put these equations together and integrate all the way around the cycle...
$\checkmark$ We again find that the area enclosed by the cycle path is equal to the specific shaft work produced by the cycle.
$\checkmark$ Remember that power cycles proceed clockwise around the cycle path on TS Diagrams as well.


## Carnot Is Not Practical

- Why is the Carnot Vapor Power Cycle impractical ?
- Most pumps do not handle vapor-liquid mixtures well
- Pumps that do are more expensive and less efficient.
- Turbines do not work well with low quality
- Quality must be greater than $90 \%$ at the outlet
- This is difficult to achieve without superheating in the reboiler
- Using strictly isothermal heating prevents...
- Subcooled liquid feed to the boiler which would make the pump more efficient
- Superheating in the boiler effluent which would increase turbine effluent quality
- The types of pumps and turbines that are most efficient are easily damaged by 2phase mixtures.
- Also, pump efficiency drops significantly when vapor is present.
- We need to be able to use subcooled liquid feed to the boiler to avoid cavitation (vapor bubbles) in the pump.
- We need to produce superheated vapor in the boiler to improve the quality of the turbine effluent.
- The problem is that both of these practical improvements prevent the boiler from operating isothermally!
- This makes it almost impossible to make heat transfer in the boiler reversible because the inlet and outlet temperatures are different.
$\checkmark$ No matter what temperature you use for your hot reservoir, there is going to be a finite temperature difference and therefore irreversibility and lost work.
- This is a trade-off that we must accept to make our pump and turbine work well.


## The Rankine Cycle

- A practical vapor power cycle
- Minimizes cavitation problems in the pump
- Allows for the possibility of superheating in the boiler
- The Rankine Cycle
- Step 1-2: Boiler

Heat added at constant pressure

- Step 2-3 Turbine Isentropic expansion
- Step 3-4: Condenser

Heat rejected at constant pressure

- $\quad$ Step 4-1: Pump Isentropic compression
- Internally Reversible
- External irreversibility due to heat transfer through a finite temperature difference in the boiler
- In the Rankine Cycle, the boiler and condenser operate at constant pressure, but not necessarily at constant temperature.
- This allows the use of subcooled liquid boiler feed.
- In a modified version of the Rankine Cycle, we will also use superheating in the boiler.
- More about this in the next lesson.
- The irreversible heat transfer in the boiler means that the Rankine Cycle is NOT as efficient as the Carnot Cycle.
- We cannot calculate its efficiency based only on the reservoir temperatures, because it is not completely reversible.
- In order to determine the efficiency of a Rankine Cycle, we must analyze each step in the process, calculate $\mathbf{W}_{\text {Sh,cycle }}$ and $\mathbf{Q}_{\mathbf{H}}$ and then use them to determine the thermal efficiency of the cycle from its definition: $\mathrm{h}=$ $\mathbf{W}_{\text {Sh, cycle }} / \mathbf{Q}_{\mathbf{H}}$.


## Rankine Cycle: TS Diagram



- The Rankine Cycle is internally reversible.
$\checkmark$ The pump and turbine are isentropic.
- Heat transfer at the boiler is irreversible.
- The Rankine Cycle.
$\checkmark$ Addresses the problem with pumping a two-phase mixture.
$\checkmark$ Does not address the problem of low quality in the turbine effluent.
- But allows for the possibility of fixing this problem by producing superheated vapor in the boiler.
- This will be a modification / improvement to the Rankine Cycle that we will study in the next lesson.


## Efficiency \& Boiler Pressure

- $\mathbf{W}_{\mathrm{Sh}} \uparrow \uparrow$
- $\mathbf{Q}_{\mathbf{H}} \uparrow$

$$
\eta_{\mathrm{ln}}=\frac{W_{\mathrm{sh}}}{Q_{\mathrm{H}}}
$$

- $\quad \eta_{\mathrm{th}} \uparrow$



## Efficiency \& Condenser Pressure

- $\mathbf{W}_{\text {Sh }} \uparrow \uparrow$
- $\mathbf{Q}_{\mathbf{H}}$ : same
$\eta_{\text {th }}=\frac{\mathbf{W}_{\text {Sh }}}{\mathbf{Q}_{\text {H }}}$
- $\quad \eta_{\text {th }} \uparrow$



## Improvements on the Rankine Cycle

- Superheat Rankine Cycle
$\diamond$ Almost always used, improves $\eta$ and turbine effluent quality
- Supercritical Rankine Cycle
$\diamond$ Increases $\eta$. Not common $b / c$, for steam, $T$ and $P$ are very high \& materials become very expensive.
- Reheat Rankine Cycle
$\diamond$ Very common way to improve turbine effluent quality
$\diamond \quad \eta$ drops slightly unless regeneration is used as well.
- Regeneration Rankine Cycle
$\diamond$ Preheating boiler feed reduces irreversibility of heat transfer
$\checkmark$ Increases $\eta$.
- Binary Rankine Cycle
- Not very common.
$\diamond$ Main advantage is $\mathbf{T}_{\mathbf{H}} \gg \mathbf{T}_{\mathbf{C}}$ Big increase in $\eta$, but also increases cost to build.
- Rankine Cycle with Cogeneration
$\checkmark$ Use some of the HP turbine effluent in another process.
- All of the improvements are designed to either..
$\checkmark$ Increase the quality of the turbine effluent.
$\checkmark$ Increase the thermal efficiency of the cycle.
- OR BOTH!
- Cogeneration is not really an improvement to the Rankine Cycle.
$\checkmark$ It is more of an optional mode of operation.

- Superheat is essentially a given.
- The improvement in both efficiency and turbine effluent quality more than makes up for the increase in irreversiblities in the heat transfer in the boiler.
$\diamond$ Notice that $\mathbf{T}_{\mathbf{H}}$ must be greater than $\mathbf{T}_{\mathbf{2}}$.
$\diamond$ As a result, there is a relatively large $\Delta \mathbf{T}$ between the how reservoir and both the subcooled and saturated liquid/vapor in the boiler.
- This results in lost work due to irreversibilities.
$\diamond$ This is one drawback of using superheat, but it is minor compared to the benefits.
$\diamond$ The only other drawback is the increased operating temperature of the boiler and turbine.
- The boiler and turbine must be made of materials that can withstand these higher temperatures without mechanical failure.


## Supercritical Rankine Cycle



## Reheat Rankine Cycle



- Reheat is almost as common as superheat.
- Bad news:
$\checkmark$ It costs more to build a 2-stage turbine.
- Reheat actually lowers the efficiency.
- Unless you combine reheat with regeneration!
- So, it is often used in combination with regeneration.
- Good news:
- You can use high boiler pressures and low condenser pressures without worrying much about turbine effluent quality.


## Regeneration Rankine Cycle



- Regeneration is more complicated than the other schemes.
- The purpose of regeneration is to reduce the lost work due to irreversible heat transfer in the boiler by PRE-HEATING the subcooled liquid boiler feed.
$\checkmark$ The boiler feed can be pre-heated in an open feedwater heater: streams 4 and 8 mix to form stream 9.
$\checkmark$ Or in a closed feedwater heater: this is just a heat exchanger.
- The cost of construction is not much more than reheat alone.
- The extra pump, tank and plumbing are pretty cheap.
- The result is that reheat can be used AND efficiency can still be better than in the superheated Rankine Cycle.


## Binary Rankine Cycle


-Use two working fluid in two separate superheat Rankine Cycles.
$\diamond \mathrm{A}$ common choice has been mercury and water.

- Mercury is a good high-temperature fluid, but it is relatively toxic.
- The key that connects the two cycles is a heat exchanger.
- As the high-temperature working fluid condenses, it gives up its heat to boil the low-temperature fluid.
$\checkmark$ Cool, eh ?
- A binary cycle yields a very high efficiency, but costs almost twice as much as our standard superheat Rankine Cycle.


## Irreversibilities

- 4 main sources of irreversibilty in a real power cycle:
- Heat losses to the surroundings
- Effects every process as well as the pipes that connect them.
- Fluid friction
- Effects every process as well as the pipes that connect them.
- Result is pressure drop. This causes the temperature to drop as well in the boiler and condenser.
- Mechanical losses
- Friction \& rapid expansion \& compression)
- Effects the turbine and the pump the most.
- Causes entropy to increase.
- Subcooling in the condenser
- Necessary to avoid cavitation in the pump.
- Consider a real power cycle that is setup to follow the Rankine Cycle as close as possible.
- Irreversibilities make it impossible for the real cycle to be a Rankine Cycle.
- This is a short list of the main sources of irreversibility.
- On the next page we will see what the real cycle path looks like on a TS Diagram.


## Irreversibilities on a TS Diagram



- Every step in the process path is skewed.
- Every form of irreversiblity adds to the entropy generation and the lost work.


## Irreversibilities \& Lost Work

- From Lesson 8D:
- Now, include the effect of direct heat lost to the surroundings:

$$
\begin{aligned}
& \dot{\mathbf{S}}_{\mathrm{gen}, \text { tot }}=\dot{\mathbf{m}} \Delta \hat{\mathbf{S}}-\sum_{\mathrm{i}}^{\text {Proceseses }} \frac{\dot{\mathbf{Q}}_{\text {act }, \mathrm{i}}}{\mathbf{T}_{\mathrm{res}, \mathrm{i}}} \\
& \dot{\mathbf{W}}_{\text {sh, lost }}=\mathbf{T}_{\text {surr }} \sum_{\mathrm{i}}^{\text {Processeses }}\left[\dot{\mathbf{S}}_{\text {gen }, \text { tot }}\right]_{\mathrm{i}} \\
& \dot{\mathbf{W}}_{\text {sh, lost }}=\mathbf{T}_{\text {surr }} \sum_{\mathrm{i}}^{\text {Proceses }} \frac{-\dot{\mathbf{Q}}_{\text {act }, \mathrm{i}}}{\mathbf{T}_{\text {res, }, \mathrm{i}}} \\
& \dot{\mathbf{W}}_{\text {sh, lost }}=\mathbf{T}_{\text {surr }}\left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}, \text { act }}}{\mathbf{T}_{\mathrm{C}, \text { res }}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}, \text { act }}}{\mathbf{T}_{\mathrm{H}, \text { res }}}\right) \\
& \dot{\mathbf{W}}_{\text {Sh, lost }}=\mathbf{T}_{\text {surr }}\left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}, \text { act }}}{\mathbf{T}_{\mathrm{C}, \text { res }}}-\frac{\dot{\mathbf{Q}}_{\mathrm{H}, \text { act }}}{\mathbf{T}_{\mathrm{H}, \text { res }}}\right)+\dot{\mathbf{Q}}_{\text {lost }}
\end{aligned}
$$

- The algebra is shown in Thermo-CD.
- The bottom line on heat lost is simple.
- Any heat lost results in a DIRECT increase in the lost work.
$\diamond$ This not surprising.
- Any energy that is transferred to the surroundings (the DEAD state) is LOST !


## The Brayton Cycle

- The ideal gas cycle for gas-turbine engines

- The Brayton Cycle is an internal combustion engine.
$\checkmark$ This means heat is not added to the cycle in a HEX.
$\checkmark$ Instead, a chemical reaction (combustion) is carried out within the cycle.
$\diamond$ The energy released by the chemical reaction increases the temperature of the working fluid (air-fuel-combustion products mixture).
$\diamond$ This complicates the system a great deal because we no longer have a pure working fluid.
- Gas-turbine engines are used for transportation.
- Warships
- Abrams tanks
- Gas turbines are also commonly used for electrical power generation.
- Other types of gas power cycles are better suited to other applications.
$\checkmark$ The Diesel Cycle is a reasonable approximation of the cycles used in many trucks, trains and ships.
$\checkmark$ The Otto Cycle is a reasonable approximation of the cycles used in gasoline powered automobile engines.
- The Brayton Cycle is the only gas power cycle we will consider in this course.
- The Brayton Cycle is an open cycle because fresh working fluid is draw into the cycle and spent working fluid is rejected from the cycle.
- This almost invariably means the working fluid is air.


## The Air-Standard Brayton Cycle

- Air-Standard Assumptions
$\diamond$ Air is the working fluid and it behaves as an ideal gas.
$\diamond$ The Brayton Cycle is modeled as as a closed cycle.
$\diamond$ The combustor is replaced by HEX \#1. (External Combustion)
$\diamond$ All processes are internally reversible.
- Step 1-2: Isobaric heating
- Step 2-3: Isentropic expansion
- Step 3-4: Isobaric cooling
- Step 4-1: Isentropic compression

- It is much easier to analyze the performance of the Air-Standard Brayton Cycle.
- We lose some accuracy by assuming the air is an ideal gas.
$\diamond$ But we can still learn a great deal about how Brayton Cycles work and how different operating parameters effect their efficiency.
- In an internally reversible Brayton Cycle, the Compressor and Turbine are adiabatic and therefore, isentropic.
$\diamond$ But, in Ch 7 and Ch 8 we learned how to use isentropic efficiency to take irreversibilities into account.
$\checkmark$ We will use isentropic efficiencies for the compressor and turbine in Brayton Cycles to develop slightly more realistic models of their performance.
- We will always consider the heat exchangers to be isobaric.


## Brayton Cycle: PV \& TS Diagrams




- PV and TS Diagrams for the internally reversible Brayton Cycle are pretty simple.


## The Cold Air-Standard Assumption

- The heat capacities of air are constant and always have the values determined at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$.
- Compression Ratio:

$$
r_{p}=\frac{\mathbf{P}_{1}}{\mathbf{P}_{4}}
$$

- Thermal efficiency of an internally reversible, cold air-standard Brayton Cycle:

$$
\eta_{\mathrm{th}}=1-\frac{1}{\mathbf{r}_{\mathrm{P}}^{[(\gamma-1) / \gamma]}}
$$

- The cold air-standard assumption makes analysis of the Brayton Cycle pretty straightforward.
$\diamond \mathbf{C}_{\mathbf{P}}$ and $\mathbf{C}_{\mathbf{V}}$ are both assumed to be constant. Nothing complicated like the Shomate Equation is used in this model.
$\diamond \mathbf{C}_{\mathbf{P}}$ and $\mathbf{C}_{\mathbf{V}}$ are both evaluated at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$.
- Because gas turbines generally do not operate anywhere near $\mathbf{2 5}^{\circ} \mathrm{C}$, this assumption introduces some very significant error.
- Still, the cold air-standard model helps us understand the trends observed in a real gas power cycle without all the tedious calculations.
- We are also able to understand how the Brayton Cycle can be improved.
- The derivation of the thermal efficiency of the air-standard Brayton Cycle is in Thermo-CD.
- It isn't long or hard.
$\diamond$ Take the time to understand it and you will have a good grasp of how to analyze Brayton Cycles.
$\diamond$ The boxed equation is the result.


## Cold Air-Standard Brayton Cycle Efficiency



- The shaded band represents the range of compression ratios that are commonly used.
- The graph shows that the corresponding range of thermal efficiency is from about $\mathbf{3 7 \%}$ to about $\mathbf{5 8 \%}$.
$\checkmark$ That is not bad when you consider the efficiency of most automobile engines is less than $\mathbf{3 5 \%}$.


## Improvements to the Brayton Cycle

- Regeneration
- Use the hot turbine effluent to preheat the feed to the combustor.
- Reheat
- Use a 2-stage turbine and reheat the effluent from the HP turbine before putting into the LP turbine.
- Intercooling
- Use a 2-stage compressor with an intercooler.
- Regeneration with Reheat and Intercooling
- Use all of the techniques listed above to achieve high efficiency.
- Regeneration and reheat work in the same way that they do in a vapor power cycle.
- Regeneration can improve the efficiency if the proper compression ratio is used.
- Reheat reduces the efficiency of the cycle unless it is used with regeneration.
$\diamond$ Reheat can help keep operating temperatures down.
$\diamond$ This can reduce equipment costs.
- A 2-stage compressor costs more and actually lowers the thermal efficiency of the cycle...
$\checkmark$ Unless it is used in combination with regeneration!
- When you use regeneration with both a 2stage turbine with reheat and a 2 -stage compressor with intercooling, the thermal efficiency increases substantially!
$\checkmark$ In fact, if you could use an infinite number of compressor stages with intercoolers...
$\checkmark$ And an infinite number of turbine stages with reheat...
$\checkmark$ You would have a CARNOT cycle and you would get maximum efficiency!
$\diamond$ You would also have infinite cost !


## Regenerative Brayton Cycle



- The boxed equation applies for an internally reversible air-standard Brayton Cycle with Regeneration.
- A closed cycle is shown here because this is the way we will analyze Brayton Cycles, even though they are usually open.
- The hot turbine effluent, stream 5, is used to preheat the compressed air that enters the combustor, stream 3.
- Regeneration does not effect the power generated by the cycle, but reduces $\mathbf{Q}_{\mathbf{H}}$ and $\mathbf{Q}_{\mathbf{C}}$ and thereby increases the efficiency of the cycle.


## Regenerative Brayton Cycle Efficiency



- For certain compression ratios, the regeneration cycle is significantly more efficient.
- The bonus is that the regenerative cycle is more efficient at LOW compression ratios !
$\checkmark$ The result is that the compressor is less expensive to purchase and to operate.

- Reheat increases $\mathbf{Q}_{\mathbf{H}}$ and $\mathbf{Q}_{\mathbf{C}}$, but DECREASES the thermal efficiency.
- It does help avoid very high operating temperatures which drive up the costs of the equipment.
- Reheat is never used without regeneration in a Brayton Cycle.


## Brayton Cycle with Intercooling



- Intercooling reduces the power requirement for compression.
- It also increases $\mathbf{Q}_{\mathbf{H}}$ and $\mathbf{Q}_{\mathbf{C}}$. But it increases $\mathbf{Q}_{\mathbf{C}}$ by more!
- The net result is a slight DECREASE in the thermal efficiency.
- Intercooling is never used without regeneration.


## Regeneration, Reheat \& Intercooling



- This is the way real gas turbine power cycles are operated.
- The increase in thermal efficiency is substantial when all the improvements are combined.
- The intercooler reduces the compressor work.
- The reheater keeps the maximum operating temperature down while increasing $\mathbf{Q}_{\mathbf{H}}$.
- The regenerator facilitates the intercooler and reheater while maintaining a high thermal efficiency.
- This is the top of the line.
- It is also the most complex system we will analyze in this course.

Consider the ideal Rankine Cycle with superheat using water as the working fluid.


Construct plots of the net power output of the cycle and the thermodynamic efficiency as functions of the operating pressure of the condenser. Consider condenser pressures from 10 kPa to 200 kPa .

Data: $P_{1}=10 \mathrm{MPa}, \mathrm{T}_{2}=550^{\circ} \mathrm{C}, \mathrm{m}=75 \mathrm{~kg} / \mathrm{s}$

Read: The key is that the cycle is an ideal Rankine Cycle. This means that the pump and turbine operate isentropically and that the condenser effluent is a saturated liquid.

Constructing the plots requires looking-up a lot of data. This can be done most efficiently using the NIST Webbook to generate data tables that can be copied and pasted into Excel.

| Given: | $\mathbf{P}_{1}=\mathbf{P}_{2}$ | 10 | $\mathbf{M P a}$ | $\mathbf{m}$ | 75 | $\mathrm{~kg} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{T}_{2}$ | 550 | ${ }^{\circ} \mathbf{C}$ |  |  |  |

Find: $\quad$ Plot $\mathbf{W}_{\text {cycle }}$ and $\eta_{\text {th }}$ as functions of $\mathbf{P}_{\mathbf{4}}$.
Diagram:


## Equations / Data / Solve:

Let's begin with a very detailed analysis of the problem for a single condenser pressure of 10 kPa .
Then, we can present a table of results for all of the other condenser pressures so we can construct the plot that is required.

Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated.

| Stream | State | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | P (kPa) | X | H (kJ/kg) | S (kJ/kg-K) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sub Liq | 46.14 | 10000 | N/A | 201.88 | 0.64920 |
| 2 | Super Vap | 550 | 10000 | N/A | 3502.0 | 6.7585 |
| 3 | VLE | 45.81 | 10 | 0.8146 | 2140.4 | 6.7585 |
| 4 | Sat Liquid | 45.81 | 10 | 0 | 191.81 | 0.64920 |

Additional data that may be useful.

| State | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{P}(\mathbf{k P a})$ |  | $\mathbf{X}$ | $\mathbf{y y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sat $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{S}(\mathbf{k J} / \mathbf{k g}-\mathbf{K})$ |  |  |  |  |
| Sat Liquid | 45.81 | 10 | $\mathbf{1}$ | 2583.9 | 8.1488 |
| Sat Vap | 45.81 | 10 | 0 | 191.81 | 0.64920 |
| Sat Liquid | 311.06 | 10000 | 1 | 2725.5 | 5.6160 |

The values in the table that are shown in bold with a yellow background are the values we will determine in the following solution.
One approach to solving cycle problems of this nature is to work your way around the cycle until you have evaluated all the properties to complete the table shown above. Then, you can go back and apply the 1st Law to each process in the cycle to evaluate $\mathbf{Q}$ and $\mathbf{W}_{\mathbf{s}}$ as need. That is the approach I will take.

In this problem, it makes the most sense to begin at either state 2 or state 4 because these states are completely fixed (this means we know the values of two intensive properties and we can use them to determine the values of any other intensive properties using the NIST Webbook. I will begin at state 2.

| $\mathrm{H}_{2}$ | 3502.0 | $\mathrm{~kJ} / \mathrm{kg}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Because the turbine is isentropic, we know that $\mathrm{S}_{3}=\mathrm{S}_{2}:$ | $\mathrm{S}_{2}$ | 6.7585 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
|  | $\mathrm{S}_{3}$ | 6.7585 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Now, we know the values of two intensive properties at state 3, so this state is completely fixed and we can lookup all of its properties.

We can see from the additional data table that $\mathbf{S}_{\text {sat liq }}<\mathbf{S}_{\mathbf{3}}<\mathbf{S}_{\text {sat vap }}$. Therefore, state 3 is a two-phase mixture, $\mathrm{T}_{3}=\mathrm{T}_{\text {sat }}$ at 10 kPa and we must determine the quality so that we can determine the enthalpy.

$$
\mathbf{x}_{3}=\frac{\hat{\mathbf{S}}_{3}-\hat{\mathbf{S}}_{\text {satliq }}}{\hat{\mathbf{S}}_{\text {sat vap }}-\hat{\mathbf{S}}_{\text {sat liq }}}
$$

Eqn 1

T3

$$
\hat{H}_{3}=x_{3} \hat{H}_{\text {sat vap }}+\left(1-x_{3}\right) \hat{H}_{\text {satliq }}
$$

$\begin{array}{lll}\mathrm{x}_{3} & 0.8146 \quad \mathrm{~kg} \text { vap/kg }\end{array}$
Eqn 2
$\mathrm{H}_{3}$
$2140.4 \mathrm{~kJ} / \mathrm{kg}$
We can look-up all the properties at state 4 because the state is completely fixed by the fact that the fluid is a saturated liquid leaving the condenser in an Ideal Rankine Cycle and because we know the pressure is 10 kPa .

Next, we proceed to state $\mathbf{1}$ using the fact that the pump is also isentropic: $\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{4}}$.
$\begin{array}{lll}\mathrm{S}_{1} & 0.64920 \mathrm{~kJ} / \mathrm{kg}\end{array}$
Now, we know the values of two intensive properties at state 4, so this state is completely fixed and we can lookup all of its properties.

We can see from the additional data table, above, that $\mathbf{S}_{\mathbf{4}}<\mathbf{S}_{\text {sat liq }}$. Therefore, state 4 is a subcooled liquid. We can look-up its properties in the NIST Webbook. The NIST Webbook require interpolation or repeated temperature range selection to zero-in on the precise property values for state 4.

By zooming-in on a very narrow temperature range, I found :

T
$\mathrm{H}_{1}$
$46.14{ }^{\circ} \mathrm{C}$
$201.88 \mathrm{~kJ} / \mathrm{kg}$

Interpolation on a wider temperature range is shown below. The results are very similar.
At 10 MPa :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathbf{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | 197.15 | 0.63436 |  |  |  |
| $\mathrm{~T}_{1}$ | $\mathrm{H}_{1}$ | 0.64920 | $\mathrm{~T}_{1}$ | 46.14 | ${ }^{\circ} \mathrm{C}$ |
| 50 | 217.94 | 0.69920 | $\mathrm{H}_{1}$ | 201.91 | $\mathrm{~kJ} / \mathrm{kg}$ |

Now, we have all the information we need to apply the 1st Law to each device in the cycle to determine $\mathbf{Q}$ and $\mathrm{W}_{\mathrm{s}}$ for each device. This process is made easier by our assumptions that no shaft work crosses the boundary of the boiler or condenser and that both the pump and the turbine are adiabatic.

The four relevant forms of the 1st Law are :

$$
\hat{\mathbf{Q}}-\hat{\mathbf{W}}_{\mathrm{s}}=\Delta \hat{\mathbf{H}}
$$

Boiler :

$$
\hat{\mathbf{Q}}_{\text {boil }}=\hat{H}_{2}-\hat{H}_{1}
$$

Turbine

$$
\hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}
$$

Condenser :

$$
\begin{equation*}
\hat{\mathbf{Q}}_{\text {cond }}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3} \tag{Eqn 7}
\end{equation*}
$$

Pump : $\quad \hat{\mathbf{W}}_{\text {s, pump }}=\hat{\mathbf{H}}_{\mathbf{4}}-\hat{\mathbf{H}}_{\mathbf{1}}$
Plugging values into Eqns 5-8 yields :

| $\mathbf{Q}_{\text {boil }}$ | 3300.1 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{W}_{\text {turb }}$ | 1361.6 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :---: | :--- | :--- | :---: | :--- |
| $\mathrm{Q}_{\text {cond }}$ | -1948.6 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{W}_{\text {pump }}$ | -10.071 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{Q}_{\text {boil }}$ | 247.5 | MW | $\mathrm{W}_{\text {turb }}$ | 102.12 | MW |
| $\mathrm{Q}_{\text {cond }}$ | -146.1 | kW | $\mathrm{~W}_{\text {pump }}$ | -755.3 | kW |
|  |  |  |  | $\mathrm{~W}_{\text {cycle }}$ | 101.36 |
|  |  |  |  | MW |  |

Finally, we can calculate the thermal efficiency of this cycle.

$$
\eta_{\mathrm{th}}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{\text {boil }}}
$$

$\eta_{\text {th }} \quad 40.95 \%$

Repeating this analysis for a variety of condenser pressures yield the following table of results.

| $\begin{aligned} & P_{\text {cond }} \\ & (\mathrm{kPa}) \end{aligned}$ | $\begin{gathered} \mathrm{H}_{3} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{4} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathbf{S}_{4} \\ (\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\begin{gathered} \mathrm{H}_{1} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{aligned} & W_{\text {cycle }} \\ & \text { (MW) } \end{aligned}$ | $\begin{gathered} \mathbf{Q}_{\mathrm{H}} \\ (\mathrm{MW}) \end{gathered}$ | $\eta_{\text {th }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 2140.4 | 191.81 | 0.64920 | 201.88 | 101.4 | 247.5 | 41.0 |
| 20 | 2226.2 | 251.42 | 0.83202 | 261.55 | 94.9 | 243.0 | 39.1 |
| 30 | 2279.2 | 289.27 | 0.94407 | 299.44 | 90.9 | 240.2 | 37.9 |
| 40 | 2318.3 | 317.62 | 1.0261 | 327.83 | 88.0 | 238.1 | 37.0 |
| 50 | 2349.4 | 340.54 | 1.0912 | 350.77 | 85.7 | 236.3 | 36.3 |
| 60 | 2375.4 | 359.91 | 1.1454 | 370.15 | 83.7 | 234.9 | 35.6 |
| 70 | 2397.8 | 376.75 | 1.1921 | 387.02 | 82.0 | 233.6 | 35.1 |
| 80 | 2417.5 | 391.71 | 1.2330 | 401.99 | 80.6 | 232.5 | 34.7 |
| 90 | 2435.2 | 405.20 | 1.2696 | 415.49 | 79.2 | 231.5 | 34.2 |
| 100 | 2451.1 | 417.50 | 1.3028 | 427.81 | 78.0 | 230.6 | 33.8 |
| 110 | 2465.8 | 428.84 | 1.3330 | 439.15 | 76.9 | 229.7 | 33.5 |
| 120 | 2479.3 | 439.36 | 1.3609 | 449.68 | 75.9 | 228.9 | 33.2 |
| 130 | 2491.8 | 449.19 | 1.3868 | 459.52 | 75.0 | 228.2 | 32.9 |
| 140 | 2503.5 | 458.42 | 1.4110 | 468.76 | 74.1 | 227.5 | 32.6 |
| 150 | 2514.5 | 467.13 | 1.4337 | 477.47 | 73.3 | 226.8 | 32.3 |
| 160 | 2524.9 | 475.38 | 1.4551 | 485.73 | 72.5 | 226.2 | 32.1 |
| 170 | 2534.7 | 483.22 | 1.4753 | 493.58 | 71.8 | 225.6 | 31.8 |
| 180 | 2544.0 | 490.70 | 1.4945 | 501.06 | 71.1 | 225.1 | 31.6 |
| 190 | 2552.8 | 497.85 | 1.5127 | 508.22 | 70.4 | 224.5 | 31.4 |
| 200 | 2561.3 | 504.70 | 1.5302 | 515.07 | 69.8 | 224.0 | 31.1 |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

## Answers :



Consider the Rankine Power Cycle shown below. Steam is the working fluid. The hot and cold thermal reservoirs are at $500^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$, respectively. The boiler operates at 12 MPa and the condenser operates at 100 kPa . The

pump is isentropic and the turbine has an isentropic efficiency of $84 \%$. The pump and turbine are adiabatic. The temperature of the surroundings is $\mathrm{T}_{\text {surr }}=300 \mathrm{~K}$.
a.) Construct a neat, fully labelled TS Diagram of the cycle.

Calculate...
b.) $\mathbf{Q} \& \mathbf{W}$ for each unit in the cycle, in $\mathbf{k J} / \mathbf{k g}$.
c.) The thermal efficiency of the power cycle.
d.) The total entropy generationin $\mathbf{k J} / \mathbf{k g}-\mathbf{K}$ and the total lost work in $\mathbf{k J} / \mathbf{k g}$ for the cycle.
e.) The net work that would be produced if this cycle were completely reversible and the state of all four streams remained the same as in the actual cycle.

Read : The TS Diagram is pretty standard. The pump is isentropic, but the turbine is not. In order to determine the Q's and $W_{s}$ 's we will need to determine all the $H^{\prime}$ 's. $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$ come straight from the Steam Tables. Then use entropy to determine $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$. Plug the $\mathbf{H}$ 's into the 1st Law for each unit to determine all the Q's and W's. Once we have all the Q's and W's in part (b), we can calculate the thermal efficiency from its definition. The key to part (d) is that, for a cycle, $\Delta \mathbf{S}=\mathbf{0}$. So, $\mathbf{S}_{\text {gen }}=\Delta \mathbf{S}_{\text {univ }}$ is just $\Delta \mathbf{S}_{\text {furn }}+\Delta \mathbf{S}_{\mathrm{cw}}$. Because the furnace and cooling water behave as thermal reservoirs, we can evaluate the change in their entropy from the definition of entropy. Lost work is just $\mathbf{T}_{\text {surr }} \mathbf{S}_{\text {gen }}$. The easiest way to evaluate $\mathbf{W}_{\mathrm{s}, \text { rev }}$ is to use the definition of $\mathbf{W}_{\mathrm{s}, \text { lost }}$ and the values of $\mathrm{W}_{\mathrm{s}, \mathrm{act}}$ and $\mathrm{W}_{\mathrm{s}, \text { lost }}$ that were determined in parts (b) and (d), repectively. $\mathrm{W}_{\mathrm{s}, \text { rev }}=\mathrm{W}_{\mathrm{s}, \mathrm{act}}+\mathrm{W}_{\mathrm{s}, \text { lost }}$.

| Given: | $\mathrm{P}_{2}$ | 12000 | kPa | $\mathrm{Q}_{41}=\mathrm{Q}_{23}=$ | 0 | kJ/kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T | 450 | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\text {furn }}$ | 500 | ${ }^{\circ} \mathrm{C}$ |
|  | $\eta_{\text {s,turb }}$ | 84\% |  |  | 773.15 | K |
|  | $\mathrm{P}_{3}$ | 100 | kPa | $\mathrm{T}_{\text {cw }}$ | 10 | ${ }^{\circ} \mathrm{C}$ |
|  | $\mathrm{X}_{4}$ | 1 | kg vap / kg |  | 283.15 | K |
|  |  |  |  | $\mathrm{T}_{\text {surr }}$ | 300 | K |

Diagram:


Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated.

| Stream | State |  | $\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{P}(\mathbf{k P a})$ |  | $\mathbf{X}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{H}(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{S}(\mathbf{k J} / \mathbf{k g}-\mathrm{K})$ |  |  |  |  |  |
| 1 | Sub Liq | 100.42 | 12000 | N/A | 429.9 | 1.3028 |
| 2 | Super Vap | 450 | 12000 | N/A | 3209.8 | 6.3028 |
| 3 S | Sat Mix | 99.61 | 100 | 0.8256 | 2281.3 | 6.3028 |
| 3 | Sat Mix | 99.61 | 100 | 0.8914 | 2429.9 | 6.7013 |
| 4 | Sat Liq | 99.61 | 100 | 1 | 417.50 | 1.30276 |

Additional data that may be useful.

| State | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{P}(\mathbf{k P a})$ | $\mathbf{X}$ | $\mathbf{H}(\mathbf{k J} / \mathbf{k g})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S (kJ/kg-K) |  |  |  |  |  |
| Sat Vap | 324.68 | 12000 | $\mathbf{1}$ | 2685.4 | 5.4939 |
| Sat Liquid | 324.68 | 12000 | $\mathbf{0}$ | 1491.46 | 3.49671 |
| Sat Vap | 99.63 | 100 | $\mathbf{1}$ | 2674.9 | 7.3588 |
| Sat Liquid | 99.63 | 100 | 0 | 417.5 | 1.3028 |

Part b.) In order to evaluate $\mathbf{Q}$ and $\mathbf{W}_{\mathbf{S}}$ for each process in the cycle, we will apply the 1 st Law to each process. All the devices operate at steady-state and any changes in kinetic and potential energies are negligible. The boiler and condenser have no shaft work interaction and the pump and turbine are both adiabatic. Therefore, the relevant forms of the 1st Law for the four devices are:

Boiler :

$$
\hat{\mathbf{Q}}_{12}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}
$$

Eqn 1

Turbine :

$$
\begin{equation*}
\hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3} \tag{Eqn 2}
\end{equation*}
$$

Condenser :

$$
\hat{\mathbf{Q}}_{34}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3}
$$

Pump :

$$
\hat{\mathbf{W}}_{\mathrm{s}, \text { pump }}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{1}
$$

In order to evaluate all the W's and Q's in Eqns 1-4, we must first determine $\mathbf{H}$ for all four streams.
We can immediately evaluate $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$ because we know both $\mathbf{P}_{2}$ and $\mathbf{T}_{2}$ and we know $\mathbf{P}_{4}$ and we know that it is a saturated liquid, $\mathbf{x}_{4}=\mathbf{0}$. So, we can lookup $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$ in the NIST Webbook.
$\mathrm{H}_{2}$
3209.8
kJ/kg
$\mathrm{H}_{4}$
417.50
kJ/kg

In order to determine $\mathbf{H}_{1}$, we must make use of the fact that the pump is adiabatic and internally reversible and that changes in kinetic and potential energies are negligible. Under these conditions, the shaft work done at the pump can be determined from the Mechanical Energy Balance Equation:

$$
\begin{align*}
& -\hat{W}_{\mathrm{s}, \mathrm{pump}}=\int_{4}^{1} \hat{\mathrm{~V}} \mathrm{dP}+\frac{\Delta \mathrm{y}^{2}}{2 \mathrm{~g}_{\mathrm{c}}}+\frac{\mathrm{g}}{\boldsymbol{g}_{\mathrm{c}}} \Delta \mathrm{z}  \tag{Eqn 5}\\
& -\hat{W}_{\mathrm{s}, \mathrm{pump}}=\int_{4}^{1} \hat{\mathrm{~V}} \mathrm{dP}
\end{align*}
$$

Cancelling terms yields: $\quad-\hat{\mathbf{W}}_{\mathbf{s}, \text { pump }}=\int_{4}^{1} \hat{\mathbf{V}} \mathbf{d P}$
Eqn 6

Because the liquid water flowing through the pump is incompressible, the specific volume is constant, and Eqn 6 simplifies to:

$$
\begin{equation*}
-\hat{\mathbf{W}}_{\mathrm{s}, \text { pump }}=\hat{\mathbf{V}}_{4}\left(\mathbf{P}_{1}-\mathbf{P}_{4}\right)=\hat{\mathbf{V}}_{4}\left(\mathbf{P}_{2}-\mathbf{P}_{3}\right) \tag{Eqn 7}
\end{equation*}
$$

Now, we can look-up $\mathbf{V}_{4}$ and use it in Eqn 7 to evaluate $\mathbf{W}_{\mathrm{s}, \text { pump }}$ :

$$
\begin{array}{lc}
\mathrm{V}_{4} & 0.0010432 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{~W}_{\mathrm{S}, \text { pump }} & -12.414 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Now, we can use $\mathbf{W}_{\mathrm{s}, \text { pump }}$ and Eqn 4 to determine $\mathbf{H}_{1}$.

$$
\hat{\mathbf{H}}_{1}=\hat{\boldsymbol{H}}_{4}-\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{pump}}
$$

Eqn 8

$$
\begin{array}{lll}
\mathrm{H}_{1} & 429.9 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Next, we need to use the isentropic efficiency of the turbine to determine $\mathbf{H}_{3}$.

$$
\begin{equation*}
\eta_{\mathrm{s}, \text { turb }}=\frac{\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}}{\hat{\mathbf{H}}_{2}-\hat{H}_{3 \mathrm{~s}}} \tag{Eqn 9}
\end{equation*}
$$

Solve Eqn 9 for $\mathbf{H}_{3}$ :

$$
\hat{H}_{3}=\hat{H}_{2}-\eta_{\mathrm{s}, \text { turb }}\left(\hat{H}_{2}-\hat{H}_{3 \mathrm{~S}}\right)
$$

Now, we must evaluate $\mathbf{H}_{3 s}$ before we can use Eqn 10 to determine $\mathbf{H}_{3} . \mathbf{H}_{35}$ is the enthalpy of the turbine effluent IF the turbine were isentropic. Therefore, $\mathbf{S}_{\mathbf{3 S}}=\mathbf{S}_{\mathbf{2}}$.
$\mathrm{S}_{2}$
$6.3028 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
$\mathrm{S}_{3 \mathrm{~S}}$
$6.3028 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Now, we know the values of two intensive properties at state 3 S : $\mathbf{S}_{3 \mathrm{~S}}$ and $\mathbf{P}_{3 \mathrm{~S}}$, so we can fix this state and determine $\mathbf{H}_{35}$ by interpolation in the NIST Webbook. First we must determine the phase of state $3 \mathbf{S}$.

| At 100 kPa |  | $\mathrm{T}_{\text {sat }}$ | 99.63 | ${ }^{\circ} \mathrm{C}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | H (kJ/kg) | S (kJ/kg-K) |  | Since $\mathrm{S}_{\text {sat liq }}<\mathrm{S}_{3 \mathrm{~S}}<\mathrm{S}_{\text {sat vap }}$ | satur | ed mixture. |
| Sat Liq: | 417.50 | 1.30276 |  |  |  |  |
| Sat Vap | 2674.9 | 7.3588 |  | $\mathrm{T}_{3 \mathrm{~S}}$ | 99.63 | ${ }^{\circ} \mathrm{C}$ |

Determine $\mathbf{x}_{3 \mathrm{~S}}$ from the specific entropy, using:

$$
\begin{equation*}
\mathbf{x}_{3 \mathrm{~S}}=\frac{\hat{\mathbf{S}}_{3}-\hat{\mathbf{S}}_{\text {satliq }}}{\hat{\mathbf{S}}_{\text {sat vap }}-\hat{\mathbf{S}}_{\text {sat liq }}} \tag{Eqn 11}
\end{equation*}
$$

$$
x_{3 S}
$$

0.8256 kg vap/kg

Then, we can use the quality to determine $\mathbf{H}_{3 \mathrm{~s}}$, using:

$$
\begin{equation*}
\hat{\mathbf{H}}_{3 \mathrm{~s}}=\mathbf{x}_{3} \hat{\mathbf{H}}_{\text {sat vap }}+\left(\mathbf{1}-\mathbf{x}_{3}\right) \hat{\mathbf{H}}_{\text {sat liq }} \tag{Eqn 12}
\end{equation*}
$$

$\begin{array}{lll}\mathrm{H}_{3 \mathrm{~S}} & 2281.3 \mathrm{~kJ} / \mathrm{kg}\end{array}$

Now, plug $\mathbf{H}_{3 S}$ back into Eqn 10 to determine $\mathbf{H}_{3}$ :
$\mathrm{H}_{3}$
$2429.86 \mathrm{~kJ} / \mathrm{kg}$
Now that we know the specific enthalpy of all four streams, we can use Eqns 1-3 to evaluate the $W_{\mathrm{S}, \text { turb }}$ and the two remaining $Q$ 's.

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $W_{\text {S,turb }}$ | 779.97 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathrm{Q}_{12}$ | 2779.9 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{Q}_{34}$ | -2012.4 | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |  |

Part c.) The thermal efficiency of a power cycle is defined by: $\quad \boldsymbol{\eta}=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{\text {in }}}=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{12}}$

Where :
$\hat{\mathbf{W}}_{\text {cycle }}=\hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}+\hat{\mathbf{W}}_{\mathrm{s}, \text { pump }}$
Eqn 13

Eqn 14

Now, we can plug values into Eqns $13 \& 14$ to complete this part of the problem.

| $W_{\text {cycle }}$ | 767.55 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :---: | :--- |
| $\eta$ | 27.61 | $\%$ |

Part d.) The total entropy generation for the cycle is equal to the entropy change of the universe caused by the cycle.

$$
\hat{\mathbf{S}}_{\text {gen }}=\Delta \hat{\mathbf{S}}_{\text {univ }}=\Delta \hat{\boldsymbol{S}}_{\text {cycle }}^{1}+\Delta \hat{\mathbf{S}}_{\text {furn }}+\Delta \hat{\mathbf{S}}_{\mathrm{cw}}
$$

Eqn 15

Because the furnace and the cooling water are isothermal (they behave as thermal reservoirs) we can evaluate the change in their entropy directly from the definition of entropy.

$$
\begin{align*}
& \Delta \hat{\mathbf{S}}_{\text {furn }}=\int \frac{\delta \hat{\mathbf{Q}}_{\text {furn }}}{\mathbf{T}_{\text {furn }}}=\frac{-\hat{\mathbf{Q}}_{12}}{\mathbf{T}_{\text {furn }}}  \tag{Eqn 16}\\
& \Delta \hat{\mathbf{S}}_{\mathrm{cw}}=\int \frac{\delta \hat{\mathbf{Q}}_{\mathrm{cw}}}{\mathrm{~T}_{\mathrm{cw}}}=\frac{-\hat{\mathbf{Q}}_{34}}{\mathrm{~T}_{\mathrm{cw}}} \tag{Eqn 17}
\end{align*}
$$

Now, we can put values into Eqns 16, 17 \& 15 :

| $\Delta \mathrm{S}_{\text {furn }}$ | -3.5956 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- |
| $\Delta \mathrm{S}_{\mathrm{cw}}$ | 7.1070 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| $\mathrm{S}_{\text {gen }}$ | 3.5115 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

We can calculate lost work using :

$$
\begin{equation*}
\hat{\mathbf{W}}_{\text {lost }}=\mathbf{T}_{\text {surr }} \hat{\mathbf{S}}_{\text {gen }} \tag{Eqn 18}
\end{equation*}
$$

$\mathrm{W}_{\mathrm{S}, \mathrm{lost}} \quad 1053.44 \mathrm{~kJ} / \mathrm{kg}$
Alternatively, we can compute the lost work using :

$$
\begin{array}{r}
\hat{W}_{\mathrm{s}, \mathrm{lost}}=\mathbf{T}_{\text {surr }}\left(\frac{\hat{Q}_{\mathrm{cw}}}{T_{\mathrm{cw}}}-\frac{\hat{Q}_{\text {furn }}}{T_{\text {furn }}}\right)=T_{\text {surr }}\left(\frac{-\hat{Q}_{34}}{T_{\mathrm{cw}}}-\frac{\hat{Q}_{12}}{T_{\text {furn }}}\right)  \tag{Eqn 19}\\
\mathrm{W}_{\mathrm{s}, \mathrm{lost}} \quad \mathrm{Eq} \\
1053.44 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Part e.) The reversible work can be determined from the definition of lost work :

$$
\begin{equation*}
\hat{\mathbf{W}}_{\mathrm{s}, \text { lost }}=\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{rev}}-\hat{\mathbf{W}}_{\mathrm{s}, \text { act }}=\hat{\mathbf{W}}_{\mathrm{s}, \text { rev }}-\hat{\mathbf{W}}_{\text {cycle }} \tag{Eqn 19}
\end{equation*}
$$

Solving for $\mathbf{W}_{\mathrm{s}, \text { rev }}$ yields : $\quad \hat{\mathbf{W}}_{\mathrm{s}, \text { rev }}=\hat{\mathbf{W}}_{\mathrm{s}, \text { lost }}+\hat{\mathbf{W}}_{\text {cycle }}$

$$
\begin{equation*}
\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{rev}}=\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{lost}}+\hat{\mathbf{W}}_{\text {cycle }} \tag{Eqn 20}
\end{equation*}
$$

$$
\begin{array}{lll}
\mathrm{W}_{\mathrm{s}, \text { rev }} & 1821.0 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.) See the diagram at the beginning of this solution.

b.) $\quad$| Device | Step | $\mathbf{Q}(\mathbf{k J} / \mathbf{k g})$ | $\mathrm{W}_{\mathrm{s}}(\mathbf{k J} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: |
| Boiler | $1-2$ | 2780 | 0 |
| Turbine | $2-3$ | 0 | 780 |
| Condenser | $3-4$ | -2010 | 0 |
| Pump | $4-1$ | 0 | -12.4 |

c.) | $\eta$ | 27.6 | $\%$ |
| :--- | :--- | :--- | :--- |

d.)

| $\mathrm{S}_{\text {gen }}$ | 3.51 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :---: | :---: | :---: |
| $\mathrm{W}_{\mathrm{S}, \text { lost }}$ | 1053 | $\mathrm{~kJ} / \mathrm{kg}$ |

e.)

| $\mathrm{W}_{\mathrm{S}, \text { rev }}$ | 1820 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

HEY ! Why is it that : $\quad \frac{\hat{W}_{\mathrm{s}, \text { rev }}}{\hat{Q}_{\mathrm{H}}} \neq 1-\frac{T_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}$ ???

$$
\begin{array}{rl}
\mathrm{W}_{\mathrm{S}, \text { rev }} / Q_{\mathrm{H}} & 65.5 \% \\
1-\mathrm{T}_{\mathrm{C}} / T_{\mathrm{H}} & 63.4 \%
\end{array}
$$

Because the reversible cycle also exchanges heat at the turbine!
In fact, the reversible turbine absorbs heat reversibly from a third thermal reservoir. This reservoir is a very special thermal reservoir because it is always at the same temperature as the working fluid in the turbine. This is pretty tricky because the temperature of the working fluid changes as it passes through the turbine !

Consider the definition of entropy generation:

$$
\begin{equation*}
\Delta \hat{\mathbf{S}}_{23}=\int \frac{\delta \hat{\mathbf{Q}}_{23}}{\mathbf{T}_{\mathrm{sys}}}+\hat{\boldsymbol{S}} \mathrm{sen}=\int \frac{\delta \hat{\mathbf{Q}}_{23}}{\mathbf{T}_{\mathrm{sys}}} \tag{Eqn 21}
\end{equation*}
$$

But, $\mathbf{T}_{\text {sys }}$ is NOT constant !

$$
\hat{\mathbf{Q}}_{23}=\int_{\hat{\mathbf{s}} 2}^{\mathrm{s} 3} \mathbf{T}_{\mathrm{sys}} \mathbf{d} \hat{\mathbf{S}}
$$

Eqn 22

The value of $\mathbf{Q}_{23}$ is equal to the area under the path for Step 1-2 on the TS Diagram, but we cannot evaluate it because we do not know the equation of the path, $\mathbf{T}=\mathbf{f x n}(\mathbf{S})$.
We could evaluate $\mathbf{Q}_{23}$ by applying the 1st Law to the entire reversible cycle, because $\mathbf{Q}_{12}, \mathbf{Q}_{34}$ and $\mathbf{Q}_{41}$ are the same for the reversible cycle as they were for the actual cycle. So, we can use the values calculated in part (c).

1st Law, Reversible Cycle :

$$
\begin{align*}
& \hat{\mathbf{Q}}_{12}+\hat{\mathbf{Q}}_{23, \mathrm{rev}}+\hat{\mathbf{Q}}_{34}+\hat{\mathbf{Q}}_{41}-\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{rev}}=\mathbf{0}  \tag{Eqn 23}\\
& \hat{\mathbf{Q}}_{23, \mathrm{rev}}=\hat{\mathbf{W}}_{\mathrm{s}, \mathrm{rev}}-\hat{\mathbf{Q}}_{34}-\hat{\mathbf{Q}}_{12} \tag{Eqn 24}
\end{align*}
$$

$$
\mathbf{Q}_{23, \text { rev }}
$$

$1053.44 \mathrm{~kJ} / \mathrm{kg}$

Let's double check that this cycle is indeed reversible when it GAINS heat from the surroundings at the turbine.

$$
\begin{equation*}
\Delta \hat{S}_{\text {univ }}=\Delta \hat{S}_{\text {cycle }}^{\pi}+\Delta \hat{S}_{\text {turn }}+\Delta \hat{S}_{\text {cw }}+\Delta \hat{S}_{\text {surr }} \tag{Eqn 25}
\end{equation*}
$$

We already calculated $\Delta \mathrm{S}_{\text {furn }}$ and $\Delta \mathrm{S}_{\mathrm{cw}}$, above. So, now we need to calculate $\Delta \mathrm{S}_{\text {surr }}$.

$$
\begin{equation*}
\Delta \hat{\mathbf{S}}_{\text {surr }}=\int \frac{\delta \hat{\mathbf{Q}}_{\text {surr }}}{\mathbf{T}_{\text {surr }}}=\frac{-\hat{\mathbf{Q}}_{32, \text { rev }}}{\mathbf{T}_{\text {surr }}} \tag{Eqn 26}
\end{equation*}
$$

Plug in values:
Now, plug values into Eqn 26 :

| $\mathrm{S}_{\text {surr }}$ | -3.5115 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- |
| $\Delta \mathrm{S}_{\text {univ }}$ | 0.0000 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

There is one impossible aspect about our imaginary reversible cycle. The surroundings (at 300 K ) must reversibly supply heat to the steam inside the turbine (which is always at a higher temperature than 300 K ). That would require a heat pump and that would be a very complicated turbine, indeed! This is ok because this is just a hypothetical reversible turbine anyway. It just seems strange.

9B-3 Vapor Power Cycle Based on Temperature Gradients in the Ocean
A Rankine Power Cycle uses water at the surface of a tropical ocean as the heat source, $\mathrm{T}_{\mathrm{H}}=82^{\circ} \mathrm{F}$, and cool water deep beneath the surface as the heat sink, $\mathrm{T}_{\mathrm{C}}=48^{\circ} \mathrm{F}$. Ammonia is the working fluid.


The boiler produces saturated ammonia vapor at $80^{\circ} \mathrm{F}$ and the condenser effluent is saturated liquid ammonia at $50^{\circ} \mathrm{F}$. The isentropic efficiencies of the pump and turbine are $75 \%$ and $85 \%$, repectively.
Calculate the...
a.) Thermal efficiency of this Rankine Cycle
b.) Thermal efficiency of a Carnot Cycle operating between the same two thermal reservoirs

Read : Assume the process operates at steady-state and that changes in potential and kinetic energies are negligible.
We want the boiler pressure to be as high as possible and the condenser pressure to be as low as possible in order to maximize the thermal efficiency of the cycle. But the saturation temperature of the ammonia at the boiler pressure must be less than $82^{\circ} \mathrm{F}$ in order to absorb heat from the warmer seawater. This explains why the ammonia boils at $80^{\circ} \mathrm{F}$. A similar argument regarding the vapor-liquid equilibrium in the condenser leads us to the choice of $50^{\circ} \mathrm{F}$ for the saturation temperature of the ammonia in the condenser.


Diagram: A good flow diagram was provided in the problem statement.
TS Diagram :


## Assumptions:

$$
\begin{array}{ll}
\mathbf{1 -} & \text { Each process in the cycle operates at steady-state. } \\
2- & \text { The power cycle operates on the Rankine Cycle. } \\
\mathbf{3 -} & \text { Changes in kinetic and potential energies are negligible. } \\
\mathbf{4 -} & \text { The pump and the turbine are both adiabatic. }
\end{array}
$$

## Equations / Data / Solve:

Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated.

| Stream | State | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | $\begin{gathered} \mathbf{P} \\ \text { (psia) } \end{gathered}$ | $\begin{gathered} X \\ \left(\mathrm{lb}_{\mathrm{m}} \text { vap/lb} \mathrm{b}_{\mathrm{m}}\right) \end{gathered}$ | H <br> (Btu/lb m ) | $\begin{gathered} S \\ \left(B t u / l b_{m}-{ }^{\circ} R\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1S | Sub Liq | 50.18 | 153.13 | N/A | 98.132 | 0.21024 |
| 1 | Sub Liq | 50.27 | 153.13 | N/A | 98.233 | 0.21044 |
| 2 | Sat Vap | 80 | 153.13 | 1 | 630.36 | 1.1982 |
| 3S | Sat Mix | 50 | 89.205 | 0.9551 | 601.38 | 1.1982 |
| 3 | Sat Mix | 50 | 89.205 | 0.9633 | 605.73 | 1.2068 |
| 4 | Sat Liq | 50 | 89.205 | 0 | 97.828 | 0.21024 |

Additional data that may be useful.

| State | $\begin{gathered} \mathrm{I} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | $\begin{gathered} \mathbf{P} \\ (p s i a) \end{gathered}$ | $\begin{gathered} X \\ \left(\mathrm{lb}_{\mathrm{m}} \text { vap/lb} b_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H} \\ \left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sat Vap | 80 | 153.13 | 1 | 630.36 | 1.1982 |
| Sat Liquid | 80 | 153.13 | 0 | 131.86 | 0.27452 |
| Sat Vap | 50 | 89.205 | 1 | 625.07 | 1.2447 |
| Sat Liquid | 50 | 89.205 | 0 | 97.828 | 0.21024 |

Part a.) The thermal efficiency of a
power cycle can be determined using :

$$
\begin{equation*}
\eta=1-\frac{\hat{Q}_{\mathrm{c}}}{\hat{Q}_{\mathrm{H}}}=1-\frac{-\hat{\mathbf{Q}}_{34}}{\hat{Q}_{12}} \tag{Eqn 1}
\end{equation*}
$$

We need to evaluate $\mathbf{Q}_{12}$ and $\mathbf{Q}_{34}$ so we can use Eqn 1 to evaluate the thermal efficiency of the cycle.
Apply the 1 st Law to the boiler, assuming it operates at steady-state, changes in kinetic and potential energies are negligible and no shaft work crosses the boundary of the boiler.

$$
\begin{equation*}
\hat{\mathbf{Q}}_{\mathbf{H}}=\hat{\mathbf{Q}}_{12}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2} \tag{Eqn 2}
\end{equation*}
$$

We can get a value for $\mathbf{H}_{1}$ from the Steam Tables or NIST Webbook because we know that the boiler effluent in a Rankine Cycle is a saturated vapor at $80^{\circ} \mathrm{F}$.

| $\mathbf{P}_{2}$ | 153.13 | psia | $\mathbf{H}_{2}$ | 630.36 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

In order to fix state 1 and evaluate $\mathbf{H}_{1}$, we must use the isentropic efficiency of the pump. The feed to the pump is a saturated liquid at $80^{\circ} \mathrm{F}$. So, we can look-up $\mathbf{S}_{4}$ in the Steam Tables or NIST Webbook.

| $\mathbf{P}_{4}$ | 89.205 | psia | $\mathbf{S}_{4}$ | 0.21024 | ${\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $\mathrm{H}_{4}$ | 97.828 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |  |

The definition of isentropic efficiency for a pump is :

$$
\begin{equation*}
\eta_{\mathrm{s}, \text { pump }}=\frac{-\dot{\mathbf{W}}_{\mathrm{s}, \text { isen }}}{-\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}}=\frac{\dot{\mathrm{m}}\left(\hat{\mathbf{H}}_{1 \mathrm{~s}}-\hat{\mathbf{H}}_{4}\right)}{\dot{\mathrm{m}}\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{4}\right)} \tag{Eqn 3}
\end{equation*}
$$

We can solve Eqn 2 for $\mathbf{H}_{\mathbf{1}}$ :

$$
\begin{equation*}
\hat{\mathbf{H}}_{1}=\hat{\mathbf{H}}_{4}+\frac{\hat{\mathbf{H}}_{1 \mathrm{~s}}-\hat{\mathbf{H}}_{4}}{\eta_{\mathrm{s}, \text { pump }}} \tag{Eqn 4}
\end{equation*}
$$

Next, we need to determine $\mathbf{H}_{1 \text { s }}$. For an isentropic pump :
$\mathrm{S}_{1 \mathrm{~s}}$
$0.21024 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{R}$
Now, we know the value of two intensive properties at state 1 S : $\mathbf{S}_{1 \mathrm{~S}}$ and $\mathbf{P}_{\mathbf{1}}$ (because the boiler is isobaric in a Rankine Cycle, $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}}$.

| At $\mathrm{P}=153.13 \mathrm{psia}$ | $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$ | H Btu/lb $\mathrm{m}_{\mathrm{m}}$ S Btu/ $/ \mathrm{lb}_{\mathrm{m}}{ }^{\text {- }}$ R |  | $\mathrm{T}_{1 \text { S }}$ | 50.18 | ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 50 | 97.935 | 0.20985 |  |  |  |
|  | $\mathrm{T}_{1 \text { S }}$ | $\mathrm{H}_{15}$ | 0.21024 |  |  |  |
|  | 55 | 103.528 | 0.22077 | $\mathrm{H}_{1 \mathrm{~S}}$ | 98.13 | Btu/l $\mathrm{b}_{\mathrm{m}}$ |
| Now, we can plug values into Eqn 4 to determine $\mathbf{H}_{1}$ |  |  |  | $\mathrm{H}_{1}$ | 98.23 | Btu/lb ${ }_{\text {m }}$ |
| Next, we can plug values into Eqn 2 to evaluate $\mathbf{Q}_{12}$ |  |  |  | $\mathbf{Q}_{12}$ | 532.12 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |

We can determine $\mathbf{Q}_{34}$ by applying the 1st Law, with all the same assumptions made about the boiler.

$$
\hat{\mathbf{Q}}_{\mathrm{C}}=-\hat{\mathbf{Q}}_{34}=\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4}
$$

We already know $\mathbf{H}_{4}$, so we need to evaluate $\mathbf{H}_{3}$. To do this, we use the isentropic efficiency of the turbine. In order to fix state 3 and evaluate $\mathbf{H}_{3}$, we must use the isentropic efficiency of the turbine. The feed to the turbine is a saturated vapor at $80^{\circ} \mathrm{F}$. So, we can look-up $\mathbf{S}_{2}$ in the Steam Tables or NIST Webbook.
$\mathrm{P}_{4}$
89.205 psia
$\mathrm{S}_{2}$
$\mathrm{H}_{2}$
1.1982 Btu/lb $\mathrm{m}^{-0} \mathrm{R}$
$630.36 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$

The definition of
isentropic efficiency for a turnine is :

$$
\begin{equation*}
\eta_{\mathrm{s}, \text { turb }}=\frac{\dot{\mathbf{W}}_{\mathrm{s}, \text { act }}}{\dot{\mathbf{W}}_{\mathrm{s}, \text { isen }}}=\frac{\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}\right)}{\dot{m}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3 \mathrm{~s}}\right)} \tag{Eqn 6}
\end{equation*}
$$

We can solve Eqn 6 for $\mathbf{H}_{3}$ :

$$
\begin{equation*}
\hat{\mathbf{H}}_{3}=\hat{\mathbf{H}}_{2}-\eta_{\mathrm{s}, \text { pump }}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3 \mathrm{~s}}\right) \tag{Eqn 7}
\end{equation*}
$$

Next, we need to determine $\mathbf{H}_{3 s}$. For an isentropic turbine :
$\mathrm{S}_{3 \mathrm{~S}}$
1.1982 Btu/lb $\mathrm{m}^{-0} \mathbf{R}$

Now, we know the value of two intensive properties at state $3 \mathbf{S}$ : $\mathbf{S}_{3 \mathrm{~S}}$ and $\mathbf{P}_{\mathbf{3}}$ (because the condenser is isobaric in a Rankine Cycle, $\mathbf{P}_{\mathbf{3}}=\mathbf{P}_{\mathbf{4}}$.

$$
\begin{array}{llrll}
\text { At } P=89.205 \text { psia : } & \mathrm{S}_{\text {sat liq }} & 0.21024 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R} & {\text { Since } \mathrm{S}_{\text {sat liq }}<\mathrm{S}_{3 \mathrm{~S}}<\mathrm{S}_{\text {sat vap }},} \\
\mathrm{S}_{\text {sat vap }} & 1.2447 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{-} \mathrm{R} & \text { state } 3 \mathrm{~S} \text { is a saturated mixture. }
\end{array}
$$

Determine $\mathbf{x}_{3 \mathrm{~S}}$ from the specific entropy, using:

$$
\mathbf{x}_{3 \mathrm{~S}}=\frac{\hat{\mathbf{S}}_{3 \mathrm{~s}}-\hat{\mathbf{S}}_{\text {sattiq }}}{\hat{\mathbf{S}}_{\text {sat vap }}-\hat{\mathbf{S}}_{\text {sattiq }}}
$$

Eqn 8

$$
\begin{array}{lll}
\mathrm{x}_{3 \mathrm{~S}} & 0.9551 & \mathrm{lb}_{\mathrm{m}} \mathrm{vap} / \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

Then, we can use the quality to determine $\mathbf{H}_{3 \mathrm{~s}}$, using:

$$
\begin{equation*}
\hat{H}_{3 s}=x_{3} \hat{H}_{\text {sat vap }}+\left(1-\mathbf{x}_{3}\right) \hat{H}_{\text {sat liq }} \tag{Eqn 9}
\end{equation*}
$$

At $\mathrm{P}=89.205 \mathrm{psia}$ :

| $\mathbf{H}_{\text {sat liq }}$ | 97.828 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :--- | :--- |
| $\mathbf{H}_{\text {sat vap }}$ | 625.07 | $\mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ |
| $\mathrm{H}_{3 \mathrm{~S}}$ | 601.38 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{H}_{3}$ | 605.73 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathbf{Q}_{34}$ | -507.90 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |

Next, we can plug values into Eqn 5 to evaluate $\mathbf{Q}_{34}$ :
$\mathrm{Q}_{34} \quad-507.90 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$
We can now plug values into Eqn 1 to evaluate the thermal efficiency of the Rankine Cycle.
$\eta_{\text {th }} \quad 4.55 \%$

The maximum thermal efficiency for a power cycle operating between two thermal reservoirs at $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$ is the Carnot Efficiency :

$$
\eta_{\max }=1-\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}
$$

| $\mathrm{T}_{\mathrm{C}}$ | 507.67 | ${ }^{\circ} \mathrm{R}$ |
| :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{H}}$ | 541.67 | ${ }^{\circ} \mathrm{R}$ |


|  | $\eta_{\text {max }}$ |
| :--- | :--- |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.)
$\eta_{\text {th }} \quad 4.55 \%$

|  | $\eta_{\text {max }}$ |
| :--- | :--- |

Water is the working fluid in an ideal Rankine cycle with reheat．The steam at the high－pressure turbine inlet is at 1500 psia and $800^{\circ} \mathrm{F}$ and the effluent is saturated vapor．
The steam is reheated to $750^{\circ} \mathrm{F}$ before it enters the low pressure turbine where the steam is let down to 20 psia．If the mass flow rate of steam is $126 \mathrm{Ib}_{\mathrm{m}} / \mathbf{s}$ ，determine．．．
a．）The net power output in million Btu per hour（mmBtu／h）
b．）The heat transfer rate in the reheat process in $\mathbf{m m B t u} / \mathbf{h}$
c．）The thermal efficiency of the cycle

Read ：Determine the specific enthalpy of each stream in the process and then use the 1 st Law to calculate $\left(\mathbf{W}_{\mathbf{s}}\right)_{\text {cycle }}$ ， $Q_{\text {in }}$ ，and $\eta$ ．
States 2 \＆ 6 are completely determined from the given information．Use the fact that the pump and HP turbine are isentropic to fix states $1 \& 3$ respectively．Once state 3 is fixed，you know $P_{3}$ and $P_{4}=P_{3} . T_{4}$ is given，so state 4 is now fixed．Next，use the fact that the LP turbine is also isentropic to fix state 5 ．

Once we know all the $\mathbf{H}$ values，we apply the 1st Law to the pump and turbines to determine $\mathbf{W}_{\text {cycle }}$ ．Then，we apply the 1 st Law to the boiler and the reheater to determine $\mathbf{Q}_{\mathrm{in}}$ ．Finally，we evaluate $\eta$ from its definition．

Given：

|  | $\mathrm{m}_{\text {dot }}$ | 126 |
| :---: | :---: | :---: |
|  | $4.54 \mathrm{E}+05$ | $\mathrm{lb}_{\mathrm{m}} / \mathbf{s}$ |
| $\mathrm{lb}_{\mathrm{m}} / \mathrm{h}$ |  |  |
| $\mathrm{P}_{1}$ | 1500 | psia |
| $\mathrm{P}_{2}$ | 1500 | psia |


| $\mathrm{T}_{2}$ | 800 | ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: |
| $\mathrm{T}_{4}$ | 750 | ${ }^{\circ} \mathrm{F}$ |
| $\mathbf{P}_{5}$ | 20 | psia |
| $\mathbf{P}_{6}$ | 20 | psia |

Find：
a．）$\quad W_{\text {cycle }}$
？？？Btu／h
b．） $\mathrm{Q}_{34}$ ？？？Btu／h
c．）$\eta$ ？？？\％

Diagram：


Assumptions: 1- Each component in the cycle is analyzed as an open system operating at steady-state.
2- $\quad$ All of the processes are internally reversible.
3- The turbine and pump operate adiabatically and are internally reversible, so they are also isentropic.
4- Condensate exits the condenser as saturated liquid.
5- The effluent from the HP turbine is a saturated vapor.
6 - $\quad$ No shaft work crosses the system boundary of the boiler or condenser.
7- $\quad$ Changes in kinetic and potential energies are negligible.

## Equations / Data / Solve:

Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated.

| Stream | $\mathbf{l}$ <br> $\left({ }^{\circ} \mathbf{F}\right)$ | $\mathbf{P}$ <br> $(\mathbf{p s i a )}$ | $\mathbf{X}$ <br> $\left(\mathbf{l}_{\mathbf{m}} \mathbf{v a p} / \mathbf{b}_{\mathbf{m}}\right)$ | $\mathbf{H}$ <br> $\left(\mathbf{B} \mathbf{t u} / \mathbf{b}_{\mathbf{m}}\right)$ | $\mathbf{S}$ <br> $\left(\mathbf{B t u} / \mathbf{b}_{\mathbf{m}}-{ }^{\circ} \mathbf{R}\right)$ | Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 229.30 | $\mathbf{1 5 0 0}$ | $\mathrm{~N} / \mathrm{A}$ | 201.002 | 0.33605 | Sub. Liq. |
| $\mathbf{2}$ | 800 | 1500 | $\mathrm{~N} / \mathrm{A}$ | $\mathbf{1 3 6 4 . 0}$ | $\mathbf{1 . 5 0 7 5}$ | Super. Vap. |
| $\mathbf{3}$ | 422.18 | 316.11 | $\mathbf{1}$ | 1204.6 | 1.5075 | Sat'd Vap. |
| $\mathbf{4}$ | 750 | 316.11 | $\mathrm{~N} / \mathrm{A}$ | 1395.1 | 1.6928 | Super. Vap. |
| $\mathbf{5}$ | 227.92 | $\mathbf{2 0}$ | 0.9712 | 1129.26 | 1.6928 | VLE |
| $\mathbf{6}$ | $\mathbf{2 2 7 . 9 2}$ | $\mathbf{2 0}$ | $\mathbf{0}$ | $\mathbf{1 9 6 . 4 0 0}$ | $\mathbf{0 . 3 3 6 0 5}$ | Sat'd Liq. |

Additional data that may be useful.

| State | $\mathbf{I}$ <br> $\left({ }^{\circ} \mathbf{F}\right)$ | $\mathbf{P}$ <br> $(\mathbf{p s i a})$ | $\mathbf{X}$ <br> $\left(\mathbf{l b}_{\mathbf{m}} \mathbf{~ v a p} / \mathbf{b}_{\mathbf{m}}\right)$ | $\mathbf{H}$ <br> $\left(\mathbf{B t u} / \mathbf{l}_{\mathbf{m}}\right)$ | $\mathbf{S}$ <br> $\left(\mathbf{B t u} / \mathbf{b}_{\mathbf{m}}-{ }^{\circ} \mathbf{R}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sat Vap | $\mathbf{0}$ | 1500 | $\mathbf{1}$ | 1169.80 | 1.3372 |
| Sat Liquid | 0 | 1500 | 0 | 612.08 | 0.80900 |
| Sat Vap | 0 | 20 | $\mathbf{1}$ | 1156.96 | 1.7331 |
| Sat Liquid | 0 | 20 | 0 | 196.40 | 0.33605 |

Part a.) The net shaft work for the reheat cycle is: $\quad \dot{\mathbf{W}}_{\text {cycle }}=\dot{\mathbf{W}}_{\text {s,turb }}+\dot{\mathbf{W}}_{\text {s,pump }}$
Eqn 1
Now, apply the 1st Law to the LP and HP turbines, as well as the pump.
Assume each device is adiabatic, operating at steady-state and has negligible changes in kinetic and potential energies.

$$
\begin{aligned}
& \mathbf{W}_{\mathrm{s}, \text { turb }}=\dot{\mathbf{m}}\left[\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}\right)+\left(\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{5}\right)\right] \\
& \mathbf{W}_{\mathrm{s}, \text { pump }}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{1}\right)
\end{aligned}
$$

So, we need to determine the enthalpy in every stream in the cycle in order to determine $\mathbf{W}_{\text {cycle }}$.
States 2 \& 6 are the only streams that are completely determined by the given information, so let's look up the properties of those streams in the Steam Tables or NIST Webbook first.

| $\mathbf{T}_{2}$ | 800 | ${ }^{\circ} \mathrm{F}$ | $\mathbf{T}_{6}$ | 227.92 | ${ }^{\circ} \mathrm{F}$ |
| :--- | :---: | :--- | :--- | :---: | :--- |
| $\mathrm{H}_{2}$ | 1364.0 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ | $\mathbf{H}_{6}$ | 196.400 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{S}_{2}$ | 1.5075 | ${\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathbf{R}}$ | $\mathrm{S}_{6}$ | 0.33605 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathbf{R}$ |

Now, because the pump and HP turbine are isentropic, $\mathbf{S}_{1}=\mathbf{S}_{6}$ and $\mathbf{S}_{3}=\mathbf{S}_{\mathbf{2}}$.

Now, we know the values of two intensive properties at state 1 and we know both $\mathbf{S}_{3}$ and $\mathbf{x}_{3}$, so we can fix these states and determine $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$. Because stream 1 is a subcooled liquid, it is easiest and most accurate to use the NIST Webbook instead of the Steam Tables.

| At 1500 psia: | T ( ${ }^{\circ} \mathrm{F}$ ) | H Btu/lb ${ }_{\text {m }}$ | S Btu/lb $\mathrm{m}^{-}{ }^{\circ} \mathrm{R}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 220 | 191.667 | 0.32241 | Interpolation yields: |  |  |
|  | T | $\mathrm{H}_{1}$ | 0.33605 | $\mathrm{T}_{1}$ | 229.30 | ${ }^{\circ} \mathrm{F}$ |
|  | 230 | 201.708 | 0.33708 | $\mathrm{H}_{1}$ | 201.01 | Btu/lb ${ }_{\text {m }}$ |
| Sat. Vap. : $\quad \mathbf{T}\left({ }^{\circ} \mathrm{F}\right)$ | P (psia) | H Btu/lb ${ }_{\text {m }}$ | S Btu/lb $\mathrm{m}^{-}{ }^{\text {o }} \mathrm{R}$ | Interpolation yields: |  |  |
| 417.35 | 300 | 1204.1 | 1.5121 | $\mathrm{P}_{3}$ | 316.18 | psia |
| T3 | $\mathrm{P}_{3}$ | $\mathrm{H}_{3}$ | 1.5075 | $\mathrm{T}_{3}$ | 422.18 | ${ }^{\circ} \mathrm{F}$ |
| 423.31 | 320 | 1204.7 | 1.5064 | $\mathrm{H}_{3}$ | 1204.6 | Btu/lb ${ }_{\text {m }}$ |

Now that we know $\mathbf{P}_{4}$, we can use it with $\mathbf{T}_{4}$ to fix state 4 and use the Steam Tables or NIST Webbook to evaluate $\mathbf{H}_{4}$ and $\mathbf{S}_{4}$.
$\mathrm{H}_{4}$
1395.1 Btu/lb ${ }_{m}$
$\mathrm{S}_{4}$
$1.6928 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{R}$

We now know $\mathbf{S}_{4}$ and we know that the LP turbine is also isentropic, so $\mathbf{S}_{5}=\mathbf{S}_{4}$.
$\mathrm{S}_{5}$
$1.6928 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{R}$
We now know the values of two intensive properties at state 5 , so the state is fixed and we can evaluate its properties. We begin by determining which phases are present in state 5.

At 20 psia :

| $\mathrm{T}_{\text {sat }}$ | 227.92 | ${ }^{\circ} \mathrm{F}$ | Since $\mathrm{S}_{\text {sat liq }}<\mathrm{S}_{5}<\mathrm{S}_{\text {sat vap }}$, state 5 is a saturated mixture. |  |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| $\mathrm{S}_{\text {sat liq }}$ | 0.33605 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-}{ }^{\circ} \mathrm{R}$ |  |  |  |
| $\mathrm{S}_{\text {sat vap }}$ | 1.7331 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ | $\mathrm{T}_{5}$ | $\mathbf{2 2 7 . 9 2}$ | ${ }^{\circ} \mathrm{F}$ |

Determine $\mathbf{x}_{3 \mathrm{~S}}$ from the specific entropy, using:

$$
x_{5}=\frac{\hat{S}_{5}-\hat{S}_{\text {satliq }}}{\hat{S}_{\text {sat vap }}-\hat{S}_{\text {satliq }}}
$$

$$
\mathrm{x}_{5} \quad 0.9712 \quad \mathrm{lb} \mathrm{~m}_{\mathrm{m}} \mathrm{vap} / \mathrm{lb}_{\mathrm{m}}
$$

Then, we can use the quality to determine $\mathbf{H}_{3 S}$, using:

At 20 psia :

$$
\mathbf{H}_{\text {sat liq }}
$$

$$
\mathbf{H}_{\text {sat vap }}
$$

$$
\hat{H}_{3 \mathrm{~S}}=x_{3} \hat{H}_{\text {sat vap }}+\left(1-x_{3}\right) \hat{H}_{\text {satliq }}
$$

1106.2 Btu/lb ${ }_{m}$
$\begin{array}{lll}H_{5} & 1079.96 \quad \text { Btu/lb } \\ m\end{array}$
At last we know all the properties at all of the states in the reheat cycle and we can use Eqns 1-3 to evalaute the shaft work for each device as well as the entire cycle.

| $W_{\text {S,pump }}$ | $-2.090 \mathrm{E}+06$ | Btu/h |
| :--- | :---: | :---: |
| $\mathrm{W}_{\text {S,LP-turb }}$ | $1.430 \mathrm{E}+08$ | Btu/h |
| $\mathrm{W}_{\mathrm{S}, \mathrm{HP}-\text { turb }}$ | $7.233 \mathrm{E}+07$ | Btu/h |

$W_{\text {cycle }} \quad 2.132 \mathrm{E}+08 \mathrm{Btu} / \mathrm{h}$

Part b.) The amount of heat absorbed in the reheat step is $\boldsymbol{Q}_{34}$. We can determine it by applying the 1 st Law to the reheater, Step 3-4. The reheater operates at steady-state, has no shaft work interaction and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\dot{\mathbf{Q}}_{34}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3}\right)
$$

Since we already know $\boldsymbol{m}_{\text {dot }}$ and all the $\mathbf{H}$ values, we can immediately plug values into Eqn 6 :

> | $\mathrm{Q}_{34}$ | $8.645 \mathrm{E}+07$ | $\mathrm{Btu} / \mathrm{h}$ |
| :--- | :--- | :--- |

Part c.) The thermal efficiency of a power cycle is defined by: $\quad \eta=\frac{\dot{\mathbf{W}}_{\text {cycle }}}{\dot{\mathbf{Q}}_{\text {in }}}=\frac{\dot{\mathbf{W}}_{\text {cycle }}}{\dot{\mathbf{Q}}_{12}+\dot{\mathbf{Q}}_{34}}$
In parts (a) and (b) we determined $\mathbf{W}_{\text {cycle }}$ and $\mathbf{Q}_{34}$, so here we need to evaluate $\mathbf{Q}_{12}$ so we can use $\mathbf{E q n} 7$ to evaluate $\eta$.

We can determine $\mathbf{Q}_{12}$ by applying the 1st Law to the boiler, Step 1-2. The boiler operates at steady-state, has no shaft work interaction and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\dot{\mathbf{Q}}_{12}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}\right)
$$

Since we already know $\mathbf{m}_{\text {dot }}$ and all the $\mathbf{H}$ values, we can immediately plug values into Eqn 8 :

| $\mathbf{Q}_{12}$ | $5.275 \mathrm{E}+08$ |
| :---: | :---: |
| $\mathrm{Q}_{\text {in }}$ | $6.140 \mathrm{E}+08$ |
| $\eta$ | 34.72\% |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.) $\quad \mathrm{W}_{\text {cycle }} \quad 2.13 \mathrm{E}+08 \mathrm{Btu} / \mathrm{h}$
b.)

c.)
$\eta$ 34.7\%

Consider the TS Diagram, below, for an ideal Brayton Cycle.


The working fluid is air and the cold air-standard assumptions apply.
Using a given pair of thermal reservoirs, $\mathbf{T}_{1}$ and $\mathbf{T}_{3}$ are fixed. Show that the maximum net work from the cycle is obtained when the compressor effluent temperature is $\mathrm{T}_{2}=\left(\mathrm{T}_{1} \mathrm{~T}_{3}\right)^{1 / 2}$.

Read: Use the 1st Law to write an equation for the net work produced by the cycle.
Use the constant heat capacity to eliminate enthalpy from your equation for $\mathbf{W}_{\text {cycle }}$.
Differentiate your equation for $\mathbf{W}_{\text {cycle }}$ with respect to $\mathbf{r}_{\mathrm{p}}$ and set the result equal to zero.
Simplify the result using the fact that the compressor and turbine are isentropic and the heat capacity ratio, $\gamma$, is constant.
Finally, calculate the 2nd derivative of $\mathbf{W}_{\text {cycle }}$ with respect to $\mathbf{r}_{\mathbf{p}}$ and verify that it is positive at the point determined above so that the extremum you found is a maximum of $\mathbf{W}_{\text {cycle }}$ and not a minimum.

Given: An ideal Brayton Cycle is analyzed on a cold air-standard basis.
Find: $\quad$ Show that the compressor effluent temperature that maximizes net work per unit mass of air flow is given by $\mathrm{T}_{2}=\left(\mathrm{T}_{1} \mathrm{~T}_{3}\right)^{1 / 2}$.


Assumptions:

| $1-$ | Each component is an open system operating at steady-state. |
| :--- | :--- |
| $2-$ | The turbine and compressor are isentropic. |
| $3-$ | There are no pressure drops for flow through the heat exchangers. |
| 4- | Kinetic and potential energy changes are $\underline{\text { negligible. }}$ |
| 5 - | The working fluid is air model as an ideal gas. |
| $6-$ | The specific heat, $C_{P}$. and the specific heat ratio, $\gamma$, are constant. |

## Equations / Data / Solve:

The net work for the power cycle is:

$$
\begin{equation*}
\hat{W}_{\text {cycle }}=\hat{W}_{c}+\hat{W}_{T} \tag{Eqn 1}
\end{equation*}
$$

The 1st Law can be applied to the compressor and to the turbine, assuming they operate adiabatically at steadystate with negligible changes in kinetic and potential energies.

$$
\begin{equation*}
\hat{\mathbf{W}}_{\mathrm{s}}=-\Delta \hat{\mathbf{H}} \tag{Eqn 2}
\end{equation*}
$$

Combining Eqn 1 and Eqn 2 yields:

$$
\begin{equation*}
\hat{W}_{\text {cycle }}=-\left(H_{2}-H_{1}\right)-\left(H_{4}-H_{3}\right) \tag{Eqn 3}
\end{equation*}
$$

The change in enthalpy of the air in the turbine and in the compressor can be determined as follows because we have assumed that the heat capacity is constant.

$$
\Delta \hat{H}_{a-b}=\int_{T_{a}}^{T_{b}} \hat{C}_{P} d T=\hat{C}_{P} \cdot\left(T_{b}-T_{a}\right)
$$

Eqn 4

Now we can apply Eqn 4 to the turbine and to the compressor and use the results to eliminate enthalpy from Eqn 3.

$$
\begin{equation*}
\hat{W}_{\text {cycle }}=-C_{P} \cdot\left(T_{2}-T_{1}\right) C_{P} \cdot\left(T_{4}-T_{3}\right) \tag{Eqn 5}
\end{equation*}
$$

The goal is to determine the maximum $\mathbf{W}_{\text {cycle }}$, so we need to set $\mathbf{d W} \mathbf{c y c l e} / \mathbf{d r} \mathbf{r}_{\mathrm{p}}=\mathbf{0}$ and solve for $\mathbf{T}_{2}$. This will help us find an extremum, either a maximum or a minimum. Later, we will need to make sure the 2nd derivative, $\mathbf{d}^{2} \mathbf{W}_{\text {cycle }} / \mathbf{d r}_{\mathbf{p}}^{2}$, is positive so we can be sure this extremum is a maximum value of $\mathbf{W}_{\text {cycle }}$.

$$
\begin{equation*}
\frac{d \hat{W}_{\text {cycle }}}{d r_{p}}=\frac{d}{d r_{p}}\left(-C_{P} \cdot\left(T_{2}-T_{1}\right)-C_{P} \cdot\left(T_{4}-T_{3}\right)\right)=0 \tag{Eqn 6}
\end{equation*}
$$

We can simplify Eqn 6 because $\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{3}}$ and $\mathbf{C}_{\mathbf{P}}$ are all constant.

$$
\begin{equation*}
\frac{d}{d r_{p}}\left(-T_{2}-T_{4}\right)=0 \tag{Eqn 7}
\end{equation*}
$$

A little algebra makes Eqn 7 easier to work with.

$$
\frac{\mathbf{d T}_{2}}{d r_{p}}=-\frac{\mathbf{d T}_{4}}{d r_{p}}
$$

Because $\mathbf{T}_{2}$ and $\mathbf{T}_{4}$ change as the compression ratio, $\mathbf{r}_{\mathbf{P}}$ changes. We need to figure out the relationship between $\mathbf{T}_{2}$ and $\mathbf{T}_{4}$ and $\mathbf{r}_{\mathrm{p}}$ in order to solve Eqn 8.

Next, we can take advantage of the fact that the compressor and the turbine are isentropic and use the following relationships from Lesson 7E, page 6.
$\mathbf{T}_{1} \mathbf{P}_{1}^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{\mathbf{2}} \mathbf{P}^{\frac{1-\gamma}{\gamma}}$
Eqn 9
$\mathbf{T}_{3} \mathbf{P}^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{4} \mathbf{P}^{\frac{1-\gamma}{\gamma}}$

Eqn 10

Solve Eqns 9 and 10 for $\mathbf{T}_{2}$ and $T_{4}$, respectively.

$$
\begin{equation*}
\mathbf{T}_{2}=\mathbf{T}_{1}\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{1} \cdot \mathbf{r}_{\mathbf{P}}^{\frac{\gamma-1}{\gamma}} \quad \text { Eqn } 11 \quad \mathbf{T}_{4}=\mathbf{T}_{3}\left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{4}}\right)^{\frac{1-\gamma}{\gamma}}=\mathbf{T}_{1} \cdot \mathbf{r}_{\mathbf{P}}^{\frac{1-\gamma}{\gamma}} \tag{Eqn 11}
\end{equation*}
$$

Now, we can differentiate Eqns 11 and 12 with respect to $r_{p}$ so we can use the results in Eqn 8.

$$
\frac{\mathbf{d T}_{2}}{d r_{\mathrm{p}}}=\mathrm{T}_{1} \cdot\left(\frac{\gamma-1}{\gamma}\right) \mathbf{r}_{\mathrm{P}}^{\frac{-1}{\gamma}}
$$

Now, we can substitute
Eqns 13 and 14 into Eqn 8.

When the minus sign is combined with the constant term, it is clear that the two constant terms, $(\gamma-1) / \gamma$, cancel.

This equation is more manageable, but we can simplify it a bit further.

The result is simple,
but there is $n o T_{2}$ in Eqn 18!

Here, we need to use Eqn 11 again, but in a slightly different form.

Squaring Eqn 19 yields :

A slight rearrangement of Eqn 20 yields :

Now, we can use Eqn 21 to eliminate $\mathbf{r}_{\mathbf{p}}$ from Eqn 18.

Now, solve for $\mathbf{T}_{2}$ :

Eqn 13

$$
\begin{align*}
\frac{d T_{4}}{d r_{P}} & =T_{3} \cdot\left(\frac{1-\gamma}{\gamma}\right) r_{P}^{\frac{1-2 \gamma}{\gamma}}  \tag{Eqn 14}\\
T_{1} \cdot\left(\frac{\gamma-1}{\gamma}\right) \mathbf{r}_{\mathrm{P}}{ }^{\frac{-1}{\gamma}} & =-\left[\mathrm{T}_{3} \cdot\left(\frac{1-\gamma}{\gamma}\right) \mathbf{r}_{\mathrm{P}}^{\frac{1-2 \gamma}{\gamma}}\right]
\end{align*}
$$

Eqn 15

$$
T_{1} \cdot\left(\frac{\gamma-\gamma}{\gamma}\right) r_{P}{ }^{\frac{-1}{\gamma}}=T_{3} \cdot\left(\frac{\gamma-\not /}{\gamma}\right) r_{p}^{\frac{1-2 \gamma}{\gamma}}
$$

Eqn 16

$$
T_{1} \cdot r_{P}^{\frac{-1}{\gamma}}=T_{3} \cdot r_{P}^{\frac{1-2 \gamma}{\gamma}}
$$

Eqn 17

$$
\mathrm{T}_{1}=\mathrm{T}_{3} \cdot \mathrm{r}_{\mathrm{p}}^{2 \cdot \frac{1-\gamma}{\gamma}}
$$

Eqn 18

$$
\mathbf{T}_{1}=\mathbf{T}_{2} \cdot \mathbf{r}_{\mathbf{P}}^{\frac{1-\gamma}{\gamma}}
$$

Eqn 19

$$
\mathbf{T}_{1}^{2}=\mathbf{T}_{2}^{2} \cdot \mathbf{r}_{\mathrm{P}}^{2 \cdot \frac{1-\gamma}{\gamma}}
$$

Eqn 20

$$
\mathbf{r}_{\mathrm{P}}^{2 \cdot \frac{1-\gamma}{\gamma}}=\left(\frac{\mathbf{T}_{1}}{\mathbf{T}_{2}}\right)^{2}
$$

Eqn 21

$$
T_{1}=T_{3} \cdot\left(\frac{T_{1}}{T_{2}}\right)^{2}
$$

Eqn 22

$$
\mathrm{T}_{1} \cdot \mathrm{~T}_{2}^{2}=\mathrm{T}_{3} \cdot \mathrm{~T}_{1}^{2}
$$

Eqn 23

$$
\mathrm{T}_{2}=\left(\mathrm{T}_{1} \mathrm{~T}_{3}\right)^{1 / 2}
$$

Eqn 24

Now we need to make sure this is the maximum $\mathbf{W}_{\text {cycle }}$ and not the minimum. The criterion for a maximum is:

$$
\begin{equation*}
\frac{d^{2} W_{\text {cycle }}}{d r_{P}^{2}}>0 \tag{Eqn 25}
\end{equation*}
$$

Combining Eqns 5 and 25 yields :

$$
\frac{d^{2}}{d r_{P}^{2}}\left[-C_{P} \cdot\left(T_{2}-T_{1}\right) C_{P} \cdot\left(T_{4}-T_{3}\right)\right] \stackrel{?}{>} 0 \quad \text { Eqn } 26
$$

We can simplify Eqn 26 because $\mathbf{T}_{\mathbf{1}}$,
$\mathbf{T}_{3}$ and $\mathbf{C}_{\mathbf{P}}$ are all constant.

$$
\begin{equation*}
\frac{d^{2}}{d r_{P}^{2}}\left(-T_{2}-T_{4}\right)=-\left[\frac{d^{2} T_{2}}{d r_{P}^{2}}+\frac{d^{2} T_{4}}{d r_{P}^{2}}\right] \stackrel{?}{>} 0 \tag{Eqn 27}
\end{equation*}
$$

Now, we need to differentiate Eqns 13 and 14, as follows.

$$
\begin{align*}
& \frac{d^{2} T_{2}}{d r_{P}^{2}}=T_{1} \cdot\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{-1}{\gamma}\right) r_{P}^{\frac{-1-\gamma}{\gamma}} \\
& \frac{d^{2} T_{4}}{d r_{P}^{2}}=T_{3} \cdot\left(\frac{1-\gamma}{\gamma}\right)\left(\frac{1-2 \gamma}{\gamma}\right) r_{P}^{\frac{1-3 \gamma}{\gamma}} \tag{Eqn 29}
\end{align*}
$$

Eqn 28

Combine Eqns 27-29:

$$
\begin{align*}
& -\left[\mathrm{T}_{1} \cdot\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{-1}{\gamma}\right) \mathrm{r}_{\mathrm{P}}^{\frac{-1-\gamma}{\gamma}}+\mathrm{T}_{3} \cdot\left(\frac{1-\gamma}{\gamma}\right)\left(\frac{1-2 \gamma}{\gamma}\right) \mathrm{r}_{\mathrm{P}}^{\frac{1-3 \gamma}{\gamma}}\right] \stackrel{?}{>} 0  \tag{Eqn 30}\\
& \mathrm{~T}_{1} \cdot\left(\frac{1-\beta}{\gamma}\right)\left(\frac{-1}{\gamma}\right) \mathrm{r}_{\mathrm{P}}^{\frac{-1-\gamma}{\gamma}} \stackrel{?}{>} \mathrm{T}_{3} \cdot\left(\frac{1-\beta}{\gamma}\right)\left(\frac{1-2 \gamma}{\gamma}\right) \mathrm{r}_{\mathrm{P}}^{\frac{1-3 \gamma}{\gamma}}
\end{align*}
$$

Eqn 31

Multiply by $\gamma$. This does not change the $>$ sign because $\gamma>0$.

$$
\begin{equation*}
-\mathrm{T}_{1} \cdot{r_{P}}_{\frac{-1-\gamma}{\gamma}}^{>} \stackrel{?}{ } \mathrm{~T}_{3} \cdot(1-2 \gamma) r_{\mathrm{P}}^{\frac{1-3 \gamma}{\gamma}} \tag{Eqn 32}
\end{equation*}
$$

Combine the $\mathbf{r}_{\mathbf{p}}$ terms:

$$
\begin{equation*}
-T_{1} \stackrel{?}{>} T_{3} \cdot(1-2 \gamma) r_{P}^{\frac{1-3 \gamma}{\gamma}} \cdot r_{P}^{\frac{1+\gamma}{\gamma}}=T_{3} \cdot(1-2 \gamma) \cdot r_{P}^{2 \cdot \frac{1-\gamma}{\gamma}} \tag{Eqn 33}
\end{equation*}
$$

Combine Eqn 18 with Eqn 33 to get : $\quad-\mathbf{T}_{1} \stackrel{?}{>} \mathbf{T}_{\mathbf{1}} \cdot(\mathbf{1}-\mathbf{2} \gamma)$
We can divide Eqn 34 by $\mathbf{T}_{1}$ without changing the $>\operatorname{sign}$ because $\mathbf{T}_{1}>0$ and then do some more algebra.
$-1 \stackrel{?}{>} 1-2 \gamma$

Finally :
Eqn 35
$2 \gamma \stackrel{?}{>} 2$
$\gamma \stackrel{?}{>} 1$
Eqn 35

Eqn 36

The heat capacity ratio, $\gamma$, is always greater than 1 . So the 2 nd derivative is positive and we have indeed found the maximum $\mathbf{W}_{\text {cycle }}$ and NOT the minimum !

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers: $\quad T_{2}=\left(T_{1} T_{3}\right)^{1 / 2}$
The optimal temperature of the compressor effluent in a Brayton Cycle is the geometric average of the temperatures of the compressor and turbine feed streams.

A real gas power cycle is similar to the Brayton Cycle，but the compressor and turbine are not isentropic．The compressor and turbine have isentropic efficiencies of $80 \%$ and $85 \%$ ，respectively．


Use air－standard analysis to determine．．．
a．） $\mathbf{Q}_{\mathrm{C}}$ and $\mathbf{W}_{\text {net }}$ ，in $\mathbf{k J} / \mathbf{k g}$
b．）The thermal efficiency
c．）Repeat parts（a）and（b）for an ideal Brayton Cycle（isentropic turbine and compressor）．
Read：In order to evaluate all of the $\mathbf{W}_{\mathbf{S}}$ and $\mathbf{Q}$ values that we need to answer all the parts of this question，we will need to know the $\mathbf{H}$ values at every state．In addition，we will need to know $\mathbf{H}_{1 s}$ and $\mathbf{H}_{3 \mathrm{~S}}$ because part（c）requires that we analyze the ideal cycle as well the actual cycle．

We can lookup $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$ immediately，but we need to use the isnetropic efficiency and either the Ideal Gas Entropy Function and the 2nd Gibbs Equation or the Ideal Relative Pressure to determine $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$ ．
Whichever method we choose，we will compute $\mathbf{H}_{15}$ and $\mathbf{H}_{25}$ in the process，so when we are done with part（a）， we will have all the values we need to complete part（c）．

Once we know all the $\mathbf{H}$ values，it is a straight－forward process to apply the 1st Law to each process in the cycle in order to answer the questions in parts（a）\＆（b）．We repeat these calculations in part（c）using $\mathbf{H}_{1 \mathrm{~s}}$ instead of $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$ instead of $\mathbf{H}_{3}$ ．Finally，calculate the \％Change in each answer for our comparison．


Diagram: The flow diagram in the problem statement is adequate. A TS Diagram will also be useful.


## Assumptions:

1 -
2 -3- There are no pressure drops for flow through the heat exchangers.
4- Kinetic and potential energy changes are negligible.
5- The working fluid is air modeled as an ideal gas.

## Equations / Data / Solve:

| Stream | $\mathbf{T}$ <br> $(\mathbf{K})$ | $\mathbf{H}^{\mathbf{o}}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{S}^{\mathbf{0}}$ <br> $(\mathbf{k J} / \mathbf{k g}-\mathbf{K})$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 717.4 | 523.58 |  |
| $\mathbf{1 S}$ | 636.6 | 436.34 | 0.78254 |
| 2 | 1800 | 1791.5 | 1.9784 |
| $\mathbf{3}$ | 1068.4 | 916.49 |  |
| $3 \mathbf{S}$ | 932.7 | 762.08 | 1.20203 |
| $\mathbf{4}$ | 300 | 87.410 | 0.0061681 |

Part a.) Only the compressor and the turbine have shaft work interactions, so the net work for the cycle is given by:

$$
\hat{W}_{\text {cycle }}=\hat{W}_{\mathrm{s}, \text { turb }}+\hat{\mathbf{W}}_{\mathrm{s}, \text { comp }}
$$

Apply the 1st Law to the turbine and the compressor. They are adiabatic, operate at steady-state and changes in kinetic and potential energies are negligible.

$$
\hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3} \quad \text { Eqn } 2 \quad \hat{\mathbf{W}}_{\mathrm{s}, \text { comp }}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{1}
$$

Eqn 3
We know $\mathbf{T}_{2}$ and $\mathbf{T}_{4}$, so we can look-up $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$ in the Ideal Gas Properties Table for air.

$$
\begin{array}{llllll}
\mathrm{H}_{2} & 1791.5 & \mathrm{~kJ} / \mathrm{kg} & \mathrm{H}_{4} & 87.410 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

We can determine $\mathbf{T}_{1}$ and $\mathbf{T}_{3}$ using either the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function is :

$$
\begin{align*}
& \Delta \hat{S}=\hat{S}_{3 S}-\hat{S}_{2}=\hat{S}_{\text {T } 3 S}^{o}-\hat{S}_{\text {T } 2}^{o}-\frac{R}{M W} \operatorname{Ln} \frac{P_{3}}{P_{2}}=0  \tag{Eqn 4}\\
& \Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{1 \mathrm{~S}}-\hat{\mathbf{S}}_{4}=\hat{\mathbf{S}}_{\mathrm{T} 1 \mathrm{~S}}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 4}^{o}-\frac{\mathbf{R}}{\mathrm{MW}} \operatorname{Ln} \frac{\mathbf{P}_{1}}{\mathbf{P}_{4}}=\mathbf{0} \tag{Eqn 5}
\end{align*}
$$

We can solve Eqns 4 \& 5 for the unknowns $\mathbf{S}_{\mathrm{T} 1}^{\circ} \& \mathbf{S}_{\mathrm{T} 3}^{\mathbf{o}}$ :

$$
\begin{aligned}
& \hat{S}_{\mathrm{T} 3 \mathrm{~S}}^{\circ}=\hat{S}_{\mathrm{T} 2}^{\circ}+\frac{R}{M W} \operatorname{Ln} \frac{P_{3}}{P_{2}} \\
& \hat{\mathrm{~S}}_{\mathrm{T} 1 \mathrm{~S}}^{\circ}=\hat{S}_{\mathrm{T} 4}^{\circ}+\frac{R}{M W} \operatorname{Ln} \frac{P_{1}}{P_{4}}
\end{aligned}
$$

Eqn 6

Eqn 7

We can look up $\mathbf{S}^{\circ}{ }_{\mathrm{T} 2}$ and $\mathbf{S}_{\mathrm{T} 4}^{\circ}$ in the Ideal Gas Property Table for air and use it with the known compression ratio in Eqns 6 \& 7 to determine $\mathbf{S}^{\circ}{ }_{\mathrm{T} 3}$ and $\mathbf{S}_{\mathrm{T} 1}^{\circ}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{1}=\mathbf{P}_{2}$ and $\mathrm{P}_{3}=\mathrm{P}_{4}$.

| R | 8.314 | J/mol-K | MW | 29.00 | $\mathrm{g} / \mathrm{mol}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}^{\mathbf{O}}{ }_{\text {2 }}$ | 1.9784 | kJ/kg-K | $\mathrm{S}^{\text {¢ }}{ }^{\text {4 }}$ | 0.0061681 | kJ/kg-K |
| $\mathrm{S}^{\text {¢ }}$ + ${ }^{\text {¢ }}$ | 1.2020 | kJ/kg-K | $\mathrm{S}^{\circ} \mathrm{T}$ ¢ ${ }^{\text {a }}$ | 0.78254 | kJ/kg-K |

Now, we can use $\mathbf{S}^{\circ}{ }_{\mathrm{T} 1 \mathbf{S}}$ and $\mathbf{S}_{\mathrm{T} 3 \mathrm{~S}}^{\circ}$ and the Ideal Gas Property Table for air to determine $\mathbf{T}_{1 \mathrm{~S}}$ and $\mathbf{T}_{3 \mathrm{~S}}$ and then $\mathrm{H}_{1 \mathrm{~s}}$ and $\mathrm{H}_{3 \mathrm{~S}}$ by interpolation :

| T (K) | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 630 | 429.25 | 0.77137 |  |  |  |  |
| $\mathrm{T}_{15}$ | $\mathrm{H}_{1 \mathrm{~s}}$ | 0.78254 | Interpolation yields: | $\mathrm{T}_{1 \mathrm{~s}}$ | 636.61 | K |
| 640 | 439.98 | 0.78826 |  | $\mathrm{H}_{1 \mathrm{~S}}$ | 436.34 | kJ/kg |
| T (K) | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| 920 | 747.82 | 1.1867 |  |  |  |  |
| $\mathrm{T}_{3 \mathrm{~S}}$ | $\mathrm{H}_{3}$ | 1.2020 | Interpolation yields: | $\mathrm{T}_{3}$ | 932.67 | K |
| 940 | 770.33 | 1.2109 |  | $\mathrm{H}_{3 \mathrm{~S}}$ | 762.08 | kJ/kg |

## |Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :
$\frac{\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{3 \mathrm{~S}}\right)}{\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)}=\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}$
Eqn 8

$$
\frac{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{1 \mathrm{~S}}\right)}{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{4}\right)}=\frac{\mathbf{P}_{1}}{\mathbf{P}_{4}}
$$

Eqn 9

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look up in the Ideal Gas Property Table for air.
We can solve Eqns 8 \& 9 For $P_{r}\left(T_{3}\right)$ and $P_{r}\left(T_{1}\right)$, as follows :

$$
\begin{equation*}
\mathbf{P}_{r}\left(\mathbf{T}_{3 S}\right)=\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} \mathbf{P}_{r}\left(\mathbf{T}_{2}\right) \quad \text { Eqn } 10 \quad \mathbf{P}_{r}\left(\mathbf{T}_{15}\right)=\frac{\mathbf{P}_{1}}{\mathbf{P}_{4}} \mathbf{P}_{r}\left(\mathbf{T}_{4}\right) \tag{Eqn 11}
\end{equation*}
$$

Look-up $\mathbf{P}_{r}\left(\mathbf{T}_{2}\right)$ and $\mathbf{P}_{r}\left(\mathbf{T}_{2}\right)$ and use them in Eqns 10 \& 11, respectively, To determine $\mathbf{P}_{r}\left(\mathbf{T}_{3}\right)$ and $\mathbf{P}_{r}\left(\mathbf{T}_{1}\right)$ :
$\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)$
$\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{3 \mathrm{~S}}\right)$
986.20
$\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{4}\right)$
1.0217
$\begin{array}{ll}\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{3 \mathrm{~S}}\right) & 65.747\end{array}$
$\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{1 \mathrm{~S}}\right)$
15.326

We can now determine $\mathbf{T}_{3 S}$ and $\mathbf{T}_{1 s}$ by interpolation on the the Ideal Gas Property Table for air. Then, we use $\mathbf{T}_{3 \mathrm{~S}}$ and $\mathbf{T}_{1 \mathrm{~s}}$ to determine $\mathbf{H}_{3 \mathrm{~S}}$ and $\mathbf{H}_{1 \mathrm{~s}}$ from the Ideal Gas Property Table for air.

| T (K) | $\mathrm{Pr}_{\mathrm{r}}$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 630 | 14.7 | 429.25 |  |  |  |  |
| $\mathrm{T}_{1 \mathrm{~S}}$ | 15.326 | $\mathrm{H}_{1}$ S | Interpolation vields: | $\mathrm{T}_{1}$ S | 637.02 |  |
| 640 | 15.591 | 439.98 |  | $\mathrm{H}_{1 \mathrm{~s}}$ | 436.78 | kJ/kg |
| T (K) | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |  |
| 920 | 62.489 | 747.82 |  |  |  |  |
| $\mathrm{T}_{3 \mathrm{~S}}$ | 65.747 | $\mathrm{H}_{3}$ | Interpolation yields : | $\mathrm{T}_{3}$ | 931.84 | K |
| 940 | 67.990 | 770.33 |  | $\mathrm{H}_{3 \mathrm{~S}}$ | 761.15 | kJ/kg |

Since the two methods differ by only about $\mathbf{0 . 1 \%}$, I will use the results from Method 1 in the remaining calculations of this problem.

Next, we use the isentropic efficiencies of the compressor and the turbine to determine the actual $\mathbf{T}$ and $\mathbf{H}$ of states 1 and 3.
$\eta_{\mathrm{s}, \text { turb }}=\frac{\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}}{\hat{\mathbf{H}}_{2}-\hat{\mathrm{H}}_{3 \mathrm{~s}}}$
Eqn 12

$$
\eta_{\mathrm{s}, \mathrm{comp}}=\frac{\hat{\mathbf{H}}_{4}-\hat{\mathrm{H}}_{1 \mathrm{~s}}}{\hat{\mathrm{H}}_{4}-\hat{\mathrm{H}}_{1}}
$$

Eqn 13

Solve Eqns 12 \& 13 for $\mathbf{H}_{3}$ and $\mathbf{H}_{\mathbf{1}}$, respectively :

$$
\begin{aligned}
& \hat{\mathbf{H}}_{3}=\hat{\mathbf{H}}_{2}-\eta_{\mathrm{s}, \text { turb }}\left(\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3 \mathrm{~s}}\right) \\
& \hat{\mathbf{H}}_{1}=\hat{\mathbf{H}}_{4}-\frac{\left(\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{1 \mathrm{~s}}\right)}{\eta_{\mathrm{s}, \text { turb }}}
\end{aligned}
$$

Plugging values into Eqns 14 \& 15 gives:

| $\mathrm{H}_{1}$ | 523.58 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{3}$ | 916.49 | $\mathrm{~kJ} / \mathrm{kg}$ |

And by interpolation on the Ideal Gas Property Tables:

| T (K) | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: |
| 710 | 515.58 |
| T | 523.58 |
| 720 | 526.46 |
| T | 717.35 |


| $\mathrm{T}(\mathrm{K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |
| :---: | :---: | :---: |
| 1060 | 906.80 |  |
| $\mathrm{~T}_{3}$ | 916.49 |  |
|  | 1080 | 929.77 |
|  |  |  |
| $\mathrm{~T}_{3}$ |  | 1068.44 |

Now that we have fixed all the states and determined the values of all the $\mathbf{H}$ 's, we can plug values back into Eqns 1-3 and complete part (a).

| $\mathrm{W}_{\mathrm{s}, \text { turb }}$ | 875.01 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{W}_{\mathrm{S}, \text { comp }}$ | -436.17 | $\mathrm{~kJ} / \mathrm{kg}$ |$\quad$| $\mathrm{W}_{\text {cycle }}$ | 438.84 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :---: | :---: | :---: |

Heat tranfer out of the system occurs in step 3-4. We can determine $\mathbf{Q}_{34}$ by appplying the 1 st Law to HEX \#2. The HEX operates at steady-state, has no shaft work interaction and changes in kinetic and potential energies are negligible. So, the appropriate form of the 1st Law is:

$$
\hat{\mathbf{Q}}_{34}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3}
$$

Eqn 16
Plugging values into Eqn 16 gives us:
$\mathbf{Q}_{34}$
-829.08
kJ/kg

Part b.) We can calculate the thermal efficiency of the cycle from: $\quad \eta=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{12}}$
Heat tranfer into of the system occurs in step 1-2. We can determine $\mathbf{Q}_{12}$ by appplying the 1st Law to HEX \#1. The HEX operates at steady-state, has no shaft work interaction and changes in kinetic and potential energies are negligible. So, the appropriate form of the 1st Law is:

$$
\hat{\mathbf{Q}}_{12}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}
$$

Eqn 18
Plugging values into Eqn 18 gives us:
Plugging values into Eqn 17 gives us:

| $Q_{12}$ | 1267.92 |
| :--- | :--- |
|  | $\mathrm{~kJ} / \mathrm{kg}$ |
|  | $34.61 \%$ |

Part c.) In the ideal cycle, the compressor and turbine are isentropic. So, all we need to do to complete this part of the problem is use $\mathbf{H}_{1 \mathrm{~S}}$ and $\mathbf{H}_{3 \mathrm{~s}}$ instead of $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$ when we calculate $\mathbf{W}_{\mathrm{s}, \text { comp }}, \mathbf{W}_{\text {s,turb }}, \mathbf{W}_{\text {cycle }}, \mathbf{Q}_{34}, \mathbf{Q}_{12}$ and $\eta$. The equations from parts (a) - (c) become:

$$
\begin{array}{lll}
\hat{W}_{\text {cycle }}=\hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}+\hat{\mathbf{W}}_{\mathrm{s}, \text { comp }} & \text { Eqn 19 } & \hat{\mathbf{W}}_{\mathrm{s}, \text { turb }}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}  \tag{Eqn 20}\\
\hat{\mathbf{W}}_{\mathrm{s}, \text { comp }}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{1} & \text { Eqn 21 } & \hat{\mathbf{Q}}_{34}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3} \\
\hat{\mathbf{Q}}_{12}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1} & \text { Eqn 23 } & \eta=\frac{\hat{\mathbf{W}}_{\text {cycle }}}{\hat{\mathbf{Q}}_{12}}
\end{array}
$$

Eqn 24

Plugging values into Eqns 19-24 yields the values in the following table. The "\% Change" is defined as :

$$
\begin{equation*}
\% \text { Change }=\frac{\text { Real }- \text { Ideal }}{\text { Ideal }} \times 100 \% \tag{Eqn 25}
\end{equation*}
$$

|  |  | Real Cycle | Ideal Cycle | \% Change |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{W}_{\mathrm{S}, \text { turb }}$ | $(\mathrm{kJ} / \mathrm{kg})$ | 875.0 | 1029.4 | $-15.0 \%$ |
| $\mathrm{~W}_{\mathrm{S}, \mathrm{comp}}$ | $(\mathrm{kJ} / \mathrm{kg})$ | -436.2 | -348.9 | $25.0 \%$ |
| $\mathrm{~W}_{\text {cycle }}$ | $(\mathrm{kJ} / \mathrm{kg})$ | 438.8 | 680.5 | $-35.5 \%$ |
| $\mathrm{Q}_{34}$ | $(\mathrm{~kJ} / \mathrm{kg})$ | -829.1 | -674.7 | $22.9 \%$ |
| $\mathrm{Q}_{12}$ | $(\mathrm{~kJ} / \mathrm{kg})$ | 1267.9 | 1355.2 | $-6.4 \%$ |
| $\eta$ |  | $34.6 \%$ | $50.2 \%$ | $-31.1 \%$ |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

| Answers: |  |  | Real Cycle | c.) | Ideal Cycle | \%Change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{W}_{\mathrm{s} \text {,turb }}$ | (kJ/kg) | 875.0 |  | 1029.4 | -15.0\% |
|  | $\mathrm{W}_{\text {S, comp }}$ | (kJ/kg) | -436.2 |  | -348.9 | 25.0\% |
| a.) | $\mathrm{W}_{\text {cycle }}$ | (kJ/kg) | 438.8 |  | 680.5 | -35.5\% |
|  | $\mathrm{Q}_{34}$ | (kJ/kg) | -829.1 |  | -674.7 | 22.9\% |
|  | $\mathrm{Q}_{12}$ | (kJ/kg) | 1267.9 |  | 1355.2 | -6.4\% |
| b.) | $\eta$ |  | 34.6\% |  | 50.2\% | -31.1\% |

Although the isentropic efficiencies of the compressor and turbine are very high, $80 \%$ and $85 \%$, they reduce the work output by $35 \%$ and reduce the efficiency by $31 \%$. This shows the enormous significance of the these isentropic efficiencies in the overall performance of the power cycle.

Consider three air-standard power cycles operating between the same two thermal reservoirs. All three cycles have the same pressure ratio, 12 , and the same maximum and minimum temperatures, $2500^{\circ} \mathrm{R}$ and $560^{\circ} \mathrm{R}$, respectively.
In each cycle, the mass flow rate of air is $25,000 \mathrm{lb} / \mathrm{h}$ and the pressure at the compressor inlet is 14.7 psia. Cycle $\mathbf{A}$ is an ideal Brayton Cycle. In Cycle B, the compressor and turbine have isentropic efficiencies
of $85 \%$ and $90 \%$, respectively. Cycle C uses the same compressor and turbine as Cycle B, but also incorporates a regenerator with an effectiveness of $75 \%$. Calculate the net power output, in $\mathbf{h P}$, and thermal efficiency of each cycle.

Read : We will need to know all of the $\mathbf{H}$ 's in order to determine both $W_{\text {cycle }}$ and $\eta$. We can get $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$ immediately from the Ideal Gas Property Table for air.

Then, for each part of the problem, use the given isentropic compressor and turbine efficiencies to evaluate $\mathbf{H}_{2}$ and $\mathbf{H}_{4}$. Then, calculate $\mathbf{W}_{\text {cycle }}$ and $\mathbf{Q}_{\text {in }}$ for each part and finally the thermal efficiency.

In Cycle C, re-number the streams carefully so you can easily use most of the H's from Cycle B. The key to Cycle $\mathbf{C}$ is to use the regenerator effectiveness to determine the $\mathbf{H}$ of the combustor feed. Once you have this, you can compute $\mathbf{Q}_{\text {in }}$. $\mathbf{W}_{\text {cycle }}$ is the same as in Cycle $\mathbf{B}$. So, calculate $\eta$ from its definition.

| Given: | $\mathrm{P}_{2} / \mathrm{P}_{1}$ | 12 |  |  |  |  | T3 | 2500 | ${ }^{0} \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{P}_{1}$ | 14.7 | psia |  |  |  | m | 25,000 | $1 b_{m} / \mathrm{h}$ |
|  | T | 560 | ${ }^{\circ} \mathrm{R}$ |  |  |  |  |  |  |
|  | Cycle A | $\eta_{\mathrm{s}, \text { turb }}$ | 1.00 |  |  | Cycle B | $\eta_{\mathrm{s}, \text { turb }}$ <br> $\eta_{\mathrm{s}, \text { comp }}$ | 0.90 |  |
|  |  | $\eta_{\mathrm{s}, \text { comp }}$ | 1.00 |  |  |  |  | 0.85 |  |
|  | Cycle C | $\eta_{\mathrm{s}, \text { turb }}$ | 0.90 |  |  |  |  |  |  |
|  |  | $\eta_{\mathrm{s}, \text { comp }}$ | 0.85 |  |  |  |  |  |  |
|  |  | $\eta_{\text {regen }}$ | 0.75 |  |  |  |  |  |  |
| Find: | For each | cle | $\eta$ | ??? | \% |  | $\mathrm{W}_{\text {cycle }}$ | ??? | hp |



Assumptions: $\mathbf{1 -} \quad$ Each component is an open system operating at steady-state.
2- The turbine and compressor are adiabatic.
3- There are no pressure drops for flow through the heat exchangers.
4- Kinetic and potential energy changes are negligible.
5- The working fluid is air modeled as an ideal gas.
Equations / Data / Solve:

| Stream | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{R}\right) \end{gathered}$ | $\begin{gathered} \mathbf{P} \\ (\text { psia) } \end{gathered}$ | $\begin{gathered} \mathbf{H}^{\circ} \\ \left(B t u / b_{m}\right) \end{gathered}$ | $\begin{gathered} \mathbf{S}^{\circ} \\ \left(\text { Btu } / \mathbf{l b}_{\mathrm{m}}-{ }^{-} \mathbf{R}\right) \end{gathered}$ | $\mathrm{Pr}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 560 | 14.7 | 42.351 | 0.010149 | 1.1596 |
| 2 |  | 176.4 | 204.58 |  |  |
| 2 S | 1117.2 | 176.4 | 180.24 | 0.010149 | 13.915 |
| 3 | 2500 | 176.4 | 555.34 | 0.39732 | 329.12 |
| 4 |  | 14.7 | 269.21 |  |  |
| 4 S | 1338.5 | 14.7 | 237.42 | 0.39732 | 27.427 |

We can calculate the thermal efficiency of the cycle when the compressor and turbine are isentropic using :

$$
\eta=1-\frac{\hat{\mathbf{Q}}_{\text {out }}}{\hat{\mathbf{Q}}_{\text {in }}}=1-\frac{-\hat{\mathbf{Q}}_{41}}{\hat{\mathbf{Q}}_{23}}
$$

Eqn 1

We can determine $\mathbf{Q}_{12}$ and $\mathbf{Q}_{34}$ by applying the 1st Law to HEX \#1 and HEX \#2, respectively.
Each HEX operates at steady-state, involves no shaft work and has negligible changes in kinetic and potential energies. The appropriate forms of the 1st Law are:

$$
\begin{equation*}
\hat{\mathbf{Q}}_{23}=\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{2} \quad \text { Eqn } 2 \quad \hat{\mathbf{Q}}_{41}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{4} \tag{Eqn 2}
\end{equation*}
$$

Eqn 3
In order to use Eqns 1-3, we must first evaluate $\mathbf{H}$ at each state in the cycle.
Let's begin with states 4 and 2 because they are completely fixed by the given data.
We know $\mathbf{T}_{1}$ and $\mathbf{T}_{3}$, so we can look-up $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$ in the Ideal Gas Property Table for air.
$\mathrm{H}_{1}$
42.35

Btu / $\mathbf{l b}_{\mathrm{m}}$
$\mathrm{H}_{3}$
555.3 Btu / lb ${ }_{\mathrm{m}}$

The two remaining $\mathbf{H}$ values depend on the isentropic efficiency of the compressor and the turbine, so they will be different depending on which part of the problem is being considered.

We can determine $\mathbf{W}_{\text {cycle }}$ by applying the 1 st Law to the entire cycle.

$$
\begin{equation*}
\mathbf{W}_{\text {cycle }}=\mathbf{Q}_{\text {cycle }} \tag{Eqn 4}
\end{equation*}
$$

Because the compressor and turbine are assumed to be adiabatic, Eqn 4 simplifies to:

$$
\begin{equation*}
\mathbf{W}_{\text {cycle }}=\mathbf{Q}_{\text {cycle }}=\mathbf{Q}_{23}+\mathbf{Q}_{41} \tag{Eqn 5}
\end{equation*}
$$

So, once we determine $\mathbf{Q}_{23}$ and $\mathbf{Q}_{41}$ for each part of the problem, we can use Eqn 5 to evaluate $\mathbf{W}_{\text {cycle }}$.
Part a.) Both the compressor and the turbine are isentropic. This changes Eqns 2 \& 3 to:
$\hat{\mathbf{Q}}_{23}=\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{2 \mathrm{~S}}$
Eqn 6
$\hat{\mathbf{Q}}_{41}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{4 \mathrm{~s}}$

Eqn 7
We can determine $T_{1 S}$ and $T_{3 S}$ using either the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.
The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function for the compressor and the turbine are :

$$
\begin{align*}
& \Delta \hat{S}=\hat{S}_{2 \mathrm{~S}}-\hat{\mathrm{S}}_{1}=\hat{\mathrm{S}}_{\mathrm{T} 2 \mathrm{~S}}^{\circ}-\hat{\mathrm{S}}_{\mathrm{T} 1}^{\circ}-\frac{R}{M W} \operatorname{Ln} \frac{P_{2}}{P_{1}}=0  \tag{Eqn 8}\\
& \Delta \hat{S}=\hat{S}_{4 \mathrm{~S}}-\hat{S}_{3}=\hat{S}_{\mathrm{T} 4 \mathrm{~S}}^{\circ}-\hat{\mathrm{S}}_{\mathrm{T} 3}^{\circ}-\frac{R}{M W} \operatorname{Ln} \frac{P_{4}}{P_{3}}=0 \tag{Eqn 9}
\end{align*}
$$

We can solve Eqns 8 \& 9 for the unknowns $\mathrm{S}^{\circ}{ }_{\mathrm{T} 2 \mathrm{~S}} \& \mathrm{~S}^{\circ}{ }_{\mathrm{T} 4 \mathrm{~S}}$ :

$$
\begin{aligned}
& \hat{S}_{\mathrm{T} 2 \mathrm{~S}}^{o}=\hat{S}_{\mathrm{T} 1}^{o}+\frac{R}{M W} \operatorname{Ln} \frac{P_{2}}{P_{1}} \\
& \hat{S}_{\mathrm{T} 4 \mathrm{~S}}^{\circ}=\hat{S}_{\mathrm{T} 3}^{\circ}+\frac{R}{M W} \operatorname{Ln} \frac{P_{4}}{P_{3}}
\end{aligned}
$$

Eqn 10

Eqn 11

We can look up $\mathbf{S}^{\circ}{ }_{\mathbf{1} 1}$ and $\mathbf{S}_{\mathrm{T} 3}^{\circ}$ in the Ideal Gas Property Table for air and use it with the known compression ratio in Eqns $10 \& 11$ to determine $S^{0}{ }_{\mathrm{T} 2 \mathrm{~S}}$ and $\mathbf{S}_{\mathrm{T} 4 \mathrm{~s}}^{0}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{3}}$ and $\mathbf{P}_{4}=\mathbf{P}_{\mathbf{1}}$.

| R | 1.987 | Btu/lbmole- ${ }^{\circ} \mathrm{R}$ | MW | 29.00 | lb / / Ibmole |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}^{\circ}{ }_{\text {T1 }}$ | 0.010149 | Btu / $\mathrm{lb}_{\mathrm{m}}{ }^{\text {o }}$ R | $\mathrm{S}^{0}{ }_{\text {T3 }}$ | 0.39732 | Btu / lb ${ }^{\text {a }}{ }^{\circ} \mathrm{R}$ |
| $\mathrm{S}^{\circ}{ }_{\text {2 } 2 S}$ | 0.18041 | Btu / $\mathrm{lb}_{\mathrm{m}}{ }^{\mathbf{0}} \mathrm{R}$ | $\mathrm{S}^{\circ}{ }_{\text {T4S }}$ | 0.22706 | Btu / lbm ${ }^{\text {o }}$ R |

Now, we can use $\mathbf{S}^{\circ}{ }_{\mathrm{T} 2 \mathrm{~S}}$ and $\mathrm{S}^{\circ}{ }_{\mathrm{T} 4 \mathrm{~S}}$ and the Ideal Gas Property Table for air to determine $\mathrm{T}_{2 \mathrm{~S}}$ and $\mathrm{T}_{4 \mathrm{~S}}$ and then $\mathrm{H}_{2 \mathrm{~S}}$ and $\mathrm{H}_{4 \mathrm{~s}}$ by interpolation :

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $H^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ | $S^{0}\left(B t u / l b_{m}{ }^{0} R\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1100 | 175.86 | 0.17647 |  |  |  |  |
| $\mathrm{T}_{2 \mathrm{~S}}$ | $\mathrm{H}_{2 \mathrm{~S}}$ | 0.18041 | Interpolation yields: | $\mathrm{T}_{2}$ | 1117.16 | ${ }^{0} \mathrm{R}$ |
| 1120 | 180.97 | 0.18106 |  | $\mathrm{H}_{2}$ | 180.24 | Btu / lbm |
| T ( ${ }^{\circ} \mathrm{R}$ ) | $H^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ | $S^{0}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}\right)$ |  |  |  |  |
| 1300 | 227.38 | 0.21948 |  |  |  |  |
| $\mathrm{T}_{4 \mathrm{~S}}$ | $\mathrm{H}_{4 \mathrm{~S}}$ | 0.22706 | Interpolation yields: | $\mathrm{T}_{4 \mathrm{~S}}$ | 1338.52 | ${ }^{0} \mathrm{R}$ |
| 1350 | 240.41 | 0.22932 |  | $\mathrm{H}_{4 \mathrm{~S}}$ | 237.42 | Btu / lbm |

When an ideal gas undergoes an isentropic process :
$\frac{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{2 \mathrm{~s}}\right)}{\mathbf{P}_{\mathbf{r}}\left(\mathrm{T}_{1}\right)}=\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}$
Eqn 12

$$
\frac{\mathbf{P}_{\mathbf{r}}\left(\mathrm{T}_{4 \mathrm{~S}}\right)}{\mathbf{P}_{\mathbf{r}}\left(\mathrm{T}_{3}\right)}=\frac{\mathbf{P}_{4}}{\mathbf{P}_{3}}
$$

Eqn 13
Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.
We can solve Eqns 12 \& 13 For $P_{r}\left(T_{3}\right)$ and $P_{r}\left(T_{1}\right)$, as follows :
$\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{2 \mathrm{~S}}\right)=\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{1}\right)$
Eqn 14
$\mathbf{P}_{\mathrm{r}}\left(\mathrm{T}_{4 \mathrm{~s}}\right)=\frac{\mathbf{P}_{4}}{\mathbf{P}_{3}} \mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{3}\right)$

Eqn 15
Look-up $\mathbf{P}_{r}\left(\mathbf{T}_{1}\right)$ and $\mathbf{P}_{r}\left(\mathbf{T}_{3}\right)$ and use them in Eqns 14 \& 15, respectively, To determine $\mathbf{P}_{\mathrm{r}}\left(\mathbf{T}_{2 \mathrm{~s}}\right)$ and $\mathbf{P}_{\mathrm{r}}\left(\mathbf{T}_{4 s}\right)$ :

| $\mathbf{P}_{r}\left(T_{1}\right)$ | 1.1596 | $P_{r}\left(T_{3}\right)$ | 329.12 |
| :--- | :--- | :--- | :--- |
| $\mathbf{P}_{r}\left(T_{2 S}\right)$ | 13.915 | $P_{r}\left(T_{4 S}\right)$ | 27.427 |

We can now determine $\mathbf{T}_{2 S}$ and $\mathbf{T}_{4 S}$ by interpolation on the the Ideal Gas Property Table for air.
Then, we use $T_{2 S}$ and $\mathbf{T}_{4 S}$ to determine $\mathbf{H}_{2 S}$ and $\mathbf{H}_{4 S}$ from the Ideal Gas Property Table for air.

| $\begin{gathered} \mathrm{T}\left({ }^{\circ} \mathrm{R}\right) \\ 1100 \end{gathered}$ | $\begin{gathered} P_{r} \\ 13.124 \end{gathered}$ | $\begin{gathered} \mathbf{H}^{\circ}\left(\text { Btu/lb }_{m}\right) \\ 175.86 \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{2 \mathrm{~S}}$ | 13.915 | $\mathrm{H}_{2 \mathrm{~S}}$ | Interpolation yields: | $\mathrm{T}_{2 \mathrm{~S}}$ | 1117.39 | ${ }^{\circ} \mathrm{R}$ |
| 1120 | 14.034 | 180.97 |  | $\mathrm{H}_{2 \mathrm{~S}}$ | 180.30 | Btu / lb ${ }_{\text {m }}$ |
| $\begin{aligned} & \mathrm{T}\left({ }^{\circ} \mathrm{R}\right) \\ & 1300 \end{aligned}$ | $\begin{gathered} \mathbf{P r}_{\mathbf{r}} \\ 24.581 \end{gathered}$ | $\begin{gathered} H^{\circ}\left(\text { Btu/lb }_{m}\right) \\ 227.38 \end{gathered}$ |  |  |  |  |
| $\mathrm{T}_{4 \mathrm{~S}}$ | 27.427 | $\mathrm{H}_{4 \mathrm{~S}}$ | Interpolation yields: | $\mathrm{T}_{4}$ | 1337.49 | ${ }^{\circ} \mathrm{R}$ |
| 1350 | 28.376 | 240.41 |  | $\mathrm{H}_{4 \mathrm{~S}}$ | 237.15 | Btu / lb ${ }_{\text {m }}$ |

Since the two methods differ by less than $\mathbf{0 . 1 \%}$, I will use the results from Method 1 in the remaining calculations of this problem.

Now, that we have values for all of the H's, we can plug values back into Eqns 2, 3, 5 \& $\mathbf{1}$ to complete our analysis of Cycle A.

| $\mathrm{Q}_{23}$ | 375.10 | Btu / $\mathrm{lb}_{\mathrm{m}}$ | $\mathrm{W}_{\text {cycle }}$ | $4.501 \mathrm{E}+06$ | $\mathrm{Btu} / \mathrm{h}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{41}$ | -195.07 | Btu / lb ${ }_{\text {m }}$ | $\mathrm{W}_{\text {cycle }}$ | 1769 | hP |
| 1 hp | 2544.5 | Btu/h | $\eta$ | 48.00\% |  |

$\eta_{\mathrm{s}, \text { comp }} \quad 0.85$
We use the isentropic efficiencies of the compressor and the turbine to determine the actual $\mathbf{T}$ and $\mathbf{H}$ of states 1 and 3.

$$
\eta_{\mathrm{s}, \text { comp }}=\frac{\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2 \mathrm{~s}}}{\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2}} \quad \text { Eqn } 16 \quad \eta_{\mathrm{s}, \text { turb }}=\frac{\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4}}{\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4 \mathrm{~s}}}
$$

Eqn 17

Solve Eqns 12 \& 13 for $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{H}_{4}$, respectively :

$$
\hat{\mathbf{H}}_{2}=\hat{\mathbf{H}}_{1}-\frac{\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2 \mathrm{~s}}\right)}{\eta_{\mathrm{s}, \text { turb }}}
$$

$$
\hat{\mathbf{H}}_{4}=\hat{\mathbf{H}}_{3}-\eta_{\mathrm{s}, \text { turb }}\left(\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4 \mathrm{~s}}\right)
$$

| $\mathrm{H}_{2}$ | 204.58 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{4}$ | 269.21 | $\mathrm{Btu} / \mathrm{Ib}_{\mathrm{m}}$ |

We have all of the $\mathbf{H}$ 's, so we can plug values back into Eqns 2, 3, $\mathbf{5}$ \& $\mathbf{1}$ to complete our analysis of Cycle B.

| $\mathbf{Q}_{23}$ | 350.76 | $\mathrm{Btu} / \mathrm{Ib}_{\mathrm{m}}$ |
| :--- | :---: | :---: |
| $\mathbf{Q}_{41}$ | $\mathbf{- 2 2 6 . 8 6}$ | $\mathrm{Btu} / \mathrm{Ib}_{\mathrm{m}}$ |
| $\mathrm{W}_{\text {cycle }}$ | $\mathbf{1 2 3 . 9 0}$ | $\mathrm{Btu} / \mathrm{Ib}_{\mathrm{m}}$ |


| $\mathrm{W}_{\text {cycle }}$ | 3.098E+06 | Btu / h |
| :---: | :---: | :---: |
| $\mathrm{W}_{\text {cycle }}$ | 1217 | hP |
| $\eta$ | 35.32\% |  |

Cycle C
$\eta_{\mathrm{s}, \text { turb }}$
0.90
$\eta_{\mathrm{s}, \text { comp }}$
0.85
$\varepsilon_{\mathrm{s}, \text { regen }}$
0.75

## Diagram:

Air-Standard Regenerative Brayton Cycle


| Stream | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{R}\right) \end{gathered}$ | $\begin{gathered} \mathbf{P} \\ \text { (psia) } \end{gathered}$ | $\begin{gathered} \mathbf{H}^{\circ} \\ \left(B t u / b_{m}\right) \end{gathered}$ | $\begin{gathered} \mathbf{S}^{\circ} \\ \left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-} \mathbf{R}\right) \end{gathered}$ | $\mathrm{Pr}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 560 | 14.7 | 42.351 | 0.010149 | 1.1596 |
| 2 |  | 176.4 | 204.58 |  |  |
| 2 S | 1117.2 | 176.4 | 180.24 | 0.010149 | 13.915 |
| 3 | 2500 | 176.4 | 555.34 | 0.39732 | 329.12 |
| 4 |  | 14.7 | 269.21 |  |  |
| 4S | 1338.5 | 14.7 | 237.42 | 0.39732 | 27.427 |
| 5 |  |  |  |  |  |
| 6 |  |  | 253.05 |  |  |

We can determine the thermal efficiency of the regenerative cycle using:

$$
\eta_{\text {regen }}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{\text {in }}}=\frac{\mathbf{W}_{\text {cycle }}}{\mathbf{Q}_{63}}
$$

Eqn 20

The addition of a regenerator does not effect the value of $\mathbf{W}_{\text {cycle }}$. It is the same as in Cycle $\mathbf{B}$.

$$
\begin{array}{lll}
\mathrm{W}_{\text {cycle }} & 123.902 & \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
\end{array}
$$

The regenerator does reduce the magnitude of both $\mathbf{Q}_{63}$ and $\mathbf{Q}_{51}$.
We can determine $\mathbf{Q}_{12}$ by applying the 1st Law to the combustor.
The combustor operates at steady-state, involves no shaft work and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\begin{equation*}
\hat{\mathbf{Q}}_{63}=\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{3} \tag{Eqn 21}
\end{equation*}
$$

From Cycle $\mathbf{B}$ the following values of $\mathbf{H}$ do not change:

| $\mathrm{H}_{2}$ | 204.58 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{3}$ | 555.34 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ | $\mathrm{H}_{4}$ | $\mathbf{2 6 9 . 2 1}$ | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |

So, we need to use the effectiveness of the regenerator to determine $\mathbf{H}_{6}$.
The effectiveness of the regenerator is given by:

We can solve Eqn 22 for $\mathbf{H}_{3}$ :

$$
\varepsilon_{\text {regen }}=\frac{\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{2}}{\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{2}}
$$

Eqn 22

Now, we can plug values back into Eqns 23, 21 \& 20 :

| $\mathrm{H}_{6}$ | 253.05 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :---: | :---: |
| $\mathrm{Q}_{62}$ | 302.29 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{W}_{\text {cycle }}$ | $3.098 \mathrm{E}+06$ | $\mathrm{Btu} / \mathrm{h}$ |


| $\mathrm{W}_{\text {cycle }}$ | $\mathbf{1 2 1 7}$ | hP |
| :---: | :---: | :---: |
| $\boldsymbol{\eta}$ | $40.99 \%$ |  |
|  |  |  |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers: Cycle A

| $\mathrm{W}_{\text {cycle }}$ | 1770 | hP |
| :---: | :---: | :---: |
| $\eta$ | $48.0 \%$ |  |


| Cycle B | $\begin{gathered} \hline \mathbf{W}_{\text {cycle }} \\ \eta \end{gathered}$ | $\begin{gathered} \hline 1220 \\ 35.3 \% \end{gathered}$ | hP | Cycle C | $\begin{gathered} \mathrm{W}_{\text {cycle }} \\ \eta \end{gathered}$ | $\begin{gathered} \hline 1220 \\ 41.0 \% \end{gathered}$ | hP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



## Refrigeration and Heat Pump Systems

In this chapter, we discuss refrigeration and heat pump systems in a manner analogous to our discussion of power systems in Chapter 9.

We begin with a discussion of ideal vapor-compression refrigeration (VCR) and follow with a discussion of the impact of irreversibilities on the coefficient of performance. Refrigerant selection criteria are discussed, with special attention to the vapor pres-sure-temperature relationship. Cascade and multi-stage VCR cycles are covered. Heat pumps and the key reversing valve are discussed.

The chapter concludes with a discussion of Air-Standard Gas Refrigeration Cycles. Regeneration can be used to increase the coefficient of performance. Irreversibilities decrease the coefficient of performance.

## Applications of Refrigeration Systems

- V-C Refrigeration Cycle
$\diamond$ Food preservation
$\diamond$ Air conditioning
$\diamond$ Industrial cooling processes
- Gas Refrigeration Cycle
$\checkmark$ Air conditioning on passenger aircraft
$\diamond$ Cryogenic refrigeration (very low temperatures, $<150 \mathrm{~K}$ )
- Thermoelectric Refrigeration Systems
- Peltier Effect
$\diamond$ Very small and lightweight
- Very low efficiency
-Refrigeration revolutionized food distribution.
$\Delta$ Limits the growth of bacteria in the food supply.
- Air-conditioning dramatically improved life in the tropical and subtropical regions.
$\diamond$ Facilitated the economic development of the southern US.
- Gas refrigeration is not as efficient as V-C refrigeration.
$\diamond$ But, it is lightweight. This makes it wellsuited to use in passenger aircraft.
$\checkmark$ The other great attribute of gas refrigeration cycles is that they can reach very, very low temperatures, even into the cryogenic range.
- Thermoelectric refrigerators make use of the Peltier Effect.
- When a current is passed through the junction between two wires made of different metals, heat is either released or absorbed, depending on the direction of the electrical current.
$\diamond$ This is also the principle upon which thermocouples operate.
- Thermoelectric refrigerators are lightweight and inexpensive, but not very efficient. (Less than $10 \%$ of Carnot Efficiency, so generally less than $5 \%$.)


## Ammonia Absorption Refrigeration

## - Ammonia Absorption Refrigeration

- No moving parts
- No work input
- Well-suited to remote and portable applications
- Locations where electric power is not available
- RV's and campers
- Invented by a student in Sweden
- See external flow diagram or visit: http://www.nh3tech.org/absorption.html
- Harrison Ford builds a giant ammonia absorption refrigeration system in the film Mosquito Coast !
- The refrigeration system in the VW Eurovan and most campers is an ammonia refrigeration system!
- It is VERY important to park the Eurovan or camper on level ground in order to make the refrigerator work.
- See why by visiting the Ammonia Refrigeration Technicians Association website.


## Ideal V-C Refrigeration Cycle

## - The Ideal V-C Refrigeration Cycle

- Step 1-2: Evaporator

Heat absorbed at constant pressure

- Step 2-3 Compressor Isentropic compression
- Step 3-4: Condenser
- Step 4-1: Expansion Valve

Heat rejected at constant pressure
Isenthalpic expansion


- The ideal VCR Cycle is not internally reversible because flow through the expansion valve has lots of friction and is therefore irreversible.


## Ideal VCR Cycle: TS Diagram



- Notice that the expansion valve (step 4-1) is NOT isentropic!
$\diamond$ There is a great deal of friction in a throttling device.
$\diamond$ Lots of irreversibility.
$\diamond$ Lots of lost work !
$\diamond$ The expansion valve is isenthalpic.
- The evaporator effluent is saturated vapor.


## Irreversibilities in the VCR Cycle



- The additional irreversibilities (above and beyond the expansion valve) come from the same sources as in the Rankine Vapor Power Cycle.
$\diamond$ Fluid-solid friction in the Evaporator and condenser produce pressure drops in these device. They are not quite isobaric any longer.
$\diamond$ Mechanical or solid-solid friction plus fluid-solid friction and even fluid-fluid friction due to turbulent flow contribute to the irreversibility of the compressor.
- The result is that the entropy of the fluid increases through the real compressor.
- As in power cycles, this is taken into account by the isentropic efficiency of the compressor.


## Refrigerant Selection

- Selection Criteria
- Cost
- $\mathrm{P}^{*}$ vs T Relationship
$\checkmark \quad \Delta \mathrm{H}_{\text {vap }}$
- Chemical Stability
- Corrosiveness
- Toxicity
- Flammability
- Cost
- Cheap is always good.
- P* vs T Relationship.
- It is not practical to use water as a refrigerant to chill food to $-\mathbf{5}^{\circ} \mathrm{C}$. Water does not exist in VLE at $-5^{\circ} \mathrm{C}$.
- Heat of Vaporization.
- The larger the heat of vaporization, the lower the required refrigerant flow rate.
- Chemical Stability
- If the refrigerant degrades chemically in the system, it must be replaced.
- If it degrades in the atmosphere due to interaction with UV light, it may lead to severe air pollution and/or global warming.
- Corrosiveness
- If the refrigerant corrodes the devices and tubing in the system, it is not a good choice.
- Toxicity
- Refrigerants always leak into the environment eventually.
- This may cause a disaster if they are toxic at very low concentrations.
- Flammability
- Non-flammable refrigerants are desirable.
- A leak + spark $=$ disaster, if the refrigerant is highly flammable.


## Vapor Pressure - Temperature Relationship

## - Condenser

- $\mathrm{T}_{\text {sat }}\left(\mathrm{P}_{\text {high }}\right)>\mathrm{T}_{\text {hot res }}$ because the working fluid must reject heat to the hot reservoir in the condenser.
$\diamond$ Rule of thumb is at least: $\quad \mathbf{T}_{\text {sat }}\left(\mathbf{P}_{\text {high }}\right)-\mathbf{T}_{\text {hot res }}=\mathbf{1 0}^{\mathbf{o}} \mathbf{C}$
- Evaporator
$\checkmark \quad \mathrm{T}_{\text {sat }}\left(\mathrm{P}_{\text {low }}\right)<\mathrm{T}_{\text {cold res }}$ because the working fluid must absorb heat from the cold reservoir in the evaporator.
$\diamond$ Rule of thumb is at least: $\quad \mathbf{T}_{\text {cold res }}-\mathbf{T}_{\text {sat }}\left(\mathbf{P}_{\text {low }}\right)=\mathbf{1 0}^{\mathbf{o}} \mathbf{C}$
- Vapor Pressure (Saturation Pressure)

Not too high: makes equipment expensive and dangerous.

- Not too low: must be greater than atmospheric pressure
- Air leaks into the system drastically reduce $\mathrm{COP}_{\mathrm{R}}$.
- This is usually the 1 st criterion applied in refrigerant selection.
- Basically, this determines whether a refrigerant CAN be used to accomplish a given refrigeration task.
- Use this criterion to select a group of POSSIBLE refrigerants.
- THEN consider the criteria on the previous slide to choose the best refrigerant from the group.


## Cascade VCR Cycles

## - Cascade V-C Refrigeration Cycles

- Two separate refrigeration cycles
- Analogous to Binary Vapor Power Cycles
- One provides cooling to the other
- Usually two different refrigerants
- High COPR
- High cost
- Can reach very low temperatures: $\mathbf{T}_{\mathrm{C}} \ll \mathbf{T}_{\mathrm{H}}$
- Cascade VCR Cycles are comparable to Binary Vapor Power Cycles.
$\checkmark$ Two separate cycles only interact by exchanging heat.
- The upper and lower cycles usually use different refrigerants.
- This allows you to choose an appropriate refrigerant for a VERY low temperature range for the lower cycle and...
- A different refrigerant that is appropriate for a higher temperature range for the upper cycle.
- The result is a refrigeration system that makes the refrigerated space VERY cold using an ordinary high temperature reservoir, such as ambient air.
$\diamond$ The lower cycle absorbs heat from the refrigerated space. And rejects heat into the upper cycle.
- The upper cycle absorbs heat from the lower cycle and rejects heat into the high temperature reservoir.
$\checkmark$ Cascade refrigeration cycles can be used to reach temperatures as low as 100 K .
- This is cold enough to liquefy many gases, such as light hydrocarbons.
$\checkmark$ The cascade cycle is more efficient than a single VCR cycle operating between the same two reservoirs, but is also more expensive to build and operate.
- Therefore, it is generally only used for very low temperature applications.


## Cascade VCR Flow Diagram



- Notice that streams 3 and 5 do NOT mix in the HEX. They just exchange heat.
$\diamond$ This provides the flexibility to use different refrigerants in the lower and upper cycles.
$\diamond$ It also results in lost work due to the irreversibility of heat transfer through a finite temperature difference.


## Cascade VCR TS Diagram



- There is one little catch. This analysis and conclusion are only completely true if the MASS FLOW RATE of the refrigerant is the same in the lower and upper cycle.
- This point becomes critical in the next cycle, the Multi-Stage VCR Cycle.
- For simplicity, this TS Diagram is based on a cascade refrigeration cycle in which both cycles use the SAME refrigerant.
- Notice that $\mathbf{T}_{3}>\mathbf{T}_{5}$ in order to make the HEX work.
$\diamond$ This seems odd, but remember that this is a refrigeration cycle.
- The low temperature cycle must reject heat INTO the higher temperature cycle.
- In order to make this happen, stream 3 must be hotter than stream 5.
- This temperature difference is necessary to make a real cycle function, but this heat transfer is irreversible !
- The orange shaded area bounded by points 3 and 7 represents the DECREASE in $\mathbf{Q}_{\mathbf{H}}$ when the cascade cycle is compared to a simple, single VCR Cycle operating between $\mathbf{P}_{\text {Lo }}$ and PHI.
- Similarly, the light blue shaded area beneath the $\mathbf{P}_{\text {LO }}$ isobar (near point 1) is the INCREASE in $\mathbf{Q}_{\mathrm{C}}$.
- The 1st Law tells us that if $\mathbf{Q}_{\mathbf{C}}$ increases and $\mathbf{Q}_{\mathbf{H}}$ decreases, then $\mathbf{W}_{\mathbf{S h}}$ must DECREASE. $\mathbf{Q}_{\mathrm{C}}+\mathbf{W}_{\mathrm{Sh}}=\mathbf{Q}_{\mathrm{H}}$.
- From the definition of COPR
$\left(\mathbf{C O P R}=\mathbf{Q}_{\mathbf{C}} / \mathbf{W}_{\mathbf{S h}}\right)$ it is clear that the Cascade VCR Cycle is more efficient than the ordinary VCR Cycle operating between the same two thermal reservoirs.


## Multi-Stage VCR Cycles

- Similar to Cascade V-C Refrigeration
- Two cycles use the same refrigerant
- Instead of exchanging heat between two cycles, the refrigerant streams are mixed.
- This is more efficient than heat exchange.
- $\mathbf{C O P}_{\mathrm{R}}$ increases (slightly better than Cascade VCR)
- Cost increases (but not as expensive as Cascade VCR)
- Can reach very low temperatures

$$
\mathbf{T}_{\mathrm{C}} \ll \mathrm{~T}_{\mathrm{H}}
$$

$\diamond$ Cannot reach as temperatures as cold as Cascade VCR

- In a Multi-Stage VCR Cycle, streams are simply MIXED instead of exchanging heat.
- This reduces the irreversibility of heat exchange, but requires that both cycles use the same refrigerant.
$\diamond$ This has the fringe benefit of saving the cost of the HEX.
- For a given pair of thermal reservoirs, Multi-Stage is more efficient and less expensive than Cascade VCR.
- The bad news is that Multi-Stage VCR cannot reach the very low temperatures that Cascade VCR can because just one refrigerant can be used.


## Multi-Stage VCR Flow Diagram



- Stream 8 is a saturated liquid.
$\checkmark$ When the pressure drops isenthalpically in the expansion valve, some of the liquid vaporizes. So point 5 is in the 2 -phase envelope.
$\checkmark$ The flash drum just separates the saturated liquid from the saturated vapor.
$\checkmark$ The saturated vapor, stream 6, comes out the top and flows to the mixer.
- The saturated liquid, stream 4, drops out the bottom of the flash drum and proceeds to the second expansion valve.
$\checkmark$ Stream 6 is used to cool stream 3 by mixing with it (instead of exchanging heat as in the cascade cycle).
- One key point here is that the mass flow rate CANNOT be the same in all of the streams in this process!
$\diamond$ Streams 1, 2, 3 \& 4 all have the same mass flow rate.
- Streams 5, 7, $8 \& 9$ all have the same mass flow rate.
- BUT: $\mathbf{m}_{5}>\mathbf{m}_{4}$ because...
- A mass balance on the flash drum tells us that: $\mathbf{m}_{\mathbf{5}}=\mathbf{m}_{\mathbf{4}}+\mathbf{m}_{\wedge}$.
- This makes it VERY tricky to interpret areas on the TS Diagram for a Multi-Stage VCR Cycle.


## Multi-Stage VCR TS Diagram


$\diamond$ It is just that the areas on the TS Diagram can be misleading because of the differences in the mass flow rates of the streams.

- Areas on the TS Diagram are actually $\mathbf{Q}_{\text {hat }}$.
- We must multiply by the mass flow rate to get $\mathbf{Q}_{\text {dot }}$.
- $\mathbf{Q}_{\mathrm{dot}, \mathrm{C}}=\mathbf{m}_{\mathrm{dot}, \mathbf{1}} * \mathbf{Q}_{\mathrm{hat}, \mathrm{C}}$ and $\mathbf{Q}_{\mathrm{dot}, \mathrm{H}}=\mathbf{m}_{\mathrm{dot}, 7} * \mathbf{Q}_{\mathrm{hat}, \mathrm{H}}$ (watch the signs)
- $\mathbf{m}_{\text {dot }, 7}>\mathbf{m}_{\text {dot }, \mathbf{1}}$.
- So, areas can be misleading if you interpret them as $\mathbf{Q}_{\text {dot }}$ values
- This TS Diagram is a bit different.
- Stream 5 is split by the Flash Drum into streams 4 and 6, Saturated liquid and saturated vapor.
- Streams 4 and 6 then flow to different places.
- Stream 4 proceeds to the 2nd expansion valve and the lower cycle.
- Stream 6 mixes with and thereby cools stream 3.
- The orange shaded area bounded by points 3 and 7 is proportional to the DECREASE in $\mathbf{Q}_{\mathbf{H}}$ when the cascade cycle is compared to a simple, single VCR Cycle operating between $\mathbf{P}_{\mathbf{L O}}$ and $\mathbf{P}_{\mathbf{H I}}$.
- Similarly, the light blue shaded area beneath the $\mathbf{P}_{\mathbf{L O}}$ isobar (near point 1) is proportional to the INCREASE in $\mathbf{Q}_{\mathbf{C}}$.
- However, because the mass flow rates vary, we cannot visually estimate the MAGNITUDE of the decrease in $\mathbf{Q}_{\mathbf{H}}$ or the increase in $\mathbf{Q}_{\mathbf{C}}$.
$\checkmark$ We still know that $\mathbf{Q}_{\mathbf{H}}$ decreases, $\mathbf{Q}_{\mathbf{C}}$ increases and therefore $\mathbf{W}_{\text {Sh }}$ decreases and COPR increases.
$\diamond$ We can calculate all of these changes.


## Heat Pumps - Review

- Goal: Transfer into a hot reservoir
- Requires work and must take in heat from cold a reservoir

$$
\mathbf{C O P}_{\mathrm{HP}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{W}_{\text {cyde }}}=\frac{\mathbf{Q}_{\mathrm{H}}}{\mathbf{Q}_{\mathrm{H}}-\mathbf{Q}_{\mathrm{C}}}=\frac{1}{1-\mathbf{Q}_{\mathrm{C}} / \mathbf{Q}_{\mathrm{H}}}
$$

## - HP's and Ref's operate with thermal reservoirs at very similar temperatures

- As a result, they use the same refrigerants. R-134a is popular.
- Heat pump operate on essentially the same cycle as a V -C refrigerator, only in reverse.
- R-134a is popular because...It does not damage the ozone layer in the Earth's atmosphere.
- It has relatively low flammability and toxicity.
$\diamond$ It is relatively inexpensive.It is chemically stabile.
- It has a fairly large heat of vaporization.
- Most important: it has the right vapor pressure over the range from $-\mathbf{2 0}^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
- This allows it to be used to freeze our food or cool our homes, but still reject heat to the surroundings at modest operating pressures.


## Heat Pump: Flow Diagram \& TS Diagram



- Just like the VCR Cycle!
- The only difference is the OBJECTIVE of the device.


## The Reversing Valve

- Home heat pumps can function as both heating and air-conditioning systems
- Heat pump mode (HP)
- Indoor air is the hot reservoir
- Air-conditioning mode (AC)
- Indoor air is the cold reservoir
- Reversing Valve
- Clever way to switch from HP to AC mode without physically moving the HEX's !
- The reversing valve is cool and clever.


## Reversing Valve \& TS Diagram

- HP Mode:

- AC Mode:



## Air-Standard Gas Refrigeration Cycle

## - Less efficient than V-C Refrigeration Cycles

- Lightweight
- Capable of reaching temperatures below 100 K with a regenerator.
- Reverse Air-Standard Brayton Cycle
- Air-Standard Assumptions
- Air is the working fluid and it behaves as an ideal gas.
- The GRC is modeled as a closed cycle.
- All processes are internally reversible.
- Cold Air-Standard Assumption
- The heat capacities of air are constant and always have the values determined at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$.
- Remember that the compressor outlet stream is the hottest stream.
- It must flow to the HEX where the working fluid rejects heat.
- The compressor inlet stream comes FROM the HEX where the working fluid absorbs heat and is vaporized.
- Heat Pump Mode
- The compressor outlet goes into a HEX inside your house to reject heat and keep you warm.
$\checkmark$ The compressor inlet receives the working fluid that has just been vaporized by absorbing heat from the air outside your house.
- Air-Conditioning Mode
- The compressor outlet goes into a HEX outside your house to reject heat.
$\diamond$ The compressor inlet receives the working fluid that has just been vaporized by absorbing heat from the air inside your house. This keeps you cool !
- The reversing valve is controlled electronically by your home thermostat and turned by a device called a solenoid.
$\checkmark$ When your home gets too cold, the thermostat sets the reversing valve to heat pump mode and heats your house.
$\checkmark$ When your home gets too hot, the thermostat sets the reversing valve to air-conditioning mode and cools your house.
- Because gas refrigeration cycles (GRC's) tend to be less efficient than VCR cycles, they are only used under special circumstances in which a VCR cycle would be difficult or impossible to use.
- GRC's are used to provide air-conditioning on passenger aircraft because they are lightweight.
- GRC's are used to help liquefy gases such as propane and methane.
- No worries about vapor pressure temperature relations because no phase change occurs in a GRC !
$\checkmark$ The limit is the temperature at which the working fluid (usually air) condenses.
$\diamond$ At $100 \mathbf{k P a}, \mathrm{~N}_{2}$ condenses at 77 K and $\mathrm{O}_{2}$ condenses at 90 K .
- So a GRC with air as the working fluid can chill a refrigerated space down to about 100 K and meet the rule of thumb guideline for a $1 \mathbf{0}^{\mathbf{o}} \mathrm{C}$ driving force to pull heat out of the refrigerated space.


## Gas Refrigeration: Flow and TS Diagrams



- "Ideal" GRC
$\checkmark$ Internally reversible
- Pump \& Compressor are adiabatic and inter-
- Reverse Brayton Cycle
- Heat exchange at constant pressure

- The flow diagram is similar to the one for the Brayton Cycle.
$\diamond$ When we reverse the cycle, the compressor in the Brayton Cycle becomes a turbine and the turbine becomes a compressor.
$\diamond$ In the GRC shown here, heat is absorbed from the cold reservoir in HEX \#1 and rejected to the hot reservoir in HEX \#2.
$\diamond$ The turbine and compressor are isentropic in the "ideal" GRC.
- The turbine and compressor are adiabatic and internally reversible.
- The TS Diagram looks just like the one for the Brayton Cycle, but the cycle proceeds counter-clockwise instead of clockwise.


## Gas Refrigeration Cycle: Irreversibilities



- Friction causes a pressure drop as the working fluid flows through each heat exchanger.
$\checkmark$ Friction means lost work.
- Mechanical and fluid friction within the compressor and turbine are sources of irreversibility.
$\checkmark$ The result is an increase in entropy along paths 2-3 and 4-1. Work is lost in these devices as a result of the irreversibilities.


## Gas Refrigeration Cycle: Regeneration

- The purpose of regeneration is to allow the GRC to reach the lowest possible temperature.
- It does increase the $\mathrm{COP}_{\mathrm{R}}$ of the cycle, but that is not the main objective.
- Key: "pre-cool" the turbine feed so that when it expands through the turbine, it will reach a lower temperature than without pre-cooling.
- Multiple regenerative GRC's in series are used to reach temperatures below 100 K .
- Check out: http://www.stirling.nl
- They use the reverse Stirling Cycle, but it is similar to the reverse Brayton Cycle.


## Regeneration Process Flow Diagram



- After the working fluid absorbs heat from the refrigerated space in HEX \#1, it is still colder than the stream that just rejected heat to the hot reservoir.
- That is: $\mathbf{T}_{6}<\mathbf{T}_{3}$.
- These two streams exchange heat in a COUNTERCURRENT heat exchanger called a Regenerator.
- Countercurrent means that the two streams flow through the HEX in OPPOSITE directions.
- This means that stream 3 is in direct contact with stream 1 at one end of the HEX and...
- Stream 6 is in direct contact with stream 4 at one end of the HEX.
- The $2^{\text {nd }}$ Law tells us that heat will flow out of the turbine feed stream spontaneously at both ends of the HEX as long as $\mathbf{T}_{3}>\mathbf{T}_{1}$ AND $\mathbf{T}_{4}>\mathbf{T}_{6}$.
- It is interesting to note that it is possible (and desirable) for $\mathbf{T}_{4}<\mathbf{T}_{1}$. Think about this carefully.


## Regeneration TS Diagram



- The regenerator provides only a slight increase in the COPR, but it can dramatically lower $\mathbf{T}_{5}$.
- This is the goal because $\mathbf{T}_{5}$ ( plus about $10^{\mathbf{o}} \mathrm{C}$ for our driving force for heat transfer) is the coldest that this cycle can maintain a refrigerated space.
- Very, VERY cool.


## "The best way to Learn Thermodynamics"

10B-1
Ideal Ammonia Vapor-Compression Refrigerator
A cold-storage warehouse uses a refrigeration system to keep groceries at $2^{\circ} \mathrm{C}$ while the temperature outside the warehouse is $30^{\circ} \mathrm{C}$. The groceries and the outside air act as thermal reservoirs in this process.
Although the warehouse is insulated, it absorbs heat from the surroundings at a rate of 775 kW . Determine the power requirement and COP for a Carnot refrigeration cycle and for an ideal ammonia vapor-compression refrigeration cycle that will maintain the temperature of the groceries under these conditions. The condenser operates at 1.6 MPa and the evaporator operates at 300 kPa .

Read : In Part (a), we can determine the COP of the Carnot refrigeration cycle directly from the [temperatures of the two thermal reservoirs. Then, we can use the definition of COP to evaluate $\mathbf{W}_{\text {cycle }}$ -

In Part (b), we can work our way around the cycle in the TS Diagram and evaluate $\mathbf{H}$ for every stream. Then, use the $\mathbf{H}$ values determined to evaluate $\mathbf{W}_{\text {comp }}=\mathbf{W}_{\text {cycle }}$ and finally evaluate COP from its definition.

The approach illustrated in this solution is to start from an equation that includes the variable that is your objective, in this case the definition of COP is the equation and the objective is the COP itself. Then, you must proceed to determine the values of all the variables needed to evaluate the COP.

These two approaches to solving cycle problems often turn out to require the same amount of effort. So, you can choose whichever method appeals to you.

## Diagram:



| Given: | $\mathrm{T}_{\mathrm{C}}$ | 2 | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
|  |  | 275.15 | K |
|  | $\mathrm{~T}_{\mathrm{H}}$ | 30 | ${ }^{\circ} \mathrm{C}$ |
|  |  | 303.15 | K |


| $\mathbf{Q}_{\mathrm{C}}$ | 775 | kW |
| :--- | :---: | :---: |
| $\mathbf{P}_{1}=\mathbf{P}_{2}=$ | 300 | kPa |
| $\mathbf{P}_{3}=\mathbf{P}_{4}=$ | 1600 | kPa |

Find:

| a.) | Carnot : | $\mathrm{W}_{\text {cycle,ev }}$ | ??? | kW | $\operatorname{COP}_{\mathrm{R}, \text { rev }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b.) ??? |  |  |  |  |  |


| 1- | Each component is an open system operating at steady-state. |
| :--- | :--- |
| $\mathbf{2 -}$ | All processes are internally reversible, except the expansion valve, which is an |
|  | isenthalpic throttling processes. |
| 3- | The compressor and valves operate adiabatically. |
| 4- | Kinetic and potential energy changes are negligible. |
| 5- | There are no pressure drops for flow through the heat exchangers. |

## Equations / Data / Solve:

Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked-up and the values we have calculated.

| Stream | $\mathbf{T}$ <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathbf{P}$ <br> $(\mathbf{k P a})$ | $\mathbf{H}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{S}$ <br> $(\mathbf{k J} / \mathbf{k g}-\mathrm{K})$ | $\mathbf{X}$ <br> $(\mathbf{k g}$ vap/kg) | Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -9.22 | 300 | 376.52 | 1.4582 | 0.1840 | Two-Phase Mixture |
| 2 | -9.22 | 300 | 1432.5 | 5.4592 | 1 | Saturated Vapor |
| 3 | 113.53 | 1600 | 1680.1 | 5.4592 | N/A | Superheated Vapor |
| 4 | 41.02 | 1600 | 376.52 | 1.3737 | 0 | Saturated Liquid |

Additional data that may be useful.

| State | $\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{P}(\mathbf{k P a})$ |  | $\mathbf{X}$ | $\mathbf{H}(\mathbf{k J} / \mathbf{k g})$ |  | $\mathbf{S}(\mathbf{k J} / \mathbf{k g}-\mathbf{K})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat Vap | -9.22 | 300 | $\mathbf{1}$ | 1432.5 | 5.4592 |  |  |
| Sat Liquid | -9.22 | 300 | $\mathbf{0}$ | 138.39 | 0.55596 |  |  |
| Sat Vap | 41.02 | 1600 | 1 | 1471.0 | 4.8573 |  |  |
| Sat Liquid | 41.02 | 1600 | $\mathbf{0}$ | 376.5 | 1.3737 |  |  |

Part a.) Let's begin by determining the COP of a Carnot refrigeration cycle working between these two thermal reservoirs.

$$
\begin{equation*}
\mathbf{C O P}_{\mathrm{R}, \text { rev }}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\mathrm{cycle}, \text { rev }}}=\frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}-\mathbf{T}_{\mathrm{c}}} \tag{Eqn 1}
\end{equation*}
$$

Plugging in values for $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$ yields :
Solve Eqn 1 for the unknown $\mathbf{W}_{\text {cycle }}$ :

$$
\mathbf{W}_{\mathrm{cycle}, \text { rev }}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{C O P}_{\mathrm{R}, \mathrm{rev}}}
$$

$$
\begin{array}{ll}
\hline \text { COP }_{\mathrm{R}, \mathrm{rev}} & 9.83 \\
\hline
\end{array}
$$

Plugging values into Eqn 2 yields:

| $\mathrm{W}_{\text {cycle,rev }}$ | 78.87 | kW |
| :--- | :--- | :--- |

Part b.) Eqn 2 can be modified slightly to apply to our ideal ammonia VCR cycle :

$$
\mathrm{COP}_{\mathrm{R}}=\frac{\mathbf{Q}_{\mathrm{C}}}{\mathbf{W}_{\text {cycle }}}
$$

We were given the value of $\mathbf{Q}_{\mathbf{C}}$, so we need to determine $\mathbf{W}_{\text {cycle }}$ before we can use Eqn 3 to evaluate $\mathbf{C O P}_{\mathbf{R}}$. Only the compressor produces or consumes shaft work in the ideal VCR cycle, so let's begin by applying the 1st Law to the compressor.

The 1st Law for a steady-state, single-inlet, single-outlet, adiabatic compressor with negligible kinetic and potential energy changes is:

$$
\begin{equation*}
\dot{\mathbf{W}}_{\text {cycle }}=\dot{\mathbf{W}}_{\text {comp }}=\dot{\mathbf{m}}\left(\hat{\mathrm{H}}_{3}-\hat{\mathrm{H}}_{2}\right) \tag{Eqn 4}
\end{equation*}
$$

We can immediately evaluate $\mathbf{H}_{2}$ because we know it is a saturated vapor at 300 kPa . Use the Saturated Ammonia Tables or the NIST Webbook.

$$
\begin{array}{lll}
\mathrm{H}_{2} & 1432.5 & \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

In order to determine $\mathbf{H}_{3}$, we need to determine the value of a 2nd intensive variable, because we only know the pressure, $\mathbf{P}_{3}$.

We can make use of the fact that an ideal VCR cycle is internally reversible and the compressor in an ideal VCR cycle is adiabatic. A device that is internally reversible and adiabatic is isentropic. $\mathbf{S}_{\mathbf{3}}=\mathbf{S}_{\mathbf{2}}$.

We can evaluate $\mathbf{S}_{2}$ because we know it is a saturated vapor at 300 kPa . Use the Saturated Ammonia Tables or the NIST Webbook.

$$
\mathrm{S}_{2}=\mathrm{S}_{3} \quad 5.4592 \mathrm{~kJ} / \mathrm{kg}
$$

Now, we can use $\mathbf{P}_{3}$ and $\mathbf{S}_{3}$ and the Superheated Ammonia Tables or the NIST Webbook to determine $\mathbf{H}_{3}$ by interpolation. This is much easier using the Isobaric Properties option in the NIST Webbook.

At 1600 kPa :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |
| :---: | :---: | :---: |
| 110 | 1670.89 | 5.4354 |
| $\mathrm{~T}_{3}$ | $\mathrm{H}_{3}$ | 5.4592 |
| 115 | 1683.89 | 5.4691 |


| $\mathrm{T}_{3}$ | 113.54 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |
| $\mathrm{H}_{3}$ | 1680.1 | $\mathrm{~kJ} / \mathrm{kg}$ |

We still need to determine the mass flow rate of the Ammonia through the cycle before we can use Eqn 4 to determine $\mathbf{W}_{\text {cycle }}$.

The key to determining the mass flow rate is the value of $\mathbf{Q}_{\mathbf{C}}$ that was given in the problem statement.
We need to apply the 1st Law for a steady-state, single-inlet, single-outlet, evaporator with negligible kinetic and potential energy changes. No shaft work crosses the boundary of the evaporator.

$$
\dot{\mathbf{Q}}_{\mathrm{c}}=\dot{\mathbf{m}}\left(\hat{\boldsymbol{H}}_{2}-\hat{\mathbf{H}}_{1}\right)
$$

$$
\dot{\mathrm{m}}=\frac{\dot{\mathrm{Q}}_{c}}{\left(\hat{H}_{2}-\hat{H}_{1}\right)}
$$

Eqn 6

We already determined $\mathbf{H}_{\mathbf{2}}$. The trouble is we don't know the value of $\mathbf{H}_{\mathbf{1}}$.
The key to determining the $\mathbf{H}_{1}$ is the assumption that the Expansion Valve is isenthalpic. This assumption is based on the application of the 1st Law to the Valve.
We need to apply the 1st Law for a steady-state, single-inlet, single-outlet, expansion valve with negligible kinetic and potential energy changes. No shaft work crosses the boundary of the expansion valve. We assume the valve is adiabatic because it is small and there is little opportunity for heat exchange.

$$
\dot{\mathbf{Q}}-\dot{\mathbf{N}}_{\mathrm{s}}^{1}=\dot{\mathbf{m}}\left[\Delta \hat{\mathbf{H}}+\Delta \hat{E}_{\mathrm{kin}}^{1}+\Delta \hat{E}_{\mathrm{pot}}^{\prime}\right]
$$

Eqn 7 simplifies to : $\quad \Delta \hat{\mathbf{H}}=\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{4}=\mathbf{0} \quad$ Eqn $8 \quad$ Or : $\quad \hat{\mathbf{H}}_{1}=\hat{\mathbf{H}}_{\mathbf{4}}$
Eqn 9
Eqn 9 is helpful because we already have enough information to determine $H_{4}$. We know stream 4 is a saturated liquid at 1600 kPa . So, we can use the Saturated Ammonia Tables or the NIST Webbook to evaluate $\mathbf{H}_{4}$.

$$
\mathrm{H}_{4}=\mathrm{H}_{1} \quad 376.52 \quad \mathrm{~kJ} / \mathrm{kg}
$$

We can finally put values back into Eqns 6, 4, \& 3, in that order, to complete the solution to Part (b).
$\mathbf{m} \quad 0.7339 \mathrm{~kg} / \mathrm{s}$

| $\mathrm{W}_{\text {cycle }}$ | 181.7 |
| :---: | :---: |
| $\mathrm{COP}_{\mathrm{R}}$ | 4.26 |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.)
b.)

| $\mathrm{W}_{\text {cycle,rev }}$ | $\mathbf{7 8 . 9}$ | kW |
| :---: | :---: | :---: |
| $\mathrm{W}_{\text {cycle }}$ | $\mathbf{1 8 2}$ | kW |


| COP $_{\mathrm{R}, \mathrm{rev}}$ | 9.83 |
| :---: | :---: |
| $\mathrm{COP}_{\mathrm{R}}$ | 4.26 |

10B-2
Refrigerant Selection for a Home Refrigerator
Why do modern home refrigerators use R-134a instead of ammonia or Freon-12 (R-12)?

Read: Compare the performance of these three refrigerants in a vapor-compression refrigeration cycle using the 7 criteria presented in Lesson 10B. Some calculations are necessary to assess the $\mathbf{P}^{*}-\mathrm{T}$ Relationship and the Heat of Vaporization.

Diagram:



Given: Consider three refrigerants: R134a Ammonia R12

Find: $\quad$ Why is $\mathbf{R}-134$ a the most common choice for home refrigeration systems?
Assumptions: None.

## Equations / Data / Solve:

Here is a list of criteria used to choose the best refrigerant for a given application.
1- Cost
2- The $\mathrm{P}^{*}$-T Relationship
3- $\quad \Delta H_{\text {vap }}$
4- Chemical Stability

## 5- Corrosiveness <br> 6- Toxicity <br> 7- Flammability

Cost : $\quad \mathbf{R}-134 \mathrm{a}$ is much more expensive than ammonia, while Freon is not easy to buy since it was banned in 1990 because it damages the ozone layer in the upper atmosphere. Ammonia can cost as little as \$0.40/kg while R-134a can cost several US dollars per kg.

## The $\mathbf{P}^{*}$-T Relationship

A home rerigerator must keep food in the freezer colder than $-10^{\circ} \mathrm{C}$. Cool air from the freezer compartment is used to keep the refrigerator compartment colder than $3^{\circ} \mathrm{C}$. As a result, the freezer serves as the Cold Reservoir.

The air surrounding the refrigerator serves as the Hot Reservoir. A high value of $\mathbf{T}_{\mathbf{H}}$ results in the lowest COP for the refrigerator and it also requires the highest pressure in the condenser. So, let's use a rather high temperature for the surroundings.

| $\mathbf{T}_{\mathbf{C}}$ | -10 | ${ }^{\circ} \mathbf{C}$ | $\mathbf{T}_{\mathbf{H}}$ | 30 |
| :--- | :--- | :--- | :--- | :--- |${ }^{\circ} \mathbf{C}$

The temperature of the refrigerant in the evaporator must be greater than $\mathbf{T}_{\mathbf{c}}$ and in the condenser it must be less than $\mathbf{T}_{\mathbf{H}}$.

A rule of thumb in heat exchanger design is that you would like to have a $\Delta \mathrm{T}$ of about $10^{\circ} \mathrm{C}$ between two fluids entering the heat exchanger. In this case, since $T_{C}$ is $-10^{\circ} \mathrm{C}$, assume that $T_{1}$ is $-20^{\circ} \mathrm{C}$. Since $T_{H}$ is $30^{\circ} \mathrm{C}$, assume that $\mathrm{T}_{4}$ is $40^{\circ} \mathrm{C}$. This gives our refrigerator the desired $\Delta \mathrm{T}$ of $10^{\circ} \mathrm{C}$. in both the condenser and the evaporator.
$\begin{array}{llllll}\mathrm{T}_{1} & -20 & { }^{\circ} \mathrm{C} & \mathrm{T}_{4} & 40 & { }^{\circ} \mathrm{C}\end{array}$

Now, we need to use thermodynamic tables or the NIST Webbook to determine the operating pressures of the condenser and the evaporator. The operating pressures are the saturation pressures that correspond to $\mathbf{T}_{1}$ and $\mathbf{T}_{4}$, determined in the previous paragraph.

|  | $\mathrm{P}_{\text {Evap }}(\mathrm{kPa})$ | $\mathrm{P}_{\text {Cond }}(\mathrm{kPa})$ |  |
| :---: | :---: | :---: | :---: |
| Ammonia | 190.1 | 1555.4 | Ammonia generally requires a fairly high $\mathbf{P}_{\text {cond }}$. |
| R134a | 132.7 | 1016.6 | $\mathbf{R - 1 3 4 a}$ and $\mathbf{R - 1 2}$ allow the use of lower $\mathbf{P}_{\text {cond }}$ and $\mathbf{P}_{\text {Evap }}$ |
| R12 | 150.7 | 958.8 | than Ammonia does. |

The R-12 is the winner in this test, but the R-134a does almost as well.
$\Delta H_{\text {vap }}$
A higher latent heat of vaporization results in a smaller mass flow rate for the refrigerant. This may allow the use of smaller, less expensive equipment.

Consider the values of $\Delta H_{\text {vap }}$ at the values of $\mathbf{P}_{\text {cond }}$ and $\mathbf{P}_{\text {Evap }}$ that we determined above.

|  | $\Delta H @ P_{\text {Evap }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ | $\Delta H @ P_{\text {Cond }}$ <br> $(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: |
| Ammonia | 1329.1 | 1099.3 |
| R134a | 212.9 | 163.0 |
| R12 | 162.0 | 129.7 |

Ammonia has the largest $\Delta H_{\text {vap }}$, by far.
$\mathrm{R}-134 \mathrm{a}$ takes 2 nd place this criterion.
$\mathrm{R}-12$ is the biggest loser by this criterion.

## Chemical Stability

All three of these refrigerants are relatively stable. Ammonia is perhaps more reactive and slightly less stable than R-134a and R-12.

## Corrosiveness

$\mathbf{R}-134$ a and $\mathbf{R - 1 2}$ are non-corrosive to ferrous metals unless exposed to flame or very high temperatures. So, they score well by this criterion.

Ammonia is non-corrosive to ferrous metals unless water is present. In the presence of water, ammonia becomes highly corrosive. So, Ammonia does not score quite as well by this criterion, because water has a way of penetrating devices that are not rigorously maintained.

## Toxicity

$\mathbf{R - 1 3 4 a}$ and $\mathbf{R - 1 2}$ have very low acute inhalation toxicity, but are irritants to eyes and skin
Ammonia is a strong irritant to eyes, skin, mouth, nose, throat and respiratory tract, but has low inhalation toxicity.

Ammonia may be the loser by this criterion, but all three refrigerants have fairly low toxicity overall.

## Flammability

There is some debate about the flammability of $\mathbf{R - 1 3 4 a}$ and $\mathbf{R - 1 2}$, but they are definitely less flammable than Ammonia. Ammonia is quite flammable and can present an explosion hazard.

Verify: None.

Answers : R-134a is the best of the three choices for home refrigeration because it...
... Allows the condenser and evaporator to operate at pressures that are greater than atmospheric pressure, but not dangerously high.
... It is stabile, non-corrosive, has low toxicity and low flammability.
... It does not damage the ozone layer.

Ammonia is a commonly used industrial refrigerant because...
... Allows the condenser and evaporator to operate at pressures that are greater than atmospheric pressure, but not dangerously high., by industrial safety standards.
... The price of Ammonia is very low.
... With proper industrial safety practices, the problems with corrosion, toxicity and flammability can be overcome.

## 10C-1

The special R-134a refrigeration system with two evaporators, shown below, is used to cool both a refrigerator, with evaporator 2, and a freezer, with evaporator 1.


Evaporators 1 and 2 have refrigeration capacities of 3 tons and 5 tons, respectively. A ton of refrigeration is defined as the heat of fusion absorbed by melting $\mathbf{1}$ short ton of pure ice at $0^{\circ} \mathrm{C}$ in $\mathbf{2 4}$ hours.
The key here is that one ton of refrigeration is equivalent to $211 \mathrm{~kJ} / \mathbf{m i n}$. The condenser operates at 800 kPa . Evaporators 1 and 2 operate at $-15^{\circ} \mathrm{C}$ and 250 kPa , respectively.
The R-134a leaves each evaporator as a saturated vapor and it leaves the condenser as a saturated liquid. Calculate...
a.) $m_{6}$ and $m_{7}$ in $\mathbf{k g} / \mathbf{m i n}$
b.) $\mathbf{W}_{S, \text { comp }}$ in $\mathbf{k W}$
c.) $Q_{\text {cond }}$ in $k W$

Read: Don't let the diagram scare you. Analyze each unit or process in the cycle just as you would in an ordinary refrigeration cycle.
Assume the cycle operates at steady-state and that each process is internally reversible, except for the expansions through each valve. These are throttling processes. The compressor and valves operate adiabatically. Changes in kinetic and potential energies are negligible.
First, determine the specific enthalpy at states 3 to 8 . These are the easy ones. To determine the enthalpies at states 1 and $\mathbf{2}$, you will need to know the mass flow rates through each evaporator. You can determine the mass flow rates by applying the 1st Law to each evaporator.
There are two stealth units on this flow diagram. A stream splitter where steam is divided before it enters Evaporator \#2 or Valve \#2 and a Mixer where streams 6 and 8 combine to form stream 1. The Mixer is crucial to this problem. You can write mass and energy balances on the Mixer. The Mixer can be considered adiabatic. This will help you determine the specific enthalpy for stream 1. Then, because the compressor is isentropic, you can determine the specific enthalpy for stream 2.

| $Q_{i n, 1}$ | 5 | tons |
| :---: | :---: | :--- |
| $Q_{i n, 2}$ | 3 | tons |
| $\mathbf{T}_{6}$ | -15 | ${ }^{\circ} \mathbf{C}$ |
| $\mathbf{P}_{2}$ | 800 | kPa |

Find:

Part (a) | $m_{6}$ |
| ---: |
| $m_{8}$ |

???
kg/min
???
kg/min
Part (b)
$\mathbf{W}_{\text {comp }}$
Part (c) $\quad \mathbf{Q}_{\text {out }}$
???
kW
???
kW
Diagram: The process flow diagram was provided in the problem statement.


Assumptions: $\quad \mathbf{1 -} \quad$ Each component is an open system operating at steady-state.
2- All processes are internally reversible, except the expansion valves, which are isenthalpic throttling processes.
3- The compressor and valves operate adiabatically.
4- Kinetic and potential energy changes are negligible.

## Equations / Data / Solve:

| Stream | T <br> $(\mathrm{oC})$ | P <br> $(\mathrm{kPa})$ | H <br> $(\mathrm{kJ} / \mathrm{kg})$ | S <br> $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ | k <br> $\mathrm{vap} / \mathrm{kg})$ | Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -12.2 | 163.94 | 391.98 | 1.7462 | $\mathrm{~N} / \mathrm{A}$ | Super. Vap. |
| 2 | 40.77 | 800 | 425.39 | 1.7462 | $\mathrm{~N} / \mathrm{A}$ | Super. Vap. |
| 3 | 31.3 | 800 | 243.65 | 1.1497 | 0 | Sat'd Liq. |
| 4 | -4.28 | 250 | 243.65 | 1.1626 | 0.245 | VLE |
| 5 | -15 | 163.94 | 243.65 | 1.1716 | 0.303 | VLE |
| 6 | -15 | 163.94 | 389.63 | 1.7371 | 1 | Sat'd Vap. |
| 7 | -4.28 | 250 | 396.08 | 1.7296 | 1 | Sat'd Vap. |
| 8 | -7.3 | 163.94 | 396.08 | 1.7617 | $\mathrm{~N} / \mathrm{A}$ | Super. Vap. |

Part a.) The key to determining $\mathbf{m}_{6}$ and $\mathbf{m}_{8}$ are the given values for $\mathbf{Q}_{\mathbf{i n}, 1}$ and $\mathbf{Q}_{\mathbf{i n}, 2}$. We can use these values when we apply the 1st Law to each evaporator to determine $\mathbf{m}_{6}$ and $\mathbf{m}_{8}$.

Each evaporator operates at steady-state, involves no shaft work and has negligible changes in kinetic and potential energies. The appropriate forms of the 1st Law are:

$$
\dot{\mathbf{Q}}_{\mathrm{in}, 1}=\dot{\mathbf{m}}_{6}\left(\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{5}\right) \quad \text { Eqn } 1 \quad \dot{\mathbf{Q}}_{\mathrm{in}, 2}=\dot{\mathbf{m}}_{8}\left(\hat{\mathbf{H}}_{7}-\hat{\mathbf{H}}_{4}\right)
$$

We can solve these equations for the unknown mass flow rates:

$$
\begin{equation*}
\dot{\mathbf{m}}_{6}=\frac{\dot{\mathbf{Q}}_{\mathrm{in}, 1}}{\left(\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{5}\right)} \quad \quad \text { Eqn } 3 \quad \dot{\mathrm{~m}}_{8}=\frac{\dot{\mathbf{Q}}_{\mathrm{in}, 2}}{\left(\hat{\mathbf{H}}_{7}-\hat{\mathbf{H}}_{4}\right)} \tag{Eqn 4}
\end{equation*}
$$

Now, we need to determine the values of the H's to use in Eqns 3 \& 4.
The throttling valves are isenthalpic because they are adiabatic, have no shaft work interactions and changes in kinetic and potential energies are negligible. Therefore:

$$
\begin{equation*}
\hat{\mathbf{H}}_{3}=\hat{\mathbf{H}}_{4}=\hat{\mathbf{H}}_{5} \quad \text { Eqn } 5 \quad \hat{\mathbf{H}}_{7}=\hat{\mathbf{H}}_{8} \tag{Eqn 6}
\end{equation*}
$$

Fortunately, we were given enough information to lookup the specific enthalpy of states 3,6 and 7 in the Saturated R-134a Tables or the NIST Webbook. Once we have these values, we can use Eqns 5 \& 6 to evaluate the $\mathbf{H}$ 's at states 4,5 and 8 as well!

| $\mathbf{H}_{3}$ | 243.65 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathbf{H}_{6}$ | 389.63 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{H}_{4}$ | 243.65 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathbf{H}_{7}$ | 396.08 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{H}_{5}$ | 243.65 | $\mathrm{~kJ} / \mathrm{kg}$ | $\mathbf{H}_{8}$ | 396.08 | $\mathrm{~kJ} / \mathrm{kg}$ |

Now, we can plug values into Eqns 3 \& 4 to determine the two unknown mass flow rates.
1 ton =
$211 \mathrm{~kJ} / \mathrm{min}$

| $\mathrm{m}_{6}$ | 7.227 | $\mathrm{~kg} / \mathrm{min}$ |
| :--- | :--- | :--- |
| $\mathrm{m}_{8}$ | 4.152 | $\mathrm{~kg} / \mathrm{min}$ |

Part b.) We need to determine $\mathbf{W}_{\mathbf{s}}$ for the compressor. We can accomplish this by applying the 1 st Law to the compressor. The compressor operates at steady-state, is adiabatic and reversible and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\begin{equation*}
\dot{\mathbf{W}}_{\mathrm{s}}=\dot{\mathbf{m}}_{1}\left(\hat{\mathrm{H}}_{1}-\hat{\mathbf{H}}_{2}\right) \tag{Eqn 7}
\end{equation*}
$$

We know the mass flow rates from part (a), but we don't know either of the H's in Eqn 7 yet.
We can determine $\mathbf{H}_{1}$ by applying the 1st Law to the mixer where streams 6 and 8 combine to form stream 1. The mixer is a MIMO process that operates at steady-state, is adiabatic and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\begin{equation*}
\dot{\mathrm{m}}_{1} \hat{\mathrm{H}}_{1}=\dot{\mathrm{m}}_{6} \hat{\mathrm{H}}_{6}+\dot{\mathrm{m}}_{8} \hat{\mathbf{H}}_{8} \tag{Eqn 8}
\end{equation*}
$$

A mass balance on the mixer tells us that:

$$
\begin{aligned}
& \dot{\mathbf{m}}_{1}=\dot{\mathbf{m}}_{6}+\dot{\mathbf{m}}_{8} \\
& \hat{\mathbf{H}}_{1}=\frac{\dot{\mathbf{m}}_{6} \hat{\mathbf{H}}_{6}+\dot{\mathbf{m}}_{8} \hat{\mathbf{H}}_{8}}{\dot{\mathbf{m}}_{1}}
\end{aligned}
$$

Solve Eqn 8 for the only unknown in the equation: $\mathbf{H}_{\mathbf{1}}$.

Now, we can plug values into Eqns 9 \& 10 to evaluate $\mathbf{m}_{1}$ and $\mathbf{H}_{1}$ :
$\mathrm{m}_{1}$
$11.38 \mathrm{~kg} / \mathrm{min}$
$\mathrm{H}_{1} \quad 391.98 \mathrm{~kJ} / \mathrm{kg}$

Now, we need to work on evaluating $\mathbf{H}_{2}$. The key to determining $\mathbf{H}_{2}$ is the fact that the compressor is both adiabatic and internally reversible, so it is isentropic. $\mathbf{S}_{2}=\mathbf{S}_{1}$. We can lookup $\mathbf{S}_{1}$ because we know $\mathbf{H}_{1}$ and we know that:

$$
P_{1}=P_{6}=P_{8}=P_{\text {sat }}\left(-18^{\circ} \mathrm{C}\right)
$$

The Saturated R-134a Tables or the NIST Webbook tells us:

| $P_{\text {sat }}\left(-18^{\circ} \mathrm{C}\right)$ | $=163.94$ | kPa |
| :--- | :--- | :--- |
| $\mathrm{P}_{1}$ | 163.94 | kPa |

In evaluating $\mathbf{S}_{1}$, we must first determine whether stream 1 is a superheated vapor or a saturated mixture.
This is easier using the NIST Webbook than the R-134a Tables because no interpolation is required.

| At $P=163.94 \mathrm{kPa}:$ | $\mathrm{H}_{\text {sat liq }}$ | 180.14 | $\mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{H}_{\text {sat vap }}$ | 389.63 | $\mathrm{~kJ} / \mathrm{kg}$ |

Since $\mathbf{H}_{\mathbf{1}}>\mathbf{H}_{\text {sat vap, }}$, state 1 is a superheated vapor.

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -13 | 391.30 | 1.7435 | Interpolation yields: | $\mathrm{T}_{1}$ | -12.17 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{1}$ | 391.98 | $\mathrm{~S}_{1}$ |  | $\mathrm{~S}_{1}$ | 1.7462 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| -10 | 393.80 | 1.7531 |  | $\mathrm{~S}_{2}$ | 1.7462 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Be careful with this interpolation. Use a narrow temperature range because the answer is very sensitive to this result.

Now, we know the values of two intensive variables at state $2\left(\mathbf{P}_{2} \& \mathbf{S}_{2}\right)$, so we can go back to the $\mathbf{R}$-134a Tables or NIST Webbook and determine $\mathbf{H}_{2}$ by interpolation.

At $\mathrm{P}=800 \mathrm{kPa}$ :

| $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{H}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 424.59 | 1.7436 |  |  |  |  |
| $\mathrm{~T}_{2}$ | $\mathrm{H}_{2}$ | 1.7462 | Interpolation yields: | $\mathrm{T}_{2}$ | 40.78 | ${ }^{\circ} \mathrm{C}$ |
| 45 | 429.74 | 1.7599 |  | $\mathrm{H}_{2}$ | 425.40 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Finally, we can plug values back into Eqn 7 :

$\mathrm{W}_{\mathrm{S}} \quad-380.20 \mathrm{~kJ} / \mathrm{min} \quad$|  | $\mathrm{W}_{\mathrm{S}}$ | -6.337 | kW |
| :--- | :--- | :--- | :--- |

Part c.) We can determine the heat transfer rate in the condenser by applying the 1 st Law to it.
The condenser operates at steady-state, involves no shaft work and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$
\dot{\mathbf{Q}}_{23}=\dot{\mathbf{m}}_{1}\left(\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{2}\right)
$$

Eqn 12

In parts (a) \& (b) we evaluated $\mathbf{m}_{1}, \mathbf{H}_{2}$ and $\mathbf{H}_{3}$, so we cannow plug values into Eqn 12:

| $Q_{23}$ | -2068.2 | $\mathrm{~kJ} / \mathrm{min}$ | $\mathrm{Q}_{23}$ | -34.47 |
| :--- | :--- | :--- | :--- | :--- |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.


At steady-state, a house loses 10 kW of heat to the surroundings when the outdoor temperature is $0^{\circ} \mathrm{C}$ and the indoor temperature is $22^{\circ} \mathrm{C}$. This energy must be replaced by a heat pump that uses $\mathrm{R}-134 \mathrm{a}$ as the working fluid. Assume evaporator effluent is a saturated vapor and the condenser effluent is a saturated liquid.
Assume the compressor has an isentropic efficiency of $85 \%$.
a.) Determine the operating pressures for the evaporator and condenser that provide at least a $10^{\circ} \mathrm{C}$ driving force for heat exchange at the inlet and outlet of the evaporator and the condenser.
b.) Calculate the mass flow rate of the R-134a, the power requirement of the compressor and the COP of the heat pump.

Read: The operating pressures of the evaporator and condenser are governed by the saturation considerations. A rule of thumb in heat exchanger design is that you would like to have a $\Delta \mathbf{T}$ of about $10^{\circ} \mathrm{C}$ between two fluids entering the heat exchanger. In this case, since the outside temperature is $0^{\circ} \mathrm{C}$, assume that $\mathrm{T}_{1}$ is $-10^{\circ} \mathrm{C}$. Since the inside temperature is $22^{\circ} \mathrm{C}$, the temperature of the $\mathrm{R}-134 \mathrm{a}$ entering the condenser must be $32^{\circ} \mathrm{C}$ to give us the desired $\Delta \mathrm{T}$ of $10^{\circ} \mathrm{C}$. This leads to some messy interpolation that you can avoid by using the NIST Webbook. With these assumptions, there are really no tricks to this problem!

| Given: | $\mathrm{T}_{\text {outside }}$ |  | ${ }^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} 10 \\ 0.85 \end{gathered}$ | kW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}_{\text {inside }}$ |  |  |  | $\eta_{\mathrm{s}, \text { comp }}$ |  |  |
| Find: | a.) | $\mathrm{P}_{1}$ | ??? | kPa | $\mathrm{P}_{3}$ | ??? | kPa |
|  | b.) | $\mathrm{m}_{\text {dot }}$ | ??? | kg/min |  |  |  |
|  |  | $\mathrm{W}_{\text {comp }}$ | ??? | kW | $\mathrm{COP}_{\text {HP }}$ | ??? |  |

Diagram:



Assumptions:
Each component is an open system, operating at steady-state.
2 There are no pressure drops through the evaporator or condenser.
3- The compressor operates adiabatically with an isentropic efficiency of $\mathbf{8 0 \%}$.
4- The expansion through the valve is an isenthalpic throttling process.
5- Kinetic and potential energy changes are negligible.
6 - The evaporator and condenser pressures must be chosen to allow for sufficient $\Delta \mathbf{T}$ 's to avoid excessive heat exchanger sizes (surface area). For a preliminary design assume:

$$
\Delta \mathrm{T}_{\text {evap }}=\Delta \mathrm{T}_{\text {cond }}=\frac{10}{} \begin{aligned}
&{ }^{\circ} \mathrm{C} \\
& \mathrm{~T}_{1}=\mathrm{T}_{2}=-10 \\
& \mathrm{~T}_{4}= 32 \mathrm{C} \\
&{ }^{\circ} \mathrm{C}
\end{aligned}
$$

## Equations / Data / Solve:

| Stream | $\mathbf{T}$ <br> $\left({ }^{\circ} \mathbf{C}\right)$ | $\mathbf{P}$ <br> $(\mathbf{k P a})$ | $\mathbf{H}$ <br> $(\mathbf{k J} / \mathbf{k g})$ | $\mathbf{S}$ <br> $(\mathbf{k J / k g}-K)$ | $\mathbf{X}$ <br> $(\mathbf{k g}$ vap/kg) | Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | -10.0 | 200.60 | 201.10 | 1.0054 | 0.0699 | VLE |
| 2 | -10.0 | 200.60 | 392.66 | 1.7334 | 1 | Sat'd Vap. |
| 3 | 42.6 | 815.43 | 426.94 | 1.5485 | N/A | Super. Vap. |
| $3 S$ | 37.7 | 815.43 | 421.80 | 1.7334 | N/A | Super. Vap. |
| 4 | 32 | 815.43 | 201.10 | 1.0040 | 0 | Sat'd Liq. |

Part a.) The mass flow rate is the same through each piece of equipment. Therefore, we can determine the mass flow rate by applying the 1st Law to any one process. Because we are given the heat transfer rate at the condenser, it is the device where we will have the fewest unknowns in the 1st Law so we are most likely to be able to determine the mass flow rate of the working fluid.

The 1st Law for a steady-state, single-inlet, single-outlet condenser with no shaft work and negligible kinetic and potential energy changes is:

$$
\begin{equation*}
\dot{\mathbf{Q}}_{\mathrm{out}}=-\dot{\mathbf{Q}}_{34}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4}\right) \tag{Eqn 1}
\end{equation*}
$$

Solve Eqn 1 for the mass flow rate:

$$
\begin{equation*}
\dot{\mathrm{m}}=\frac{\dot{\mathbf{Q}}_{\mathrm{out}}}{\hat{\mathbf{H}}_{3}-\hat{\mathbf{H}}_{4}} \tag{Eqn 2}
\end{equation*}
$$

We can look up $\mathrm{H}_{4}$ in the R-134a Tables or in the NIST Webbook because it is saturated liquid at $32{ }^{\circ} \mathrm{C}$.

| $\mathrm{H}_{4}$ | $201.10 \mathrm{~kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

In order to determine $\mathbf{H}_{3}$, we must use the isentropic efficiency of the compressor.

$$
\eta_{\mathrm{s}, \text { comp }}=\frac{-\dot{W}_{\mathrm{s}, \text { isen }}}{-\dot{\mathbf{W}}_{\mathrm{s}, \mathrm{act}}}=\frac{\hat{H}_{3 \mathrm{~S}}-\hat{H}_{2}}{\hat{H}_{3}-\hat{H}_{2}}
$$

201.10 kJ/kg

We can solve Eqn 3 for $\mathbf{H}_{3}$ :

$$
\begin{equation*}
\hat{H}_{3}=\hat{H}_{2}+\frac{\left(\hat{H}_{3 \mathrm{~s}}-\hat{H}_{2}\right)}{\eta_{\mathrm{s}, \mathrm{comp}}} \tag{Eqn 4}
\end{equation*}
$$

Next, we need to determine $\mathbf{H}_{3 S}$. For an isentropic compressor, $\mathbf{S}_{3 S}=\mathbf{S}_{\mathbf{2}}$ and we can look-up $\mathbf{S}_{\mathbf{2}}$ in the NIST Webbook because stream 2 is a saturated vapor at $-10^{\circ} \mathrm{C}$.

| $\mathrm{S}_{2}$ | 1.7334 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ | $\mathrm{S}_{3 \mathrm{~S}}$ | $1.7334 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 392.66 | $\mathrm{~kJ} / \mathrm{kg}$ |  |  |

Now, we know the value of two intensive properties at state $3 S$ : $\mathbf{S}_{3 S}$ and $\mathbf{P}_{3}$ (because the condenser is isobaric:
$\mathbf{P}_{\mathbf{3}}=\mathbf{P}_{4}=\mathbf{P}_{\text {sat }}\left(32^{\circ} \mathrm{C}\right)$

$$
P_{3}=P_{4}=P_{\text {sat }}\left(32^{\circ} \mathrm{C}\right)=815.43 \mathrm{kPa}
$$

This involves some painful interpolation. I suggest you use the NIST Webbook to avoid the pain of

| At 800 kPa : | $\underline{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\underline{H}(\mathrm{~kJ} / \mathrm{kg})$ | $\underline{S(k J / k g-K)}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 31.33 | 415.46 | 1.7140 |  |  |  |
|  | T ${ }_{3 S, 800}$ | $\mathrm{H}_{3 \mathrm{~S}, 800}$ | 1.7334 | $\mathrm{H}_{3 \mathrm{~s}, 800}$ | 36.99 | kJ/kg |
|  | 40 | 424.59 | 1.7436 | $\mathrm{H}_{3 \mathrm{~s}, 800}$ | 421.42 | kJ/kg |
| At 900 kPa : | $\underline{T}\left({ }^{\circ} \mathrm{C}\right)$ | H (kJ/kg) | $\underline{S(k J / k g-K)}$ |  |  |  |
|  | 40 | 422.32 | 1.7283 |  |  |  |
|  | $\mathrm{T}_{3 \mathrm{~S}, 900}$ | $\mathrm{H}_{3 \mathrm{~S}, 900}$ | 1.7334 | $\mathrm{H}_{3 \mathrm{~S}, 900}$ | 41.51 | kJ/kg |
|  | 50 | 432.92 | 1.7616 | $\mathrm{H}_{3 \mathrm{~S}, 900}$ | 423.92 | kJ/kg |


| Finally, at $815.43 \mathrm{kPa}:$ | $\frac{\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)}{36.99}$ | $\frac{\mathrm{P}(\mathrm{kPa})}{800}$ | $\frac{\mathrm{H}(\mathrm{kJ} / \mathrm{kg})}{421.42}$ |
| :--- | :---: | :---: | :---: |
|  | $\mathrm{~T}_{3 \mathrm{~S}}$ | 815.43 | $\mathrm{H}_{3 \mathrm{~S}}$ |
|  | 41.51 | 900 | 423.92 |


| $\mathrm{T}_{3 \mathrm{~S}}$ | 37.69 |  |
| :--- | :---: | :--- |
| $\mathrm{H}_{3 \mathrm{~S}}$ | 421.81 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{H}_{3}$ | 426.94 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{m}_{\text {dot }}$ | 0.04428 | $\mathrm{~kg} / \mathrm{s}$ |
| $\mathrm{m}_{\text {dot }}$ | 2.657 | $\mathrm{~kg} / \mathrm{min}$ |

Part b.) In order to determine the shaft work requirement for the compressor, we must apply the 1 st Law to it. The 1st Law for a steady-state, single-inlet, single-outlet, adiabatic compressor with negligible kinetic and potential energy changes is:

$$
\dot{\mathbf{W}}_{\text {comp }}=\dot{\mathbf{m}}\left(\hat{\mathrm{H}}_{3}-\hat{\mathbf{H}}_{2}\right)
$$

Eqn 5
We already determined $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{H}_{3}$, so all we need to do is plug numbers into Eqn 5.

| $\mathrm{W}_{\text {comp }}$ | 1.518 | kW |
| :--- | :--- | :--- |

Part c.) We can determine the $\mathbf{C O P}_{\mathrm{R}}$ from its definition: $\quad \mathbf{C O P}_{\mathrm{HP}}=\frac{\dot{\mathbf{Q}}_{\text {out }}}{\dot{\mathbf{W}}_{\text {comp }}}$
Now, we can plug values into Eqn 4 to determine $\mathbf{H}_{3}$ :
Now, we can plug $\mathrm{H}_{3}$ back into Eqn 2 :

A Brayton refrigeration cycle uses air as the working fluid and operates between a high pressure of 800 kPa and a low pressure of 120 kPa . The compressor and turbine inlet temperatures are 540 K and 510 K , respectively.
The turbine is isentropic and the compressor has an isentropic efficiency of $88 \%$. Calculate $\mathbf{W}_{\text {net }}$, in $\mathbf{k J} / \mathbf{k g}$, and the coefficient of performance for the cycle.

Read : The key here is that this is a Brayton Cycle. Because air behaves as an ideal gas, we can use the Ideal Gas Property Tables for air. Other key points include the fact that both the compressor and turbine are adiabatic, the compressor has an isentropic efficiency of $88 \%$ and the turbine is isentropic.


Diagram:


Gas Refrigeration Cycle


Assumptions:

1-
2 -
3 -
4 -
5 -
6 -

Each component is analyzed as an open system operating at steady-state.
The turbine is isentropic.
There are no pressure drops for flow through the heat exchangers.
Kinetic and potential energy changes are negligible.
The working fluid is air modeled as an ideal gas.
There is no heat exchanged with the surroundings.

Equations / Data / Solve:

| Stream | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{R}\right) \end{gathered}$ | $\begin{gathered} \mathbf{P} \\ (\text { psia) } \end{gathered}$ | $\begin{gathered} \mathbf{H}^{0} \\ \left(\mathrm{Btu} / l \mathrm{lb}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \mathbf{S}^{0} \\ \left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-} \mathbf{R}\right) \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 299.12 | 120 | 86.535 | 0.0032422 | 1.0114 |
| 2 | 540 | 120 | 333.66 | 0.60768 | 8.3101 |
| 3 | 938.62 | 800 | 768.78 |  |  |
| 3s | 892.14 | 800 | 716.57 | 1.1521 | 55.400 |
| 4 | 510 | 800 | 302.17 | 0.54769 | 6.742 |

Part a.) There is no shaft work occurring in the HEX's, so $\mathbf{W}_{\text {cycle }}$ is: $\quad \hat{\mathbf{W}}_{\text {cycle }}=\hat{\mathbf{W}}_{\text {comp }}+\hat{\mathbf{W}}_{\text {turb }}$
Eqn 1

We can determine $\mathbf{W}_{\text {comp }}$ and $\mathbf{W}_{\text {turb }}$ by applying the 1st Law to each device.
The 1st Law equations for a steady-state, single-inlet, single-outlet adiabatic turbine and compressor with negligible kinetic and potential energy changes are:
$\hat{\mathbf{W}}_{\text {turb }}=\hat{\mathbf{W}}_{\mathrm{s}, 41}=\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{1}$
Eqn 2
$\hat{\mathbf{W}}_{\text {comp }}=\hat{\mathbf{W}}_{\mathrm{s}, 23}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{3}$
Eqn 3

So, in order to evaluate $\mathbf{W}_{\text {cycle }}$, we must first determine the specific enthalpy of all four streams in the cycle. We can immediately find $\mathbf{H}_{2}$ and $H_{4}$ in the Ideal Gas Property Table for air because both $T_{2}$ and $T_{4}$ are given.
$\begin{array}{llllll}\mathrm{H}^{\circ}{ }_{\mathrm{T} 2} & 333.66 & \mathrm{~kJ} / \mathrm{kg} & \mathrm{H}^{\circ}{ }_{\mathrm{T} 4} & 302.17 & \mathrm{~kJ} / \mathrm{kg}\end{array}$
Next, let's make use of the fact that the turbine is isentropic ( $\mathbf{S}_{2}=\mathbf{S}_{1}$ ) to evaluate $\mathbf{H}_{1}$.
We can either use the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.
Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:


We can solve Eqn 4 for $\mathbf{S}^{\circ}{ }_{\mathrm{T} 1}$ :


Eqn 5

We can look-up $\mathbf{S}^{\mathbf{O}}{ }_{T 4}$ in the Ideal Gas Property Table for air and use it with the known pressures in Eqn 5 to determine $\mathbf{S}^{\circ}{ }_{\mathbf{1} 1}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{2}$ and $\mathbf{P}_{3}=\mathbf{P}_{\mathbf{4}}$.

| R | 8.314 | J/mol-K |  | MW | 28.97 | $\mathrm{g} / \mathrm{mol}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T (K) | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ | $S^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  | $\mathrm{S}^{\mathbf{O}}{ }^{\text {4 }}$ | 0.54769 | kJ/kg-K |
| 298.15 | 85.565 | 0.00000 |  | $\mathrm{S}^{\circ}{ }_{\text {1 }}$ | 0.0032422 | kJ/kg-K |
| T | $\mathrm{H}^{\circ}{ }_{11}$ | 0.0032422 | Interpolation yields : | T | 299.12 | K |
| 300 | 87.410 | 0.0061681 |  | $\mathrm{H}^{\mathbf{0}}{ }^{\text {1 }}$ | 86.535 | kJ/kg |

Method 2: Use the Ideal Gas Relative Pressure.
When an ideal gas undergoes an isentropic process :

$$
\frac{P_{r}\left(T_{1}\right)}{P_{r}\left(T_{4}\right)}=\frac{P_{1}}{P_{4}}
$$

Eqn 6

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.

We can solve Eqn 6 For $P_{r}\left(T_{1}\right)$, as follows : $\quad P_{r}\left(T_{1}\right)=\frac{\mathbf{P}_{1}}{\mathbf{P}_{\mathbf{4}}} \mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{4}}\right)$
Eqn 7

| Look-up $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{4}\right)$ and use it in Eqn 7 to determine $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{1}\right)$ : | $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{4}\right)$ | $\mathbf{6 . 7 4 2 4}$ |
| :--- | :--- | :--- |
|  | $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{1}\right)$ | $\mathbf{1 . 0 1 1 4}$ |

We can now determine $T_{5}$ and $H_{5}$ by interpolation on the Ideal Gas Property Table for air.

| $\mathrm{T}(\mathrm{K})$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathbf{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: | :---: |
| 298 | 1.0000 | 85.565 |
| $\mathrm{~T}_{1}$ | 1.0114 | $\mathrm{H}^{\circ}{ }_{\mathrm{T} 1}$ |
| 300 | 1.0217 | 87.410 |


| Interpolation yields : | $\mathrm{T}_{1}$ |
| :--- | :--- |
|  | $\mathrm{H}_{\mathrm{T} 1}^{\circ}$ |

299.12 K
$86.530 \mathrm{~kJ} / \mathrm{kg}$
Since the two methods differ by less than $\mathbf{0 . 0 1 \%}$, I will use the results from Method 1 in the remaining calculations of this problem.

Next, we need to evaluate $\mathbf{H}_{3}$. To do this, we need to use the isentropic efficiency of the compressor.

$$
\begin{align*}
& \eta_{s, \text { comp }}=\frac{\hat{H}_{2}-\hat{H}_{3 s}}{\hat{H}_{2}-\hat{H}_{3}}  \tag{Eqn 8}\\
& \hat{H}_{3}=\hat{H}_{2}-\frac{\left(\hat{H}_{2}-\hat{H}_{3 \mathrm{~s}}\right)}{\eta_{\mathrm{s}, \mathrm{comp}}}
\end{align*}
$$

Eqn 9

So, in order to determine $\mathbf{H}_{3}$, we must first determine $\mathbf{H}_{3 S}$, the enthalpy of stream 3 IF the turbine were isentropic. We can determine $\mathrm{T}_{3 \mathrm{~S}}$ using either the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.
Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$
\Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{3 \mathrm{~S}}-\hat{\mathbf{S}}_{2}=\hat{\mathbf{S}}_{\mathrm{T} 3 \mathrm{~S}}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}=\mathbf{0}
$$

Eqn 10
We can solve Eqn 10
for the unknown $\mathbf{S}^{\mathbf{0}}{ }_{\mathrm{T} 3 \mathrm{~S}}$ :

$$
\hat{\mathbf{S}}_{\mathrm{T} 3 \mathrm{~S}}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\mathrm{o}}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}}
$$

Eqn 11

We can look up $\mathbf{S}^{\circ}{ }_{\mathbf{T} 2}$ in the Ideal Gas Property Table for air and use it with the known compression ratio in Eqn 11 to determine $\mathbf{S}^{\circ}{ }_{\mathrm{T} 3}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}}$ and $\mathbf{P}_{3}=\mathbf{P}_{3 \mathrm{~S}}=\mathbf{P}_{\mathbf{4}}$.

| $R$ | 8.314 | $\mathrm{~J} / \mathrm{mol}-\mathrm{K}$ | MW | 28.97 | $\mathrm{~g} / \mathrm{mol}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}^{\circ}{ }_{\mathrm{T} 2}$ | 0.60768 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ | $\mathrm{S}^{\circ}{ }_{\mathrm{T} 3 \mathrm{~S}}$ | 1.1521 | $\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ |

Now, we can use $\mathbf{S}^{\circ}{ }_{\mathrm{T} 3 \mathrm{~S}}$ and the Ideal Gas Property Table for air to determine $\mathrm{T}_{3 \mathrm{~S}}$ and then $\mathbf{H}_{3 S}$ by interpolation :

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ | $\mathrm{S}^{\circ}(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 880 | 702.98 | 1.1369 |  |  |  |  |
| $\mathrm{~T}_{3 \mathrm{~S}}$ | $\mathrm{H}_{3 \mathrm{~S}}$ | 1.1521 | Interpolation yields : | $\mathrm{T}_{3 \mathrm{~S}}$ | $\mathbf{8 9 2 . 1 4}$ | K |
| 900 | 725.37 | 1.1620 |  | $\mathrm{H}_{3 \mathrm{~S}}$ | $\mathbf{7 1 6 . 5 7}$ | $\mathrm{~kJ} / \mathrm{kg}$ |

|Method 2: Use the Ideal Gas Relative Pressure.

| When an ideal gas undergoes an |  |
| :--- | :--- |
| isentropic process: | $\frac{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{3 S}}\right)}{\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{\mathbf{2}}\right)}=\frac{\mathbf{P}_{3}}{\mathbf{P}_{\mathbf{2}}}$ |

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.

| We can solve Eqn 12 For $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{3}\right)$, as follows :$\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{3 \mathrm{~S}}\right)=\frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} \mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{2}\right)$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Look-up $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{2}\right)$ and use it in Eqn 13 to determine $\mathbf{P}_{\mathbf{r}}\left(\mathbf{T}_{3 S}\right)$ : |  |  |  | $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)$ | 8.3101 |  |
|  |  |  |  | $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{3 \mathrm{~S}}\right)$ | 55.400 |  |
| We can now determine $\mathbf{T}_{3}$ by interpolation on the the Ideal Gas Property Table for air. |  |  |  |  |  |  |
| Then, we use $\mathbf{T}_{3}$ to determine $\mathbf{H}_{3}$ from the Ideal Gas Property Table for air. |  |  |  |  |  |  |
| T (K) | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |  |  |  |  |
| 880 | 52.530 | 702.98 |  |  |  |  |
| $\mathrm{T}_{3 \mathrm{~S}}$ | 55.400 | $\mathrm{H}_{3}$ | Interpolation yields: | T3S | 891.93 | K |
| 900 | 57.342 | 725.37 |  | $\mathrm{H}_{3 \mathrm{~S}}$ | 716.33 | kJ/kg |

Since the two methods differ by less than $0.05 \%$, I will use the results from Method 1 in the remaining calculations of this problem.

Next, we use Eqn 9 to evaluate $\mathbf{H}_{3}: \quad \mathbf{H}_{3} \quad 768.78$ kJ/kg

| $\mathrm{T}(\mathrm{K})$ | $\mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{kg})$ |
| :---: | :---: |
| 920 | 747.82 |
| $\mathrm{~T}_{3}$ | 768.78 |
| 940 | 770.33 |

Interpolation yields: $\quad \mathrm{T}_{3} \quad 938.62 \mathrm{~K}$

Now, we go back to Eqns 2 \& 3 to evaluate $\mathbf{W}_{\text {turb }}$ and $\mathbf{W}_{\text {comp }}$ :

Finally, we plug values into Eqn 1 to evaluate $\mathbf{W}_{\text {cycle }}$ :

| $\mathrm{T}_{3}$ | 938.62 | K |
| :--- | ---: | :--- |
| $\mathrm{~W}_{\text {turb }}$ | 215.64 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{W}_{\text {comp }}$ | -435.12 | $\mathrm{~kJ} / \mathrm{kg}$ |
| $\mathrm{W}_{\text {cycle }}$ | -219.48 | $\mathrm{~kJ} / \mathrm{kg}$ |

Part b.) We can determine the
coefficient of performance from its definition.

$$
\mathbf{C O P}_{\mathrm{R}}=\frac{\hat{\mathbf{Q}}_{\mathrm{C}}}{-\hat{\mathbf{W}}_{\text {cycle }}}
$$

We can evaluate $\mathbf{Q}_{\mathbf{C}}$ by applying the 1st Law to HEX \#2 because $\mathbf{Q}_{\mathbf{C}}=\mathbf{Q}_{\mathbf{1 2}}$.
HEX \#2 operates at steady-state, has no shaft work interaction and changes in kinetic and potential energies are negligible. So, the appropriate form of the 1st Law is:

$$
\hat{\mathbf{Q}}_{12}=\hat{\mathbf{H}}_{2}-\hat{\mathbf{H}}_{1}
$$

Eqn 16

Plugging values into Eqn 16 gives us:
Finally, we can plug values back into Eqn 14 :

| $\mathrm{Q}_{12}$ | $247.13 \mathrm{~kJ} / \mathrm{kg}$ |
| :---: | :---: |
| $\mathrm{COP}_{\mathrm{R}}$ | 1.126 |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers:

| $\mathrm{W}_{\text {cycle }}$ | $\mathbf{- 2 1 9}$ | $\mathrm{kJ} / \mathrm{kg}$ |
| :--- | :--- | :--- |

$\mathrm{COP}_{\mathrm{R}} \quad 1.13$

Calculate the refrigeration capacity, $\mathbf{Q}_{\mathbf{C}}$, in tons of refrigeration, and the coefficient of performance of the regenerative Brayton Cycle, shown below.


Assume that both the compressor and the turbine are isentropic.

Read : Make all the usual assumptions for the standard Brayton cycle. Use the ideal gas EOS to convert the volumetric flow rate to a mass flow rate. Determine the specific enthalpy for each stream and then use the 1 st Law and the definition of the COP to answer the questions.

Given:

| $\mathrm{V}_{1}$ | 1250 | $\mathrm{ft}^{3} / \mathrm{min}$ |
| :--- | :---: | :--- |
| $\mathrm{T}_{1}$ | 747 | ${ }^{\circ} \mathrm{R}$ |
| $\mathrm{P}_{1}$ | 25 | psia |


| $\mathbf{P}_{2}$ | 70 | psia |
| :---: | :---: | :---: |
| $\mathbf{T}_{3}$ | 775 | ${ }^{\circ} \mathbf{R}$ |
| $\mathbf{T}_{\mathbf{4}}$ | 747 | ${ }^{\mathbf{o} \mathbf{R}}$ |

Find:
a.)
$Q_{\text {in }}$
???
tons
b.) $\quad \operatorname{COP}_{\mathrm{R}} \quad$ ???

Diagram:


Assumptions: $\mathbf{1 -} \quad$ Each process is analyzed as an open system operating at steady-state.
2- The turbine and compressor are isentropic.
3- There are no pressure drops for flow through the heat exchangers.
4- Kinetic and potential energy changes are negligible.
5 - The working fluid is air modeled as an ideal gas.
6 - $\quad$ There is no heat transfer from the heat exchanger to its surroundings.
Equations / Data / Solve:

| Stream | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{R}\right) \end{gathered}$ | $\underset{\text { (psia) }}{\mathbf{P}}$ | $\begin{gathered} \mathbf{H}^{\circ} \\ \left(\mathrm{Btu} / \mathbf{l b}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \mathbf{S}^{0} \\ \left(\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}{ }^{-}{ }^{-} \mathbf{R}\right) \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 747 | 25 | 87.598 |  | 3.2050 |
| 2 | 992.7 | 70 |  |  | 8.9740 |
| 3 | 775 | 70 | 94.467 |  |  |
| 4 | 747 | 70 | 87.598 | 0.079819 | 3.2050 |
| 5 | 557.8 | 25 | 41.824 | 0.0091996 | 1.1446 |
| 6 |  | 25 | 80.728 |  |  |

Part a.) The refrigeration capacity is how much heat the refrigerator can remove from the cold reservoir. So, we need to determine $\mathbf{Q}_{\text {in }}$ (from the diagram above). We can accomplish this by applying the 1st Law to HEX \#1. The 1st Law for a steady-state, single-inlet, single-outlet, HEX with no shaft work and negligible kinetic and potential energy changes is:

$$
\begin{equation*}
\dot{\mathbf{Q}}_{\text {in }}=\dot{\mathbf{Q}}_{56}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{6}-\hat{\mathbf{H}}_{5}\right) \tag{Eqn 1}
\end{equation*}
$$

First, let's determine the mass flow rate of the working fluid. The key is that we know the volumetric flow rate and the $\mathbf{T} \& \mathbf{P}$ at the compressor inlet. And, remember that we have assumed that the air behaves as an ideal gas.

$$
\dot{m}=\frac{\dot{\mathbf{V}}_{1}}{\hat{\mathrm{~V}}_{1}}=\frac{P_{1} \dot{\mathbf{V}}_{1}}{(R / M W) T_{1}}
$$

Eqn 2

Plugging values into Eqn 2 yields:

| R | 1545 | $\mathrm{ft} \mathrm{lb}_{\mathrm{f}} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathbf{R}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MW | 29.00 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{lbmole}$ | $\mathrm{m}_{\text {dot }}$ | 113.07 | $\mathbf{l b}_{\mathrm{m}} / \mathrm{min}$ |

Next, let's determine $\mathbf{H}_{5}$. We can accomplish this because we assumed the turbine is isentropic. We can either use the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.
Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$
\begin{align*}
& \Delta \hat{S}=\hat{S}_{5}-\hat{S}_{4}=\hat{S}_{\text {T5 }}^{o}-\hat{S}_{\text {T4 }}^{o}-\frac{R}{M W} \operatorname{Ln} \frac{\mathbf{P}_{5}}{\mathbf{P}_{4}}=\mathbf{0}  \tag{Eqn 3}\\
& \hat{\mathbf{S}}_{\text {T5 }}^{\circ}=\hat{S}_{\text {T4 }}^{\circ}+\frac{R}{M W} \operatorname{Ln} \frac{\mathbf{P}_{5}}{\mathbf{P}_{4}}
\end{align*}
$$

Eqn 4

We can look-up $\mathbf{S}^{\circ}{ }_{T 4}$ in the Ideal Gas Property Table for air and use it with the known pressures in Eqn 4 to determine $\mathbf{S}^{\circ}{ }_{\mathrm{T} 5}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{5}=\mathbf{P}_{6}$ and $\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{3}}=\mathbf{P}_{\mathbf{4}}$.

| R | 1.987 | Btu/lbmole- ${ }^{\circ} \mathrm{R}$ | MW | 28.97 | $\mathbf{l b} / \mathrm{lbmole}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{T}\left({ }^{\circ} \mathrm{R}\right) \\ & 740.00 \end{aligned}$ | $\begin{gathered} \mathrm{H}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) \\ 85.884 \end{gathered}$ | $\begin{aligned} & \mathbf{S}^{\circ}\left(\text { Btu/ll }_{m}{ }^{\circ} \mathbf{R}\right) \\ & 0.077519 \end{aligned}$ |  |  |  |
| 747 | $\mathrm{H}^{\mathbf{T} 4}$ | $\mathrm{S}^{\mathbf{T} 4}$ | $\mathrm{H}^{\mathbf{T}}{ }^{\text {4 }}$ | 87.598 | Btu/lb ${ }_{\text {m }}$ |
| 750 | 88.332 | 0.080805 | $\mathrm{S}^{\text {T4 }}$ | 0.079819 | Btu/lbm $-{ }^{-} \mathbf{R}$ |
| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $H^{\circ}\left(B^{(B u / l b} \mathrm{b}_{\mathrm{m}}\right)$ | $\mathrm{S}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\text { }}\right.$ R $)$ |  |  |  |
| 550 | 39.963 | 0.005848 | $\mathrm{S}^{\mathbf{T} 5}$ | 0.0091996 | Btu/lbm ${ }_{-}{ }^{\text {P }}$ R |
| T | $\mathrm{H}^{\mathbf{T} 5}$ | 0.009200 | $\mathrm{T}_{5}$ | 557.79 | ${ }^{\circ} \mathrm{R}$ |
| 560 | 42.351 | 0.010149 | $\mathrm{H}^{\mathbf{T} 5}$ | 41.824 | Btu/lb ${ }_{\text {m }}$ |

|Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$
\begin{equation*}
\frac{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{5}\right)}{\mathbf{P}_{\mathrm{r}}\left(\mathrm{~T}_{4}\right)}=\frac{\mathbf{P}_{5}}{\mathbf{P}_{4}} \tag{Eqn 5}
\end{equation*}
$$

Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.

We can solve Eqn 5 For $\mathbf{P}_{r}\left(\mathbf{T}_{5}\right)$, as follows :

$$
P_{r}\left(T_{5}\right)=\frac{P_{5}}{P_{4}} P_{r}\left(T_{4}\right)
$$

Look-up $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{4}\right)$ and use it in Eqn 6 to determine $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{5}\right)$ :

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{Pr}_{\mathrm{r}}$ | $\mathbf{H}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 740 | 3.0985 | 85.884 | $\mathrm{H}^{\mathbf{T} 4}$ | 87.598 | Btu/lb ${ }_{\text {m }}$ |
| 747 | $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{4}\right)$ | $\mathrm{H}^{\text {T } 4}$ | $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{4}\right)$ | 3.2050 |  |
| 750 | 3.2506 | 88.332 | $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{T}_{5}\right)$ | 1.1446 |  |

We can now determine $T_{5}$ and $\mathrm{H}_{5}$ by interpolation on the the Ideal Gas Property Table for air.

| $\mathbf{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathbf{P}_{\mathbf{r}}$ | $\mathbf{H}^{\circ}\left(\mathrm{Btu} / \mathrm{l} \mathbf{b}_{\mathrm{m}}\right)$ |  |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- |
| 550 | 1.0891 | 39.963 |  |  |  |
| $\mathbf{T}_{5}$ | 1.1446 | $\mathbf{H}^{\circ}{ }_{\text {T5 }}$ | $\mathbf{T}_{5}$ | 557.88 | ${ }^{\circ} \mathbf{R}$ |
| 560 | 1.1596 | 42.351 | $\mathbf{H}^{\circ}{ }_{\mathrm{T} 5}$ | 41.845 | $\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}$ |

Since the two methods differ by less than $\mathbf{0 . 0 1 \%}$, I will use the results from Method $\mathbf{1}$ in the remaining calculations of this problem.

Next, we need to evaluate $\mathbf{H}_{6}$. To do that, we need to apply the 1st Law to the Regenerator.
The 1st Law for a steady-state, multiple-inlet, multiple-outlet, adiabatic HEX with no shaft work and negligible kinetic and potential energy changes is:

$$
\begin{equation*}
\left(\hat{\mathbf{H}}_{3}+\hat{\mathbf{H}}_{6}\right)-\left(\hat{\mathbf{H}}_{1}+\hat{\mathbf{H}}_{4}\right)=0 \tag{Eqn 7}
\end{equation*}
$$

Solve Eqn 7 for $\mathbf{H}_{6}$ :

$$
\begin{equation*}
\hat{\mathbf{H}}_{6}=\hat{\mathbf{H}}_{1}+\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{3} \tag{Eqn 8}
\end{equation*}
$$

We already found $\mathbf{H}_{4}$, so we need to find $\mathbf{H}_{1}$ and $\mathbf{H}_{3}$. We can do this by interpolation in the Ideal Gas Property Table for air because we know both $T_{1}$ and $T_{3}$. Because $T_{1}=T_{4}, H_{1}=H_{4}$ and we already found $H_{4}$. So, all we need to work on is $\mathbf{H}_{3}$.

| $\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)$ | $\mathrm{H}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |
| :---: | :---: |
| 770 | 93.238 |
| 775 | $\mathrm{H}^{\circ}{ }^{\circ} \mathrm{T} 3$ |
| 780 | 95.696 |


| $\mathrm{H}^{\circ}{ }_{\mathrm{T} 1}$ | 87.598 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| :--- | :---: | :--- |
| $\mathrm{H}^{\circ}{ }_{\mathrm{T} 3}$ | 94.467 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{H}_{\mathrm{T} 6}^{\circ}$ | 80.728 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |
| $\mathrm{Q}_{\text {in }}$ | 4399.1 | $\mathrm{Btu} / \mathrm{min}$ |
| 1 ton $=$ | 200 | $\mathrm{Btu} / \mathrm{min}$ |
| $\mathrm{Q}_{\text {in }}$ | 21.995 | tons |

Part b.) We can determine the coefficient of performance from its definition.

$$
\begin{align*}
& \mathbf{C O P}_{\mathrm{R}}=\frac{\mathbf{Q}_{\text {in }}}{-\mathbf{W}_{\text {cycle }}} \\
& \mathbf{W}_{\text {cycle }}=\mathbf{W}_{\text {comp }}+\mathbf{W}_{\text {turb }} \tag{Eqn 10}
\end{align*}
$$

Where :
We can determine $\mathbf{W}_{\text {comp }}$ and $\mathbf{W}_{\text {turb }}$ by applying the 1 st Law to the compressor and the turbine separately.
The 1st Law for a steady-state, single-inlet, single-outlet adiabatic turbine and compressor with negligible kinetic and potential energy changes are:

$$
\begin{align*}
& \dot{\mathbf{W}}_{\text {turb }}=\dot{\mathbf{W}}_{\mathrm{s}, 45}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{4}-\hat{\mathbf{H}}_{5}\right)  \tag{Eqn 11}\\
& \dot{\mathbf{W}}_{\text {comp }}=\dot{\mathbf{W}}_{\mathrm{s}, 12}=\dot{\mathbf{m}}\left(\hat{\mathbf{H}}_{1}-\hat{\mathbf{H}}_{2}\right)
\end{align*}
$$

Eqn 12
We know all of the values we need except $\mathbf{H}_{2}$. We can determine it because we know the compressor is isentropic. We can use either Method 1 or 2 described above.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.
Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$
\begin{array}{ll}
\qquad \Delta \hat{\mathbf{S}}=\hat{\mathbf{S}}_{2}-\hat{\mathbf{S}}_{1}=\hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}-\hat{\mathbf{S}}_{\mathrm{T} 1}^{o}-\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}=\mathbf{0}  \tag{Eqn 13}\\
\text { Solving Eqn } 13 \text { for } \mathbf{S}_{\mathrm{T} 2}^{\circ} \text { yields : } \quad \hat{\mathbf{S}}_{\mathrm{T} 2}^{\circ}=\hat{\mathbf{S}}_{\mathrm{T} 1}^{\circ}+\frac{\mathbf{R}}{\mathbf{M W}} \operatorname{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}
\end{array}
$$

Eqn 14

Because $\mathbf{T}_{1}=\mathbf{T}_{4}, \mathbf{S}^{\circ}{ }_{\mathbf{T} 1}=\mathbf{S}^{\circ}{ }_{\mathrm{T} 4}$. Then, we can use Eqn 4 to determine $\mathbf{S}^{\mathbf{T}}{ }_{\mathrm{T} 2}$. We can do this because the HEX's are isobaric. $\mathbf{P}_{1}=\mathbf{P}_{5}=\mathbf{P}_{6}$ and $\mathbf{P}_{\mathbf{2}}=\mathbf{P}_{\mathbf{3}}=\mathbf{P}_{4}$.

| $\mathrm{S}^{\mathbf{T} 1}$ | 0.079819 | Btu/ $/ \mathrm{b}_{\mathrm{m}}{ }^{\text {o }}$ R | $\mathrm{S}^{\mathbf{T} 2}$ | 0.15044 | Btu/lb $\mathrm{m}^{-{ }^{-} \mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{T}\left({ }^{\circ} \mathbf{R}\right) \\ 990 \end{gathered}$ | $H^{\circ}\left(\mathrm{Btu}_{1 \Delta 7} / \mathrm{lb}_{\mathrm{m}}\right)$ | $\mathbf{S}^{0}\left(\mathrm{Btu}_{1 / \mathrm{lb}}^{\mathrm{m}}{ }^{\circ} \mathrm{R}\right)$ |  |  |  |
| T2 | $\mathrm{H}^{\text {¢ }}$ 2 | 0.15044 | T | 992.67 | ${ }^{0} \mathrm{R}$ |
| 1000 | 150.50 | 0.15230 | $\mathbf{H}^{\mathbf{T}}{ }^{\text {2 }}$ | 148.65 | Btu/lb ${ }_{\text {m }}$ |

|Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$
\frac{P_{r}\left(T_{2}\right)}{P_{r}\left(T_{1}\right)}=\frac{P_{2}}{P_{1}}
$$

Eqn 15
Where $\mathbf{P}_{\mathbf{r}}$ is the Ideal Gas Relative Pressure, which is a function of $\mathbf{T}$ only and we can look-up in the Ideal Gas Property Table for air.

We can solve Eqn 15 For $\mathrm{P}_{\mathrm{r}}\left(\mathrm{T}_{2}\right)$, as follows :

$$
P_{r}\left(T_{2}\right)=\frac{P_{2}}{P_{1}} \mathbf{P}_{r}\left(T_{1}\right)
$$

Eqn 16
$P_{r}\left(T_{1}\right)=P_{r}\left(T_{4}\right)$ because $T_{1}=T_{4}$. Use $P_{r}\left(T_{1}\right)$ in Eqn 16 to determine $P_{r}\left(T_{2}\right)$ :
$\begin{array}{llll}P_{r}\left(T_{1}\right) & 3.2050 & P_{r}\left(T_{2}\right) & 8.9740\end{array}$
We can now determine $\mathbf{T}_{5}$ and $\mathbf{H}_{5}$ by interpolation on the the Ideal Gas Property Table for air.

| $\left.\mathrm{T}^{\circ}{ }^{\circ} \mathrm{R}\right)$ | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{H}^{\circ}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |  |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- |
| 990 | 8.8893 | 147.981 |  |  |  |
| $\mathrm{~T}_{2}$ | 8.9740 | $\mathrm{H}_{\mathrm{T} 2}$ | $\mathrm{~T}_{2}$ | 992.53 | ${ }^{\circ} \mathbf{R}$ |
| 1000 | 9.2240 | 150.502 | $\mathbf{H}^{\circ}{ }_{\mathrm{T} 2}$ | 148.62 | $\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ |

Since the two methods differ by less than $\mathbf{0 . 0 1 \%}$, I will use the results from Method 1 in the remaining calculations of this problem.

At last we return to Eqns 11, 12, 10 \& 9, in that order:

| $\mathrm{W}_{\text {turb }}$ | 5175.83 | Btu/min | $\mathrm{W}_{\text {cycle }}$ | -1728.08 | Btu/min |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{W}_{\text {comp }}$ | -6903.91 | Btu/min | $\mathrm{COP}_{\text {R }}$ | 2.546 |  |

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.
Answers: a.)

| $\mathrm{Q}_{\text {in }}$ | 22.0 | tons |
| :--- | :--- | :--- |

b.)
$\mathrm{COP}_{\mathrm{R}} \quad 2.55$


## Tables of

 Thermodynamic DataA. Steam Tables

SI Units525
American Engineering Units ..... 534
B. Ammonia Tables SI Units ..... 544
American Engineering Units ..... 549
C. R-134a Tables
SI Units ..... 555
American Engineering Units ..... 561
D. Ideal Gas Property Tables SI Units ..... 567
American Engineering Units ..... 574
E. Ideal Gas, Constant Pressure Heat Capacity Shomate Equation Constants for Common Gases ..... 581
F. Conversion Factors and the Universal Gas Constant ..... 582

## Saturation Temperature Table

Water
SI

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Pressure (kPa) | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 0.01 | 0.61165 | 0.0010002 | 205.99 | 0 | 2374.9 | 6.1178E-04 | 2500.9 | 0 | 9.1555 |
| 5 | 0.87258 | 0.0010001 | 147.01 | 21.019 | 2381.8 | 21.020 | 2510.1 | 0.076254 | 9.0248 |
| 10 | 1.2282 | 0.0010003 | 106.30 | 42.020 | 2388.6 | 42.021 | 2519.2 | 0.15109 | 8.8998 |
| 15 | 1.7058 | 0.0010009 | 77.875 | 62.980 | 2395.5 | 62.981 | 2528.3 | 0.22446 | 8.7803 |
| 20 | 2.3393 | 0.0010018 | 57.757 | 83.912 | 2402.3 | 83.914 | 2537.4 | 0.29648 | 8.6660 |
| 25 | 3.1699 | 0.0010030 | 43.337 | 104.83 | 2409.1 | 104.83 | 2546.5 | 0.36722 | 8.5566 |
| 30 | 4.2470 | 0.0010044 | 32.878 | 125.73 | 2415.9 | 125.73 | 2555.5 | 0.43675 | 8.4520 |
| 35 | 5.6290 | 0.0010060 | 25.205 | 146.63 | 2422.7 | 146.63 | 2564.5 | 0.50513 | 8.3517 |
| 40 | 7.3849 | 0.0010079 | 19.515 | 167.53 | 2429.4 | 167.53 | 2573.5 | 0.57240 | 8.2555 |
| 45 | 9.5950 | 0.0010099 | 15.252 | 188.43 | 2436.1 | 188.43 | 2582.4 | 0.63861 | 8.1633 |
| 50 | 12.352 | 0.0010121 | 12.027 | 209.33 | 2442.7 | 209.34 | 2591.3 | 0.70381 | 8.0748 |
| 55 | 15.762 | 0.0010146 | 9.5643 | 230.24 | 2449.3 | 230.26 | 2600.1 | 0.76802 | 7.9898 |
| 60 | 19.946 | 0.0010171 | 7.6672 | 251.16 | 2455.9 | 251.18 | 2608.8 | 0.83129 | 7.9081 |
| 65 | 25.042 | 0.0010199 | 6.1935 | 272.09 | 2462.4 | 272.12 | 2617.5 | 0.89365 | 7.8296 |
| 70 | 31.201 | 0.0010228 | 5.0395 | 293.03 | 2468.9 | 293.07 | 2626.1 | 0.95513 | 7.7540 |
| 75 | 38.595 | 0.0010258 | 4.1289 | 313.99 | 2475.2 | 314.03 | 2634.6 | 1.0158 | 7.6812 |
| 80 | 47.414 | 0.0010291 | 3.4052 | 334.96 | 2481.6 | 335.01 | 2643.0 | 1.0756 | 7.6111 |
| 85 | 57.867 | 0.0010324 | 2.8258 | 355.95 | 2487.8 | 356.01 | 2651.3 | 1.1346 | 7.5434 |
| 90 | 70.182 | 0.0010360 | 2.3591 | 376.97 | 2494.0 | 377.04 | 2659.5 | 1.1929 | 7.4781 |
| 95 | 84.608 | 0.0010396 | 1.9806 | 398.00 | 2500.0 | 398.09 | 2667.6 | 1.2504 | 7.4151 |
| 100 | 101.42 | 0.0010435 | 1.6718 | 419.06 | 2506.0 | 419.17 | 2675.6 | 1.3072 | 7.3541 |
| 105 | 120.90 | 0.0010474 | 1.4184 | 440.15 | 2511.9 | 440.27 | 2683.4 | 1.3633 | 7.2952 |
| 110 | 143.38 | 0.0010516 | 1.2093 | 461.26 | 2517.7 | 461.42 | 2691.1 | 1.4188 | 7.2381 |
| 115 | 169.18 | 0.0010559 | 1.0358 | 482.41 | 2523.3 | 482.59 | 2698.6 | 1.4737 | 7.1828 |
| 120 | 198.67 | 0.0010603 | 0.89121 | 503.60 | 2528.9 | 503.81 | 2705.9 | 1.5279 | 7.1291 |
| 125 | 232.24 | 0.0010649 | 0.77003 | 524.83 | 2534.3 | 525.07 | 2713.1 | 1.5816 | 7.0770 |
| 130 | 270.28 | 0.0010697 | 0.66800 | 546.09 | 2539.5 | 546.38 | 2720.1 | 1.6346 | 7.0264 |
| 135 | 313.23 | 0.0010746 | 0.58173 | 567.41 | 2544.7 | 567.74 | 2726.9 | 1.6872 | 6.9772 |
| 140 | 361.54 | 0.0010798 | 0.50845 | 588.77 | 2549.6 | 589.16 | 2733.4 | 1.7392 | 6.9293 |
| 145 | 415.68 | 0.0010850 | 0.44596 | 610.19 | 2554.4 | 610.64 | 2739.8 | 1.7907 | 6.8826 |
| 150 | 476.16 | 0.0010905 | 0.39245 | 631.66 | 2559.1 | 632.18 | 2745.9 | 1.8418 | 6.8371 |
| 155 | 543.50 | 0.0010962 | 0.34646 | 653.19 | 2563.5 | 653.79 | 2751.8 | 1.8924 | 6.7926 |
| 160 | 618.23 | 0.0011020 | 0.30678 | 674.79 | 2567.8 | 675.47 | 2757.4 | 1.9426 | 6.7491 |
| 165 | 700.93 | 0.0011080 | 0.27243 | 696.46 | 2571.9 | 697.24 | 2762.8 | 1.9923 | 6.7066 |
| 170 | 792.19 | 0.0011143 | 0.24259 | 718.20 | 2575.7 | 719.08 | 2767.9 | 2.0417 | 6.6650 |
| 175 | 892.60 | 0.0011207 | 0.21658 | 740.02 | 2579.4 | 741.02 | 2772.7 | 2.0906 | 6.6241 |
| 180 | 1002.8 | 0.0011274 | 0.19384 | 761.92 | 2582.8 | 763.05 | 2777.2 | 2.1392 | 6.5840 |
| 185 | 1123.5 | 0.0011343 | 0.17390 | 783.91 | 2586.0 | 785.19 | 2781.4 | 2.1875 | 6.5447 |
| 190 | 1255.2 | 0.0011415 | 0.15636 | 806.00 | 2589.0 | 807.43 | 2785.3 | 2.2355 | 6.5059 |
| 195 | 1398.8 | 0.0011489 | 0.14089 | 828.18 | 2591.7 | 829.79 | 2788.8 | 2.2832 | 6.4678 |
| 200 | 1554.9 | 0.0011565 | 0.12721 | 850.47 | 2594.2 | 852.27 | 2792.0 | 2.3305 | 6.4302 |
| 205 | 1724.3 | 0.0011645 | 0.11508 | 872.87 | 2596.4 | 874.88 | 2794.8 | 2.3777 | 6.3930 |
| 210 | 1907.7 | 0.0011727 | 0.10429 | 895.39 | 2598.3 | 897.63 | 2797.3 | 2.4245 | 6.3563 |
| 215 | 2105.8 | 0.0011813 | 0.094679 | 918.04 | 2599.9 | 920.53 | 2799.3 | 2.4712 | 6.3200 |
| 220 | 2319.6 | 0.0011902 | 0.086092 | 940.82 | 2601.2 | 943.58 | 2800.9 | 2.5177 | 6.2840 |
| 225 | 2549.7 | 0.0011994 | 0.078403 | 963.74 | 2602.2 | 966.80 | 2802.1 | 2.5640 | 6.2483 |
| 230 | 2797.1 | 0.0012090 | 0.071503 | 986.81 | 2602.9 | 990.19 | 2802.9 | 2.6101 | 6.2128 |
| 235 | 3062.5 | 0.0012190 | 0.065298 | 1010.0 | 2603.2 | 1013.8 | 2803.2 | 2.6561 | 6.1775 |

Reference States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { Pressure } \\ (\mathbf{k P a}) \end{gathered}$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 240 | 3346.9 | 0.0012295 | 0.059705 | 1033.4 | 2603.1 | 1037.6 | 2803.0 | 2.7020 | 6.1423 |
| 245 | 3651.2 | 0.0012403 | 0.054654 | 1057.0 | 2602.7 | 1061.5 | 2802.2 | 2.7478 | 6.1072 |
| 250 | 3976.2 | 0.0012517 | 0.050083 | 1080.8 | 2601.8 | 1085.8 | 2800.9 | 2.7935 | 6.0721 |
| 255 | 4322.9 | 0.0012636 | 0.045938 | 1104.8 | 2600.5 | 1110.2 | 2799.1 | 2.8392 | 6.0369 |
| 260 | 4692.3 | 0.0012761 | 0.042173 | 1129.0 | 2598.7 | 1135.0 | 2796.6 | 2.8849 | 6.0016 |
| 265 | 5085.3 | 0.0012892 | 0.038746 | 1153.4 | 2596.5 | 1160.0 | 2793.5 | 2.9307 | 5.9661 |
| 270 | 5503.0 | 0.0013030 | 0.035621 | 1178.1 | 2593.7 | 1185.3 | 2789.7 | 2.9765 | 5.9304 |
| 275 | 5946.4 | 0.0013175 | 0.032766 | 1203.1 | 2590.3 | 1210.9 | 2785.2 | 3.0224 | 5.8944 |
| 280 | 6416.6 | 0.0013328 | 0.030153 | 1228.3 | 2586.4 | 1236.9 | 2779.9 | 3.0685 | 5.8579 |
| 285 | 6914.7 | 0.0013491 | 0.027756 | 1253.9 | 2581.8 | 1263.2 | 2773.7 | 3.1147 | 5.8209 |
| 290 | 7441.8 | 0.0013663 | 0.025555 | 1279.9 | 2576.5 | 1290.0 | 2766.7 | 3.1612 | 5.7834 |
| 295 | 7999.1 | 0.0013846 | 0.023529 | 1306.2 | 2570.5 | 1317.3 | 2758.7 | 3.2080 | 5.7451 |
| 300 | 8587.9 | 0.0014042 | 0.021660 | 1332.9 | 2563.6 | 1345.0 | 2749.6 | 3.2552 | 5.7059 |
| 305 | 9209.4 | 0.0014252 | 0.019933 | 1360.2 | 2555.9 | 1373.3 | 2739.4 | 3.3028 | 5.6657 |
| 310 | 9865.1 | 0.0014479 | 0.018335 | 1387.9 | 2547.1 | 1402.2 | 2727.9 | 3.3510 | 5.6244 |
| 315 | 10556 | 0.0014724 | 0.016851 | 1416.3 | 2537.2 | 1431.8 | 2715.1 | 3.3998 | 5.5816 |
| 320 | 11284 | 0.0014990 | 0.015471 | 1445.3 | 2526.0 | $1462.2$ | 2700.6 | 3.4494 | 5.5372 |
| 325 | 12051 | 0.0015283 | 0.014183 | 1475.1 | 2513.4 | 1493.5 | 2684.3 | 3.5000 | 5.4908 |
| 330 | 12858 | 0.0015606 | 0.012979 | 1505.8 | 2499.2 | 1525.9 | 2666.0 | 3.5518 | 5.4422 |
| 335 | 13707 | 0.0015967 | 0.011847 | 1537.6 | 2483.0 | 1559.5 | 2645.4 | 3.6050 | 5.3906 |
| 340 | 14601 | 0.0016376 | 0.010781 | 1570.6 | 2464.4 | 1594.5 | 2621.8 | 3.6601 | 5.3356 |
| 345 | 15541 | 0.0016846 | 0.0097690 | 1605.3 | 2443.1 | 1631.5 | 2594.9 | 3.7176 | 5.2762 |
| 350 | 16529 | 0.0017400 | 0.0088024 | 1642.1 | 2418.1 | 1670.9 | 2563.6 | 3.7784 | 5.2110 |
| 355 | 17570 | 0.0018079 | 0.0078684 | 1682.0 | 2388.4 | 1713.7 | 2526.6 | 3.8439 | 5.1380 |
| 360 | 18666 | 0.0018954 | 0.0069493 | 1726.3 | 2351.8 | 1761.7 | 2481.5 | 3.9167 | 5.0536 |
| 365 | 19821 | 0.0020172 | 0.0060115 | 1777.8 | 2303.8 | 1817.8 | 2422.9 | 4.0014 | 4.9497 |
| 370 | 21044 | 0.0022152 | 0.0049544 | 1844.1 | 2230.3 | 1890.7 | 2334.5 | 4.1112 | 4.8012 |
| 373.95 | 22064 | 0.0031056 | 0.0031056 | 2015.7 | 2015.7 | 2084.3 | 2084.3 | 4.4070 | 4.4070 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

Saturation Pressure Table
SI

| Pressure (kPa) | Temp. ( ${ }^{\circ} \mathrm{C}$ ) | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 1.0 | 6.970 | 0.0010001 | 129.18 | 29.298 | 2384.5 | 29.299 | 2513.7 | 0.10591 | 8.9749 |
| 1.5 | 13.02 | 0.0010007 | 87.958 | 54.681 | 2392.8 | 54.683 | 2524.7 | 0.19556 | 8.8270 |
| 2.0 | 17.49 | 0.0010014 | 66.987 | 73.426 | 2398.9 | 73.428 | 2532.9 | 0.26056 | 8.7226 |
| 2.5 | 21.08 | 0.0010021 | 54.240 | 88.417 | 2403.8 | 88.420 | 2539.4 | 0.31182 | 8.6420 |
| 3.0 | 24.08 | 0.0010028 | 45.653 | 100.97 | 2407.9 | 100.98 | 2544.8 | 0.35429 | 8.5764 |
| 4.0 | 28.96 | 0.0010041 | 34.791 | 121.38 | 2414.5 | 121.39 | 2553.7 | 0.42239 | 8.4734 |
| 5.0 | 32.87 | 0.0010053 | 28.185 | 137.74 | 2419.8 | 137.75 | 2560.7 | 0.47620 | 8.3938 |
| 7.5 | 40.29 | 0.0010080 | 19.233 | 168.74 | 2429.8 | 168.75 | 2574.0 | 0.57627 | 8.2501 |
| 10 | 45.81 | 0.0010103 | 14.670 | 191.80 | 2437.2 | 191.81 | 2583.9 | 0.64920 | 8.1488 |
| 15 | 53.97 | 0.0010140 | 10.020 | 225.93 | 2448.0 | 225.94 | 2598.3 | 0.75486 | 8.0071 |
| 20 | 60.06 | 0.0010172 | 7.6480 | 251.40 | 2456.0 | 251.42 | 2608.9 | 0.83202 | 7.9072 |
| 25 | 64.96 | 0.0010198 | 6.2032 | 271.93 | 2462.4 | 271.96 | 2617.4 | 0.89319 | 7.8302 |
| 30 | 69.10 | 0.0010222 | 5.2284 | 289.24 | 2467.7 | 289.27 | 2624.5 | 0.94407 | 7.7675 |
| 40 | 75.86 | 0.0010264 | 3.9930 | 317.58 | 2476.3 | 317.62 | 2636.1 | 1.0261 | 7.6690 |
| 50 | 81.32 | 0.0010299 | 3.2400 | 340.49 | 2483.2 | 340.54 | 2645.2 | 1.0912 | 7.5930 |
| 75 | 91.76 | 0.0010372 | 2.2170 | 384.36 | 2496.1 | 384.44 | 2662.4 | 1.2132 | 7.4557 |
| 100 | 99.61 | 0.0010432 | 1.6939 | 417.40 | 2505.6 | 417.50 | 2674.9 | 1.3028 | 7.3588 |
| 125 | 106.0 | 0.0010482 | 1.3749 | 444.22 | 2513.0 | 444.35 | 2684.9 | 1.3741 | 7.2840 |
| 150 | 111.3 | 0.0010527 | 1.1593 | 466.97 | 2519.2 | 467.13 | 2693.1 | 1.4337 | 7.2230 |
| 175 | 116.0 | 0.0010568 | 1.0036 | 486.82 | 2524.5 | 487.00 | 2700.1 | 1.4850 | 7.1715 |
| 200 | 120.2 | 0.0010605 | 0.88568 | 504.49 | 2529.1 | 504.70 | 2706.2 | 1.5302 | 7.1269 |
| 225 | 124.0 | 0.0010640 | 0.79320 | 520.47 | 2533.2 | 520.71 | 2711.6 | 1.5706 | 7.0876 |
| 250 | 127.4 | 0.0010672 | 0.71866 | 535.08 | 2536.8 | 535.34 | 2716.5 | 1.6072 | 7.0524 |
| 275 | 130.6 | 0.0010703 | 0.65725 | 548.56 | 2540.1 | 548.86 | 2720.9 | 1.6408 | 7.0207 |
| 300 | 133.5 | 0.0010732 | 0.60576 | 561.10 | 2543.2 | 561.43 | 2724.9 | 1.6717 | 6.9916 |
| 325 | 136.3 | 0.0010759 | 0.56194 | 572.84 | 2545.9 | 573.19 | 2728.6 | 1.7005 | 6.9649 |
| 350 | 138.9 | 0.0010786 | 0.52418 | 583.88 | 2548.5 | 584.26 | 2732.0 | 1.7274 | 6.9401 |
| 375 | 141.3 | 0.0010811 | 0.49129 | 594.32 | 2550.9 | 594.73 | 2735.1 | 1.7526 | 6.9171 |
| 400 | 143.6 | 0.0010836 | 0.46238 | 604.22 | 2553.1 | 604.65 | 2738.1 | 1.7765 | 6.8955 |
| 450 | 147.9 | 0.0010882 | 0.41390 | 622.65 | 2557.1 | 623.14 | 2743.4 | 1.8205 | 6.8560 |
| 500 | 151.8 | 0.0010925 | 0.37481 | 639.54 | 2560.7 | 640.09 | 2748.1 | 1.8604 | 6.8207 |
| 550 | 155.5 | 0.0010967 | 0.34260 | 655.16 | 2563.9 | 655.76 | 2752.3 | 1.8970 | 6.7886 |
| 600 | 158.8 | 0.0011006 | 0.31558 | 669.72 | 2566.8 | 670.38 | 2756.1 | 1.9308 | 6.7592 |
| 650 | 162.0 | 0.0011044 | 0.29259 | 683.36 | 2569.4 | 684.08 | 2759.6 | 1.9623 | 6.7322 |
| 700 | 164.9 | 0.0011080 | 0.27277 | 696.23 | 2571.8 | 697.00 | 2762.8 | 1.9918 | 6.7071 |
| 750 | 167.7 | 0.0011114 | 0.25551 | 708.40 | 2574.0 | 709.24 | 2765.6 | 2.0195 | 6.6836 |
| 800 | 170.4 | 0.0011148 | 0.24034 | 719.97 | 2576.0 | 720.86 | 2768.3 | 2.0457 | 6.6616 |
| 850 | 172.9 | 0.0011180 | 0.22689 | 731.00 | 2577.9 | 731.95 | 2770.8 | 2.0705 | 6.6409 |
| 900 | 175.4 | 0.0011212 | 0.21489 | 741.55 | 2579.6 | 742.56 | 2773.0 | 2.0940 | 6.6213 |
| 950 | 177.7 | 0.0011242 | 0.20410 | 751.67 | 2581.2 | 752.74 | 2775.1 | 2.1165 | 6.6027 |
| 1000 | 179.9 | 0.0011272 | 0.19436 | 761.39 | 2582.7 | 762.52 | 2777.1 | 2.1381 | 6.5850 |
| 1100 | 184.1 | 0.0011330 | 0.17745 | 779.78 | 2585.5 | 781.03 | 2780.6 | 2.1785 | 6.5520 |
| 1200 | 188.0 | 0.0011385 | 0.16326 | 796.96 | 2587.8 | 798.33 | 2783.7 | 2.2159 | 6.5217 |
| 1300 | 191.6 | 0.0011438 | 0.15119 | 813.11 | 2589.9 | 814.60 | 2786.5 | 2.2508 | 6.4936 |
| 1400 | 195.0 | 0.0011489 | 0.14078 | 828.36 | 2591.8 | 829.97 | 2788.8 | 2.2835 | 6.4675 |
| 1500 | 198.3 | 0.0011539 | 0.13171 | 842.83 | 2593.4 | 844.56 | 2791.0 | 2.3143 | 6.4430 |
| 1750 | 205.7 | 0.0011657 | 0.11343 | 876.13 | 2596.7 | 878.17 | 2795.2 | 2.3845 | 6.3877 |
| 2000 | 212.4 | 0.0011767 | 0.099585 | 906.14 | 2599.1 | 908.50 | 2798.3 | 2.4468 | 6.3390 |

Reference States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

Saturation Pressure Table

| Pressure <br> (MPa) | Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | V ( $\mathrm{m}^{3} / \mathrm{kg}$ ) |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 2250 | 218.41 | 0.0011873 | 0.088715 | 933.57 | 2600.9 | 936.24 | 2800.5 | 2.5029 | 6.2954 |
| 2500 | 223.95 | 0.0011974 | 0.079949 | 958.91 | 2602.1 | 961.91 | 2801.9 | 2.5543 | 6.2558 |
| 3000 | 233.85 | 0.0012167 | 0.066664 | 1004.7 | 2603.2 | 1008.3 | 2803.2 | 2.6455 | 6.1856 |
| 3500 | 242.56 | 0.0012350 | 0.057058 | 1045.5 | 2602.9 | 1049.8 | 2802.6 | 2.7254 | 6.1243 |
| 4000 | 250.35 | 0.0012526 | 0.049776 | 1082.5 | 2601.7 | 1087.5 | 2800.8 | 2.7968 | 6.0696 |
| 5000 | 263.94 | 0.0012864 | 0.039446 | 1148.2 | 2597.0 | 1154.6 | 2794.2 | 2.9210 | 5.9737 |
| 6000 | 275.58 | 0.0013193 | 0.032448 | 1206.0 | 2589.9 | 1213.9 | 2784.6 | 3.0278 | 5.8901 |
| 7000 | 285.83 | 0.0013519 | 0.027378 | 1258.2 | 2581.0 | 1267.7 | 2772.6 | 3.1224 | 5.8148 |
| 8000 | 295.01 | 0.0013847 | 0.023526 | 1306.2 | 2570.5 | 1317.3 | 2758.7 | 3.2081 | 5.7450 |
| 9000 | 303.34 | 0.0014181 | 0.020490 | 1351.1 | 2558.5 | 1363.9 | 2742.9 | 3.2870 | 5.6791 |
| 10000 | 311.00 | 0.0014526 | 0.018030 | 1393.5 | 2545.2 | 1408.1 | 2725.5 | 3.3606 | 5.6160 |
| 11000 | 318.08 | 0.0014885 | 0.015990 | 1434.1 | 2530.5 | 1450.4 | 2706.3 | 3.4303 | 5.5545 |
| 12000 | 324.68 | 0.0015263 | 0.014264 | 1473.1 | 2514.3 | 1491.5 | 2685.4 | 3.4967 | 5.4939 |
| 13000 | 330.85 | 0.0015665 | 0.012780 | 1511.1 | 2496.5 | 1531.5 | 2662.7 | 3.5608 | 5.4336 |
| 14000 | 336.67 | 0.0016097 | 0.011485 | 1548.4 | 2477.1 | 1571.0 | 2637.9 | 3.6232 | 5.3727 |
| 15000 | 342.16 | 0.0016570 | 0.010338 | 1585.3 | 2455.6 | 1610.2 | 2610.7 | 3.6846 | 5.3106 |
| 16000 | 347.35 | 0.0017094 | 0.0093088 | 1622.3 | 2431.8 | 1649.7 | 2580.8 | 3.7457 | 5.2463 |
| 17000 | 352.29 | 0.0017693 | 0.0083709 | 1659.9 | 2405.2 | 1690.0 | 2547.5 | 3.8077 | 5.1787 |
| 18000 | 356.99 | 0.0018398 | 0.0075017 | 1699.0 | 2374.8 | 1732.1 | 2509.8 | 3.8718 | 5.1061 |
| 19000 | 361.47 | 0.0019268 | 0.0066773 | 1740.5 | 2339.1 | 1777.2 | 2466.0 | 3.9401 | 5.0256 |
| 20000 | 365.75 | 0.0020400 | 0.0058652 | 1786.4 | 2295.0 | 1827.2 | 2412.3 | 4.0156 | 4.9314 |
| 21000 | 369.83 | 0.0022055 | 0.0049961 | 1841.2 | 2233.7 | 1887.6 | 2338.6 | 4.1064 | 4.8079 |
| 22000 | 373.71 | 0.0027044 | 0.0036475 | 1951.8 | 2092.8 | 2011.3 | 2173.1 | 4.2945 | 4.5446 |
| 22064 | 373.95 | 0.0031056 | 0.0031056 | 2015.7 | 2015.7 | 2084.3 | 2084.3 | 4.4070 | 4.4070 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

$$
\mathrm{P}=10 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=45.81^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{P}=50 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=81.32^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{P}=100 \mathrm{kPa}\left(\mathrm{~T}_{\mathrm{sat}}=99.61^{\circ} \mathrm{C}\right)
$$

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\left(\mathbf{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathrm{kJ} / \mathrm{kg} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 14.670 | 2437.16 | 2583.9 | 8.1488 | 3.2400 | 2483.2 | 2645.2 | 7.5930 | 1.6939 | 2505.6 | 2674.9 | 7.3588 |
| 50 | 14.867 | 2443.3 | 2592.0 | 8.1741 |  |  |  |  |  |  |  |  |
| 100 | 17.196 | 2515.5 | 2687.5 | 8.4489 | 3.4187 | 2511.5 | 2682.42 | 7.6953 |  |  |  |  |
| 150 | 19.513 | 2587.9 | 2783.0 | 8.6892 | 3.8897 | 2585.7 | 2780.21 | 7.9413 | 1.9367 | 2582.9 | 2776.6 | 7.6148 |
| 200 | 21.826 | 2661.3 | 2879.6 | 8.9049 | 4.3562 | 2660.0 | 2877.77 | 8.1592 | 2.1724 | 2658.2 | 2875.5 | 7.8356 |
| 250 | 24.136 | 2736.1 | 2977.4 | 9.1015 | 4.8206 | 2735.1 | 2976.15 | 8.3568 | 2.4062 | 2733.9 | 2974.5 | 8.0346 |
| 300 | 26.446 | 2812.3 | 3076.7 | 9.2827 | 5.2840 | 2811.6 | 3075.76 | 8.5386 | 2.6388 | 2810.6 | 3074.5 | 8.2172 |
| 400 | 31.063 | 2969.3 | 3279.9 | 9.6094 | 6.2094 | 2968.9 | 3279.33 | 8.8659 | 3.1027 | 2968.3 | 3278.6 | 8.5452 |
| 500 | 35.680 | 3132.9 | 3489.7 | 9.8998 | 7.1338 | 3132.6 | 3489.27 | 9.1566 | 3.5655 | 3132.2 | 3488.7 | 8.8361 |
| 600 | 40.296 | 3303.3 | 3706.3 | 10.163 | 8.0576 | 3303.1 | 3706.0 | 9.4201 | 4.0279 | 3302.8 | 3705.6 | 9.0998 |
| 700 | 44.911 | 3480.8 | 3929.9 | 10.406 | 8.9812 | 3480.6 | 3929.7 | 9.6625 | 4.4900 | 3480.4 | 3929.4 | 9.3424 |
| 800 | 49.527 | 3665.3 | 4160.6 | 10.631 | 9.9047 | 3665.2 | 4160.44 | 9.8882 | 4.9519 | 3665.0 | 4160.2 | 9.5681 |
| 900 | 54.142 | 3856.9 | 4398.3 | 10.843 | 10.828 | 3856.8 | 4398.19 | 10.100 | 5.4137 | 3856.6 | 4398.0 | 9.7800 |
| 1000 | 58.758 | 4055.2 | 4642.8 | 11.043 | 11.751 | 4055.1 | 4642.7 | 10.300 | 5.8754 | 4055.0 | 4642.6 | 9.9800 |

$$
\mathrm{P}=200 \mathrm{kPa}\left(\mathrm{~T}_{\mathrm{sat}}=120.2^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{P}=300 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=133.5^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{P}=40 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=143.6^{\circ} \mathrm{C}\right)
$$

| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | H $(\mathrm{kJ} / \mathrm{kg})$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathrm{~kJ} / \mathrm{kg}^{2} * \mathrm{~K}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.88568 | 2529.1 | 2706.23 | 7.1269 | 0.60576 | 2543.2 | 2724.9 | 6.9916 | 0.46238 | 2553.1 | 2738.1 | 6.8955 |
| 150 | 0.95986 | 2577.1 | 2769.1 | 7.2810 | 0.63401 | 2571.0 | 2761.2 | 7.0791 | 0.47088 | 2564.4 | 2752.8 | 6.9306 |
| 200 | 1.0805 | 2654.6 | 2870.7 | 7.5081 | 0.71642 | 2651.0 | 2865.9 | 7.3131 | 0.53433 | 2647.2 | 2860.9 | 7.1723 |
| 250 | 1.1989 | 2731.4 | 2971.2 | 7.7100 | 0.79644 | 2728.9 | 2967.9 | 7.5180 | 0.59520 | 2726.4 | 2964.5 | 7.3804 |
| 300 | 1.3162 | 2808.8 | 3072.1 | 7.8941 | 0.87534 | 2807.0 | 3069.6 | 7.7037 | 0.65489 | 2805.1 | 3067.1 | 7.5677 |
| 400 | 1.5493 | 2967.1 | 3277.0 | 8.2236 | 1.0315 | 2966.0 | 3275.5 | 8.0347 | 0.77264 | 2964.9 | 3273.9 | 7.9002 |
| 500 | 1.7814 | 3131.4 | 3487.7 | 8.5152 | 1.1867 | 3130.6 | 3486.6 | 8.3271 | 0.88936 | 3129.8 | 3485.5 | 8.1933 |
| 600 | 2.0130 | 3302.2 | 3704.8 | 8.7792 | 1.3414 | 3301.6 | 3704.0 | 8.5914 | 1.0056 | 3301.0 | 3703.2 | 8.4580 |
| 700 | 2.2443 | 3479.9 | 3928.8 | 9.0220 | 1.4958 | 3479.5 | 3928.2 | 8.8344 | 1.1215 | 3479.0 | 3927.6 | 8.7012 |
| 800 | 2.4755 | 3664.7 | 4159.8 | 9.2479 | 1.6500 | 3664.3 | 4159.3 | 9.0604 | 1.2373 | 3663.9 | 4158.8 | 8.9273 |
| 900 | 2.7066 | 3856.3 | 4397.6 | 9.4598 | 1.8042 | 3856.0 | 4397.3 | 9.2724 | 1.3530 | 3855.7 | 4396.9 | 9.1394 |
| 1000 | 2.9375 | 4054.8 | 4642.3 | 9.6599 | 1.9582 | 4054.5 | 4642.0 | 9.4726 | 1.4686 | 4054.3 | 4641.7 | 9.3396 |

$$
P=500 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=151.8^{\circ} \mathrm{C}\right) \quad \mathrm{P}=600 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=158.8^{\circ} \mathrm{C}\right) \quad \mathrm{P}=800 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=170.4^{\circ} \mathrm{C}\right)
$$

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\begin{gathered} \mathrm{S} \\ \left(\mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} S \\ (\mathrm{~kJ} / \mathrm{kg} * K) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.37481 | 2560.7 | 2748.1 | 6.8207 | 0.31558 | 2566.8 | 2756.1 | 6.7592 | 0.24034 | 2576.0 | 2768.3 | 6.6616 |
| 200 | 0.42503 | 2643.3 | 2855.8 | 7.0610 | 0.35212 | 2639.3 | 2850.6 | 6.9683 | 0.26088 | 2631.0 | 2839.7 | 6.8176 |
| 250 | 0.47443 | 2723.8 | 2961.0 | 7.2724 | 0.39390 | 2721.2 | 2957.6 | 7.1832 | 0.29320 | 2715.9 | 2950.4 | 7.0401 |
| 300 | 0.52261 | 2803.2 | 3064.6 | 7.4614 | 0.43442 | 2801.4 | 3062.0 | 7.3740 | 0.32416 | 2797.5 | 3056.9 | 7.2345 |
| 400 | 0.61730 | 2963.7 | 3272.3 | 7.7955 | 0.51374 | 2962.5 | 3270.8 | 7.7097 | 0.38428 | 2960.2 | 3267.6 | 7.5734 |
| 500 | 0.71094 | 3129.0 | 3484.5 | 8.0892 | 0.59200 | 3128.2 | 3483.4 | 8.0041 | 0.44332 | 3126.6 | 3481.3 | 7.8692 |
| 600 | 0.80409 | 3300.4 | 3702.5 | 8.3543 | 0.66976 | 3299.8 | 3701.7 | 8.2695 | 0.50185 | 3298.7 | 3700.1 | 8.1354 |
| 700 | 0.89696 | 3478.5 | 3927.0 | 8.5977 | 0.74725 | 3478.1 | 3926.4 | 8.5131 | 0.56011 | 3477.2 | 3925.3 | 8.3794 |
| 800 | 0.98966 | 3663.6 | 4158.4 | 8.8240 | 0.82457 | 3663.2 | 4157.9 | 8.7395 | 0.61820 | 3662.4 | 4157.0 | 8.6061 |
| 900 | 1.0823 | 3855.4 | 4396.6 | 9.0362 | 0.90178 | 3855.1 | 4396.2 | 8.9518 | 0.67619 | 3854.5 | 4395.5 | 8.8185 |
| 1000 | 1.1748 | 4054.0 | 4641.4 | 9.2364 | 0.97893 | 4053.7 | 4641.1 | 9.1521 | 0.73411 | 4053.2 | 4640.5 | 9.0189 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

|  | $\mathrm{P}=1000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=179.9^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1200 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=188.0^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1400 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=195.0^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \\ \hline \end{gathered}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} *\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ |
| Sat | 0.19436 | 2582.7 | 2777.1 | 6.5850 | 0.16326 | 2587.8 | 2783.7 | 6.5217 | 0.14078 | 2591.8 | 2788.8 | 6.4675 |
| 200 | 0.20602 | 2622.2 | 2828.3 | 6.6955 | 0.16934 | 2612.9 | 2816.1 | 6.5909 | 0.14303 | 2602.7 | 2803.0 | 6.4975 |
| 250 | 0.23275 | 2710.4 | 2977.8 | 6.9265 | 0.19241 | 2704.7 | 2935.6 | 6.8313 | 0.1635608 | 2698.9 | 2927.9 | 6.7488 |
| 300 | 0.25799 | 2793.6 | 3077.0 | 7.1246 | 0.21386 | 2789.7 | 3046.3 | 7.0335 | 0.18232 | 2785.7 | 3040.9 | 6.9552 |
| 400 | 0.30661 | 2957.9 | 3280.1 | 7.4669 | 0.25482 | 2955.5 | 3261.3 | 7.3793 | 0.21782 | 2953.1 | 3258.1 | 7.3046 |
| 500 | 0.35411 | 3125.0 | 3489.8 | 7.7641 | 0.29464 | 3123.4 | 3476.9 | 7.6779 | 0.25216 | 3121.8 | 3474.8 | 7.6047 |
| 600 | 0.40111 | 3297.5 | 3706.4 | 8.0310 | 0.33394 | 3296.3 | 3697.0 | 7.9455 | 0.28597 | 3295.1 | 3695.4 | 7.8730 |
| 700 | 0.44783 | 3476.2 | 3930.0 | 8.2755 | 0.37297 | 3475.3 | 3922.9 | 8.1904 | 0.31951 | 3474.4 | 3921.7 | 8.1183 |
| 800 | 0.49438 | 3661.7 | 4160.7 | 8.5024 | 0.41184 | 3661.0 | 4155.2 | 8.4176 | 0.35287 | 3660.2 | 4154.3 | 8.3457 |
| 900 | 0.54083 | 3853.9 | 4398.4 | 8.7150 | 0.45059 | 3853.3 | 4394.0 | 8.6303 | 0.38614 | 3852.7 | 4393.3 | 8.5587 |
| 1000 | 0.58721 | 4052.7 | 4642.8 | 8.9155 | 0.48928 | 4052.2 | 4639.4 | 8.8310 | 0.41933 | 4051.7 | 4638.8 | 8.7594 |
| $\mathrm{P}=1600 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=201.4^{\mathbf{0}} \mathrm{C}\right)$ |  |  |  |  | $\mathrm{P}=1800 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=207.1^{\circ} \mathrm{C}\right.$ ) |  |  |  | $\mathbf{P}=2000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=212.4^{\mathbf{0}} \mathrm{C}\right)$ |  |  |  |


| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathrm{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\begin{gathered} \mathrm{S} \\ \left(\mathrm{~kJ} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{U}}$ | $\begin{gathered} \mathrm{H} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathrm{U}}$ | $\begin{gathered} \mathrm{H} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathrm{S} \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.12374 | 2594.8 | 2792.8 | 6.4199 | 0.11037 | 2597.2 | 2795.9 | 6.3775 | 0.0995851 | 2599.1 | 2798.3 | 6.3390 |
| 250 | 0.14190 | 2692.9 | 2919.9 | 6.6753 | 0.12502 | 2686.7 | 2911.7 | 6.6087 | 0.11150 | 2680.2 | 2903.2 | 6.5475 |
| 300 | 0.15866 | 2781.6 | 3035.4 | 6.8863 | 0.14025 | 2777.4 | 3029.9 | 6.8246 | 0.12551 | 2773.2 | 3024.2 | 6.7684 |
| 400 | 0.19007 | 2950.7 | 3254.9 | 7.2394 | 0.16849 | 2948.3 | 3251.6 | 7.1814 | 0.15121 | 2945.9 | 3248.3 | 7.1292 |
| 500 | 0.22029 | 3120.1 | 3472.6 | 7.5409 | 0.19551 | 3118.5 | 3470.4 | 7.4845 | 0.17568 | 3116.9 | 3468.2 | 7.4337 |
| 600 | 0.24999 | 3293.9 | 3693.9 | 7.8100 | 0.22200 | 3292.7 | 3692.3 | 7.7543 | 0.19961 | 3291.5 | 3690.7 | 7.7043 |
| 700 | 0.27940 | 3473.5 | 3920.5 | 8.0557 | 0.24821 | 3472.6 | 3919.4 | 8.0004 | 0.22326 | 3471.6 | 3918.2 | 7.9509 |
| 800 | 0.30865 | 3659.5 | 4153.3 | 8.2834 | 0.27426 | 3658.8 | 4152.4 | 8.2284 | 0.24674 | 3658.0 | 4151.5 | 8.1790 |
| 900 | 0.33780 | 3852.1 | 4392.6 | 8.4965 | 0.30020 | 3851.5 | 4391.9 | 8.4416 | 0.27012 | 3850.9 | 4391.1 | 8.3925 |
| 1000 | 0.36687 | 4051.2 | 4638.2 | 8.6974 | 0.32606 | 4050.7 | 4637.6 | 8.6426 | 0.29342 | 4050.2 | 4637.0 | 8.5936 |

$$
\mathbf{P}=2500 \mathrm{kPa}\left(\mathrm{~T}_{\text {sat }}=224.0^{\circ} \mathrm{C}\right)
$$

$\mathbf{P}=3000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=233 . \mathbf{9}^{\circ} \mathrm{C}\right)$
$\mathrm{P}=3500 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=242 . \mathbf{6}^{\circ} \mathrm{C}\right)$

| Temp. ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \mathbf{V} \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{\left(\mathrm{kJ} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{ }$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\begin{gathered} \mathbf{S} \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathbf{K}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right)}{\mathrm{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.079949 | 2602.1 | 2801.9 | 6.25577 | 0.066664 | 2603.2 | 2803.2 | 6.1856 | 0.057058 | 2602.9 | 2802.6 | 6.1243 |
| 250 | 0.087053 | 2663.3 | 2880.9 | 6.41071 | 0.070627 | 2644.7 | 2856.5 | 6.2893 | 0.058757 | 2624.0 | 2829.7 | 6.1764 |
| 300 | 0.098937 | 2762.2 | 3009.6 | 6.64590 | 0.081179 | 2750.8 | 2994.3 | 6.5412 | 0.068453 | 2738.8 | 2978.4 | 6.4484 |
| 400 | 0.12012 | 2939.8 | 3240.1 | 7.01697 | 0.099379 | 2933.5 | 3231.7 | 6.9234 | 0.084556 | 2927.2 | 3223.2 | 6.8427 |
| 500 | 0.13999 | 3112.8 | 3462.7 | 7.32540 | 0.11620 | 3108.6 | 3457.2 | 7.2359 | 0.099195 | 3104.5 | 3451.6 | 7.1593 |
| 600 | 0.15931 | 3288.5 | 3686.8 | 7.59787 | 0.13245 | 3285.5 | 3682.8 | 7.5103 | 0.11325 | 3282.5 | 3678.9 | 7.4356 |
| 700 | 0.17835 | 3469.3 | 3915.2 | 7.84549 | 0.14841 | 3467.0 | 3912.2 | 7.7590 | 0.12702 | 3464.7 | 3909.3 | 7.6854 |
| 800 | 0.19721 | 3656.2 | 4149.2 | 8.07434 | 0.16420 | 3654.3 | 4146.9 | 7.9885 | 0.14061 | 3652.5 | 4144.6 | 7.9156 |
| 900 | 0.21597 | 3849.4 | 4389.3 | 8.28822 | 0.17988 | 3847.9 | 4387.5 | 8.2028 | 0.15410 | 3846.4 | 4385.7 | 8.1303 |
| 1000 | 0.23466 | 4048.9 | 4635.6 | 8.48964 | 0.19549 | 4047.7 | 4634.1 | 8.4045 | 0.16751 | 4046.4 | 4632.7 | 8.3324 |


| Temp. ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \text { V } \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} *\right) \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathrm{S} \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} \text { V } \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{2} \mathrm{~S}_{\mathrm{K}}\right)}{\mathrm{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.049776 | 2601.7 | 2800.8 | 6.0696 | 0.044059 | 2599.7 | 2797.9 | 6.0197 | 0.039446 | 2597.0 | 2794.2 | 5.9737 |
| 300 | 0.058870 | 2726.2 | 2961.7 | 6.3639 | 0.051378 | 2713.0 | 2944.2 | 6.2854 | 0.045346 | 2699.0 | 2925.7 | 6.2110 |
| 400 | 0.073431 | 2920.7 | 3214.5 | 6.7714 | 0.064772 | 2914.2 | 3205.6 | 6.7070 | 0.057837 | 2907.5 | 3196.7 | 6.6483 |
| 500 | 0.086442 | 3100.3 | 3446.0 | 7.0922 | 0.076521 | 3096.0 | 3440.4 | 7.0323 | 0.068583 | 3091.7 | 3434.7 | 6.9781 |
| 600 | 0.098859 | 3279.4 | 3674.9 | 7.3705 | 0.087662 | 3276.4 | 3670.9 | 7.3127 | 0.078704 | 3273.3 | 3666.8 | 7.2605 |
| 700 | 0.11098 | 3462.4 | 3906.3 | 7.6214 | 0.098500 | 3460.0 | 3903.3 | 7.5646 | 0.088518 | 3457.7 | 3900.3 | 7.5136 |
| 800 | 0.12292 | 3650.6 | 4142.3 | 7.8523 | 0.10916 | 3648.8 | 4140.0 | 7.7962 | 0.098158 | 3646.9 | 4137.7 | 7.7458 |
| 900 | 0.13476 | 3844.8 | 4383.9 | 8.0674 | 0.11972 | 3843.3 | 4382.1 | 8.0118 | 0.10769 | 3841.8 | 4380.2 | 7.9618 |
| 1000 | 0.14652 | 4045.1 | 4631.2 | 8.2697 | 0.13020 | 4043.9 | 4629.8 | 8.2144 | 0.11715 | 4042.6 | 4628.3 | 8.1648 |

[^2]
## Superheated Vapor

|  | $\mathrm{P}=6000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=275.6^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=7000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=285.8^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=8000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=295.0^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathbf{S}} * \mathbf{K}\right)}{ }$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{\left(\mathrm{kJ} / \mathrm{kg}^{\mathrm{S}} * \mathrm{~K}\right)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k} \mathbf{J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathbf{S}} \mathbf{S}\right)}{ }$ |
| Sat | 0.032448 | 2589.9 | 2784.6 | 5.8901 | 0.027378 | 2581.0 | 2772.6 | 5.8148 | 0.023526 | 2570.5 | 2758.7 | 5.7450 |
| 300 | 0.036189 | 2668.4 | 2885.5 | 6.0703 | 0.029492 | 2633.5 | 2839.9 | 5.9337 | 0.024279 | 2592.3 | 2786.5 | 5.7937 |
| 400 | 0.047419 | 2893.7 | 3178.2 | 6.5432 | 0.039958 | 2879.5 | 3159.2 | 6.4502 | 0.034344 | 2864.6 | 3139.4 | 6.3658 |
| 500 | 0.056671 | 3083.1 | 3423.1 | 6.8826 | 0.048157 | 3074.3 | 3411.4 | 6.8000 | 0.041767 | 3065.4 | 3399.5 | 6.7266 |
| 600 | 0.065265 | 3267.2 | 3658.7 | 7.1693 | 0.055665 | 3260.9 | 3650.6 | 7.0910 | 0.048463 | 3254.7 | 3642.4 | 7.0221 |
| 700 | 0.073545 | 3453.0 | 3894.3 | 7.4246 | 0.062850 | 3448.3 | 3888.2 | 7.3486 | 0.054828 | 3443.6 | 3882.2 | 7.2821 |
| 800 | 0.081648 | 3643.2 | 4133.1 | 7.6582 | 0.069855 | 3639.5 | 4128.4 | 7.5836 | 0.061011 | 3635.7 | 4123.8 | 7.5184 |
| 900 | 0.089641 | 3838.8 | 4376.6 | 7.8751 | 0.076750 | 3835.7 | 4373.0 | 7.8014 | 0.067082 | 3832.6 | 4369.3 | 7.7371 |
| 1000 | 0.097560 | 4040.1 | 4625.4 | 8.0786 | 0.083571 | 4037.5 | 4622.5 | 8.0055 | 0.073079 | 4035.0 | 4619.6 | 7.9419 |


|  | $\mathbf{P}=9000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=303.3^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=10000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=311.0^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=15000 \mathrm{kPa}\left(\mathrm{~T}_{\mathrm{sat}}=342.2^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathrm{~kJ} / \mathrm{kg}^{*} * \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} \text { V } \\ \left(\mathbf{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathrm{~kJ} / \mathrm{kg}^{*} * \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | U <br> (kJ/kg) | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ |
| Sat | 0.020490 | 2558.5 | 2742.9 | 5.6791 | 0.018030 | 2545.2 | 2725.5 | 5.6160 | 0.0103384 | 2455.6 | 2610.7 | 5.3106 |
| 350 | 0.025816 | 2724.9 | 2957.3 | 6.0380 | 0.022440 | 2699.6 | 2924.0 | 5.9459 |  |  |  |  |
| 400 | 0.029960 | 2849.2 | 3118.8 | 6.2876 | 0.026436 | 2833.1 | 3097.4 | 6.2141 | 0.015671 | 2740.6 | 2975.7 | 5.8819 |
| 500 | 0.036793 | 3056.3 | 3387.4 | 6.6603 | 0.032811 | 3047.0 | 3375.1 | 6.5995 | 0.020827 | 2998.4 | 3310.8 | 6.3480 |
| 600 | 0.042861 | 3248.4 | 3634.1 | 6.9605 | 0.038378 | 3242.0 | 3625.8 | 6.9045 | 0.024921 | 3209.3 | 3583.1 | 6.6796 |
| 700 | 0.048589 | 3438.8 | 3876.1 | 7.2229 | 0.043597 | 3434.0 | 3870.0 | 7.1693 | 0.028621 | 3409.8 | 3839.1 | 6.9572 |
| 800 | 0.054132 | 3632.0 | 4119.1 | 7.4606 | 0.048629 | 3628.2 | 4114.5 | 7.4085 | 0.032121 | 3609.2 | 4091.1 | 7.2037 |
| 900 | 0.059562 | 3829.6 | 4365.7 | 7.6802 | 0.053547 | 3826.5 | 4362.0 | 7.6290 | 0.035503 | 3811.2 | 4343.7 | 7.4288 |
| 1000 | 0.064918 | 4032.4 | 4616.7 | 7.8855 | 0.058390 | 4029.9 | 4613.8 | 7.8349 | 0.038808 | 4017.1 | 4599.2 | 7.6378 |


|  | $\mathrm{P}=20000 \mathrm{kPa}\left(\mathrm{T}_{\text {sat }}=365.8^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=40000 \mathrm{kPa}$ |  |  |  | $P=60000 \mathrm{kPa}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | H <br> (kJ/kg) | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | U <br> (kJ/kg) | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\begin{gathered} \text { V } \\ \left(\mathrm{m}^{3 / k g}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right)}{\mathrm{S}}$ |
| Sat | 0.0058652 | 2295.0 | 2412.3 | 4.9314 | Supercritical |  |  |  | Supercritical |  |  |  |
| 400 | 0.0099503 | 2617.9 | 2816.9 | 5.5525 | 0.0019108 | 1854.9 | 1931.4 | 4.1145 | 0.0016329 | 1745.2 | 1843.2 | 3.9317 |
| 500 | 0.014793 | 2945.3 | 3241.2 | 6.1446 | 0.0056231 | 2681.6 | 2906.5 | 5.4744 | 0.0029522 | 2393.2 | 2570.3 | 4.9356 |
| 600 | 0.018185 | 3175.3 | 3539.0 | 6.5075 | 0.0080891 | 3026.8 | 3350.4 | 6.0170 | 0.0048330 | 2866.8 | 3156.8 | 5.6527 |
| 700 | 0.021133 | 3385.1 | 3807.8 | 6.7990 | 0.0099297 | 3282.0 | 3679.1 | 6.3740 | 0.0062649 | 3175.4 | 3551.3 | 6.0814 |
| 800 | 0.023869 | 3590.1 | 4067.5 | 7.0531 | 0.011521 | 3511.8 | 3972.6 | 6.6612 | 0.0074560 | 3432.6 | 3880.0 | 6.4033 |
| 900 | 0.026483 | 3795.7 | 4325.4 | 7.2829 | 0.012980 | 3733.3 | 4252.5 | 6.9106 | 0.0085188 | 3670.9 | 4182.0 | 6.6725 |
| 1000 | 0.029020 | 4004.3 | 4584.7 | 7.4950 | 0.014360 | 3952.9 | 4527.3 | 7.1355 | 0.0095043 | 3901.9 | 4472.2 | 6.9099 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

## Subcooled Liquid

|  | $\mathrm{P}=5000 \mathrm{kPa}\left(263.9^{\circ} \mathrm{C}\right)$ |  |  |  |  | $\mathrm{P}=10000 \mathrm{kPa}\left(311.0^{\circ} \mathrm{C}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k} \mathbf{J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathrm{kJ} / \mathrm{kg} * K)}{\mathrm{S}}$ | $\begin{gathered} \rho \\ \left(\mathbf{k g} / \mathbf{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { V } \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathrm{kJ} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\mathrm{S}}$ |
| 10 | 1002.0 | 0.00099797 | 41.893 | 46.883 | 0.15062 | 1004.4 | 0.00099564 | 41.762 | 51.719 | 0.15009 |
| 20 | 1000.4 | 0.00099956 | 83.609 | 88.61 | 0.29543 | 1002.7 | 0.00099731 | 83.308 | 93.281 | 0.29435 |
| 40 | 994.36 | 0.0010057 | 166.92 | 171.95 | 0.57046 | 996.52 | 0.0010035 | 166.33 | 176.36 | 0.56851 |
| 60 | 985.33 | 0.0010149 | 250.29 | 255.36 | 0.82865 | 987.48 | 0.0010127 | 249.42 | 259.55 | 0.82602 |
| 80 | 973.97 | 0.0010267 | 333.82 | 338.95 | 1.0723 | 976.17 | 0.0010244 | 332.69 | 342.94 | 1.0691 |
| 100 | 960.63 | 0.0010410 | 417.64 | 422.85 | 1.3034 | 962.93 | 0.0010385 | 416.23 | 426.62 | 1.2996 |
| 120 | 945.49 | 0.0010576 | 501.90 | 507.19 | 1.5236 | 947.94 | 0.0010549 | 500.18 | 510.73 | 1.5191 |
| 140 | 928.63 | 0.0010769 | 586.79 | 592.18 | 1.7344 | 931.28 | 0.0010738 | 584.71 | 595.45 | 1.7293 |
| 160 | 910.05 | 0.0010988 | 672.55 | 678.04 | 1.9374 | 912.95 | 0.0010954 | 670.06 | 681.01 | 1.9315 |
| 180 | 889.65 | 0.0011240 | 759.46 | 765.08 | 2.1338 | 892.88 | 0.0011200 | 756.48 | 767.68 | 2.1271 |
| 200 | 867.26 | 0.0011531 | 847.91 | 853.68 | 2.3251 | 870.94 | 0.0011482 | 844.31 | 855.80 | 2.3174 |
| 220 | 842.58 | 0.0011868 | 938.39 | 944.32 | 2.5127 | 846.84 | 0.0011809 | 934.00 | 945.81 | 2.5037 |
| 240 | 815.10 | 0.0012268 | 1031.6 | 1037.7 | 2.6983 | 820.18 | 0.0012192 | 1026.1 | 1038.3 | 2.6876 |
| 260 | 784.03 | 0.0012755 | 1128.5 | 1134.9 | 2.8841 | 790.30 | 0.0012653 | 1121.6 | 1134.3 | 2.8710 |
| 280 |  |  |  |  |  | 756.07 | 0.0013226 | 1221.8 | 1235.0 | 3.0565 |
| 300 |  |  |  |  |  | 715.29 | 0.0013980 | 1329.4 | 1343.3 | 3.2488 |
| Sat | 777.369 | 0.0012864 | 1148.2 | 1154.64 | 2.9210 | 688.42 | 0.0014526 | 1393.5 | 1408.1 | 3.3606 |


|  | $\mathrm{P}=15000 \mathrm{kPa}\left(342.2{ }^{\circ} \mathrm{C}\right)$ |  |  |  |  | $\mathrm{P}=20000 \mathrm{kPa}\left(365.8^{\circ} \mathrm{C}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathrm{kJ} / \mathrm{kg} * K)}{\mathbf{S}}$ | $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k} \mathbf{J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \mathbf{S}\right)}{\mathbf{S}}$ |
| 10 | 1006.71 | 0.0009933 | 41.626 | 56.526 | 0.14951 | 1009.0 | 0.000991069 | 41.486 | 61.307 | 0.14888 |
| 20 | 1004.926 | 0.0009951 | 83.007 | 97.934 | 0.29323 | 1007.1 | 0.000992916 | 82.708 | 102.57 | 0.29207 |
| 40 | 998.65 | 0.0010013 | 165.75 | 180.77 | 0.56656 | 1000.8 | 0.000999233 | 165.17 | 185.16 | 0.56461 |
| 60 | 989.60 | 0.0010105 | 248.58 | 263.74 | 0.82340 | 991.71 | 0.0010084 | 247.75 | 267.92 | 0.82080 |
| 80 | 978.35 | 0.0010221 | 331.59 | 346.92 | 1.0659 | 980.49 | 0.0010199 | 330.50 | 350.90 | 1.0627 |
| 100 | 965.20 | 0.0010361 | 414.85 | 430.39 | 1.2958 | 967.44 | 0.0010337 | 413.50 | 434.17 | 1.2920 |
| 120 | 950.35 | 0.0010522 | 498.49 | 514.28 | 1.5148 | 952.72 | 0.0010496 | 496.85 | 517.84 | 1.5105 |
| 140 | 933.87 | 0.0010708 | 582.69 | 598.75 | 1.7243 | 936.42 | 0.0010679 | 580.71 | 602.07 | 1.7194 |
| 160 | 915.79 | 0.0010920 | 667.63 | 684.01 | 1.9259 | 918.57 | 0.0010886 | 665.27 | 687.05 | 1.9203 |
| 180 | 896.04 | 0.0011160 | 753.58 | 770.32 | 2.1206 | 899.12 | 0.0011122 | 750.77 | 773.02 | 2.1143 |
| 200 | 874.50 | 0.0011435 | 840.84 | 857.99 | 2.3100 | 877.97 | 0.0011390 | 837.49 | 860.27 | 2.3027 |
| 220 | 850.95 | 0.0011752 | 929.80 | 947.43 | 2.4951 | 854.91 | 0.0011697 | 925.77 | 949.16 | 2.4867 |
| 240 | 825.03 | 0.0012121 | 1021.0 | 1039.2 | 2.6774 | 829.67 | 0.0012053 | 1016.1 | 1040.2 | 2.6676 |
| 260 | 796.20 | 0.0012560 | 1115.1 | 1134.0 | 2.8586 | 801.78 | 0.0012472 | 1109.0 | 1134.0 | 2.8469 |
| 280 | 763.58 | 0.0013096 | 1213.4 | 1233.0 | 3.0409 | 770.52 | 0.0012978 | 1205.5 | 1231.5 | 3.0265 |
| 300 | 725.55 | 0.0013783 | 1317.6 | 1338.3 | 3.2279 | 734.71 | 0.0013611 | 1307.1 | 1334.4 | 3.2091 |
| 320 | 678.77 | 0.0014733 | 1431.9 | 1454.0 | 3.4263 | 692.06 | 0.0014450 | 1416.6 | 1445.5 | 3.3996 |
| 340 | 613.07 | 0.0016311 | 1567.9 | 1592.4 | 3.6555 | 637.23 | 0.0015693 | 1540.2 | 1571.6 | 3.6086 |
| 360 |  |  |  |  |  | 548.01 | 0.0018248 | 1703.6 | 1740.1 | 3.8787 |
| Sat | 603.52 | 0.0016570 | 1585.3 | 1610.2 | 3.6846 | 490.19 | 0.0020400 | 1786.4 | 1827.2 | 4.0156 |

## Reference

States: $\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

## Subcooled Liquid

Water
SI

|  | $\mathbf{P}=30000 \mathrm{kPa}$ |  |  |  |  | $P=50000 \mathrm{kPa}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathrm{U}}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{ }$ | $\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | U <br> (kJ/kg) | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right)}{\mathrm{S}}$ |
| 10 | 1013.5 | $9.8664 \mathrm{E}-04$ | 41.193 | 70.792 | 0.14745 | 1022.3 | $9.7816 \mathrm{E}-04$ | 40.559 | 89.467 | 0.14402 |
| 20 | 1011.5 | $9.8865 \mathrm{E}-04$ | 82.112 | 111.77 | 0.28968 | 1019.9 | $9.8047 \mathrm{E}-04$ | 80.931 | 129.95 | 0.28454 |
| 40 | 1004.9 | $9.9509 \mathrm{E}-04$ | 164.05 | 193.90 | 0.56069 | 1013.0 | $9.8715 \mathrm{E}-04$ | 161.90 | 211.25 | 0.55281 |
| 60 | 995.84 | 0.0010042 | 246.14 | 276.26 | 0.81564 | 1003.9 | $9.9616 \mathrm{E}-04$ | 243.08 | $292.88$ | $0.80549$ |
| 80 | 984.71 | 0.0010155 | 328.40 | 358.86 | 1.0564 | 992.86 | 0.0010072 | 324.42 | 374.78 | 1.0442 |
| 100 | 971.82 | 0.0010290 | 410.87 | 441.74 | 1.2847 | 980.27 | 0.0010201 | 405.93 | 456.94 | 1.2705 |
| 120 | 957.35 | 0.0010445 | 493.66 | 525.00 | 1.5020 | 966.24 | 0.0010349 | 487.69 | 539.43 | 1.4859 |
| 140 | 941.39 | 0.0010623 | 576.89 | 608.76 | 1.7098 | 950.87 | 0.0010517 | 569.77 | 622.36 | 1.6916 |
| 160 | 923.97 | 0.0010823 | 660.74 | 693.21 | 1.9094 | 934.20 | 0.0010704 | 652.32 | 705.84 | 1.8889 |
| 180 | 905.07 | 0.0011049 | 745.40 | 778.54 | $2.1020$ | $916.25$ | 0.0010914 | 735.49 | 790.06 | 2.0790 |
| 200 | 884.62 | 0.0011304 | 831.10 | 865.02 | 2.2888 | 896.97 | 0.0011149 | 819.45 | 875.19 | 2.2628 |
| 220 | 862.46 | 0.0011595 | 918.14 | 952.93 | 2.4707 | 876.30 | 0.0011412 | 904.39 | 961.45 | 2.4414 |
| 240 | 838.40 | 0.0011927 | 1006.9 | 1042.7 | 2.6491 | 854.12 | 0.0011708 | 990.55 | 1049.09 | 2.6156 |
| 260 | 812.10 | 0.0012314 | 1097.8 | 1134.7 | 2.8250 | 830.26 | 0.0012044 | 1078.2 | 1138.4 | 2.7864 |
| 280 | 783.10 | 0.0012770 | 1191.5 | 1229.8 | 3.0001 | 804.48 | 0.0012430 | 1167.7 | 1229.9 | 2.9547 |
| 300 | 750.66 | 0.0013322 | 1288.9 | 1328.9 | 3.1760 | 776.48 | 0.0012879 | 1259.6 | 1324.0 | 3.1218 |
| 320 | 713.58 | 0.0014014 | 1391.6 | 1433.7 | 3.3557 | 745.79 | 0.0013409 | 1354.3 | 1421.4 | 3.2888 |
| 340 | 669.70 | 0.0014932 | 1502.3 | 1547.1 | 3.5438 | 711.78 | 0.0014049 | 1452.9 | 1523.1 | 3.4575 |
| 360 | 614.39 | 0.0016276 | 1626.7 | 1675.6 | 3.7498 | 673.51 | 0.0014848 | 1556.5 | 1630.7 | 3.6301 |
| 380 | 533.93 | 0.0018729 | 1782.0 | 1838.2 | 4.0025 | 629.57 | 0.0015884 | 1667.1 | 1746.5 | 3.8101 |
| Sat | Supercritical |  |  |  |  | Supercritical |  |  |  |  |

## Reference

States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

| Temp. <br> $\left({ }^{\circ} \mathbf{F}\right)$ | Pressure (psia) | $\mathrm{V}\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{b}_{\mathrm{m}}\right)$ |  | U (Btu/lb ${ }_{\mathrm{m}}$ ) |  | H (Btu/lb ${ }_{\mathrm{m}}$ ) |  | $\mathrm{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\text {² }}\right.$ R) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 32.018 | 0.088713 | 0.016022 | 3299.7 | 0 | 1021.7 | $2.6319 \mathrm{E}-04$ | 1075.9 | 0 | 2.1882 |
| 35 | 0.099980 | 0.016020 | 2945.4 | 3.0056 | 1022.7 | 3.0059 | 1077.2 | 0.0060944 | 2.1777 |
| 40 | 0.12173 | 0.016020 | 2443.3 | 8.0373 | 1024.3 | 8.0377 | 1079.4 | 0.016215 | 2.1604 |
| 45 | 0.14757 | 0.016021 | 2035.5 | 13.061 | 1026.0 | 13.061 | 1081.6 | 0.026219 | 2.1435 |
| 50 | 0.17814 | 0.016024 | 1702.8 | 18.077 | 1027.6 | 18.078 | 1083.8 | 0.036110 | 2.1271 |
| 55 | 0.21414 | 0.016029 | 1430.2 | 23.089 | 1029.3 | 23.089 | 1086.0 | 0.045895 | 2.1111 |
| 60 | 0.25640 | 0.016035 | 1206.0 | 28.096 | 1030.9 | 28.096 | 1088.2 | 0.055576 | 2.0954 |
| 65 | 0.30580 | 0.016043 | 1020.7 | 33.099 | 1032.5 | 33.100 | 1090.3 | 0.065158 | 2.0802 |
| 70 | 0.36336 | 0.016052 | 867.11 | 38.100 | 1034.2 | 38.101 | 1092.5 | 0.074644 | 2.0653 |
| 75 | 0.43017 | 0.016062 | 739.23 | 43.098 | 1035.8 | 43.100 | 1094.7 | 0.084037 | 2.0508 |
| 80 | 0.50747 | 0.016074 | 632.38 | 48.095 | 1037.4 | 48.097 | 1096.8 | 0.093340 | 2.0366 |
| 85 | 0.59660 | 0.016086 | 542.79 | 53.091 | 1039.0 | 53.093 | 1099.0 | 0.10255 | 2.0228 |
| 90 | 0.69904 | 0.016100 | 467.40 | 58.086 | 1040.6 | 58.088 | 1101.1 | 0.11168 | 2.0093 |
| 95 | 0.81642 | 0.016115 | 403.75 | 63.081 | 1042.3 | 63.083 | 1103.3 | 0.12073 | 1.9961 |
| 100 | 0.95051 | 0.016131 | 349.83 | 68.076 | 1043.9 | 68.078 | 1105.4 | 0.12969 | 1.9832 |
| 110 | 1.2767 | 0.016166 | 264.97 | 78.065 | 1047.1 | 78.069 | 1109.7 | 0.14738 | 1.9583 |
| 120 | 1.6950 | 0.016205 | 202.95 | 88.057 | 1050.3 | 88.062 | 1114.0 | 0.16477 | 1.9346 |
| 130 | 2.2259 | 0.016247 | 157.09 | 98.052 | 1053.4 | 98.059 | 1118.2 | 0.18187 | 1.9118 |
| 140 | 2.8930 | 0.016293 | 122.82 | 108.05 | 1056.6 | 108.06 | 1122.3 | 0.19868 | 1.8901 |
| 150 | 3.7232 | 0.016342 | 96.930 | 118.06 | 1059.7 | 118.07 | 1126.5 | 0.21523 | 1.8693 |
| 160 | 4.7472 | 0.016394 | 77.184 | 128.07 | 1062.7 | 128.08 | 1130.6 | 0.23152 | 1.8493 |
| 170 | 5.9998 | 0.016449 | 61.980 | 138.09 | 1065.8 | 138.11 | 1134.6 | 0.24756 | 1.8302 |
| 180 | 7.5195 | 0.016508 | 50.169 | 148.12 | 1068.8 | 148.14 | 1138.6 | 0.26336 | 1.8118 |
| 190 | 9.3496 | 0.016569 | 40.916 | 158.16 | 1071.8 | 158.18 | 1142.6 | 0.27893 | 1.7942 |
| 200 | 11.538 | 0.016633 | 33.609 | 168.21 | 1074.7 | 168.24 | 1146.5 | 0.29429 | 1.7772 |
| 210 | 14.136 | 0.016701 | 27.794 | 178.27 | 1077.5 | 178.31 | 1150.3 | 0.30943 | 1.7609 |
| 212 | 14.709 | 0.016715 | 26.779 | 180.28 | 1078.1 | 180.33 | 1151.1 | 0.31243 | 1.7577 |
| 220 | 17.201 | 0.016771 | 23.133 | 188.35 | 1080.4 | 188.40 | 1154.1 | 0.32436 | 1.7451 |
| 230 | 20.795 | 0.016845 | 19.371 | 198.44 | 1083.1 | 198.51 | 1157.7 | 0.33911 | 1.7299 |
| 240 | 24.986 | 0.016921 | 16.314 | 208.55 | 1085.8 | 208.63 | 1161.3 | 0.35366 | 1.7153 |
| 250 | 29.844 | 0.017001 | 13.815 | 218.68 | 1088.5 | 218.78 | 1164.8 | 0.36804 | 1.7011 |
| 260 | 35.447 | 0.017084 | 11.759 | 228.83 | 1091.0 | 228.95 | 1168.2 | 0.38225 | 1.6874 |
| 270 | 41.878 | 0.017170 | 10.058 | 239.01 | 1093.5 | 239.14 | 1171.5 | 0.39629 | 1.6741 |
| 280 | 49.222 | 0.017259 | 8.6431 | 249.21 | 1095.9 | 249.37 | 1174.7 | 0.41017 | 1.6612 |
| 290 | 57.574 | 0.017352 | 7.4600 | 259.44 | 1098.3 | 259.62 | 1177.8 | 0.42391 | 1.6487 |
| 300 | 67.029 | 0.017448 | 6.4658 | 269.69 | 1100.5 | 269.91 | 1180.7 | 0.43750 | 1.6365 |
| 310 | 77.691 | 0.017548 | 5.6263 | 279.98 | 1102.6 | 280.23 | 1183.6 | 0.45096 | 1.6246 |
| 320 | 89.667 | 0.017652 | 4.9142 | 290.30 | 1104.7 | 290.60 | 1186.3 | 0.46428 | 1.6131 |
| 330 | 103.07 | 0.017760 | 4.3075 | 300.66 | 1106.6 | 301.00 | 1188.8 | 0.47749 | 1.6018 |
| 340 | 118.02 | 0.017872 | 3.7884 | 311.06 | 1108.5 | 311.45 | 1191.3 | 0.49058 | 1.5908 |
| 350 | 134.63 | 0.017987 | 3.3425 | 321.50 | 1110.2 | 321.95 | 1193.5 | 0.50355 | 1.5800 |
| 360 | 153.03 | 0.018108 | 2.9580 | 331.99 | 1111.8 | 332.50 | 1195.6 | 0.51643 | 1.5694 |
| 370 | 173.36 | 0.018233 | 2.6252 | 342.52 | 1113.3 | 343.11 | 1197.5 | 0.52921 | 1.5591 |
| 380 | 195.74 | 0.018363 | 2.3361 | 353.11 | 1114.6 | 353.77 | 1199.3 | 0.54190 | 1.5489 |
| 390 | 220.33 | 0.018498 | 2.0841 | 363.75 | 1115.8 | 364.50 | 1200.9 | 0.55450 | 1.5388 |
| 400 | 247.26 | 0.018639 | 1.8638 | 374.45 | 1116.9 | 375.30 | 1202.2 | 0.56703 | 1.5289 |
| 410 | 276.68 | 0.018785 | 1.6706 | 385.21 | 1117.8 | 386.17 | 1203.4 | 0.57948 | 1.5192 |
| 420 | 308.76 | 0.018938 | 1.5006 | 396.04 | 1118.6 | 397.12 | 1204.4 | 0.59187 | 1.5096 |

Reference States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

## Saturation Temperature Table

Water
AE

| Temp. <br> ( ${ }^{\mathbf{F}}$ ) | Pressure <br> (psia) | $\mathrm{V}\left(\mathrm{ft}^{3} / / \mathrm{b}_{\mathrm{m}}\right)$ |  | U (Btu/lb ${ }_{\mathrm{m}}$ ) |  | H (Btu/lb ${ }_{\mathrm{m}}$ ) |  | $\mathrm{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\mathbf{0}} \mathbf{R}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 430 | 343.64 | 0.019097 | 1.3505 | 406.94 | 1119.2 | 408.15 | 1205.1 | 0.60420 | 1.5000 |
| 440 | 381.48 | 0.019263 | 1.2177 | 417.91 | 1119.6 | 419.27 | 1205.6 | 0.61648 | 1.4905 |
| 450 | 422.46 | 0.019437 | 1.0999 | 428.97 | 1119.9 | 430.49 | 1205.9 | 0.62872 | 1.4811 |
| 450 | 422.46 | 0.019437 | 1.0999 | 428.97 | 1119.9 | 430.49 | 1205.9 | 0.62872 | 1.4811 |
| 460 | 466.75 | 0.019619 | 0.99506 | 440.11 | 1119.9 | 441.81 | 1205.9 | 0.64092 | 1.4718 |
| 470 | 514.52 | 0.019810 | 0.90154 | 451.35 | 1119.8 | 453.24 | 1205.7 | 0.65309 | 1.4624 |
| 480 | 565.95 | 0.020010 | 0.81791 | 462.69 | 1119.4 | 464.78 | 1205.1 | 0.66524 | 1.4531 |
| 490 | 621.23 | 0.020220 | 0.74293 | 474.13 | 1118.8 | 476.46 | 1204.3 | 0.67738 | 1.4438 |
| 500 | 680.55 | 0.020441 | 0.67555 | 485.69 | 1118.0 | 488.27 | 1203.1 | 0.68952 | 1.4344 |
| 510 | 744.11 | 0.020675 | 0.61486 | 497.38 | 1116.9 | 500.23 | 1201.6 | 0.70167 | 1.4250 |
| 520 | 812.10 | 0.020923 | 0.56007 | 509.21 | 1115.5 | 512.35 | 1199.8 | 0.71384 | 1.4155 |
| 530 | 884.74 | 0.021185 | 0.51049 | 521.18 | 1113.9 | 524.65 | 1197.5 | 0.72604 | 1.4059 |
| 540 | 962.24 | 0.021464 | 0.46553 | 533.32 | 1111.9 | 537.14 | 1194.8 | 0.73829 | 1.3962 |
| 550 | 1044.8 | 0.021761 | 0.42466 | 545.63 | 1109.5 | 549.84 | 1191.7 | 0.75060 | 1.3863 |
| 560 | 1132.7 | 0.022080 | 0.38742 | 558.14 | 1106.8 | 562.77 | 1188.0 | 0.76299 | 1.3762 |
| 570 | 1226.2 | 0.022422 | 0.35341 | 570.87 | 1103.6 | 575.96 | 1183.8 | 0.77549 | 1.3658 |
| 580 | 1325.5 | 0.022791 | 0.32227 | 583.85 | 1099.9 | 589.44 | 1179.0 | 0.78812 | 1.3552 |
| 590 | 1430.8 | 0.023193 | 0.29369 | 597.10 | 1095.8 | 603.25 | 1173.6 | 0.80090 | 1.3443 |
| 600 | 1542.5 | 0.023631 | 0.26739 | 610.67 | 1091.0 | 617.42 | 1167.4 | 0.81388 | 1.3329 |
| 610 | 1660.9 | 0.024113 | 0.24311 | 624.60 | 1085.6 | 632.02 | 1160.3 | 0.82710 | 1.3210 |
| 620 | 1786.2 | 0.024647 | 0.22062 | 638.96 | 1079.3 | 647.11 | 1152.3 | 0.84062 | 1.3085 |
| 630 | 1918.9 | 0.025247 | 0.19971 | 653.82 | 1072.2 | 662.79 | 1143.1 | 0.85451 | 1.2953 |
| 640 | 2059.2 | 0.025930 | 0.18017 | 669.30 | 1063.9 | 679.19 | 1132.6 | 0.86888 | 1.2812 |
| 650 | 2207.8 | 0.026720 | 0.16180 | 685.55 | 1054.3 | 696.48 | 1120.4 | 0.88387 | 1.2659 |
| 660 | 2364.9 | 0.027661 | 0.14439 | 702.84 | 1042.8 | 714.96 | 1106.1 | 0.89974 | 1.2491 |
| 670 | 2531.2 | 0.028826 | 0.12768 | 721.61 | 1029.1 | 735.12 | 1088.9 | 0.91690 | 1.2301 |
| 680 | 2707.3 | 0.030361 | 0.11132 | 742.67 | 1011.8 | 757.89 | 1067.6 | 0.93611 | 1.2078 |
| 705.10 | 3200.1 | 0.049747 | 0.049747 | 867.19 | 867.19 | 896.67 | 896.67 | 1.0533 | 1.0533 |

Reference States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

Saturation Pressure Table
Water
AE

| Pressure (psia) | Temp. ( ${ }^{\circ} \mathrm{F}$ ) | $\mathrm{V}\left(\mathrm{ft}^{3} / \mathrm{l} \mathrm{b}_{\mathrm{m}}\right)$ |  | $\mathbf{U}$ ( $\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}$ ) |  | H (Btu/lb ${ }_{\text {m }}$ ) |  | $\mathbf{S}$ ( $\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}{ }^{\text {² }}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 1 | 101.70 | 0.016137 | 333.50 | 69.766 | 1044.4 | 69.769 | 1106.2 | 0.13271 | 1.9789 |
| 2 | 126.03 | 0.016230 | 173.71 | 94.079 | 1052.2 | 94.085 | 1116.5 | 0.17511 | 1.9207 |
| 3 | 141.42 | 0.016300 | 118.70 | 109.47 | 1057.0 | 109.48 | 1122.9 | 0.20104 | 1.8871 |
| 4 | 152.91 | 0.016357 | 90.626 | 120.97 | 1060.6 | 120.98 | 1127.7 | 0.22000 | 1.8634 |
| 5 | 162.18 | 0.016406 | 73.521 | 130.26 | 1063.4 | 130.27 | 1131.5 | 0.23504 | 1.8451 |
| 6 | 170.00 | 0.016449 | 61.977 | 138.09 | 1065.8 | 138.11 | 1134.6 | 0.24756 | 1.8302 |
| 7 | 176.79 | 0.016489 | 53.647 | 144.90 | 1067.8 | 144.92 | 1137.4 | 0.25832 | 1.8176 |
| 8 | 182.81 | 0.016525 | 47.343 | 150.93 | 1069.6 | 150.96 | 1139.8 | 0.26776 | 1.8068 |
| 9 | 188.22 | 0.016558 | 42.402 | 156.37 | 1071.2 | 156.40 | 1141.9 | 0.27619 | 1.7973 |
| 10 | 193.16 | 0.016589 | 38.421 | 161.33 | 1072.7 | 161.36 | 1143.8 | 0.28381 | 1.7887 |
| 14.696 | 211.95 | 0.016714 | 26.802 | 180.24 | 1078.1 | 180.28 | 1151.0 | 0.31236 | 1.7578 |
| 15 | 212.99 | 0.016722 | 26.294 | 181.28 | 1078.4 | 181.33 | 1151.4 | 0.31391 | 1.7561 |
| 20 | 227.92 | 0.016829 | 20.091 | 196.34 | 1082.6 | 196.40 | 1157.0 | 0.33605 | 1.7331 |
| 25 | 240.03 | 0.016922 | 16.305 | 208.58 | 1085.8 | 208.66 | 1161.3 | 0.35371 | 1.7152 |
| 30 | 250.30 | 0.017003 | 13.747 | 218.98 | 1088.5 | 219.08 | 1164.9 | 0.36847 | 1.7007 |
| 35 | 259.25 | 0.017078 | 11.899 | 228.07 | 1090.8 | 228.18 | 1168.0 | 0.38119 | 1.6884 |
| 40 | 267.22 | 0.017146 | 10.500 | 236.17 | 1092.8 | 236.30 | 1170.6 | 0.39240 | 1.6777 |
| 45 | 274.41 | 0.017209 | 9.4019 | 243.51 | 1094.6 | 243.65 | 1172.9 | 0.40243 | 1.6684 |
| 50 | 280.99 | 0.017268 | 8.5168 | 250.22 | 1096.2 | 250.38 | 1175.0 | 0.41153 | 1.6599 |
| 55 | 287.05 | 0.017324 | 7.7876 | 256.42 | 1097.6 | 256.59 | 1176.9 | 0.41987 | 1.6523 |
| 60 | 292.68 | 0.017378 | 7.1761 | 262.19 | 1098.9 | 262.38 | 1178.6 | 0.42757 | 1.6454 |
| 65 | 297.95 | 0.017428 | 6.6556 | 267.59 | 1100.0 | 267.80 | 1180.2 | 0.43473 | 1.6390 |
| 70 | 302.91 | 0.017477 | 6.2071 | 272.68 | 1101.1 | 272.91 | 1181.6 | 0.44143 | 1.6330 |
| 75 | 307.58 | 0.017524 | 5.8165 | 277.49 | 1102.1 | 277.74 | 1182.9 | 0.44772 | 1.6275 |
| 80 | 312.02 | 0.017569 | 5.4730 | 282.06 | 1103.1 | 282.32 | 1184.1 | 0.45366 | 1.6223 |
| 85 | 316.24 | 0.017613 | 5.1687 | 286.41 | 1103.9 | 286.69 | 1185.3 | 0.45928 | 1.6174 |
| 90 | 320.26 | 0.017655 | 4.8970 | 290.57 | 1104.7 | 290.87 | 1186.3 | 0.46463 | 1.6128 |
| 95 | 324.11 | 0.017696 | 4.6530 | 294.56 | 1105.5 | 294.87 | 1187.3 | 0.46973 | 1.6084 |
| 100 | 327.81 | 0.017736 | 4.4326 | 298.38 | 1106.2 | 298.71 | 1188.3 | 0.47460 | 1.6043 |
| 105 | 331.35 | 0.017775 | 4.2324 | 302.07 | 1106.9 | 302.41 | 1189.2 | 0.47927 | 1.6003 |
| 110 | 334.77 | 0.017813 | 4.0498 | 305.62 | 1107.5 | 305.98 | 1190.0 | 0.48375 | 1.5965 |
| 115 | 338.07 | 0.017850 | 3.8826 | 309.05 | 1108.1 | 309.43 | 1190.8 | 0.48805 | 1.5929 |
| 120 | 341.25 | 0.017886 | 3.7288 | 312.36 | 1108.7 | 312.76 | 1191.5 | 0.49221 | 1.5894 |
| 125 | 344.33 | 0.017921 | 3.5870 | 315.58 | 1109.2 | 315.99 | 1192.2 | 0.49621 | 1.5861 |
| 130 | 347.32 | 0.017956 | 3.4556 | 318.70 | 1109.7 | 319.13 | 1192.9 | 0.50008 | 1.5829 |
| 135 | 350.21 | 0.017990 | 3.3337 | 321.72 | 1110.2 | 322.17 | 1193.6 | 0.50383 | 1.5798 |
| 140 | 353.03 | 0.018023 | 3.2201 | 324.67 | 1110.7 | 325.14 | 1194.2 | 0.50746 | 1.5768 |
| 145 | 355.76 | 0.018056 | 3.1142 | 327.54 | 1111.1 | 328.02 | 1194.7 | 0.51098 | 1.5739 |
| 150 | 358.42 | 0.018089 | 3.0150 | 330.33 | 1111.5 | 330.83 | 1195.3 | 0.51440 | 1.5711 |
| 155 | 361.01 | 0.018120 | 2.9220 | 333.05 | 1111.9 | 333.57 | 1195.8 | 0.51773 | 1.5684 |
| 160 | 363.54 | 0.018152 | 2.8347 | 335.71 | 1112.3 | 336.25 | 1196.3 | 0.52097 | 1.5657 |
| 165 | 366.01 | 0.018182 | 2.7524 | 338.31 | 1112.7 | 338.86 | 1196.8 | 0.52412 | 1.5632 |
| 170 | 368.41 | 0.018213 | 2.6748 | 340.85 | 1113.0 | 341.42 | 1197.2 | 0.52719 | 1.5607 |
| 175 | 370.77 | 0.018243 | 2.6015 | 343.33 | 1113.4 | 343.92 | 1197.7 | 0.53019 | 1.5583 |
| 180 | 373.07 | 0.018272 | 2.5321 | 345.76 | 1113.7 | 346.37 | 1198.1 | 0.53311 | 1.5559 |
| 185 | 375.32 | 0.018301 | 2.4664 | 348.15 | 1114.0 | 348.77 | 1198.5 | 0.53597 | 1.5536 |
| 190 | 377.52 | 0.018330 | 2.4040 | 350.48 | 1114.3 | 351.13 | 1198.9 | 0.53876 | 1.5514 |
| 195 | 379.68 | 0.018359 | 2.3447 | 352.77 | 1114.6 | 353.43 | 1199.2 | 0.54150 | 1.5492 |

Reference States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088667 psia$)$.

Saturation Pressure Table

| Pressure (psia) | Temp.$\left({ }^{0} \mathbf{F}\right)$ | $\mathrm{V}\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{b}_{\mathrm{m}}\right)$ |  | U (Btu/lb ${ }_{\mathrm{m}}$ ) |  | H (Btu/lb ${ }_{\mathrm{m}}$ ) |  | $\mathbf{S ~ ( B t u / l b ~}{ }_{\text {m }}{ }^{\text {P }}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 200 | 381.80 | 0.018387 | 2.2882 | 355.02 | 1114.8 | 355.70 | 1199.6 | 0.54417 | 1.5470 |
| 220 | 389.87 | 0.018496 | 2.0872 | 363.61 | 1115.8 | 364.36 | 1200.8 | 0.55434 | 1.5390 |
| 240 | 397.39 | 0.018602 | 1.9185 | 371.65 | 1116.6 | 372.48 | 1201.9 | 0.56376 | 1.5315 |
| 260 | 404.44 | 0.018703 | 1.7750 | 379.214 | 1117.3 | 380.114 | 1202.8 | 0.57256 | 1.5246 |
| 280 | 411.07 | 0.018801 | 1.6513 | 386.368 | 1117.9 | 387.342 | 1203.5 | 0.58081 | 1.5182 |
| 300 | 417.35 | 0.018897 | 1.5435 | 393.16 | 1118.4 | 394.21 | 1204.1 | 0.58859 | 1.5121 |
| 320 | 423.31 | 0.018990 | 1.4488 | 399.64 | 1118.8 | 400.77 | 1204.7 | 0.59596 | 1.5064 |
| 340 | 429.00 | 0.019081 | 1.3648 | 405.84 | 1119.1 | 407.04 | 1205.1 | 0.60296 | 1.5010 |
| 360 | 434.42 | 0.019170 | 1.2898 | 411.78 | 1119.4 | 413.06 | 1205.4 | 0.60964 | 1.4958 |
| 380 | 439.62 | 0.019257 | 1.2225 | 417.50 | 1119.6 | 418.85 | 1205.6 | 0.61602 | 1.4909 |
| 400 | 444.62 | 0.019342 | 1.1616 | 423.00 | 1119.8 | 424.44 | 1205.8 | 0.62213 | 1.4862 |
| 420 | 449.42 | 0.019427 | 1.1064 | 428.32 | 1119.9 | 429.84 | 1205.9 | 0.62801 | 1.4817 |
| 440 | 454.05 | 0.019510 | 1.0560 | 433.47 | 1119.9 | 435.06 | 1206.0 | 0.63366 | 1.4773 |
| 460 | 458.52 | 0.019592 | 1.0098 | 438.46 | 1119.9 | 440.13 | 1205.9 | 0.63912 | 1.4732 |
| 480 | 462.85 | 0.019672 | 0.96733 | 443.30 | 1119.9 | 445.05 | 1205.9 | 0.64439 | 1.4691 |
| 500 | 467.04 | 0.019752 | 0.92815 | 448.01 | 1119.8 | 449.84 | 1205.8 | 0.64949 | 1.4652 |
| 550 | 476.98 | 0.019948 | 0.84223 | 459.25 | 1119.6 | 461.28 | 1205.3 | 0.66157 | 1.4559 |
| 600 | 486.24 | 0.020140 | 0.77015 | 469.82 | 1119.1 | 472.06 | 1204.6 | 0.67282 | 1.4473 |
| 650 | 494.94 | 0.020328 | 0.70878 | 479.82 | 1118.4 | 482.27 | 1203.8 | 0.68337 | 1.4392 |
| 700 | 503.13 | 0.020513 | 0.65586 | 489.34 | 1117.7 | 492.00 | 1202.7 | 0.69332 | 1.4315 |
| 750 | 510.89 | 0.020697 | 0.60974 | 498.43 | 1116.8 | 501.31 | 1201.5 | 0.70275 | 1.4242 |
| 800 | 518.27 | 0.020879 | 0.56917 | 507.15 | 1115.8 | 510.24 | 1200.1 | 0.71173 | 1.4171 |
| 850 | 525.30 | 0.021060 | 0.53319 | 515.53 | 1114.7 | 518.85 | 1198.6 | 0.72030 | 1.4104 |
| 900 | 532.02 | 0.021240 | 0.50106 | 523.62 | 1113.5 | 527.16 | 1197.0 | 0.72851 | 1.4039 |
| 950 | 538.46 | 0.021420 | 0.47217 | 531.44 | 1112.2 | 535.21 | 1195.2 | 0.73640 | 1.3977 |
| 1000 | 544.65 | 0.021600 | 0.44605 | 539.02 | 1110.8 | 543.02 | 1193.4 | 0.74400 | 1.3916 |
| 1100 | 556.35 | 0.021961 | 0.40062 | 553.55 | 1107.8 | 558.02 | 1189.4 | 0.75846 | 1.3799 |
| 1200 | 567.26 | 0.022326 | 0.36243 | 567.36 | 1104.5 | 572.32 | 1185.0 | 0.77205 | 1.3687 |
| 1300 | 577.49 | 0.022696 | 0.32983 | 580.57 | 1100.9 | 586.03 | 1180.3 | 0.78493 | 1.3579 |
| 1400 | 587.14 | 0.023074 | 0.30163 | 593.28 | 1097.0 | 599.26 | 1175.2 | 0.79722 | 1.3474 |
| 1500 | 596.26 | 0.023462 | 0.27697 | 605.56 | 1092.9 | 612.08 | 1169.8 | 0.80900 | 1.3372 |
| 1600 | 604.93 | 0.023862 | 0.25518 | 617.49 | 1088.4 | 624.56 | 1164.0 | 0.82036 | 1.3271 |
| 1700 | 613.18 | 0.024277 | 0.23577 | 629.13 | 1083.7 | 636.77 | 1157.9 | 0.83137 | 1.3171 |
| 1800 | 621.07 | 0.024708 | 0.21832 | 640.52 | 1078.6 | 648.76 | 1151.4 | 0.84208 | 1.3072 |
| 1900 | 628.61 | 0.025160 | 0.20252 | 651.73 | 1073.2 | 660.58 | 1144.5 | 0.85255 | 1.2972 |
| 2000 | 635.85 | 0.025635 | 0.18813 | 662.79 | 1067.5 | 672.28 | 1137.2 | 0.86284 | 1.2872 |
| 2100 | 642.80 | 0.026139 | 0.17491 | 673.77 | 1061.4 | 683.93 | 1129.4 | 0.87300 | 1.2770 |
| 2200 | 649.49 | 0.026677 | 0.16271 | 684.71 | 1054.8 | 695.57 | 1121.1 | 0.88309 | 1.2667 |
| 2300 | 655.94 | 0.027257 | 0.15136 | 695.68 | 1047.7 | 707.28 | 1112.2 | 0.89317 | 1.2561 |
| 2400 | 662.16 | 0.027890 | 0.14073 | 706.75 | 1040.1 | 719.15 | 1102.6 | 0.90332 | 1.2452 |
| 2500 | 668.17 | 0.028590 | 0.13071 | 718.03 | 1031.8 | 731.27 | 1092.3 | 0.91363 | 1.2338 |
| 2600 | 673.98 | 0.029380 | 0.12116 | 729.65 | 1022.7 | 743.79 | 1081.0 | 0.92423 | 1.2217 |
| 2700 | 679.60 | 0.030290 | 0.11198 | 741.76 | 1012.5 | 756.90 | 1068.5 | 0.93528 | 1.2088 |
| 2800 | 685.04 | 0.031363 | 0.10300 | 754.58 | 1001.0 | 770.85 | 1054.4 | 0.94699 | 1.1947 |
| 3200.1 | 705.10 | 0.049747 | 0.049747 | 867.19 | 867.19 | 896.67 | 896.67 | 1.0533 | 1.0533 |

Reference States: $\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

## Superheated Vapor

# Water <br> AE 

|  | $\mathrm{P}=1 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=101.70{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=5 \mathrm{psia}\left(\mathrm{T}_{\mathrm{sat}}=162.2^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=10 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=193 .{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{o}} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{l b}_{\mathrm{m}}}{\mathbf{V}}$ | U <br> Btu/lb ${ }_{\mathbf{m}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{l}_{\mathbf{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{m}$ | $\begin{gathered} \text { Stu/lb }{ }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ |
| Sat | 333.50 | 1044.4 | 1106.2 | 1.9789 | 73.52 | 1063.4 | 1131.5 | 1.8451 | 38.42 | 1072.7 | 1143.8 | 1.7887 |
| 150 | 362.57 | 1061.1 | 1128.2 | 2.0166 |  |  |  |  |  |  |  |  |
| 200 | 392.52 | 1078.2 | 1150.9 | 2.0523 | 78.15 | 1076.9 | 1149.3 | 1.8729 | 38.85 | 1075.2 | 1147.2 | 1.7938 |
| 250 | 422.41 | 1095.4 | 1173.6 | 2.0856 | 84.22 | 1094.5 | 1172.5 | 1.9068 | 41.94 | 1093.4 | 1171.0 | 1.8287 |
| 300 | 452.27 | 1112.7 | 1196.5 | 2.1167 | 90.25 | 1112.1 | 1195.6 | 1.9383 | 44.99 | 1111.2 | 1194.6 | 1.8607 |
| 350 | 482.10 | 1130.2 | 1219.5 | 2.1460 | 96.25 | 1129.7 | 1218.8 | 1.9678 | 48.02 | 1129.1 | 1218.0 | 1.8906 |
| 400 | 511.92 | 1147.8 | 1242.6 | 2.1737 | 102.25 | 1147.4 | 1242.1 | 1.9957 | 51.04 | 1146.9 | 1241.4 | 1.9187 |
| 500 | 571.54 | 1183.6 | 1289.5 | 2.2253 | 114.21 | 1183.4 | 1289.1 | 2.0475 | 57.04 | 1183.0 | 1288.6 | 1.9707 |
| 600 | 631.14 | 1220.2 | 1337.1 | 2.2725 | 126.15 | 1220.0 | 1336.8 | 2.0948 | 63.03 | 1219.8 | 1336.5 | 2.0181 |
| 700 | 690.73 | 1257.6 | 1385.6 | 2.3162 | 138.09 | 1257.5 | 1385.3 | 2.1385 | 69.01 | 1257.3 | 1385.1 | 2.0619 |
| 800 | 750.31 | 1295.9 | 1434.9 | 2.3570 | 150.02 | 1295.8 | 1434.7 | 2.1793 | 74.98 | 1295.7 | 1434.5 | 2.1028 |
| 1000 | 869.47 | 1375.2 | 1536.2 | 2.4316 | 173.86 | 1375.1 | 1536.1 | 2.2540 | 86.91 | 1375.0 | 1535.9 | 2.1774 |
| 1200 | 988.62 | 1458.1 | 1641.1 | 2.4989 | 197.70 | 1458.0 | 1641.1 | 2.3214 | 98.84 | 1457.9 | 1641.0 | 2.2449 |
| 1400 | 1107.8 | 1544.8 | 1749.9 | 2.5608 | 221.54 | 1544.7 | 1749.8 | 2.3832 | 110.8 | 1544.6 | 1749.7 | 2.3067 |

$$
\mathbf{P}=14.696 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=212.0^{\circ} \mathrm{F}\right) \quad \mathbf{P}=20 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=227.9^{\circ} \mathrm{F}\right) \quad \mathrm{P}=40 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=267.2^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{0} \mathbf{F} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{l} \mathrm{~b}_{\mathrm{m}}}{\mathbf{n}}$ | $\underset{\text { Btu/b } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/ }^{2}{ }^{6}{ }_{\mathrm{m}}{ }^{2} \end{gathered}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/l }{ }_{m}{ }^{0} R}{S}$ | $\underset{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{0} R}{\text { R }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 26.802 | 1078.1 | 1151.0 | 1.7578 | 20.091 | 1082.6 | 1157.0 | 1.7331 | 10.500 | 1092.8 | 1170.6 | 1.6777 |
| 250 | 28.428 | 1092.3 | 1169.6 | 1.7847 | 20.795 | 1091.0 | 1168.0 | 1.7489 |  |  |  |  |
| 300 | 30.529 | 1110.5 | 1193.5 | 1.8172 | 22.361 | 1109.5 | 1192.4 | 1.7820 | 11.040 | 1105.9 | 1187.7 | 1.7008 |
| 350 | 32.607 | 1128.5 | 1217.2 | 1.8474 | 23.903 | 1127.8 | 1216.3 | 1.8125 | 11.841 | 1125.1 | 1212.8 | 1.7328 |
| 400 | 34.671 | 1146.5 | 1240.8 | 1.8757 | 25.429 | 1145.9 | 1240.1 | 1.8411 | 12.625 | 1143.8 | 1237.3 | 1.7622 |
| 500 | 38.774 | 1182.7 | 1288.2 | 1.9279 | 28.458 | 1182.3 | 1287.7 | 1.8935 | 14.165 | 1181.0 | 1285.9 | 1.8156 |
| 600 | 42.858 | 1219.5 | 1336.2 | 1.9754 | 31.467 | 1219.3 | 1335.8 | 1.9412 | 15.686 | 1218.3 | 1334.5 | 1.8637 |
| 800 | 51.002 | 1295.5 | 1434.3 | 2.0602 | 37.461 | 1295.4 | 1434.1 | 2.0261 | 18.702 | 1294.7 | 1433.3 | 1.9491 |
| 1000 | 59.129 | 1374.9 | 1535.8 | 2.1349 | 43.438 | 1374.8 | 1535.6 | 2.1008 | 21.700 | 1374.3 | 1535.1 | 2.0241 |
| 1200 | 67.248 | 1457.9 | 1640.9 | 2.2024 | 49.407 | 1457.8 | 1640.8 | 2.1683 | 24.691 | 1457.5 | 1640.4 | 2.0917 |
| 1400 | 75.363 | 1544.6 | 1749.7 | 2.2642 | 55.372 | 1544.5 | 1749.6 | 2.2302 | 27.678 | 1544.3 | 1749.3 | 2.1536 |
| 1600 | 83.476 | 1635.0 | 1862.2 | 2.3217 | 61.335 | 1635.0 | 1862.1 | 2.2877 | 30.662 | 1634.8 | 1861.9 | 2.2111 |

$$
\mathrm{P}=60 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=292.7^{\circ} \mathrm{F}\right) \quad \mathrm{P}=80 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=312.0^{\circ} \mathrm{F}\right) \quad \mathrm{P}=100 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=327.8^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{0} \mathbf{F} \end{aligned}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathbf{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\text {m }}$ | $\begin{gathered} S \\ \text { Btu }^{\prime} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\text {m }}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{ft}^{3} / / \mathrm{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\text {m }}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 7.1761 | 1098.9 | 1178.6 | 1.6454 | 5.4730 | 1103.1 | 1184.1 | 1.6223 | 4.4326 | 1106.2 | 1188.3 | 1.6043 |
| 300 | 7.2603 | 1102.0 | 1182.7 | 1.6507 |  |  |  |  |  |  |  |  |
| 350 | 7.8172 | 1122.3 | 1209.2 | 1.6845 | 5.8031 | 1119.3 | 1205.3 | 1.6491 | 4.5926 | 1116.2 | 1201.2 | 1.6205 |
| 400 | 8.3548 | 1141.7 | 1234.5 | 1.7149 | 6.2186 | 1139.5 | 1231.6 | 1.6806 | 4.9359 | 1137.2 | 1228.6 | 1.6532 |
| 600 | 10.426 | 1217.3 | 1333.1 | 1.8181 | 7.7951 | 1216.2 | 1331.7 | 1.7854 | 6.2166 | 1215.2 | 1330.3 | 1.7598 |
| 800 | 12.448 | 1294.1 | 1432.4 | 1.9039 | 9.3217 | 1293.5 | 1431.6 | 1.8717 | 7.4457 | 1292.9 | 1430.8 | 1.8466 |
| 1000 | 14.454 | 1373.9 | 1534.5 | 1.9791 | 10.831 | 1373.5 | 1534.0 | 1.9471 | 8.6575 | 1373.1 | 1533.4 | 1.9222 |
| 1200 | 16.452 | 1457.2 | 1640.0 | 2.0468 | 12.333 | 1456.9 | 1639.6 | 2.0148 | 9.8614 | 1456.5 | 1639.2 | 1.9900 |
| 1400 | 18.446 | 1544.1 | 1749.0 | 2.1088 | 13.831 | 1543.8 | 1748.7 | 2.0769 | 11.061 | 1543.6 | 1748.4 | 2.0522 |
| 1600 | 20.438 | 1634.6 | 1861.7 | 2.1663 | 15.326 | 1634.4 | 1861.5 | 2.1345 | 12.258 | 1634.2 | 1861.2 | 2.1098 |
| 1800 | 22.428 | 1728.8 | 1978.0 | 2.2202 | 16.819 | 1728.6 | 1977.8 | 2.1884 | 13.454 | 1728.5 | 1977.6 | 2.1637 |

Reference States: $\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

$$
\mathrm{P}=120 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=341.3^{\circ} \mathrm{F}\right) \quad \mathrm{P}=140 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=353.0^{\circ} \mathrm{F}\right) \quad \mathrm{P}=160 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=363.5^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{o}} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}}}{\mathrm{~V}}$ | U <br> Btu/lb $\mathbf{b}_{\mathrm{m}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{0} \mathrm{R}}{\mathrm{~S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\mathbf{U}$ <br> Btu/lb ${ }_{m}$ | H <br> Btu/lb ${ }_{\text {m }}$ | $\begin{gathered} \text { S } \\ \text { Btu/lb }_{\mathrm{m}}{ }^{\circ} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathbf{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{m}$ | $\begin{gathered} S \\ \mathrm{Btu} / l \mathrm{~b}_{\mathrm{m}}{ }^{\circ} \mathrm{R} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 3.7288 | 1108.7 | 1191.5 | 1.5894 | 3.2201 | 1110.7 | 1194.2 | 1.5768 | 2.8347 | 1112.3 | 1196.3 | 1.5657 |
| 350 | 3.7834 | 1112.8 | 1196.9 | 1.5961 |  |  |  |  |  |  |  |  |
| 400 | 4.0799 | 1134.8 | 1225.4 | 1.6303 | 3.4676 | 1132.3 | 1222.2 | 1.6103 | 3.0076 | 1129.7 | 1218.8 | 1.5925 |
| 450 | 4.3612 | 1155.3 | 1252.2 | 1.6606 | 3.7147 | 1153.4 | 1249.7 | 1.6415 | 3.2293 | 1151.5 | 1247.2 | 1.6245 |
| 500 | 4.6340 | 1175.2 | 1278.2 | 1.6883 | 3.9525 | 1173.7 | 1276.1 | 1.6697 | 3.4412 | 1172.1 | 1274.1 | 1.6534 |
| 600 | 5.1642 | 1214.2 | 1328.9 | 1.7387 | 4.4124 | 1213.1 | 1327.5 | 1.7207 | 3.8484 | 1212.1 | 1326.1 | 1.7049 |
| 700 | 5.6829 | 1253.0 | 1379.3 | 1.7841 | 4.8603 | 1252.2 | 1378.2 | 1.7664 | 4.2434 | 1251.5 | 1377.2 | 1.7510 |
| 800 | 6.1950 | 1292.3 | 1429.9 | 1.8260 | 5.3016 | 1291.6 | 1429.1 | 1.8085 | 4.6316 | 1291.0 | 1428.2 | 1.7932 |
| 900 | 6.7030 | 1332.1 | 1481.1 | 1.8650 | 5.7388 | 1331.6 | 1480.4 | 1.8476 | 5.0156 | 1331.1 | 1479.7 | 1.8325 |
| 1000 | 7.2083 | 1372.7 | 1532.8 | 1.9018 | 6.1732 | 1372.2 | 1532.3 | 1.8845 | 5.3968 | 1371.8 | 1531.7 | 1.8695 |
| 1200 | 8.2137 | 1456.2 | 1638.8 | 1.9697 | 7.0367 | 1455.9 | 1638.4 | 1.9526 | 6.1540 | 1455.6 | 1638.0 | 1.9376 |
| 1400 | 9.2148 | 1543.3 | 1748.1 | 2.0319 | 7.8960 | 1543.1 | 1747.8 | 2.0148 | 6.9069 | 1542.9 | 1747.5 | 1.9999 |
| 1600 | 10.213 | 1634.0 | 1861.0 | 2.0896 | 8.7529 | 1633.9 | 1860.8 | 2.0725 | 7.6574 | 1633.7 | 1860.5 | 2.0577 |
| 1800 | 11.211 | 1728.3 | 1977.4 | 2.1435 | 9.6082 | 1728.2 | 1977.2 | 2.1264 | 8.4063 | 1728.0 | 1977.1 | 2.1116 |

$$
\mathrm{P}=180 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=373.1^{\circ} \mathrm{F}\right) \quad \mathrm{P}=200 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=381.8^{\circ} \mathrm{F}\right) \quad \mathrm{P}=250 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=401.0^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{{ }^{\circ} \mathbf{F}} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lbm }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} \mathbf{R} \end{gathered}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{l b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u / l} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\begin{gathered} \mathrm{S} \\ \mathbf{B t u} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathrm{R} \end{gathered}$ | $\underset{\mathrm{ft}^{3} / \mathrm{l} \mathbf{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u / l}_{\mathrm{m}}^{\mathrm{H}}}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 2.5321 | 1113.7 | 1198.1 | 1.5559 | 2.2882 | 1114.8 | 1199.6 | 1.5470 | 1.8440 | 1117.0 | 1202.4 | 1.5280 |
| 400 | 2.6490 | 1127.0 | 1215.3 | 1.5763 | 2.3615 | 1124.2 | 1211.7 | 1.5613 |  |  |  |  |
| 500 | 3.0433 | 1170.6 | 1272.007 | 1.6387 | 2.7247 | 1169.0 | 1269.887 | 1.6254 | 2.1506 | 1164.9 | 1264.419 | 1.5964 |
| 600 | 3.4097 | 1211.0 | 1324.6 | 1.6909 | 3.0586 | 1209.9 | 1323.2 | 1.6782 | 2.4264 | 1207.1 | 1319.5 | 1.6510 |
| 700 | 3.7635 | 1250.7 | 1376.1 | 1.7373 | 3.3795 | 1249.8 | 1375.0 | 1.7250 | 2.6883 | 1247.8 | 1372.3 | 1.6986 |
| 800 | 4.1104 | 1290.4 | 1427.4 | 1.7798 | 3.6934 | 1289.8 | 1426.6 | 1.7676 | 2.9428 | 1288.2 | 1424.4 | 1.7417 |
| 900 | 4.4531 | 1330.6 | 1479.0 | 1.8192 | 4.0030 | 1330.1 | 1478.3 | 1.8072 | 3.1930 | 1328.8 | 1476.6 | 1.7816 |
| 1000 | 4.7929 | 1371.4 | 1531.1 | 1.8562 | 4.3098 | 1371.0 | 1530.6 | 1.8443 | 3.4403 | 1369.9 | 1529.2 | 1.8189 |
| 1200 | 5.4674 | 1455.3 | 1637.5 | 1.9245 | 4.9182 | 1455.0 | 1637.1 | 1.9127 | 3.9295 | 1454.2 | 1636.1 | 1.8876 |
| 1400 | 6.1377 | 1542.6 | 1747.2 | 1.9868 | 5.5222 | 1542.4 | 1746.9 | 1.9751 | 4.4144 | 1541.8 | 1746.2 | 1.9501 |
| 1600 | 6.80539 | 1633.5 | 1860.3 | 2.0446 | 6.12377 | 1633.3 | 1860.1 | 2.0329 | 4.8968 | 1632.8 | 1859.5 | 2.0080 |
| 1800 | 7.47155 | 1727.8 | 1976.9 | 2.0986 | 6.72375 | 1727.7 | 1976.7 | 2.0869 | 5.37769 | 1727.3 | 1976.3 | 2.0621 |

$$
\mathrm{P}=300 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=417.4^{\circ} \mathrm{F}\right)
$$

$$
\mathrm{P}=350 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=431.7^{\circ} \mathrm{F}\right)
$$

$$
\mathrm{P}=400 \mathrm{psia}\left(\mathrm{~T}_{\mathrm{sat}}=444.6^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathrm{T} \\ & { }^{\circ} \mathrm{F} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{B t u / b_{m}}{\mathbf{H}}$ | $\begin{gathered} \text { Stu/lb }{ }_{m}{ }^{0} \mathbf{R} \end{gathered}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{l}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{B t u / b_{m}}{\mathbf{H}}$ | $\underset{\text { Btu/b/b }{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{B t u / b_{m}}{\mathbf{H}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 1.5435 | 1118.4 | 1204.1 | 1.5121 | 1.3263 | 1119.3 | 1205.2 | 1.4984 | 1.1616 | 1119.8 | 1205.8 | 1.4862 |
| 500 | 1.7670 | 1160.5 | 1258.7 | 1.5716 | 1.4921 | 1156.0 | 1252.7 | 1.5497 | 1.2851 | 1151.2 | 1246.4 | 1.5298 |
| 600 | 2.00461 | 1204.3 | 1315.7 | 1.6282 | 1.70301 | 1201.4 | 1311.8 | 1.6084 | 1.47653 | 1198.4 | 1307.8 | 1.5907 |
| 700 | 2.22731 | 1245.8 | 1369.5 | 1.6767 | 1.89791 | 1243.7 | 1366.7 | 1.6579 | 1.65073 | 1241.5 | 1363.8 | 1.6413 |
| 800 | 2.44237 | 1286.6 | 1422.3 | 1.7204 | 2.08483 | 1285.0 | 1420.1 | 1.7021 | 1.81661 | 1283.3 | 1417.9 | 1.6860 |
| 900 | 2.65291 | 1327.5 | 1474.9 | 1.7605 | 2.26711 | 1326.2 | 1473.1 | 1.7426 | 1.97772 | 1324.9 | 1471.4 | 1.7269 |
| 1000 | 2.86054 | 1368.8 | 1527.7 | 1.7981 | 2.44642 | 1367.8 | 1526.3 | 1.7803 | 2.13582 | 1366.7 | 1524.9 | 1.7649 |
| 1200 | 3.27038 | 1453.5 | 1635.1 | 1.8670 | 2.79958 | 1452.7 | 1634.1 | 1.8495 | 2.44647 | 1451.9 | 1633.1 | 1.8343 |
| 1400 | 3.6759 | 1541.2 | 1745.4 | 1.9297 | 3.14838 | 1540.6 | 1744.6 | 1.9124 | 2.75274 | 1540.0 | 1743.9 | 1.8973 |
| 1600 | 4.0789 | 1632.3 | 1858.9 | 1.9877 | 3.49466 | 1631.9 | 1858.4 | 1.9704 | 3.05647 | 1631.4 | 1857.8 | 1.9555 |
| 1800 | 4.48032 | 1726.9 | 1975.8 | 2.0418 | 3.83935 | 1726.5 | 1975.4 | 2.0247 | 3.35861 | 1726.1 | 1974.9 | 2.0098 |

Reference States: $\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point ( $32.018^{\circ} \mathrm{F}$ and 0.088713 psia ).

## Superheated Vapor

|  | $\mathrm{P}=450 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=456.3^{\circ} \mathrm{F}\right)$ |  |  |  | $P=500 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=467.0^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=550 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=477.0^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{\mathbf{3} / / \mathbf{b}_{\mathrm{m}}}}{\mathbf{V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \text { V } \\ \mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{{ }^{\circ} R}}{\text { S }}$ | $\begin{gathered} \text { V } \\ \mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/l }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ |
| Sat | 1.0324 | 1119.9 | 1206.0 | 1.4752 | 0.92815 | 1119.8 | 1205.8 | 1.4652 | 0.8422 | 1119.6 | 1205.3 | 1.4559 |
| 500 | 1.1233 | 1146.2 | 1239.8 | 1.5113 | 0.99303 | 1140.8 | 1232.8 | 1.4938 | 0.8856 | 1135.1 | 1225.3 | 1.4770 |
| 550 | 1.2152 | 1171.8 | 1273.1 | 1.5452 | 1.0797 | 1167.9 | 1267.8 | 1.5295 | 0.9685 | 1163.7 | 1262.4 | 1.5147 |
| 600 | 1.3001 | 1195.4 | 1303.7 | 1.5748 | 1.1588 | 1192.2 | 1299.5 | 1.5601 | 1.0429 | 1189.0 | 1295.2 | 1.5464 |
| 650 | 1.3807 | 1217.7 | 1332.8 | 1.6016 | 1.2331 | 1215.1 | 1329.3 | 1.5876 | 1.1122 | 1212.5 | 1325.7 | 1.5746 |
| 700 | 1.4584 | 1239.4 | 1360.9 | 1.6264 | 1.3044 | 1237.2 | 1357.9 | 1.6128 | 1.1783 | 1235.0 | 1355.0 | 1.6004 |
| 750 | 1.5339 | 1260.6 | 1388.5 | 1.6497 | 1.3735 | 1258.7 | 1385.9 | 1.6365 | 1.2421 | 1256.8 | 1383.3 | 1.6243 |
| 800 | 1.6079 | 1281.7 | 1415.7 | 1.6717 | 1.4410 | 1280.0 | 1413.4 | 1.6588 | 1.3043 | 1278.4 | 1411.2 | 1.6469 |
| 900 | 1.7526 | 1323.6 | 1469.6 | 1.7129 | 1.5725 | 1322.3 | 1467.9 | 1.7003 | 1.4251 | 1320.9 | 1466.1 | 1.6888 |
| 1000 | 1.8942 | 1365.6 | 1523.4 | 1.7511 | 1.7009 | 1364.5 | 1522.0 | 1.7387 | 1.5428 | 1363.4 | 1520.6 | 1.7275 |
| 1200 | 2.1718 | 1451.1 | 1632.1 | 1.8209 | 1.9521 | 1450.3 | 1631.1 | 1.8088 | 1.7723 | 1449.5 | 1630.0 | 1.7978 |
| 1400 | 2.4450 | 1539.4 | 1743.1 | 1.8840 | 2.1988 | 1538.8 | 1742.4 | 1.8721 | 1.9974 | 1538.2 | 1741.6 | 1.8612 |
| 1600 | 2.7157 | 1630.9 | 1857.2 | 1.9423 | 2.4430 | 1630.4 | 1856.6 | 1.9304 | 2.2199 | 1630.0 | 1856.1 | 1.9197 |
| 1800 | 2.9847 | 1725.8 | 1974.5 | 1.9966 | 2.6856 | 1725.4 | 1974.0 | 1.9848 | 2.4409 | 1725.0 | 1973.6 | 1.9741 |

$$
\mathbf{P}=600 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=486.3^{\circ} \mathrm{F}\right) \quad \mathbf{P}=650 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=494.9^{\circ} \mathrm{F}\right) \quad \mathbf{P}=700 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=503.1^{\circ} \mathrm{F}\right)
$$

| $\begin{gathered} \mathrm{T} \\ { }^{\circ} \mathrm{F} \end{gathered}$ | $\underset{\mathrm{f}^{3} l \mathrm{l}_{\mathrm{m}}}{\mathbf{n}}$ | $\underset{\text { Btu/b }{ }_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Butu/b }{ }_{m}}{\mathbf{H}}$ |  | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/l } b_{m}}{\mathbf{H}}$ |  |  | $\underset{\text { Btu/libm }}{\mathbf{U}}$ | $\underset{\text { Btu/b } \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu/b } \mathbf{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.77015 | 1119.1 | 1204.6 | 1.4473 | 0.70878 | 1118.4 | 1203.8 | 1.4392 | 0.65586 | 1117.7 | 1202.7 | 1.4315 |
| 500 | 0.79526 | 1129.0 | 1217.3 | 1.4606 | 0.71781 | 1122.4 | 1208.8 | 1.4444 | 0.02044 | 485.6 | 488.3 | 0.6894 |
| 550 | 0.87542 | 1159.4 | 1256.7 | 1.5006 | 0.79625 | 1154.9 | 1250.8 | 1.4871 | 0.72799 | 1150.2 | 1244.6 | 1.4740 |
| 600 | 0.94605 | 1185.7 | 1290.8 | 1.5336 | 0.86392 | 1182.2 | 1286.2 | 1.5214 | 0.79332 | 1178.7 | 1281.5 | 1.5097 |
| 700 | 1.0732 | 1232.7 | 1351.9 | 1.5888 | 0.98410 | 1230.4 | 1348.8 | 1.5779 | 0.90769 | 1228.1 | 1345.7 | 1.5677 |
| 800 | 1.1904 | 1276.7 | 1408.9 | 1.6359 | 1.0939 | 1275.0 | 1406.6 | 1.6257 | 1.0112 | 1273.2 | 1404.3 | 1.6162 |
| 900 | 1.3023 | 1319. | 1464.3 | 1.6782 | 1.1983 | 1318.2 | 1462.5 | 1.6684 | 1.1092 | 1316.9 | 1460.7 | 1.6592 |
| 1000 | 1.4110 | 1362.3 | 1519.1 | 1.7171 | 1.2994 | 1361.2 | 1517.6 | 1.7075 | 1.2038 | 1360.1 | 1516.2 | 1.6986 |
| 1200 | 1.6225 | 1448.8 | 1629.0 | 1.7877 | 1.4957 | 1448.0 | 1628.0 | 1.7784 | 1.3871 | 1447.2 | 1627.0 | 1.7697 |
| 1400 | 1.8296 | 1537.6 | 1740.9 | 1.8513 | 1.6875 | 1537.0 | 1740.1 | 1.8422 | 1.5658 | 1536.4 | 1739.4 | 1.8337 |
| 1600 | 2.0340 | 1629.5 | 1855.5 | 1.9098 | 1.8767 | 1629.0 | 1854.9 | 1.9008 | 1.7419 | 1628.5 | 1854.3 | 1.8924 |
| 1800 | 2.2369 | 1724.6 | 1973.1 | 1.9643 | 2.0643 | 1724.2 | 1972.7 | 1.9553 | 1.9164 | 1723.8 | 1972.2 | 1.9470 |


|  | $\mathrm{P}=750 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=510.9^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=800 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=518 . \mathbf{3}^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=900 \mathrm{psia}\left(\mathrm{T}_{\text {sat }}=532.0^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{T} \\ & { }_{\mathrm{F}} \end{aligned}$ | $\underset{f^{3} l b_{m}}{V}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btull }{ }_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu } / b_{\mathrm{m}}{ }^{\circ}{ }_{\mathrm{R}}}{\mathrm{~S}}$ | $\underset{\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\text { Btu/b }{ }_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/libm }}{\mathbf{H}}$ | $\underset{\text { Btu/l }_{\mathrm{m}}{ }^{\circ} \mathrm{R}}{\mathbf{S}}$ | $\underset{\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\text { Btu/b } b_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/b }{ }_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Butulbm }_{\mathrm{m}}{ }^{\mathrm{R}}}{\mathbf{S}}$ |
| Sat | 0.60974 | 1116.8 | 1201.5 | 1.4242 | 0.56917 | 1115.8 | 1200.1 | 1.4171 | 0.50106 | 1113.5 | 1197.0 | 1.4039 |
| 550 | 0.66842 | 1145.3 | 1238.1 | 1.4612 |  |  |  |  |  |  |  |  |
| 600 | 0.73192 | 1175.0 | 1276.7 | 1.4985 | 0.67799 | 1171.3 | 1271.7 | 1.4877 | 0.58750 | 1163.4 | 1261.3 | 1.4668 |
| 700 | 0.84139 | 1225.7 | 1342.5 | 1.5579 | 0.7833 | 1223.3 | 1339.3 | 1.5487 | 0.68629 | 1218.3 | 1332.7 | 1.5313 |
| 800 | 0.93955 | 1271.5 | 1402.0 | 1.6071 | 0.87678 | 1269.7 | 1399.6 | 1.5986 | 0.77207 | 1266.1 | 1394.8 | 1.5827 |
| 900 | 1.0319 | 1315.5 | 1458.8 | 1.6506 | 0.96433 | 1314.2 | 1457.0 | 1.6425 | 0.85160 | 1311.4 | 1453.3 | 1.6274 |
| 1000 | 1.1209 | 1359.0 | 1514.7 | 1.6902 | 1.0484 | 1357.9 | 1513.2 | 1.6823 | 0.92751 | 1355.7 | 1510.2 | 1.6678 |
| 1200 | 1.2929 | 1446.4 | 1625.9 | 1.7617 | 1.2105 | 1445.6 | 1624.9 | 1.7541 | 1.0732 | 1444.0 | 1622.8 | 1.7401 |
| 1400 | 1.4603 | 1535.8 | 1738.6 | 1.8257 | 1.3680 | 1535.2 | 1737.8 | 1.8183 | 1.2141 | 1534.0 | 1736.3 | 1.8047 |
| 1600 | 1.6251 | 1628.1 | 1853.8 | 1.8845 | 1.5228 | 1627.6 | 1853.2 | 1.8772 | 1.3524 | 1626.63 | 1852.0 | 1.8637 |
| 1800 | 1.7882 | 1723.4 | 1971.8 | 1.9392 | 1.6761 | 1723.0 | 1971.3 | 1.9319 | 1.4891 | 1722.3 | 1970.4 | 1.9186 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

$$
\mathrm{P}=1000 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=544.7^{\circ} \mathrm{F}\right) \quad \mathrm{P}=1500 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=596.3^{\circ} \mathrm{F}\right) \quad \mathrm{P}=2000 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=635.9^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{l b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/l } \mathrm{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} R \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{ft}^{3} / / \mathrm{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/l }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} R \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.44605 | 1110.8 | 1193.4 | 1.3916 | 0.27697 | 1092.9 | 1169.8 | 1.3372 | 0.18813 | 1067.5 | 1137.2 | 1.2872 |
| 600 | 0.51431 | 1154.9 | 1250.1 | 1.4466 | 0.28189 | 1097.9 | 1176.2 | 1.3432 |  |  |  |  |
| 650 | 0.56410 | 1185.9 | 1290.3 | 1.4837 | 0.33310 | 1148.0 | 1240.5 | 1.4026 | 0.20586 | 1092.1 | 1168.4 | 1.3155 |
| 700 | 0.60844 | 1213.2 | 1325.8 | 1.5151 | 0.37198 | 1184.4 | 1287.7 | 1.4443 | 0.24894 | 1148.4 | 1240.6 | 1.3793 |
| 750 | 0.64944 | 1238.4 | 1358.7 | 1.5428 | 0.40534 | 1215.2 | 1327.8 | 1.4781 | 0.28074 | 1188.2 | 1292.1 | 1.4228 |
| 800 | 0.68821 | 1262.5 | 1389.9 | 1.5681 | 0.43550 | 1243.0 | 1364.0 | 1.5075 | 0.30763 | 1221.3 | 1335.2 | 1.4577 |
| 900 | 0.76136 | 1308.6 | 1449.6 | 1.6137 | 0.49014 | 1294.0 | 1430.1 | 1.5580 | 0.35390 | 1278.3 | 1409.4 | 1.5145 |
| 1000 | 0.83077 | 1353.4 | 1507.2 | 1.6546 | 0.54031 | 1341.8 | 1491.8 | 1.6018 | 0.39479 | 1329.6 | 1475.8 | 1.5616 |
| 1100 | 0.89782 | 1397.8 | 1564.1 | 1.6923 | 0.58780 | 1388.3 | 1551.5 | 1.6414 | 0.43266 | 1378.4 | 1538.6 | 1.6032 |
| 1200 | 0.96327 | 1442.4 | 1620.8 | 1.7275 | 0.63355 | 1434.3 | 1610.3 | 1.6779 | 0.46864 | 1426.0 | 1599.6 | 1.6411 |
| 1300 | 1.0276 | 1487.3 | 1677.6 | 1.7608 | 0.67808 | 1480.3 | 1668.7 | 1.7121 | 0.50332 | 1473.3 | 1659.7 | 1.6763 |
| 1400 | 1.0910 | 1532.8 | 1734.8 | 1.7924 | 0.72172 | 1526.7 | 1727.1 | 1.7444 | 0.53708 | 1520.5 | 1719.4 | 1.7093 |
| 1600 | 1.2161 | 1625.7 | 1850.9 | 1.8516 | 0.80714 | 1620.9 | 1845.1 | 1.8046 | 0.60269 | 1616.0 | 1839.3 | 1.7705 |
| 1800 | 1.3396 | 1721.5 | 1969.5 | 1.9066 | 0.89090 | 1717.6 | 1965.0 | 1.8602 | 0.66660 | 1713.7 | 1960.6 | 1.8267 |

$$
\mathrm{P}=2500 \mathrm{psia}\left(\mathrm{~T}_{\text {sat }}=668.2^{\circ} \mathrm{F}\right)
$$

$$
P=3000 \mathrm{psia}\left(\mathrm{~T}_{\mathrm{sat}}=695.4^{0} \mathrm{~F}\right)
$$

$$
\mathbf{P}=3500 \mathrm{psia}
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{o}} \mathbf{F} \end{aligned}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathbf{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathrm{R}}{\mathrm{~S}}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{ft}^{3} / / \mathrm{lb}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} R \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{ft}^{3} / l \mathrm{~b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.13071 | 1031.8 | 1092.3 | 1.2338 | 0.08466 | 970.58 | 1017.6 | 1.1597 | Supercritical |  |  |  |
| 700 | 0.16849 | 1099.1 | 1177.1 | 1.3081 | 0.09837 | 1006.0 | 1060.6 | 1.1969 | 0.030653 | 760.51 | 780.37 | 0.95177 |
| 750 | 0.20327 | 1155.7 | 1249.8 | 1.3695 | 0.14840 | 1114.8 | 1197.2 | 1.3127 | 0.10460 | 1058.3 | 1126.1 | 1.2443 |
| 800 | 0.22949 | 1196.7 | 1302.9 | 1.4125 | 0.17601 | 1168.3 | 1266.1 | 1.3685 | 0.13639 | 1135.0 | 1223.4 | 1.3233 |
| 850 | 0.25174 | 1231.0 | 1347.5 | 1.4473 | 0.19771 | 1209.0 | 1318.8 | 1.4096 | 0.15847 | 1184.6 | 1287.3 | 1.3730 |
| 900 | 0.27165 | 1261.6 | 1387.3 | 1.4772 | 0.21639 | 1243.6 | 1363.8 | 1.4433 | 0.17659 | 1224.2 | 1338.7 | 1.4115 |
| 950 | 0.29001 | 1290.0 | 1424.2 | 1.5038 | 0.23321 | 1274.7 | 1404.3 | 1.4726 | 0.19245 | 1258.6 | 1383.3 | 1.4438 |
| 1000 | 0.30726 | 1316.9 | 1459.2 | 1.5282 | 0.24876 | 1303.7 | 1441.9 | 1.4988 | 0.20687 | 1289.9 | 1423.9 | 1.4721 |
| 1200 | 0.36966 | 1417.6 | 1588.7 | 1.6114 | 0.30367 | 1409.0 | 1577.7 | 1.5861 | 0.25654 | 1400.2 | 1566.5 | 1.5638 |
| 1400 | 0.42631 | 1514.3 | 1711.7 | 1.6814 | 0.35249 | 1508.0 | 1703.8 | 1.6579 | 0.29978 | 1501.7 | 1696.0 | 1.6375 |
| 1600 | 0.48004 | 1611.2 | 1833.4 | 1.7436 | 0.39830 | 1606.3 | 1827.6 | 1.7211 | 0.33994 | 1601.4 | 1821.7 | 1.7017 |
| 1800 | 0.53204 | 1709.8 | 1956.1 | 1.8004 | 0.44236 | 1705.8 | 1951.6 | 1.7785 | 0.37833 | 1701.9 | 1947.1 | 1.7598 |


|  | $P=4000$ psia |  |  |  | $P=5000$ psia |  |  |  | $P=6000$ psia |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{0}} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\mathbf{U}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{ft}^{3} / / \mathrm{lb}_{\mathrm{m}} \end{gathered}$ |  | H <br> Btu/lb ${ }_{\text {m }}$ | $\begin{gathered} \mathbf{S} \\ \mathbf{B t u}^{\prime} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ |
| Sat | Supercritical |  |  |  | Supercritical |  |  |  | Supercritical |  |  |  |
| 700 | 0.028713 | 742.81 | 764.08 | 0.93536 | 0.026777 | 722.26 | 747.05 | 0.91627 | 0.025635 | 708.54 | 737.03 | 0.90344 |
| 750 | 0.063703 | 962.70 | 1009.9 | 1.1417 | 0.033730 | 822.38 | 853.61 | 1.0061 | 0.029815 | 789.22 | 822.34 | 0.97541 |
| 800 | 0.10520 | 1095.0 | 1172.9 | 1.2743 | 0.059365 | 987.53 | 1042.5 | 1.1589 | 0.039491 | 897.71 | 941.58 | 1.0719 |
| 850 | 0.12848 | 1157.4 | 1252.6 | 1.3364 | 0.085508 | 1093.1 | 1172.3 | 1.2602 | 0.058151 | 1019.2 | 1083.8 | 1.1827 |
| 900 | 0.14647 | 1203.3 | 1311.8 | 1.3808 | 0.10390 | 1156.7 | 1252.9 | 1.3207 | 0.075844 | 1104.3 | 1188.5 | 1.2612 |
| 1000 | 0.17538 | 1275.4 | 1405.3 | 1.4473 | 0.13128 | 1244.8 | 1366.4 | 1.4014 | 0.10208 | 1212.2 | 1325.6 | 1.3587 |
| 1200 | 0.22121 | 1391.3 | 1555.1 | 1.5437 | 0.17185 | 1373.0 | 1532.1 | 1.5081 | 0.13911 | 1354.3 | 1508.8 | 1.4768 |
| 1400 | 0.26028 | 1495.3 | 1688.1 | 1.6193 | 0.20508 | 1482.4 | 1672.3 | 1.5879 | 0.16841 | 1469.3 | 1656.5 | 1.5609 |
| 1600 | 0.29620 | 1596.5 | 1815.9 | 1.6846 | 0.23505 | 1586.7 | 1804.3 | 1.6553 | 0.19438 | 1576.8 | 1792.7 | 1.6305 |
| 1800 | 0.33033 | 1698.0 | 1942.6 | 1.7434 | 0.26320 | 1690.1 | 1933.8 | 1.7153 | 0.21853 | 1682.2 | 1925.0 | 1.6918 |

Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

|  | $P=500 \text { psia }\left(467.0^{\circ} F\right)$ |  |  |  |  | $\mathrm{P}=1000 \mathrm{psia}\left(544.7^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{ }{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\stackrel{\mathbf{V}}{\mathbf{f t}^{3} / / \mathbf{l}_{\mathbf{m}}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathbf{m}}$ |  | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | U <br> Btu/lb ${ }_{\mathrm{m}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ |
| 32.02 | 62.524 | 0.015994 | 0.028146 | 1.5090 | $5.4617 \mathrm{E}-05$ | 62.632 | 0.015966 | 0.051537 | 3.0081 | $9.4391 \mathrm{E}-05$ |
| 50 | 62.509 | 0.015998 | 18.040 | 19.521 | 0.036035 | 62.611 | 0.015972 | 18.002 | 20.959 | 0.035953 |
| 100 | 62.086 | 0.016107 | 67.906 | 69.397 | 0.12939 | 62.179 | 0.016083 | 67.738 | 70.716 | 0.12908 |
| 150 | 61.286 | 0.016317 | 117.78 | 119.29 | 0.21477 | 61.380 | 0.016292 | 117.50 | 120.51 | 0.21430 |
| 200 | 60.217 | 0.016607 | 167.82 | 169.35 | 0.29369 | 60.315 | 0.016580 | 167.42 | 170.49 | 0.29309 |
| 250 | 58.921 | 0.016972 | 218.18 | 219.75 | 0.36733 | 59.028 | 0.016941 | 217.66 | 220.80 | 0.36659 |
| 300 | 57.416 | 0.017417 | 269.09 | 270.71 | 0.43671 | 57.536 | 0.017380 | 268.42 | 271.64 | 0.43581 |
| 350 | 55.697 | 0.017954 | 320.85 | $322.51$ | 0.50275 | $55.835$ | $0.017910$ | $319.98$ | $323.30$ | $0.50167$ |
| 400 | 53.737 | 0.018609 | 373.86 | 375.58 | 0.56634 | 53.903 | 0.018552 | 372.73 | 376.16 | 0.56501 |
| 450 | 51.481 | 0.019425 | 428.73 | 430.53 | 0.62845 | 51.689 | 0.019347 | 427.22 | 430.80 | 0.62678 |
| 500 |  |  |  |  |  | 49.097 | 0.020368 | 484.35 | 488.12 | 0.68811 |
| Sat | 50.628 | 0.019752 | 448.01 | 449.84 | 0.64949 | 46.297 | 0.021600 | 539.02 | 543.019 | 0.74400 |


|  | $\mathbf{P}=2000$ psia $\left(635.9^{\circ} \mathrm{F}\right)$ |  |  |  |  | $P=3000$ psia $\left(695.4{ }^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathrm{U}}$ | H <br> Btu/lb ${ }_{m}$ | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R}}{\mathbf{S}}$ | $\stackrel{\rho}{\mathbf{l b} / \mathbf{f t}_{3}}$ | $\begin{gathered} \text { V } \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | U <br> Btu/lb ${ }_{m}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} \mathrm{S} \\ \text { Btu/lb }_{\mathrm{m}}{ }^{\circ} \mathbf{R} \end{gathered}$ |
| 32.02 | 62.846 | 0.015912 | 0.090413 | 5.9833 | $1.4281 \mathrm{E}-04$ | 63.056 | 0.015859 | 0.11927 | 8.9292 | $1.5155 \mathrm{E}-04$ |
| 50 | 62.812 | 0.015921 | 17.922 | 23.819 | 0.03577 | 63.010 | 0.015870 | 17.839 | 26.656 | 0.03556 |
| 100 | 62.365 | 0.016035 | 67.407 | 73.345 | 0.12847 | 62.547 | 0.015988 | 67.083 | 75.964 | 0.12785 |
| 150 | 61.564 | 0.016243 | 116.95 | 122.96 | 0.21338 | 61.746 | 0.016195 | 116.41 | 125.41 | 0.21247 |
| 200 | 60.508 | 0.016527 | 166.65 | 172.77 | 0.29190 | 60.698 | 0.016475 | 165.90 | 175.05 | 0.29073 |
| 250 | 59.237 | 0.016881 | 216.64 | 222.89 | 0.36513 | 59.442 | 0.016823 | 215.65 | 225.00 | 0.36370 |
| 300 | 57.770 | 0.017310 | 267.10 | 273.51 | 0.43405 | 57.998 | 0.017242 | 265.83 | 275.41 | 0.43234 |
| 350 | 56.105 | 0.017824 | 318.29 | 324.89 | 0.49955 | 56.365 | 0.017741 | 316.67 | 326.53 | 0.49750 |
| 400 | 54.223 | 0.018442 | 370.55 | 377.38 | 0.56244 | 54.530 | 0.018338 | 368.47 | 378.66 | 0.55997 |
| 450 | 52.086 | 0.019199 | 424.34 | 431.45 | 0.62357 | 52.461 | 0.019062 | 421.64 | 432.22 | 0.62053 |
| 500 | 49.618 | 0.020154 | 480.40 | 487.86 | 0.68393 | 50.099 | 0.019960 | 476.76 | 487.85 | 0.68005 |
| 550 | 46.671 | 0.021427 | 540.02 | 547.96 | 0.74495 | 47.335 | 0.021126 | 534.84 | 546.58 | 0.73968 |
| 600 | 42.888 | 0.023317 | 606.17 | 614.81 | 0.80953 | 43.940 | 0.022759 | 597.82 | 610.46 | 0.80141 |
| 640 |  |  |  |  |  | 40.379 | 0.024765 | 654.96 | 668.72 | 0.85535 |
| 680 |  |  |  |  |  | 34.697 | 0.028821 | 729.12 | 745.13 | 0.92351 |
| Sat | 39.009 | 0.025635 | 662.79 | 672.28 | 0.86284 | 29.121 | 0.034339 | 783.94 | 803.02 | 0.97391 |

## Reference

States:
$\mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia $)$.

|  | $\mathrm{P}=4000$ psia |  |  |  |  | $P=5000$ psia |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{0}} \mathbf{F} \end{aligned}$ | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\mathbf{U}$ <br> Btu/b $\mathrm{b}_{\mathrm{m}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} \text { Stu/lb }{ }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \text { V } \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | U <br> Btu/lb ${ }_{m}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ |
| 32.02 | 62.846 | 0.015912 | 0.09041 | 5.983 | $1.4281 \mathrm{E}-04$ | 63.056 | 0.015859 | 0.11927 | 8.929 | $1.5155 \mathrm{E}-04$ |
| 50 | 62.812 | 0.015921 | 17.922 | 23.819 | 0.035769 | 63.010 | 0.015870 | 17.839 | 26.656 | 0.03556 |
| 100 | 62.365 | 0.016035 | 67.407 | 73.345 | 0.12847 | 62.547 | 0.015988 | 67.083 | 75.964 | 0.12785 |
| 150 | 61.564 | 0.016243 | 116.95 | 122.96 | 0.21338 | 61.746 | 0.016195 | 116.41 | 125.41 | 0.21247 |
| 200 | 60.508 | 0.016527 | 166.65 | 172.77 | 0.29190 | 60.698 | 0.016475 | 165.90 | 175.05 | 0.29073 |
| 250 | 59.237 | 0.016881 | 216.64 | 222.89 | 0.36513 | 59.442 | 0.016823 | 215.65 | 225.00 | 0.36370 |
| 300 | 57.770 | 0.017310 | 267.10 | 273.51 | 0.43405 | 57.998 | 0.017242 | 265.83 | 275.41 | 0.43234 |
| 350 | 56.105 | 0.017824 | 318.29 | 324.89 | 0.49955 | 56.365 | 0.017741 | 316.67 | 326.53 | 0.49750 |
| 400 | 54.223 | 0.018442 | 370.55 | 377.38 | 0.56244 | 54.530 | 0.018338 | 368.47 | 378.66 | 0.55997 |
| 450 | 52.086 | 0.019199 | 424.34 | 431.45 | 0.62357 | 52.461 | 0.019062 | 421.64 | 432.22 | 0.62053 |
| 500 | 49.618 | 0.020154 | 480.40 | 487.86 | 0.68393 | 50.099 | 0.019960 | 476.76 | 487.85 | 0.68005 |
| 550 | 46.671 | 0.021427 | 540.02 | 547.96 | 0.74495 | 47.335 | 0.021126 | 534.84 | 546.58 | 0.73968 |
| 600 | 42.888 | 0.023317 | 606.17 | 614.81 | 0.80953 | 43.940 | 0.022759 | 597.82 | 610.46 | 0.80141 |
| 650 | 4.8576 | 0.205862 | 1092.1 | 1168.4 | 1.3155 | 39.272 | 0.025463 | 670.99 | 685.13 | 0.87021 |
| 700 | 4.0171 | 0.248935 | 1148.4 | 1240.6 | 1.3793 | 10.165 | 0.098374 | 1006.0 | 1060.6 | 1.1969 |
| Sat | Supercritical |  |  |  |  | Supercritical |  |  |  |  |

## Reference

States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(32.018^{\circ} \mathrm{F}\right.$ and 0.088713 psia$)$.

Saturation Temperature Table
SI

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \hline \text { Pressure } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| -60 | 21.893 | 0.0014013 | 4.7057 | -87.262 | 1251.5 | -87.232 | 1354.6 | -0.39078 | 6.3735 |
| -55 | 30.145 | 0.0014126 | 3.4895 | -65.679 | 1258.2 | -65.637 | 1363.4 | -0.29069 | 6.2600 |
| -50 | 40.836 | 0.0014243 | 2.6277 | -43.956 | 1264.7 | -43.897 | 1372.0 | -0.19223 | 6.1529 |
| -45 | 54.489 | 0.0014364 | 2.0071 | -22.096 | 1271.1 | -22.017 | 1380.4 | -0.095353 | 6.0517 |
| -40 | 71.692 | 0.0014490 | 1.5533 | -0.10388 | 1277.2 | 0 | 1388.6 | 0 | 5.9558 |
| -35 | 93.098 | 0.0014619 | 1.2168 | 22.015 | 1283.2 | 22.151 | 1396.5 | 0.093870 | 5.8648 |
| -30 | 119.43 | 0.0014753 | 0.96396 | 44.257 | 1289.0 | 44.433 | 1404.1 | 0.18630 | 5.7784 |
| -25 | 151.47 | 0.0014891 | 0.77167 | 66.617 | 1294.6 | 66.843 | 1411.5 | 0.27734 | 5.6960 |
| -20 | 190.08 | 0.0015035 | 0.62373 | 89.095 | 1299.9 | 89.380 | 1418.5 | 0.36703 | 5.6174 |
| -15 | 236.17 | 0.0015183 | 0.50868 | 111.69 | 1305.1 | 112.05 | 1425.2 | 0.45541 | 5.5422 |
| -10 | 290.71 | 0.0015336 | 0.41830 | 134.39 | 1309.9 | 134.84 | 1431.5 | 0.54255 | 5.4701 |
| -5 | 354.76 | 0.0015495 | 0.34664 | 157.22 | 1314.5 | 157.77 | 1437.5 | 0.62848 | 5.4009 |
| 0 | 429.38 | 0.0015660 | 0.28930 | 180.16 | 1318.8 | 180.83 | 1443.1 | 0.71327 | 5.3343 |
| 5 | 515.75 | 0.0015831 | 0.24304 | 203.22 | 1322.9 | 204.04 | 1448.2 | 0.79697 | 5.2700 |
| 10 | 615.05 | 0.0016009 | 0.20543 | 226.41 | 1326.6 | 227.40 | 1452.9 | 0.87964 | 5.2079 |
| 15 | 728.52 | 0.0016195 | 0.17461 | 249.74 | 1330.0 | 250.92 | 1457.2 | 0.96134 | 5.1477 |
| 20 | 857.48 | 0.0016388 | 0.14920 | 273.21 | 1333.1 | 274.61 | 1461.0 | 1.0421 | 5.0891 |
| 25 | 1003.2 | 0.0016590 | 0.12809 | 296.83 | 1335.8 | 298.50 | 1464.3 | 1.1221 | 5.0321 |
| 30 | 1167.2 | 0.0016802 | 0.11046 | 320.63 | 1338.1 | 322.59 | 1467.0 | 1.2013 | 4.9764 |
| 35 | 1350.8 | 0.0017024 | 0.095632 | 344.60 | 1340.0 | 346.90 | 1469.2 | 1.2799 | 4.9218 |
| 40 | 1555.4 | 0.0017258 | 0.083101 | 368.78 | 1341.5 | 371.47 | 1470.7 | 1.3578 | 4.8682 |
| 45 | 1782.7 | 0.0017505 | 0.072450 | 393.18 | 1342.5 | 396.31 | 1471.7 | 1.4353 | 4.8153 |
| 50 | 2034.0 | 0.0017766 | 0.063350 | 417.84 | 1343.0 | 421.45 | 1471.9 | 1.5123 | 4.7630 |
| 55 | 2311.1 | 0.0018044 | 0.055537 | 442.76 | 1343.0 | 446.93 | 1471.4 | 1.5890 | 4.7110 |
| 60 | 2615.6 | 0.0018340 | 0.048797 | 468.00 | 1342.5 | 472.80 | 1470.1 | 1.6656 | 4.6591 |
| 65 | 2949.1 | 0.0018658 | 0.042955 | 493.59 | 1341.2 | 499.09 | 1467.9 | 1.7421 | 4.6071 |
| 70 | 3313.5 | 0.0019000 | 0.037868 | 519.58 | 1339.3 | 525.87 | 1464.8 | 1.8187 | 4.5548 |
| 75 | 3710.5 | 0.0019371 | 0.033419 | 546.02 | 1336.6 | 553.20 | 1460.6 | 1.8955 | 4.5017 |
| 80 | 4142.0 | 0.0019776 | 0.029509 | 572.98 | 1332.9 | 581.17 | 1455.1 | 1.9729 | 4.4477 |
| 85 | 4610.0 | 0.0020221 | 0.026058 | 600.55 | 1328.2 | 609.87 | 1448.4 | 2.0510 | 4.3921 |
| 90 | 5116.7 | 0.0020714 | 0.022997 | 628.84 | 1322.3 | 639.44 | 1440.0 | 2.1301 | 4.3346 |
| 95 | 5664.3 | 0.0021269 | 0.020268 | 657.97 | 1315.0 | 670.02 | 1429.8 | 2.2105 | 4.2744 |
| 100 | 6255.3 | 0.0021899 | 0.017820 | 688.13 | 1306.0 | 701.83 | 1417.5 | 2.2929 | 4.2107 |
| 105 | 6892.3 | 0.0022630 | 0.015610 | 719.58 | 1294.8 | 735.18 | 1402.4 | 2.3779 | 4.1424 |
| 110 | 7578.3 | 0.0023496 | 0.013596 | 752.71 | 1280.9 | 770.51 | 1383.9 | 2.4666 | 4.0675 |
| 115 | 8317.0 | 0.0024559 | 0.011740 | 788.14 | 1263.2 | 808.57 | 1360.8 | 2.5607 | 3.9835 |
| 120 | 9112.5 | 0.0025941 | 0.0099932 | 827.11 | 1240.0 | 850.75 | 1331.1 | 2.6635 | 3.8852 |
| 132.25 | 11333 | 0.0044444 | 0.0044444 | 1049.7 | 1049.7 | 1100.1 | 1100.1 | 3.2674 | 3.2674 |

[^3]Saturation Pressure Table

| Pressure (kPa) | Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 10 | -71.22 | 0.0013773 | 9.8000 | -135.17 | 1236.1 | -135.16 | 1334.1 | -0.62165 | 6.6545 |
| 30 | -55.08 | 0.0014124 | 3.5053 | -66.014 | 1258.1 | -65.972 | 1363.3 | -0.29223 | 6.2617 |
| 50 | -46.52 | 0.0014327 | 2.1749 | -28.743 | 1269.1 | -28.671 | 1377.9 | -0.12459 | 6.0818 |
| 100 | -33.59 | 0.0014656 | 1.1381 | 28.282 | 1284.9 | 28.429 | 1398.7 | 0.12011 | 5.8400 |
| 200 | -18.85 | 0.0015068 | 0.59465 | 94.290 | 1301.1 | 94.591 | 1420.1 | 0.38750 | 5.5998 |
| 250 | -13.65 | 0.0015224 | 0.48216 | 117.80 | 1306.4 | 118.18 | 1426.9 | 0.47903 | 5.5225 |
| 500 | 4.14 | 0.0015801 | 0.25032 | 199.24 | 1322.2 | 200.03 | 1447.4 | 0.78264 | 5.2809 |
| 750 | 15.88 | 0.0016228 | 0.16980 | 253.85 | 1330.6 | 255.06 | 1457.9 | 0.97559 | 5.1373 |
| 1000 | 24.90 | 0.0016586 | 0.12850 | 296.33 | 1335.7 | 297.99 | 1464.2 | 1.1204 | 5.0333 |
| 1250 | 32.32 | 0.0016904 | 0.10325 | 331.75 | 1339.0 | 333.86 | 1468.1 | 1.2379 | 4.9509 |
| 1500 | 38.70 | 0.0017196 | 0.086169 | 362.46 | 1341.1 | 365.04 | 1470.4 | 1.3376 | 4.8821 |
| 1750 | 44.31 | 0.0017470 | 0.073816 | 389.81 | 1342.4 | 392.87 | 1471.6 | 1.4246 | 4.8225 |
| 2000 | 49.35 | 0.0017732 | 0.064453 | 414.62 | 1343.0 | 418.17 | 1471.9 | 1.5023 | 4.7697 |
| 2250 | 53.94 | 0.0017984 | 0.057102 | 437.44 | 1343.1 | 441.49 | 1471.6 | 1.5727 | 4.7220 |
| 2500 | 58.16 | 0.0018229 | 0.051170 | 458.65 | 1342.7 | 463.21 | 1470.7 | 1.6374 | 4.6782 |
| 2750 | 62.07 | 0.0018469 | 0.046279 | 478.55 | 1342.0 | 483.62 | 1469.3 | 1.6972 | 4.6376 |
| 3000 | 65.72 | 0.0018706 | 0.042174 | 497.33 | 1341.0 | 502.94 | 1467.5 | 1.7532 | 4.5996 |
| 3250 | 69.16 | 0.0018941 | 0.038676 | 515.18 | 1339.7 | 521.33 | 1465.4 | 1.8058 | 4.5636 |
| 3500 | 72.40 | 0.0019175 | 0.035657 | 532.22 | 1338.1 | 538.93 | 1462.9 | 1.8556 | 4.5294 |
| 3750 | 75.48 | 0.0019408 | 0.033025 | 548.56 | 1336.2 | 555.84 | 1460.1 | 1.9029 | 4.4967 |
| 4000 | 78.40 | 0.0019642 | 0.030707 | 564.29 | 1334.2 | 572.15 | 1457.0 | 1.9481 | 4.4651 |
| 4250 | 81.19 | 0.0019878 | 0.028649 | 579.49 | 1331.9 | 587.93 | 1453.7 | 1.9914 | 4.4346 |
| 4500 | 83.86 | 0.0020115 | 0.026808 | 594.21 | 1329.4 | 603.26 | 1450.0 | 2.0331 | 4.4049 |
| 4750 | 86.42 | 0.0020356 | 0.025151 | 608.51 | 1326.7 | 618.18 | 1446.2 | 2.0733 | 4.3760 |
| 5000 | 88.88 | 0.0020599 | 0.023651 | 622.45 | 1323.8 | 632.75 | 1442.0 | 2.1123 | 4.3477 |
| 5250 | 91.25 | 0.0020847 | 0.022284 | 636.05 | 1320.7 | 647.00 | 1437.6 | 2.1501 | 4.3198 |
| 5500 | 93.54 | 0.0021100 | 0.021034 | 649.36 | 1317.3 | 660.97 | 1433.0 | 2.1869 | 4.2923 |
| 5750 | 95.75 | 0.0021358 | 0.019884 | 662.42 | 1313.8 | 674.70 | 1428.1 | 2.2228 | 4.2651 |
| 6000 | 97.89 | 0.0021622 | 0.018823 | 675.24 | 1310.0 | 688.22 | 1423.0 | 2.2578 | 4.2382 |
| 6250 | 99.96 | 0.0021894 | 0.017840 | 687.87 | 1306.1 | 701.55 | 1417.6 | 2.2922 | 4.2113 |
| 6500 | 101.97 | 0.0022173 | 0.016925 | 700.33 | 1301.9 | 714.74 | 1411.9 | 2.3260 | 4.1845 |
| 6750 | 103.92 | 0.0022461 | 0.016071 | 712.63 | 1297.4 | 727.80 | 1405.9 | 2.3592 | 4.1577 |
| 7000 | 105.81 | 0.0022760 | 0.015271 | 724.82 | 1292.8 | 740.76 | 1399.7 | 2.3920 | 4.1307 |
| 7250 | 107.65 | 0.0023069 | 0.014519 | 736.92 | 1287.8 | 753.65 | 1393.1 | 2.4244 | 4.1036 |
| 7500 | 109.45 | 0.0023392 | 0.013810 | 748.95 | 1282.6 | 766.49 | 1386.1 | 2.4566 | 4.0762 |
| 7750 | 111.20 | 0.0023729 | 0.013140 | 760.94 | 1277.0 | 779.33 | 1378.9 | 2.4885 | 4.0484 |
| 8000 | 112.90 | 0.0024083 | 0.012503 | 772.91 | 1271.2 | 792.18 | 1371.2 | 2.5203 | 4.0201 |
| 8500 | 116.18 | 0.0024851 | 0.011318 | 796.98 | 1258.3 | 818.10 | 1354.5 | 2.5840 | 3.9617 |
| 9000 | 119.32 | 0.0025725 | 0.010228 | 821.49 | 1243.6 | 844.64 | 1335.7 | 2.6487 | 3.8998 |
| 9500 | 122.31 | 0.0026755 | 0.0092067 | 846.97 | 1226.5 | 872.39 | 1314.0 | 2.7158 | 3.8325 |
| 11333 | 132.25 | 0.0044444 | 0.0044444 | 1049.7 | 1049.7 | 1100.1 | 1100.1 | 3.2674 | 3.2674 |

Reference States:
$\mathrm{H}=0 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at- $40^{\circ} \mathrm{C}$.
$\mathrm{S}=0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $-40^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=50 \mathrm{kPa}\left(-46.52^{\circ} \mathrm{C}\right)$ |  |  |  | $P=100 \mathrm{kPa}\left(-33.59^{\circ} \mathrm{C}\right)$ |  |  |  | $P=200 \mathrm{kPa}\left(-18.85{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} V \\ \left(\mathbf{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} * \mathrm{~K}\right) \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathbf{K}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ |
| Sat | 2.1749 | 1269.1 | 1377.9 | 6.0818 | 1.1381 | 1284.9 | 1398.7 | 5.8400 | 0.59465 | 1301.1 | 1420.1 | 5.5998 |
| -40 | 2.2425 | 1280.0 | 1392.1 | 6.1438 |  |  |  |  |  |  |  |  |
| -30 | 2.3450 | 1296.5 | 1413.7 | 6.2344 | 1.1573 | 1291.2 | 1406.9 | 5.8739 |  |  |  |  |
| -20 | 2.4465 | 1312.8 | 1435.1 | 6.3205 | 1.2102 | 1308.3 | 1429.4 | 5.9645 |  |  |  |  |
| -10 | 2.5472 | 1329.0 | 1456.3 | 6.4028 | 1.2622 | 1325.2 | 1451.5 | 6.0502 | 0.61929 | 1317.4 | 1441.3 | 5.6818 |
| 0 | 2.6474 | 1345.1 | 1477.5 | 6.4818 | 1.3136 | 1342.0 | 1473.3 | 6.1317 | 0.64649 | 1335.4 | 1464.7 | 5.7689 |
| 10 | 2.7471 | 1361.3 | 1498.7 | 6.5580 | 1.3646 | 1358.6 | 1495.1 | 6.2098 | 0.67317 | 1352.9 | 1487.6 | 5.8512 |
| 20 | 2.8466 | 1377.6 | 1519.9 | 6.6316 | 1.4153 | 1375.2 | 1516.7 | 6.2850 | 0.69947 | 1370.2 | 1510.1 | 5.9296 |
| 30 | 2.9457 | 1393.9 | 1541.2 | 6.7030 | 1.4656 | 1391.8 | 1538.3 | 6.3575 | 0.72546 | 1387.4 | 1532.5 | 6.0048 |
| 40 | 3.0447 | 1410.3 | 1562.6 | 6.7723 | 1.5158 | 1408.4 | 1560.0 | 6.4278 | 0.75122 | 1404.6 | 1554.8 | 6.0771 |
| 50 | 3.1434 | 1426.8 | 1584.0 | 6.8398 | 1.5657 | 1425.2 | 1581.7 | 6.4961 | 0.77679 | 1421.7 | 1577.1 | 6.1470 |
| 60 | 3.2421 | 1443.5 | 1605.6 | 6.9056 | 1.6155 | 1442.0 | 1603.5 | 6.5626 | 0.80221 | 1438.9 | 1599.3 | 6.2148 |
| 70 | 3.3406 | 1460.3 | 1627.3 | 6.9698 | 1.6652 | 1458.9 | 1625.4 | 6.6274 | 0.82750 | 1456.1 | 1621.6 | 6.2807 |


|  | $\mathrm{P}=250 \mathrm{kPa}\left(-13.65^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=500 \mathrm{kPa}\left(4.14{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=750 \mathrm{kPa}\left(15.88^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { V } \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{S}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathrm{kJ} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} * K\right)}{\mathbf{S}}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k} \mathbf{J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathbf{S}} \mathrm{S}\right)}{\text { S }}$ |
| Sat | 0.48216 | 1306.4 | 1426.9 | 5.5225 | 0.25032 | 1322.2 | 1447.4 | 5.2809 | 0.16980 | 1330.6 | 1457.9 | 5.1373 |
| 0 | 0.51293 | 1331.9 | 1460.2 | 5.6473 |  |  |  |  |  |  |  |  |
| 25 | 0.56685 | 1376.5 | 1518.2 | 5.8507 | 0.27526 | 1364.1 | 1501.8 | 5.4702 | 0.17770 | 1350.7 | 1484.0 | 5.2261 |
| 50 | 0.61898 | 1420.0 | 1574.7 | 6.0327 | 0.30323 | 1411.0 | 1562.6 | 5.6663 | 0.19781 | 1401.6 | 1550.0 | 5.4388 |
| 75 | 0.67012 | 1463.4 | 1630.9 | 6.2002 | 0.33005 | 1456.5 | 1621.5 | 5.8419 | 0.21661 | 1449.4 | 1611.9 | 5.6233 |
| 100 | 0.72063 | 1507.3 | 1687.5 | 6.3570 | 0.35621 | 1501.8 | 1679.9 | 6.0038 | 0.23469 | 1496.1 | 1672.2 | 5.7906 |
| 125 | 0.77075 | 1552.0 | 1744.7 | 6.5054 | 0.38194 | 1547.4 | 1738.4 | 6.1555 | 0.25231 | 1542.8 | 1732.0 | 5.9459 |
| 150 | 0.82058 | 1597.7 | 1802.8 | 6.6470 | 0.40738 | 1593.8 | 1797.5 | 6.2995 | 0.26963 | 1589.9 | 1792.1 | 6.0923 |
| 175 | 0.87022 | 1644.4 | 1862.0 | 6.7829 | 0.43261 | 1641.1 | 1857.4 | 6.4371 | 0.28673 | 1637.8 | 1852.8 | 6.2317 |
| 200 | 0.91971 | 1692.4 | 1922.3 | 6.9139 | 0.45770 | 1689.5 | 1918.4 | 6.5694 | 0.30369 | 1686.6 | 1914.4 | 6.3653 |
| 225 | 0.96909 | 1741.6 | 1983.9 | 7.0407 | 0.48267 | 1739.1 | 1980.4 | 6.6972 | 0.32053 | 1736.5 | 1976.9 | 6.4941 |
| 250 | 1.0184 | 1792.2 | 2046.8 | 7.1639 | 0.50755 | 1789.9 | 2043.7 | 6.8211 | 0.33728 | 1787.7 | 2040.6 | 6.6188 |
| 275 | 1.0676 | 1844.1 | 2111.0 | 7.2838 | 0.53237 | 1842.1 | 2108.3 | 6.9417 | 0.35395 | 1840.0 | 2105.5 | 6.7400 |
| 300 | 1.1168 | 1897.4 | 2176.6 | 7.4008 | 0.55713 | 1895.6 | 2174.1 | 7.0591 | 0.37058 | 1893.7 | 2171.6 | 6.8580 |

Reference States: $\quad \mathrm{H}=0 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at- $40^{\circ} \mathrm{C}$.
$\mathrm{S}=0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $-40^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=1000 \mathrm{kPa}\left(24.9{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathbf{P}=1500 \mathrm{kPa}\left(38.7^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=2000 \mathrm{kPa}\left(49.35{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathbf{k g}^{*} * \mathbf{K}\right)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\begin{gathered} \mathbf{S} \\ \left(\mathbf{k J} / \mathrm{kg}^{*} * \mathbf{K}\right) \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathbf{S}} \mathrm{S}\right)}{\mathbf{S}}$ |
| Sat | 0.12850 | 1335.7 | 1464.2 | 5.0333 | 0.086169 | 1341.1 | 1470.4 | 4.8821 | 0.064453 | 1343.0 | 1471.9 | 4.7697 |
| 25 | 0.12857 | 1336.0 | 1464.5 | 5.0344 |  |  |  |  |  |  |  |  |
| 50 | 0.14496 | 1391.7 | 1536.6 | 5.2669 | 0.091774 | 1370.0 | 1507.6 | 4.9994 | 0.064729 | 1344.9 | 1474.4 | 4.7773 |
| 75 | 0.15983 | 1442.1 | 1601.9 | 5.4614 | 0.10288 | 1426.6 | 1580.9 | 5.2180 | 0.074231 | 1409.8 | 1558.3 | 5.0277 |
| 100 | 0.17389 | 1490.4 | 1664.3 | 5.6345 | 0.11301 | 1478.5 | 1648.0 | 5.4041 | 0.082479 | 1465.9 | 1630.9 | 5.2293 |
| 125 | 0.18747 | 1538.1 | 1725.6 | 5.7936 | 0.12259 | 1528.5 | 1712.4 | 5.5712 | 0.090095 | 1518.6 | 1698.7 | 5.4054 |
| 150 | 0.20074 | 1586.0 | 1786.7 | 5.9425 | 0.13182 | 1578.0 | 1775.7 | 5.7255 | 0.097332 | 1569.8 | 1764.5 | 5.5654 |
| 175 | 0.21379 | 1634.4 | 1848.2 | 6.0837 | 0.14082 | 1627.6 | 1838.8 | 5.8704 | 0.10432 | 1620.7 | 1829.3 | 5.7143 |
| 200 | 0.22668 | 1683.7 | 1910.4 | 6.2187 | 0.14966 | 1677.8 | 1902.3 | 6.0082 | 0.11114 | 1671.8 | 1894.1 | 5.8550 |
| 225 | 0.23945 | 1734.0 | 1973.4 | 6.3485 | 0.15837 | 1728.8 | 1966.3 | 6.1401 | 0.11782 | 1723.5 | 1959.2 | 5.9891 |
| 250 | 0.25214 | 1785.4 | 2037.5 | 6.4740 | 0.16699 | 1780.8 | 2031.2 | 6.2672 | 0.12441 | 1776.1 | 2024.9 | 6.1178 |
| 275 | 0.26475 | 1838.0 | 2102.7 | 6.5958 | 0.17554 | 1833.8 | 2097.2 | 6.3903 | 0.13093 | 1829.7 | 2091.5 | 6.2422 |
| 300 | 0.27730 | 1891.9 | 2169.2 | 6.7143 | 0.18403 | 1888.1 | 2164.2 | 6.5098 | 0.13739 | 1884.4 | 2159.1 | 6.3628 |
| 325 | 0.28981 | 1947.0 | 2236.9 | 6.8299 | 0.19247 | 1943.7 | 2232.4 | 6.6263 | 0.14380 | 1940.3 | 2227.8 | 6.4801 |


|  | $\mathrm{P}=5000 \mathrm{kPa}\left(88.88^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=7500 \mathrm{kPa}\left(109.45{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=10000 \mathrm{kPa}\left(125.17^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \times \mathbf{K}\right)}{\mathbf{S}}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\mathbf{S}}$ |
| Sat | 0.023651 | 1323.8 | 1442.0 | 4.3477 | 0.013810 | 1282.6 | 1386.1 | 4.0762 | 0.00823 | 1206.0 | 1288.3 | 3.7567 |
| 100 | 0.026362 | 1370.1 | 1501.9 | 4.5107 |  |  |  |  |  |  |  |  |
| 125 | 0.031082 | 1449.6 | 1605.0 | 4.7785 | 0.017196 | 1370.4 | 1499.3 | 4.3667 |  |  |  |  |
| 150 | 0.034975 | 1515.6 | 1690.4 | 4.9867 | 0.020803 | 1461.2 | 1617.2 | 4.6543 | 0.013381 | 1392.3 | 1526.2 | 4.3400 |
| 175 | 0.038463 | 1576.0 | 1768.3 | 5.1656 | 0.023672 | 1533.9 | 1711.5 | 4.8709 | 0.016152 | 1485.8 | 1647.3 | 4.6186 |
| 200 | 0.041706 | 1633.9 | 1842.4 | 5.3266 | 0.026196 | 1599.4 | 1795.9 | 5.0543 | 0.018386 | 1561.8 | 1745.7 | 4.8323 |
| 225 | 0.044785 | 1690.7 | 1914.7 | 5.4754 | 0.028513 | 1661.6 | 1875.4 | 5.2181 | 0.020353 | 1630.5 | 1834.0 | 5.0144 |
| 250 | 0.047748 | 1747.3 | 1986.0 | 5.6151 | 0.030692 | 1722.0 | 1952.2 | 5.3686 | 0.022156 | 1695.6 | 1917.2 | 5.1772 |
| 275 | 0.050625 | 1804.1 | 2057.2 | 5.7480 | 0.032773 | 1781.9 | 2027.7 | 5.5094 | 0.023848 | 1758.8 | 1997.3 | 5.3269 |
| 300 | 0.053435 | 1861.4 | 2128.6 | 5.8753 | 0.034781 | 1841.6 | 2102.5 | 5.6429 | 0.025459 | 1821.3 | 2075.9 | 5.4670 |
| 325 | 0.056192 | 1919.5 | 2200.4 | 5.9980 | 0.036731 | 1901.7 | 2177.2 | 5.7704 | 0.027010 | 1883.5 | 2153.6 | 5.5998 |
| 350 | 0.058906 | 1978.5 | 2273.0 | 6.1169 | 0.038637 | 1962.4 | 2252.1 | 5.8932 | 0.028512 | 1946.0 | 2231.1 | 5.7267 |
| 375 | 0.061587 | 2038.5 | 2346.4 | 6.2324 | 0.040506 | 2023.8 | 2327.6 | 6.0119 | 0.029977 | 2008.9 | 2308.7 | 5.8488 |
| 400 | 0.064238 | 2099.6 | 2420.8 | 6.3450 | 0.042346 | 2086.2 | 2403.8 | 6.1272 | 0.031411 | 2072.6 | 2386.7 | 5.9668 |
| 425 | 0.066865 | 2162.0 | 2496.3 | 6.4551 | 0.044161 | 2149.5 | 2480.8 | 6.2395 | 0.032820 | 2137.0 | 2465.2 | 6.0814 |

Reference States: $\mathrm{H}=0 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at- $40^{\circ} \mathrm{C}$.
$\mathrm{S}=0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $-40^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=1 \mathrm{MPa}\left(24.9{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1500 \mathrm{kPa}\left(38.7{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathbf{P}=2000 \mathrm{kPa}\left(49.35{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} V \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\begin{gathered} \mathrm{H} \\ (\mathrm{~kJ} / \mathrm{kg}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\mathrm{S}}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathrm{U}}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} * \mathbf{K}\right)}{\text { S }}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\text { ( }}$ |
| Sat | 0.0016586 | 296.33 | 297.99 | 1.1204 | 0.0017196 | 362.46 | 365.04 | 1.3376 | 0.0017732 | 414.62 | 418.17 | 1.5023 |
| 40 |  |  |  |  |  |  |  |  | 0.0017242 | 368.10 | 371.55 | 1.3556 |
| 30 |  |  |  |  | 0.0016792 | 320.18 | 322.70 | 1.1999 | 0.0016778 | 319.52 | 322.87 | 1.1977 |
| 20 | 0.0016385 | 273.04 | 274.68 | 1.0416 | 0.0016373 | 272.45 | 274.91 | 1.0396 | 0.0016361 | 271.87 | 275.15 | 1.0376 |
| 10 | 0.0016001 | 226.01 | 227.61 | 0.87822 | 0.0015991 | 225.50 | 227.89 | 0.87640 | 0.0015981 | 224.98 | 228.18 | 0.87458 |
| 0 | 0.0015650 | 179.63 | 181.20 | 0.71134 | 0.0015642 | 179.17 | 181.52 | 0.70966 | 0.0015633 | 178.72 | 181.84 | 0.70798 |
| -10 | 0.0015326 | 133.81 | 135.34 | 0.54033 | 0.0015318 | 133.40 | 135.70 | 0.53877 | 0.0015311 | 132.99 | 136.05 | 0.53721 |
| -20 | 0.0015024 | 88.497 | 90.000 | 0.36466 | 0.0015018 | 88.13 | 90.38 | 0.36321 | 0.0015011 | 87.77 | 90.77 | 0.36177 |
| -30 | 0.0014743 | 43.674 | 45.149 | 0.18390 | 0.0014738 | 43.345 | 45.556 | 0.18255 | 0.0014732 | 43.018 | 45.964 | 0.18120 |
| -40 | 0.0014481 | -0.65410 | 0.79396 | -0.0023620 | 0.0014476 | -0.94903 | 1.22232 | -0.0036296 | 0.0014471 | -1.2430 | 1.6512 | -0.0048940 |
| -50 | 0.0014235 | -44.464 | -43.041 | -0.19451 | 0.0014231 | -44.728 | -42.593 | -0.19570 | 0.0014227 | -44.991 | -42.146 | -0.19688 |
| -60 | 0.0014006 | -87.724 | -86.324 | -0.39295 | 0.0014002 | -87.960 | -85.859 | -0.39406 | 0.0013998 | -88.194 | -85.395 | -0.39516 |


|  | $\mathrm{P}=5000 \mathrm{kPa}\left(88.88{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=7500 \mathrm{kPa}\left(109.45{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=10000 \mathrm{kPa}\left(125.17^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | H <br> (kJ/kg) | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathrm{kJ} / \mathrm{kg}^{\mathrm{S}} \mathrm{~K}\right)}{\mathrm{S}}$ |
| Sat | 0.0020599 | 622.45 | 632.75 | 2.1123 | 0.0023392 | 748.95 | 766.49 | 2.4566 | 0.0028035 | 874.36 | 902.40 | 2.7879 |
| 110 |  |  |  |  |  |  |  |  | $0.0022636$ | $733.84$ | $756.48$ | $2.4154$ |
| 110 |  |  |  |  |  |  |  |  | $0.0022636$ | 733.84 | 756.48 | $2.4154$ |
| 100 |  |  |  |  | 0.0021621 | 681.11 | 697.33 | 2.2736 | 0.0021166 | 669.05 | 690.22 | 2.2402 |
| 90 |  |  |  |  | $0.0020388$ | 619.34 | 634.63 | 2.1033 | $0.0020101$ | $610.62$ | $630.72$ | $2.0786$ |
| 80 | 0.0019690 | 570.23 | 580.07 | 1.9650 | 0.0019462 | 562.76 | 577.35 | 1.9434 | 0.0019261 | 555.96 | 575.22 | 1.9237 |
| 70 | 0.0018880 | 515.30 | 524.74 | 1.8061 | 0.0018715 | 509.36 | 523.40 | 1.7885 | 0.0018566 | 503.83 | 522.40 | 1.7720 |
| 60 | 0.0018212 | 463.04 | 472.14 | 1.6505 | 0.0018087 | 458.14 | 471.71 | 1.6356 | 0.0017971 | 453.51 | 471.48 | 1.6214 |
| 50 | 0.0017641 | 412.64 | 421.46 | 1.4961 | 0.0017543 | 408.50 | 421.65 | 1.4831 | 0.0017450 | 404.54 | 421.99 | 1.4706 |
| 40 | 0.0017141 | 363.61 | 372.18 | 1.3412 | 0.0017061 | 360.04 | 372.84 | 1.3296 | 0.0016985 | 356.60 | 373.59 | 1.3184 |
| 30 | 0.0016695 | 315.63 | 323.97 | 1.1847 | 0.0016629 | 312.51 | 324.98 | 1.1743 | 0.0016566 | 309.49 | 326.05 | 1.1642 |
| 20 | 0.0016292 | 268.46 | 276.61 | 1.0259 | 0.0016236 | 265.71 | 277.88 | 1.0163 | 0.0016183 | 263.03 | 279.21 | 1.0071 |
| 10 | 0.0015923 | 221.96 | 229.92 | 0.86383 | 0.0015876 | 219.51 | 231.42 | 0.85509 | 0.0015830 | 217.13 | 232.96 | 0.84652 |
| 0 | 0.0015583 | 176.02 | 183.81 | 0.69806 | 0.0015542 | 173.84 | 185.49 | 0.68996 | 0.0015503 | 171.70 | 187.20 | 0.68200 |
| -10 | 0.0015268 | 130.58 | 138.22 | 0.52800 | 0.0015233 | 128.62 | 140.04 | 0.52045 | 0.0015198 | 126.70 | 141.90 | 0.51303 |
| -20 | 0.0014974 | 85.603 | 93.090 | 0.35317 | 0.0014943 | 83.838 | 95.046 | 0.34612 | 0.0014913 | 82.106 | 97.019 | 0.33918 |
| -30 | 0.0014699 | 41.075 | 48.425 | 0.17316 | 0.0014672 | 39.488 | 50.492 | 0.16656 | 0.0014646 | 37.927 | 52.573 | 0.16005 |
| -40 | 0.0014442 | -2.9863 | 4.2348 | -0.012414 | 0.0014418 | -4.4130 | 6.4009 | -0.018597 | 0.0014395 | -5.8167 | 8.5785 | -0.024705 |
| -50 | 0.0014201 | -46.552 | -39.452 | -0.20392 | 0.0014181 | -47.831 | -37.196 | -0.20971 | 0.0014160 | -49.090 | -34.930 | -0.21543 |
| -60 | 0.0013976 | -89.587 | -82.599 | -0.40173 | 0.0013958 | -90.728 | -80.260 | -0.40714 | 0.0013940 | -91.853 | -77.913 | -0.41249 |

Reference States: $\quad \mathrm{H}=0 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at- $40^{\circ} \mathrm{C}$.
$\mathrm{S}=0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $-40^{\circ} \mathrm{C}$.

| Temp. <br> ( ${ }^{\mathbf{F}}$ ) | Pressure (psia) | $\mathbf{V}\left(\mathrm{ft}^{3} / / \mathrm{lb}_{\mathrm{m}}\right)$ |  | U (Btu/lb ${ }_{\text {m }}$ ) |  | H (Btu/lb ${ }_{\text {m }}$ ) |  | $\left.\mathbf{S ~ ( B t u / l b ~}{ }_{\text {m }}{ }^{\text {c }} \mathbf{R}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| -100 | 1.2374 | 0.021994 | 182.19 | -61.999 | 530.52 | -61.994 | 572.26 | -0.15922 | 1.6042 |
| -95 | 1.5234 | 0.022085 | 149.92 | -56.940 | 532.19 | -56.934 | 574.48 | -0.14525 | 1.5862 |
| -90 | 1.8637 | 0.022177 | 124.12 | -51.862 | 533.86 | -51.854 | 576.69 | -0.13142 | 1.5689 |
| -85 | 2.2661 | 0.022272 | 103.35 | -46.765 | 535.50 | -46.755 | 578.87 | -0.11773 | 1.5521 |
| -80 | 2.7394 | 0.022368 | 86.546 | -41.648 | 537.13 | -41.637 | 581.03 | -0.10416 | 1.5359 |
| -75 | 3.2930 | 0.022467 | 72.857 | -36.512 | 538.75 | -36.499 | 583.17 | -0.090721 | 1.5202 |
| -70 | 3.9374 | 0.022567 | 61.646 | -31.358 | 540.34 | -31.341 | 585.29 | -0.077407 | 1.5050 |
| -65 | 4.6837 | 0.022669 | 52.415 | -26.184 | 541.92 | -26.165 | 587.38 | -0.064214 | 1.4904 |
| -60 | 5.5439 | 0.022773 | 44.774 | -20.992 | 543.47 | -20.969 | 589.44 | -0.051141 | 1.4761 |
| -55 | 6.5312 | 0.022879 | 38.418 | -15.782 | 545.01 | -15.754 | 591.47 | -0.038185 | 1.4624 |
| -50 | 7.6592 | 0.022988 | 33.105 | -10.554 | 546.52 | -10.521 | 593.48 | -0.025344 | 1.4490 |
| -45 | 8.9429 | 0.023098 | 28.644 | -5.3077 | 548.01 | -5.2695 | 595.45 | -0.012617 | 1.4360 |
| -40 | 10.398 | 0.023210 | 24.881 | -0.044690 | 549.48 | 0 | 597.39 | 0 | 1.4235 |
| -35 | 12.041 | 0.023324 | 21.694 | 5.2352 | 550.92 | 5.2872 | 599.29 | 0.012507 | 1.4113 |
| -30 | 13.890 | 0.023441 | 18.983 | 10.532 | 552.34 | 10.592 | 601.16 | 0.024907 | 1.3994 |
| -25 | 15.962 | 0.023560 | 16.668 | 15.844 | 553.73 | 15.914 | 602.99 | 0.037201 | 1.3878 |
| -20 | 18.279 | 0.023681 | 14.683 | 21.173 | 555.09 | 21.253 | 604.79 | 0.049391 | 1.3766 |
| -15 | 20.859 | 0.023804 | 12.976 | 26.517 | 556.42 | 26.609 | 606.54 | 0.061479 | 1.3657 |
| -10 | 23.723 | 0.023929 | 11.502 | 31.877 | 557.73 | 31.982 | 608.26 | 0.073466 | 1.3550 |
| -5 | 26.895 | 0.024057 | 10.226 | 37.253 | 559.00 | 37.372 | 609.93 | 0.085355 | 1.3446 |
| 0 | 30.397 | 0.024187 | 9.1159 | 42.643 | 560.24 | 42.779 | 611.55 | 0.097148 | 1.3345 |
| 5 | 34.253 | 0.024320 | 8.1483 | 48.049 | 561.45 | 48.203 | 613.13 | 0.10885 | 1.3246 |
| 10 | 38.487 | 0.024456 | 7.3020 | 53.470 | 562.63 | 53.644 | 614.67 | 0.12045 | 1.3150 |
| 15 | 43.126 | 0.024594 | 6.5597 | 58.906 | 563.77 | 59.103 | 616.15 | 0.13197 | 1.3055 |
| 20 | 48.194 | 0.024735 | 5.9067 | 64.358 | 564.88 | 64.579 | 617.59 | 0.14340 | 1.2963 |
| 25 | 53.720 | 0.024879 | 5.3307 | 69.825 | 565.95 | 70.072 | 618.97 | 0.15474 | 1.2873 |
| 30 | 59.731 | 0.025025 | 4.8213 | 75.308 | 566.98 | 75.585 | 620.31 | 0.16600 | 1.2784 |
| 35 | 66.255 | 0.025175 | 4.3695 | 80.807 | 567.97 | 81.116 | 621.58 | 0.17717 | 1.2698 |
| 40 | 73.322 | 0.025328 | 3.9680 | 86.323 | 568.93 | 86.666 | 622.80 | 0.18827 | 1.2613 |
| 45 | 80.962 | 0.025484 | 3.6102 | 91.855 | 569.84 | 92.237 | 623.97 | 0.19929 | 1.2529 |
| 50 | 89.205 | 0.025644 | 3.2906 | 97.405 | 570.72 | 97.828 | 625.07 | 0.21024 | 1.2447 |
| 55 | 98.083 | 0.025808 | 3.0045 | 102.97 | 571.55 | 103.44 | 626.12 | 0.22111 | 1.2367 |
| 60 | 107.63 | 0.025975 | 2.7479 | 108.56 | 572.33 | 109.08 | 627.10 | 0.23192 | 1.2287 |
| 65 | 117.87 | 0.026146 | 2.5172 | 114.16 | 573.07 | 114.73 | 628.01 | 0.24266 | 1.2210 |
| 70 | 128.85 | 0.026322 | 2.3094 | 119.79 | 573.77 | 120.42 | 628.86 | 0.25334 | 1.2133 |
| 75 | 140.59 | 0.026502 | 2.1217 | 125.44 | 574.41 | 126.13 | 629.65 | 0.26396 | 1.2057 |
| 80 | 153.13 | 0.026686 | 1.9521 | 131.10 | 575.01 | 131.86 | 630.36 | 0.27452 | 1.1982 |
| 85 | 166.51 | 0.026876 | 1.7983 | 136.80 | 575.55 | 137.62 | 631.00 | 0.28503 | 1.1909 |
| 90 | 180.76 | 0.027070 | 1.6588 | 142.51 | 576.04 | 143.42 | 631.56 | 0.29549 | 1.1836 |
| 100 | 212.01 | 0.027476 | 1.4163 | 154.02 | 576.86 | 155.10 | 632.46 | 0.31626 | 1.1692 |
| 120 | 286.60 | 0.028364 | 1.0452 | 177.39 | 577.76 | 178.90 | 633.23 | 0.35736 | 1.1411 |
| 140 | 379.36 | 0.029379 | 0.7817 | 201.34 | 577.54 | 203.40 | 632.45 | 0.39808 | 1.1136 |
| 160 | 492.95 | 0.030563 | 0.58993 | 226.04 | 575.95 | 228.83 | 629.80 | 0.43875 | 1.0858 |
| 180 | 630.24 | 0.031986 | 0.44729 | 251.74 | 572.60 | 255.47 | 624.80 | 0.47980 | 1.0572 |
| 200 | 794.38 | 0.033761 | 0.33869 | 278.84 | 566.86 | 283.81 | 616.69 | 0.52188 | 1.0265 |
| 220 | 989.03 | 0.036110 | 0.25381 | 308.04 | 557.63 | 314.65 | 604.11 | 0.56605 | 0.99193 |
| 240 | 1218.7 | 0.039556 | 0.18487 | 340.84 | 542.46 | 349.77 | 584.18 | 0.61462 | 0.94966 |
| 270.05 | 1643.7 | 0.071193 | 0.071193 | 451.57 | 451.57 | 473.25 | 473.25 | 0.78093 | 0.78093 |

Reference States:
$\mathrm{H}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.
$\mathrm{S}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.

Saturation Pressure Table

| Pressure (psia) | Temp. ( ${ }^{\mathbf{F}}$ ) | $\mathrm{V}\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{m}_{\mathrm{m}}\right)$ |  | $\mathbf{U}\left(\mathbf{B t u} / \mathrm{lb}_{\mathrm{m}}\right.$ ) |  | H (Btu/lb ${ }_{\text {m }}$ ) |  | $\mathbf{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 1 | -104.96 | 0.021906 | 222.48 | -67.002 | 528.84 | -66.998 | 570.04 | -0.17323 | 1.6227 |
| 5 | -63.08 | 0.022709 | 49.310 | -24.192 | 542.52 | -24.171 | 588.17 | -0.059178 | 1.4848 |
| 10 | -41.31 | 0.023181 | 25.805 | -1.4228 | 549.10 | -1.3799 | 596.88 | -0.0032891 | 1.4267 |
| 15 | -27.99 | 0.023488 | 18.007 | 12.668 | 552.90 | 12.732 | 601.90 | 0.029867 | 1.3947 |
| 20 | -16.61 | 0.023764 | 13.497 | 24.799 | 556.00 | 24.887 | 605.98 | 0.057608 | 1.3691 |
| 30 | -0.54 | 0.024173 | 9.2292 | 42.056 | 560.11 | 42.191 | 611.38 | 0.095871 | 1.3356 |
| 40 | 11.68 | 0.024502 | 7.0417 | 55.295 | 563.02 | 55.477 | 615.17 | 0.12433 | 1.3118 |
| 50 | 21.68 | 0.024783 | 5.7050 | 66.195 | 565.24 | 66.424 | 618.06 | 0.14722 | 1.2932 |
| 60 | 30.21 | 0.025032 | 4.8007 | 75.544 | 567.02 | 75.822 | 620.36 | 0.16648 | 1.2780 |
| 70 | 37.70 | 0.025257 | 4.1470 | 83.782 | 568.49 | 84.109 | 622.25 | 0.18317 | 1.2651 |
| 80 | 44.39 | 0.025465 | 3.6516 | 91.180 | 569.73 | 91.558 | 623.83 | 0.19795 | 1.2539 |
| 90 | 50.46 | 0.025659 | 3.2628 | 97.919 | 570.79 | 98.347 | 625.17 | 0.21125 | 1.2440 |
| 100 | 56.03 | 0.025842 | 2.9492 | 104.13 | 571.71 | 104.60 | 626.32 | 0.22335 | 1.2350 |
| 120 | 66.00 | 0.026181 | 2.4740 | 115.28 | 573.21 | 115.87 | 628.19 | 0.24480 | 1.2194 |
| 140 | 74.76 | 0.026493 | 2.1304 | 125.16 | 574.38 | 125.85 | 629.61 | 0.26345 | 1.2061 |
| 160 | 82.61 | 0.026784 | 1.8700 | 134.07 | 575.30 | 134.86 | 630.70 | 0.28001 | 1.1944 |
| 180 | 89.74 | 0.027060 | 1.6657 | 142.22 | 576.02 | 143.12 | 631.54 | 0.29495 | 1.1839 |
| 200 | 96.30 | 0.027323 | 1.5008 | 149.75 | 576.58 | 150.76 | 632.17 | 0.30859 | 1.1745 |
| 220 | 102.38 | 0.027576 | 1.3650 | 156.77 | 577.02 | 157.89 | 632.62 | 0.32117 | 1.1658 |
| 240 | 108.05 | 0.027820 | 1.2510 | 163.36 | 577.34 | 164.60 | 632.94 | 0.33286 | 1.1578 |
| 260 | 113.37 | 0.028057 | 1.1540 | 169.59 | 577.58 | 170.94 | 633.14 | 0.34380 | 1.1504 |
| 280 | 118.40 | 0.028289 | 1.0704 | 175.50 | 577.73 | 176.97 | 633.22 | 0.35410 | 1.1434 |
| 300 | 123.17 | 0.028515 | 0.99749 | 181.14 | 577.81 | 182.72 | 633.22 | 0.36382 | 1.1368 |
| 350 | 134.11 | 0.029064 | 0.85053 | 194.22 | 577.74 | 196.10 | 632.86 | 0.38611 | 1.1217 |
| 400 | 143.94 | 0.029597 | 0.73907 | 206.14 | 577.35 | 208.33 | 632.09 | 0.40608 | 1.1081 |
| 450 | 152.89 | 0.030119 | 0.65151 | 217.15 | 576.69 | 219.66 | 630.98 | 0.42427 | 1.0957 |
| 500 | 161.12 | 0.030636 | 0.58080 | 227.45 | 575.81 | 230.29 | 629.58 | 0.44104 | 1.0842 |
| 550 | 168.76 | 0.031152 | 0.52243 | 237.15 | 574.73 | 240.33 | 627.93 | 0.45665 | 1.0734 |
| 600 | 175.90 | 0.031670 | 0.47336 | 246.37 | 573.45 | 249.89 | 626.05 | 0.47132 | 1.0632 |
| 650 | 182.60 | 0.032193 | 0.43149 | 255.17 | 572.00 | 259.05 | 623.94 | 0.48520 | 1.0533 |
| 700 | 188.93 | 0.032725 | 0.39530 | 263.63 | 570.38 | 267.88 | 621.62 | 0.49841 | 1.0438 |
| 750 | 194.92 | 0.033268 | 0.36365 | 271.80 | 568.59 | 276.42 | 619.10 | 0.51106 | 1.0345 |
| 800 | 200.63 | 0.033824 | 0.33572 | 279.72 | 566.64 | 284.73 | 616.37 | 0.52322 | 1.0255 |
| 900 | 211.26 | 0.034992 | 0.28850 | 294.96 | 562.20 | 300.79 | 610.28 | 0.54640 | 1.0077 |
| 1000 | 221.03 | 0.036254 | 0.24992 | 309.63 | 557.02 | 316.34 | 603.30 | 0.56842 | 0.9900 |
| 1200 | 238.49 | 0.039233 | 0.18968 | 338.17 | 543.92 | 346.89 | 586.07 | 0.61069 | 0.9533 |
| 1300 | 246.36 | 0.041098 | 0.16508 | 352.63 | 535.51 | 362.52 | 575.25 | 0.63190 | 0.9332 |
| 1400 | 253.75 | 0.043431 | 0.14263 | 367.86 | 525.16 | 379.12 | 562.13 | 0.65418 | 0.91072 |
| 1500 | 260.70 | 0.046709 | 0.12101 | 385.12 | 511.50 | 398.09 | 545.11 | 0.67948 | 0.88357 |
| 1600 | 267.24 | 0.053180 | 0.096827 | 409.74 | 489.23 | 425.50 | 517.92 | 0.71607 | 0.84322 |
| 1643.7 | 270.05 | 0.071193 | 0.071193 | 451.57 | 451.57 | 473.25 | 473.25 | 0.78093 | 0.78093 |

## Reference States:

$\mathrm{H}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.
$\mathrm{S}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.

|  | $P=1$ psia $\left(-104.96{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $P=5 \mathrm{psia}\left(-63.08^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=10 \mathrm{psia}\left(-41.31{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\mathbf{o}} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{l b}_{\mathrm{m}}}{\mathbf{V}}$ | U <br> Btu/b $\mathrm{b}_{\mathrm{m}}$ | H <br> Btu/lb ${ }_{m}$ | $\begin{gathered} \text { Stu/lb }{ }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{\mathbf{3}} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\mathbf{U}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{\circ} \mathrm{R}}{\text { S }}$ | $\begin{gathered} V \\ \mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lbm }{ }^{\circ} \mathbf{R}}{\text { S }}$ |
| Sat | 222.48 | 528.84 | 570.04 | 1.6227 | 49.310 | 542.52 | 588.17 | 1.4848 | 25.805 | 549.10 | 596.88 | 1.4267 |
| -90 | 232.07 | 534.43 | 577.40 | 1.6431 |  |  |  |  |  |  |  |  |
| -80 | 238.46 | 538.15 | 582.30 | 1.6561 |  |  |  |  |  |  |  |  |
| -70 | 244.84 | 541.86 | 587.20 | 1.6689 |  |  |  |  |  |  |  |  |
| -60 | 251.21 | 545.56 | 592.08 | 1.6812 | 49.718 | 543.73 | 589.76 | 1.4888 |  |  |  |  |
| -50 | 257.57 | 549.27 | 596.96 | 1.6933 | 51.037 | 547.64 | 594.89 | 1.5015 |  |  |  |  |
| -40 | 263.92 | 552.97 | 601.84 | 1.7051 | 52.349 | 551.52 | 599.98 | 1.5138 | 25.894 | 549.63 | 597.58 | 1.4284 |
| -20 | 276.60 | 560.39 | 611.61 | 1.7278 | 54.953 | 559.22 | 610.09 | 1.5373 | 27.242 | 557.70 | 608.15 | 1.4530 |
| 0 | 289.27 | 567.84 | 621.41 | 1.7496 | 57.539 | 566.87 | 620.15 | 1.5597 | 28.569 | 565.63 | 618.53 | 1.4761 |
| 20 | 301.92 | 575.34 | 631.24 | 1.7705 | 60.111 | 574.52 | 630.18 | 1.5810 | 29.882 | 573.49 | 628.82 | 1.4980 |
| 40 | 314.57 | 582.88 | 641.13 | 1.7907 | 62.674 | 582.18 | 640.21 | 1.6015 | 31.185 | 581.31 | 639.06 | 1.5189 |
| 60 | 327.20 | 590.47 | 651.06 | 1.8102 | 65.228 | 589.88 | 650.27 | 1.6213 | 32.480 | 589.13 | 649.27 | 1.5389 |
| 80 | 339.84 | 598.14 | 661.07 | 1.8291 | 67.777 | 597.62 | 660.37 | 1.6404 | 33.769 | 596.97 | 659.50 | 1.5583 |
| 100 | 352.46 | 605.87 | 671.14 | 1.8474 | 70.322 | 605.42 | 670.53 | 1.6588 | 35.054 | 604.84 | 669.76 | 1.5769 |

$$
\mathbf{P}=14.696 \text { psia }\left(-27.99^{\circ} \mathrm{F}\right) \quad \mathbf{P}=20 \mathrm{psia}\left(-16.61^{\circ} \mathrm{F}\right) \quad \mathrm{P}=25 \mathrm{psia}\left(-7.93^{\circ} \mathrm{F}\right)
$$

| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\begin{gathered} \mathbf{H} \\ \mathbf{B t u} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\begin{gathered} \text { S } \\ \text { Btu/ }^{0}{ }^{\circ}{ }_{\mathrm{m}} \mathrm{R} \end{gathered}$ | $\stackrel{V}{\mathbf{f t}^{\mathbf{3}} / \mathbf{l} \mathbf{b}_{\mathrm{m}}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\mathrm{Btu} / \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\mathrm{Btu} / \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{\circ} R \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 18.007 | 552.90 | 601.90 | 1.3947 | 13.497 | 556.00 | 605.98 | 1.3691 | 10.951 | 558.26 | 608.95 | 1.3507 |
| -20 | 18.383 | 556.24 | 606.26 | 1.4047 |  |  |  |  |  |  |  |  |
| -10 | 18.849 | 560.36 | 611.65 | 1.4168 | 13.730 | 558.83 | 609.68 | 1.3774 |  |  |  |  |
| 0 | 19.310 | 564.44 | 616.99 | 1.4286 | 14.078 | 563.06 | 615.20 | 1.3896 | 11.178 | 561.72 | 613.47 | 1.3606 |
| 10 | 19.767 | 568.48 | 622.27 | 1.4399 | 14.423 | 567.23 | 620.65 | 1.4013 | 11.460 | 566.03 | 619.08 | 1.3727 |
| 20 | 20.221 | 572.50 | 627.53 | 1.4510 | 14.764 | 571.36 | 626.04 | 1.4126 | 11.739 | 570.26 | 624.61 | 1.3843 |
| 30 | 20.673 | 576.49 | 632.75 | 1.4618 | 15.103 | 575.45 | 631.38 | 1.4237 | 12.015 | 574.45 | 630.07 | 1.3956 |
| 40 | 21.122 | 580.47 | 637.95 | 1.4723 | 15.439 | 579.52 | 636.69 | 1.4344 | 12.288 | 578.60 | 635.49 | 1.4065 |
| 50 | 21.570 | 584.45 | 643.14 | 1.4826 | 15.772 | 583.56 | 641.98 | 1.4449 | 12.559 | 582.72 | 640.86 | 1.4172 |
| 60 | 22.015 | 588.41 | 648.32 | 1.4926 | 16.104 | 587.60 | 647.24 | 1.4551 | 12.829 | 586.82 | 646.21 | 1.4276 |
| 70 | 22.459 | 592.38 | 653.50 | 1.5025 | 16.435 | 591.62 | 652.49 | 1.4651 | 13.096 | 590.90 | 651.53 | 1.4377 |
| 90 | 23.343 | 600.32 | 663.85 | 1.5217 | 17.092 | 599.66 | 662.96 | 1.4845 | 13.628 | 599.04 | 662.12 | 1.4573 |


|  | $\mathrm{P}=30 \mathrm{psia}\left(\mathbf{- 0 . 5 4}{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=40 \mathrm{psia}\left(11.68{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=50 \mathrm{psia}\left(21.68{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{B_{B t u / / b_{m}{ }^{\circ} R}^{S}}{\mathbf{S}}$ | $\stackrel{V}{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{H}}$ |  | $\underset{\mathbf{f t}^{3} / \mathbf{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\mathrm{Btu} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathrm{R}}{\mathbf{S}}$ |
| Sat | 9.2292 | 560.11 | 611.38 | 1.3356 | 7.0417 | 563.02 | 615.17 | 1.3118 | 5.7050 | 565.24 | 618.06 | 1.2932 |
| 0 | 9.2424 | 560.35 | 611.70 | 1.3363 |  |  |  |  |  |  |  |  |
| 10 | 9.4836 | 564.79 | 617.47 | 1.3487 |  |  |  |  |  |  |  |  |
| 20 | 9.7211 | 569.15 | 623.15 | 1.3607 | 7.1965 | 566.84 | 620.15 | 1.3222 |  |  |  |  |
| 30 | 9.9554 | 573.44 | 628.74 | 1.3722 | 7.3794 | 571.35 | 626.00 | 1.3343 | 5.8317 | 569.18 | 623.17 | 1.3038 |
| 40 | 10.187 | 577.67 | 634.26 | 1.3834 | 7.5594 | 575.77 | 631.76 | 1.3459 | 5.9811 | 573.80 | 629.18 | 1.3159 |
| 60 | 10.644 | 586.03 | 645.16 | 1.4048 | 7.9126 | 584.43 | 643.04 | 1.3681 | 6.2726 | 582.78 | 640.86 | 1.3388 |
| 100 | 11.540 | 602.51 | 666.62 | 1.4445 | 8.5994 | 601.32 | 665.01 | 1.4088 | 6.8347 | 600.10 | 663.38 | 1.3806 |
| 150 | 12.637 | 623.04 | 693.25 | 1.4901 | 9.4352 | 622.16 | 692.05 | 1.4551 | 7.5136 | 621.27 | 690.84 | 1.4276 |
| 200 | 13.721 | 643.82 | 720.04 | 1.5323 | 10.256 | 643.13 | 719.10 | 1.4977 | 8.1774 | 642.44 | 718.16 | 1.4707 |
| 300 | 15.864 | 686.73 | 774.86 | 1.6097 | 11.874 | 686.27 | 774.23 | 1.5755 | 9.4808 | 685.82 | 773.60 | 1.5489 |
| 400 | 17.990 | 732.03 | 831.97 | 1.6803 | 13.476 | 731.69 | 831.51 | 1.6463 | 10.767 | 731.36 | 831.05 | 1.6199 |

## Reference States: <br> $\mathrm{H}=0 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ for saturated liquid at $-40^{\circ} \mathrm{F}$. <br> $\mathrm{S}=0 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.

|  | $\mathrm{P}=75 \mathrm{psia}\left(41.13{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=100 \mathrm{psia}\left(56.03{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=150 \mathrm{psia}\left(\mathbf{7 8 . 7 8}^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{B t u / / \mathbf{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\stackrel{V}{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\stackrel{\mathrm{ft}}{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{B t u / b_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| Sat | 3.8834 | 569.14 | 623.07 | 1.2593 | 2.9492 | 571.71 | 626.32 | 1.2350 | 1.9919 | 574.87 | 630.19 | 1.2000 |
| 60 | 4.0822 | 578.46 | 635.16 | 1.2830 | 2.9826 | 573.82 | 629.05 | 1.2403 |  |  |  |  |
| 80 | 4.2843 | 587.88 | 647.38 | 1.3061 | 3.1454 | 584.03 | 642.28 | 1.2653 | 1.9993 | 575.58 | 631.11 | 1.2017 |
| 100 | 4.4800 | 596.98 | 659.20 | 1.3276 | 3.3007 | 593.72 | 654.84 | 1.2881 | 2.1167 | 586.71 | 645.50 | 1.2279 |
| 120 | 4.6709 | 605.88 | 670.75 | 1.3479 | 3.4506 | 603.06 | 666.96 | 1.3094 | 2.2271 | 597.10 | 658.97 | 1.2516 |
| 140 | 4.8582 | 614.66 | 682.13 | 1.3672 | 3.5966 | 612.19 | 678.79 | 1.3295 | 2.3327 | 607.03 | 671.82 | 1.2734 |
| 160 | 5.0426 | 623.36 | 693.39 | 1.3857 | 3.7395 | 621.17 | 690.42 | 1.3485 | 2.4348 | 616.64 | 684.27 | 1.2938 |
| 180 | 5.2249 | 632.03 | 704.60 | 1.4035 | 3.8801 | 630.08 | 701.93 | 1.3668 | 2.5341 | 626.04 | 696.43 | 1.3131 |
| 200 | 5.4052 | 640.71 | 715.78 | 1.4207 | 4.0187 | 638.94 | 713.36 | 1.3844 | 2.6312 | 635.32 | 708.40 | 1.3315 |
| 240 | 5.7618 | 658.13 | 738.15 | 1.4536 | 4.2916 | 656.66 | 736.13 | 1.4179 | 2.8208 | 653.66 | 732.02 | 1.3663 |
| 280 | 6.1142 | 675.75 | 760.67 | 1.4849 | 4.5601 | 674.50 | 758.94 | 1.4496 | 3.0057 | 671.97 | 755.46 | 1.3989 |
| 320 | 6.4635 | 693.66 | 783.42 | 1.5149 | 4.8255 | 692.58 | 781.93 | 1.4799 | 3.1873 | 690.39 | 778.92 | 1.4298 |
| 360 | 6.8105 | 711.90 | 806.49 | 1.5437 | 5.0886 | 710.95 | 805.18 | 1.5090 | 3.3666 | 709.04 | 802.55 | 1.4593 |
| 400 | 7.1557 | 730.52 | 829.90 | 1.5716 | 5.3499 | 729.68 | 828.75 | 1.5371 | 3.5440 | 727.99 | 826.43 | 1.4878 |
|  | $\mathbf{P}=200 \mathrm{psia}\left(96.3^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathbf{P}=250 \mathrm{psia}\left(110.75^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathbf{P}=300 \mathrm{psia}\left(123.17^{\circ} \mathrm{F}\right)$ |  |  |  |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathrm{ft}^{3} / \mathrm{lb}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu/f } \mathbf{b}_{\mathrm{m}}{ }^{{ }^{\text {R }}}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{l}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\mathbf{B t u / l} \mathbf{l}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu/fl } \mathbf{b}_{\mathrm{m}}{ }^{\mathrm{T}} \mathbf{R}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lb } \mathbf{b}^{\circ}{ }^{\mathbf{R}}}{\mathbf{S}}$ |
| Sat | 1.5008 | 576.58 | 632.17 | 1.1745 | 2.9492 | 892.95 | 633.05 | 1.1540 | 0.99749 | 577.81 | 633.22 | 1.1368 |
| 120 | 1.6116 | 590.63 | 650.31 | 1.2065 | 1.2385 | 583.50 | 640.84 | 1.1676 |  |  |  |  |
| 140 | 1.6982 | 601.52 | 664.41 | 1.2304 | 1.3150 | 595.60 | 656.47 | 1.1941 | 1.0570 | 589.16 | 647.88 | 1.1616 |
| 160 | 1.7805 | 611.86 | 677.80 | 1.2523 | 1.3862 | 606.80 | 670.97 | 1.2179 | 1.1217 | 601.41 | 663.73 | 1.1876 |
| 200 | 1.9365 | 631.56 | 703.28 | 1.2922 | 1.5187 | 627.66 | 697.97 | 1.2601 | 1.2393 | 623.61 | 692.46 | 1.2325 |
| 240 | 2.0848 | 650.59 | 727.80 | 1.3283 | 1.6426 | 647.44 | 723.49 | 1.2977 | 1.3474 | 644.20 | 719.05 | 1.2717 |
| 280 | 2.2281 | 669.38 | 751.90 | 1.3618 | 1.7612 | 666.75 | 748.29 | 1.3321 | 1.4497 | 664.07 | 744.60 | 1.3072 |
| 320 | 2.3680 | 688.17 | 775.87 | 1.3933 | 1.8762 | 685.92 | 772.78 | 1.3644 | 1.5482 | 683.64 | 769.64 | 1.3402 |
| 360 | 2.5054 | 707.11 | 799.89 | 1.4234 | 1.9885 | 705.15 | 797.21 | 1.3950 | 1.6439 | 703.17 | 794.49 | 1.3712 |
| 400 | 2.6409 | 726.28 | 824.08 | 1.4522 | 2.0989 | 724.55 | 821.72 | 1.4242 | 1.7376 | 722.81 | 819.34 | 1.4008 |
| 440 | 2.7749 | 745.76 | 848.52 | 1.4800 | 2.2078 | 744.22 | 846.43 | 1.4522 | 1.8297 | 742.67 | 844.32 | 1.4292 |
| 500 | 2.9738 | 775.64 | 885.77 | 1.5201 | 2.3690 | 774.32 | 884.00 | 1.4927 | 1.9658 | 773.00 | 882.21 | 1.4700 |
| 600 | 3.3015 | 827.46 | 949.73 | 1.5834 | 2.6337 | 826.41 | 948.34 | 1.5564 | 2.1885 | 825.36 | 946.94 | 1.5342 |
|  | $\mathrm{P}=400 \mathrm{psia}\left(143.94{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=500 \mathrm{psia}\left(161.12^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=1000 \mathrm{psia}\left(221.03{ }^{\circ} \mathrm{F}\right)$ |  |  |  |


| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }{ }^{\circ}{ }^{9} \mathbf{R}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u}^{\mathbf{H}} \mathbf{l \mathbf { b } _ { \mathrm { m } }}}{ }$ | $\underset{\text { Btu/lbm }{ }^{\circ}{ }^{9} \mathbf{R}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / / \mathbf{l b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/lim }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }{ }^{\circ}{ }^{\mathbf{R}}}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.73907 | 577.35 | 632.09 | 1.1081 | 0.58080 | 575.81 | 629.58 | 1.0842 | 0.24992 | 557.02 | 603.30 | 0.98998 |
| 150 | 0.75752 | 582.06 | 638.17 | 1.1181 |  |  |  |  |  |  |  |  |
| 200 | 0.88799 | 614.94 | 680.71 | 1.1853 | 0.67434 | 605.33 | 667.77 | 1.1440 |  |  |  |  |
| 250 | 0.99835 | 642.80 | 716.74 | 1.2380 | 0.77209 | 635.99 | 707.48 | 1.2021 | 0.30570 | 592.49 | 649.10 | 1.0560 |
| 300 | 1.0991 | 668.80 | 750.20 | 1.2836 | 0.85835 | 663.52 | 743.00 | 1.2505 | 0.37138 | 633.30 | 702.07 | 1.1282 |
| 350 | 1.1942 | 694.10 | 782.56 | 1.3248 | 0.93835 | 689.81 | 776.69 | 1.2934 | 0.42399 | 666.37 | 744.89 | 1.1829 |
| 400 | 1.2857 | 719.28 | 814.51 | 1.3631 | 1.0144 | 715.68 | 809.60 | 1.3329 | 0.47051 | 696.51 | 783.64 | 1.2293 |
| 450 | 1.3747 | 744.63 | 846.45 | 1.3992 | 1.0878 | 741.54 | 842.26 | 1.3698 | 0.51344 | 725.36 | 820.44 | 1.2709 |
| 500 | 1.4617 | 770.34 | 878.61 | 1.4337 | 1.1593 | 767.64 | 874.97 | 1.4048 | 0.55401 | 753.69 | 856.27 | 1.3093 |
| 600 | 1.6321 | 823.25 | 944.14 | 1.4986 | 1.2982 | 821.13 | 941.33 | 1.4706 | 0.63052 | 810.28 | 927.04 | 1.3794 |
| 800 | 1.9635 | 936.62 | 1082.1 | 1.6177 | 1.5667 | 935.17 | 1080.2 | 1.5905 | 0.77330 | 927.88 | 1071.1 | 1.5039 |

Reference States:
$\mathrm{H}=0 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.
$\mathrm{S}=0 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.

|  | $P=50 \mathrm{psia}\left(21.68^{\circ} F\right)$ |  |  |  |  | $P=100 \mathrm{psia}\left(56.03^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\begin{gathered} \rho \\ \mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3} \end{gathered}$ | $\begin{gathered} V \\ \mathbf{f t}^{\mathbf{3} / l \mathbf{b}_{\mathrm{m}}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\begin{gathered} \mathbf{H} \\ \text { Btu/lb } \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\begin{gathered} \mathbf{S} \\ \text { Btu/lb }_{\mathrm{m}}{ }^{\circ} \mathbf{R} \end{gathered}$ | $\begin{gathered} \rho \\ \mathbf{l b} \mathrm{b}_{\mathrm{m}} / \mathrm{ft}_{3} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} \mathbf{S} \\ \mathbf{B t u}^{2} / \mathbf{l b}_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ |
| Sat | 40.351 | 0.024783 | 66.195 | 66.424 | 0.14722 | 38.697 | 0.025842 | 104.13 | 104.604 | 0.22335 |
| 50 |  |  |  |  |  | 38.999 | 0.025642 | 97.371 | 97.85 | 0.21017 |
| 40 |  |  |  |  |  | $39.490$ | $0.025323$ | $86.246$ | $86.714$ | $0.18812$ |
| 30 |  |  |  |  |  | $39.972$ | 0.025018 | 75.199 | 75.662 | 0.16577 |
| 20 | 40.429 | 0.024734 | 64.353 | 64.582 | 0.14339 | 40.443 | 0.024726 | 64.226 | 64.684 | 0.14312 |
| 10 | 40.893 | 0.024454 | 53.442 | 53.669 | 0.12039 | 40.906 | 0.024446 | 53.323 | 53.776 | 0.12014 |
| 0 | 41.349 | 0.024185 | 42.599 | 42.8230 | 0.097052 | 41.361 | 0.024177 | 42.487 | 42.93463 | 0.096808 |
| -10 | 41.796 | 0.023926 | 31.822 | 32.0432 | 0.073342 | 41.808 | 0.023919 | 31.716 | 32.159 | 0.073108 |
| -20 | 42.236 | 0.023677 | $21.110$ | $21.329$ | 0.049247 | $42.247$ | 0.023670 | 21.011 | 21.449 | $0.049022$ |
| -30 | 42.668 | 0.023437 | 10.464 | 10.681 | 0.024749 | 42.679 | 0.023431 | 10.371 | 10.804 | 0.024532 |
| -40 | 43.093 | 0.023206 | -0.11447 | 0.10039 | $-1.6633 \mathrm{E}-04$ | 43.103 | 0.023200 | -0.20238 | 0.2272 | -3.7599E-04 |
| -50 | 43.510 | 0.022983 | -10.6237 | -10.411 | -0.025516 | 43.519 | 0.022978 | -10.706 | -10.281 | -0.025718 |
| -60 | 43.919 | 0.022769 | -21.061 | -20.850 | -0.051314 | 43.928 | 0.022764 | -21.139 | -20.717 | -0.051509 |
| -70 | 44.321 | 0.022563 | -31.425 | -31.216 | -0.077579 | 44.329 | 0.022559 | -31.498 | -31.080 | -0.077767 |
| -80 | 44.714 | 0.022364 | -41.713 | -41.506 | -0.10433 | 44.722 | 0.022360 | -41.781 | -41.367 | -0.10451 |
| -90 | 45.098 | 0.022174 | -51.924 | -51.718 | -0.13159 | 45.106 | 0.022170 | -51.987 | -51.577 | -0.13176 |
| -100 | 45.474 | 0.021990 | -62.058 | -61.854 | -0.15938 | 45.481 | 0.021987 | -62.117 | -61.710 | -0.15955 |


|  | $\mathrm{P}=150 \mathrm{psia}\left(78.78{ }^{\circ} \mathrm{F}\right)$ |  |  |  |  | $P=200$ psia (96.3 $\left.{ }^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\stackrel{\rho}{\mathbf{l b} / \mathbf{f t}_{3}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | U <br> Btu/lb ${ }_{\mathrm{m}}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{m}$ | $\underset{\text { Btu/lb }}{\text { S }{ }^{\circ} R}$ | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \text { V } \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{0} \mathbf{R}}{\mathbf{S}}$ |
| Sat | 37.536 | 0.026641 | 129.72 | 130.46 | 0.27196 | 36.599 | 0.027323 | 149.75 | 150.76 | 0.30859 |
| 90 |  |  |  |  |  | 36.950 | 0.027064 | 142.43 | 143.43 | 0.29534 |
| 80 |  |  |  |  |  | 37.492 | 0.026672 | 130.93 | 131.91 | 0.27419 |
| 70 | 37.999 | 0.026316 | 119.71 | 120.45 | 0.25320 | 38.019 | 0.026303 | 119.54 | 120.51 | 0.25287 |
| 60 | 38.514 | 0.025965 | 108.42 | 109.14 | 0.23165 | 38.532 | 0.025953 | 108.25 | 109.22 | 0.23134 |
| 50 | 39.016 | 0.025631 | 97.218 | 97.929 | 0.20987 | 39.032 | 0.025620 | 97.064 | 98.013 | 0.20957 |
| 40 | 39.506 | 0.025312 | 86.102 | 86.805 | 0.18783 | 39.522 | 0.025302 | 85.958 | 86.895 | 0.18754 |
| 30 | 39.987 | 0.025008 | 75.064 | 75.759 | 0.16550 | 40.001 | 0.024999 | 74.930 | 75.856 | 0.16522 |
| 20 | 40.458 | 0.024717 | 64.100 | 64.786 | 0.14286 | 40.471 | 0.024709 | 63.974 | 64.889 | 0.14259 |
| 10 | 40.920 | 0.024438 | 53.204 | 53.883 | 0.11989 | 40.933 | 0.024430 | 53.086 | 53.990 | 0.11963 |
| 0 | 41.374 | 0.024170 | 42.375 | 43.046 | 0.096564 | 41.386 | 0.024163 | 42.264 | 43.158 | 0.096321 |
| -10 | 41.820 | 0.023912 | 31.611 | 32.275 | 0.072874 | 41.831 | 0.023905 | 31.506 | 32.391 | 0.072639 |
| -20 | 42.258 | 0.023664 | 20.912 | 21.569 | 0.048795 | 42.269 | 0.023658 | 20.813 | 21.689 | 0.048570 |
| -30 | 42.689 | 0.023425 | 10.277 | 10.928 | 0.024314 | 42.700 | 0.023419 | 10.184 | 11.052 | 0.024098 |
| -40 | 43.113 | 0.023195 | -0.29009 | 0.35417 | -5.8529E-04 | 43.123 | 0.023190 | -0.37760 | 0.48122 | -7.9422E-04 |
| -50 | 43.529 | 0.022973 | -10.789 | -10.151 | -0.025919 | 43.538 | 0.022968 | -10.871 | -10.020 | -0.026121 |
| -60 | 43.937 | 0.022760 | -21.216 | -20.584 | -0.051703 | 43.946 | 0.022755 | -21.294 | -20.451 | -0.051897 |
| -70 | 44.338 | 0.022554 | -31.571 | -30.944 | -0.077953 | 44.346 | 0.022550 | -31.643 | -30.808 | -0.078140 |
| -80 | 44.730 | 0.022356 | -41.849 | -41.228 | -0.10469 | 44.738 | 0.022352 | -41.917 | -41.089 | -0.10487 |
| -90 | 45.114 | 0.022166 | -52.051 | -51.436 | -0.13193 | 45.121 | 0.022163 | -52.115 | -51.294 | -0.13211 |
| -100 | 45.489 | 0.021984 | -62.177 | -61.566 | -0.15972 | 45.496 | 0.021980 | -62.236 | -61.422 | -0.15988 |

## Subcooled Liquid

Ammonia
AE

|  | $\mathrm{P}=300 \mathrm{psia}\left(123.17^{\circ} \mathrm{F}\right)$ |  |  |  |  | $\mathrm{P}=400 \mathrm{psia}\left(143.94^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}{\rho}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{0} \mathrm{R}}{\mathrm{~S}}$ | $\stackrel{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}{\rho}$ | $\begin{gathered} \text { V } \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ |  | $\underset{\text { Btu/lb }_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\text { S }}$ |
| Sat | 35.069 | 0.028515 | 181.14 | 182.72 | 0.36382 | 33.787 | 0.029597 | 206.14 | 208.33 | 0.40608 |
| 140 |  |  |  |  |  | 34.053 | 0.029366 | 201.21 | 203.38 | 0.39786 |
| 120 | 35.264 | 0.028357 | 177.32 | 178.90 | 0.35724 | 35.322 | 0.028311 | 176.80 | 178.90 | 0.35634 |
| 100 | 36.439 | 0.027443 | 153.63 | 155.16 | 0.31557 | 36.487 | 0.027407 | 153.19 | 155.22 | 0.31478 |
| 80 | 37.534 | 0.026643 | 130.55 | 132.03 | 0.27349 | 37.575 | 0.026614 | 130.18 | 132.15 | 0.27280 |
| 60 | 38.568 | 0.025928 | 107.93 | 109.37 | 0.23071 | 38.603 | 0.025904 | 107.61 | 109.52 | 0.23008 |
| 40 | 39.553 | 0.025282 | 85.673 | 87.078 | 0.18697 | 39.585 | 0.025262 | 85.390 | 87.261 | 0.18640 |
| 20 | 40.499 | 0.024692 | 63.723 | 65.094 | 0.14207 | 40.527 | 0.024675 | 63.473 | 65.301 | 0.14155 |
| 0 | 41.411 | 0.024148 | 42.042 | 43.383 | 0.095837 | 41.436 | 0.024134 | 41.821 | 43.608 | 0.095354 |
| -20 | 42.291 | 0.023645 | 20.616 | 21.929 | 0.048121 | 42.314 | 0.023633 | 20.420 | 22.170 | 0.047674 |
| -40 | 43.143 | 0.023179 | -0.55201 | 0.73563 | -0.0012110 | 43.162 | 0.023168 | -0.72562 | 0.99044 | -0.0016263 |
| -60 | 43.964 | 0.022746 | -21.448 | -20.184 | -0.052284 | 43.982 | 0.022737 | -21.601 | -19.917 | -0.052669 |
| -80 | 44.754 | 0.022344 | -42.053 | -40.812 | -0.10523 | 44.770 | 0.022336 | -42.188 | -40.533 | -0.10558 |
| -100 | 45.510 | 0.021973 | -62.355 | -61.134 | -0.16021 | 45.524 | 0.021966 | -62.473 | -60.846 | -0.16054 |


|  | $P=500$ psia (161.12 ${ }^{\circ} \mathrm{F}$ ) |  |  |  |  | $\mathrm{P}=1000$ psia $\left(221.03^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{T} \\ & { }^{\circ} \mathbf{F} \end{aligned}$ | $\underset{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}{\rho}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathbf{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }{ }_{m}{ }^{0} R \end{gathered}$ | $\stackrel{\rho}{\mathbf{l b}_{\mathrm{m}} / \mathrm{ft}_{3}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{m}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\text { S }}$ |
| Sat | 32.641 | 0.030636 | 227.45 | 230.29 | 0.44104 | 27.583 | 0.036254 | 309.63 | 316.34 | 0.56842 |
| $\begin{aligned} & \hline 220 \\ & 200 \\ & 180 \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & 27.722 \\ & 29.949 \\ & 31.679 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.036072 \\ & 0.033390 \\ & 0.031566 \end{aligned}$ | $\begin{aligned} & \hline 307.80 \\ & 276.09 \\ & 248.16 \end{aligned}$ | $\begin{aligned} & \hline 314.48 \\ & 282.27 \\ & 254.01 \end{aligned}$ | $\begin{aligned} & \hline 0.56569 \\ & 0.51761 \\ & 0.47411 \end{aligned}$ |
| $\begin{aligned} & 160 \\ & 140 \\ & 120 \\ & \hline \end{aligned}$ | $\begin{aligned} & 32.725 \\ & 34.124 \\ & 35.380 \end{aligned}$ | $\begin{aligned} & 0.030557 \\ & 0.029305 \\ & 0.028265 \\ & \hline \end{aligned}$ | $\begin{aligned} & 225.98 \\ & 200.58 \\ & 176.28 \\ & \hline \end{aligned}$ | $\begin{aligned} & 228.81 \\ & 203.29 \\ & 178.90 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.43866 \\ & 0.39680 \\ & 0.35544 \end{aligned}$ | $\begin{aligned} & 33.151 \\ & 34.459 \\ & 35.654 \end{aligned}$ | $\begin{aligned} & 0.030165 \\ & 0.029020 \\ & 0.028047 \\ & \hline \end{aligned}$ | $\begin{aligned} & 222.25 \\ & 197.60 \\ & 173.82 \\ & \hline \end{aligned}$ | $\begin{aligned} & 227.83 \\ & 202.97 \\ & 179.01 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.43254 \\ & 0.39176 \\ & 0.35113 \end{aligned}$ |
| $\begin{gathered} \hline 100 \\ 80 \\ 60 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 36.535 \\ & 37.616 \\ & 38.639 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.027371 \\ & 0.026585 \\ & 0.025881 \\ & \hline \end{aligned}$ | $\begin{aligned} & 152.76 \\ & 129.81 \\ & 107.28 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 155.30 \\ & 132.27 \\ & 109.68 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.31400 \\ & 0.27211 \\ & 0.22946 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 36.766 \\ & 37.814 \\ & 38.812 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0.027199 \\ & 0.026445 \\ & 0.025765 \\ & \hline \end{aligned}$ | $\begin{aligned} & 150.67 \\ & 128.01 \\ & 105.72 \\ & \hline \end{aligned}$ | $\begin{aligned} & 155.71 \\ & 132.90 \\ & 110.49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.31023 \\ & 0.26874 \\ & 0.22641 \end{aligned}$ |
| $\begin{gathered} 40 \\ 20 \\ 0 \end{gathered}$ | $\begin{aligned} & 39.616 \\ & 40.555 \\ & 41.460 \end{aligned}$ | $\begin{aligned} & 0.025242 \\ & 0.024658 \\ & 0.024120 \\ & \hline \end{aligned}$ | $\begin{aligned} & 85.109 \\ & 63.225 \\ & 41.601 \end{aligned}$ | $\begin{aligned} & 87.446 \\ & 65.508 \\ & 43.834 \end{aligned}$ | $\begin{gathered} 0.18583 \\ 0.14103 \\ 0.094874 \\ \hline \end{gathered}$ | $\begin{aligned} & 39.768 \\ & 40.690 \\ & 41.581 \end{aligned}$ | $\begin{aligned} & \hline 0.025146 \\ & 0.024576 \\ & 0.024049 \\ & \hline \end{aligned}$ | $\begin{aligned} & 83.731 \\ & 62.007 \\ & 40.520 \\ & \hline \end{aligned}$ | $\begin{aligned} & 88.388 \\ & 66.558 \\ & 44.973 \end{aligned}$ | $\begin{gathered} 0.18305 \\ 0.13846 \\ 0.092501 \\ \hline \end{gathered}$ |
| $\begin{aligned} & \hline-20 \\ & -40 \\ & -60 \\ & \hline \end{aligned}$ | $\begin{aligned} & 42.336 \\ & 43.182 \\ & 44.000 \end{aligned}$ | $\begin{aligned} & 0.023621 \\ & 0.023158 \\ & 0.022728 \\ & \hline \end{aligned}$ | $\begin{gathered} 20.225 \\ -0.8984 \\ -21.754 \end{gathered}$ | $\begin{gathered} \hline 22.412 \\ 1.2457 \\ -19.650 \\ \hline \end{gathered}$ | $\begin{gathered} 0.047228 \\ -0.0020402 \\ -0.053053 \end{gathered}$ | $\begin{aligned} & 42.444 \\ & 43.280 \\ & 44.088 \end{aligned}$ | $\begin{aligned} & 0.023560 \\ & 0.023105 \\ & 0.022682 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 19.265 \\ -1.7508 \\ -22.508 \end{gathered}$ | $\begin{gathered} 23.628 \\ 2.5277 \\ -18.308 \end{gathered}$ | $\begin{gathered} 0.045025 \\ -4.0886 \mathrm{E}-03 \\ -0.054956 \end{gathered}$ |
| $\begin{gathered} -80 \\ -100 \end{gathered}$ | $\begin{aligned} & 44.786 \\ & 45.538 \end{aligned}$ | $\begin{aligned} & 0.022329 \\ & 0.021959 \end{aligned}$ | $\begin{aligned} & -42.322 \\ & -62.591 \end{aligned}$ | $\begin{aligned} & \hline-40.255 \\ & -60.558 \end{aligned}$ | $\begin{aligned} & \hline-0.105940 \\ & -0.160871 \end{aligned}$ | $\begin{aligned} & 44.865 \\ & 45.609 \end{aligned}$ | $\begin{aligned} & 0.022289 \\ & 0.021926 \end{aligned}$ | $\begin{aligned} & -42.986 \\ & -63.172 \end{aligned}$ | $\begin{aligned} & \hline-38.859 \\ & -59.112 \end{aligned}$ | $\begin{aligned} & \hline-0.10770 \\ & -0.16250 \\ & \hline \end{aligned}$ |

Reference States:
$\mathrm{H}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.
$\mathrm{S}=0 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{R}$ for saturated liquid at $-40^{\circ} \mathrm{F}$.

Saturation Temperature Table

R-134a
SI

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { Pressure } \\ (\mathbf{k P a}) \\ \hline \end{gathered}$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| -100 | 0.55940 | 0.00063195 | 25.193 | 75.362 | 322.76 | 75.362 | 336.85 | 0.43540 | 1.9456 |
| -95 | 0.93899 | 0.00063729 | 15.435 | 81.287 | 325.29 | 81.288 | 339.78 | 0.46913 | 1.9201 |
| -90 | 1.5241 | 0.00064274 | 9.7698 | 87.225 | 327.87 | 87.226 | 342.76 | 0.50201 | 1.8972 |
| -85 | 2.3990 | 0.00064831 | 6.3707 | 93.180 | 330.49 | 93.182 | 345.77 | 0.53409 | 1.8766 |
| -80 | 3.6719 | 0.00065401 | 4.2682 | 99.158 | 333.15 | 99.161 | 348.83 | 1 | 1.8580 |
| -75 | 5.4777 | 0.00065985 | 2.9312 | 105.16 | 335.85 | 105.17 | 351.91 | 0.59613 | 1.8414 |
| -70 | 7.9814 | 0.00066583 | 2.0590 | 111.19 | 338.59 | 111.20 | 355.02 | 0.62619 | 1.8264 |
| -65 | 11.380 | 0.00067197 | 1.4765 | 117.26 | 341.35 | 117.26 | 358.16 | 0.65568 | 1.8130 |
| -60 | 15.906 | 0.00067827 | 1.0790 | 123.35 | 344.15 | 123.36 | 361.31 | 0.68462 | 1.8010 |
| -55 | 21.828 | 0.00068475 | 0.80236 | 129.48 | 346.96 | 129.50 | 364.48 | 0.71305 | 1.7902 |
| -50 | 29.451 | 0.00069142 | 0.60620 | 135.65 | 349.80 | 135.67 | 367.65 | 0.74101 | 1.7806 |
| -45 | 39.117 | 0.00069828 | 0.46473 | 141.86 | 352.65 | 141.89 | 370.83 | 0.76852 | 1.7720 |
| -40 | 51.209 | 0.00070537 | 0.36108 | 148.11 | 355.51 | 148.14 | 374.00 | 0.79561 | 1.7643 |
| -35 | 66.144 | 0.00071268 | 0.28402 | 154.40 | 358.38 | 154.44 | 377.17 | 0.82230 | 1.7575 |
| -30 | 84.378 | 0.00072025 | 0.22594 | 160.73 | 361.25 | 160.79 | 380.32 | 0.84863 | 1.7515 |
| -25 | 106.40 | 0.00072809 | 0.18162 | 167.11 | 364.12 | 167.19 | 383.45 | 0.87460 | 1.7461 |
| -20 | 132.73 | 0.00073623 | 0.14739 | 173.54 | 366.99 | 173.64 | 386.55 | 0.90025 | 1.7413 |
| -15 | 163.94 | 0.00074469 | 0.12067 | 180.02 | 369.85 | 180.14 | 389.63 | 0.92559 | 1.7371 |
| -10 | 200.60 | 0.00075351 | 0.099590 | 186.55 | 372.69 | 186.70 | 392.66 | 0.95065 | 1.7334 |
| -5 | 243.34 | 0.00076271 | 0.082801 | 193.13 | 375.51 | 193.32 | 395.66 | 0.97544 | 1.7300 |
| 0 | 292.80 | 0.00077233 | 0.069309 | 199.77 | 378.31 | 200 | 398.60 | 1 | 1.7271 |
| 5 | 349.66 | 0.00078243 | 0.058374 | 206.48 | 381.08 | 206.75 | 401.49 | 1.0243 | 1.7245 |
| 10 | 414.61 | 0.00079305 | 0.049442 | 213.25 | 383.82 | 213.58 | 404.32 | 1.0485 | 1.7221 |
| 15 | 488.37 | 0.00080425 | 0.042090 | 220.09 | 386.52 | 220.48 | 407.07 | 1.0724 | 1.7200 |
| 20 | 571.71 | 0.00081610 | 0.035997 | 227.00 | 389.17 | 227.47 | 409.75 | 1.0962 | 1.7180 |
| 25 | 665.38 | 0.00082870 | 0.030912 | 233.99 | 391.77 | 234.55 | 412.33 | 1.1199 | 1.7162 |
| 30 | 770.20 | 0.00084213 | 0.026642 | 241.07 | 394.30 | 241.72 | 414.82 | 1.1435 | 1.7145 |
| 35 | 886.98 | 0.00085653 | 0.023033 | 248.25 | 396.76 | 249.01 | 417.19 | 1.1670 | 1.7128 |
| 40 | 1016.6 | 0.00087204 | 0.019966 | 255.52 | 399.13 | 256.41 | 419.43 | 1.1905 | 1.7111 |
| 45 | 1159.9 | 0.00088885 | 0.017344 | 262.91 | 401.40 | 263.94 | 421.52 | 1.2139 | 1.7092 |
| 50 | 1317.9 | 0.00090719 | 0.015089 | 270.43 | 403.55 | 271.62 | 423.44 | 1.2375 | 1.7072 |
| 55 | 1491.5 | 0.00092737 | 0.013140 | 278.09 | 405.55 | 279.47 | 425.15 | 1.2611 | 1.7050 |
| 60 | 1681.8 | 0.00094979 | 0.011444 | 285.91 | 407.38 | 287.50 | 426.63 | 1.2848 | 1.7024 |
| 65 | 1889.8 | 0.00097500 | 0.0099604 | 293.92 | 408.99 | 295.76 | 427.82 | 1.3088 | 1.6993 |
| 70 | 2116.8 | 0.0010038 | 0.0086527 | 302.16 | 410.33 | 304.28 | 428.65 | 1.3332 | 1.6956 |
| 75 | 2364.1 | 0.0010372 | 0.0074910 | 310.68 | 411.32 | 313.13 | 429.03 | 1.3580 | 1.6909 |
| 80 | 2633.2 | 0.0010773 | 0.0064483 | 319.55 | 411.83 | 322.39 | 428.81 | 1.3836 | 1.6850 |
| 85 | 2925.8 | 0.0011272 | 0.0054990 | 328.93 | 411.67 | 332.22 | 427.76 | 1.4104 | 1.6771 |
| 90 | 3244.2 | 0.0011936 | 0.0046134 | 339.06 | 410.45 | 342.93 | 425.42 | 1.4390 | 1.6662 |
| 95 | 3591.2 | 0.0012942 | 0.0037434 | 350.60 | 407.23 | 355.25 | 420.67 | 1.4715 | 1.6492 |
| 100 | 3972.4 | 0.0015357 | 0.0026809 | 367.20 | 397.03 | 373.30 | 407.68 | 1.5188 | 1.6109 |
| 101.06 | 4059.3 | 0.0019535 | 0.0019535 | 381.71 | 381.71 | 389.64 | 389.64 | 1.5621 | 1.5621 |

Reference States:
$\mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

Saturation Pressure Table
R-134a
SI

| $\begin{gathered} \hline \text { Pressure } \\ (\mathbf{k P a}) \end{gathered}$ | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{V}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ |  | U (kJ/kg) |  | H (kJ/kg) |  | S (kJ/kg*K) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 50 | -40.45 | 0.00070471 | 0.36925 | 147.54 | 355.25 | 147.57 | 373.71 | 0.79317 | 1.7650 |
| 100 | -26.36 | 0.00072593 | 0.19256 | 165.37 | 363.34 | 165.44 | 382.60 | 0.86756 | 1.7475 |
| 150 | -17.13 | 0.00074104 | 0.13128 | 177.25 | 368.63 | 177.36 | 388.32 | 0.91482 | 1.7388 |
| 200 | -10.08 | 0.00075337 | 0.099877 | 186.45 | 372.64 | 186.60 | 392.62 | 0.95027 | 1.7334 |
| 250 | -4.28 | 0.00076406 | 0.080685 | 194.08 | 375.91 | 194.27 | 396.08 | 0.97898 | 1.7296 |
| 300 | 0.67 | 0.00077366 | 0.067704 | 200.67 | 378.68 | 200.90 | 399.00 | 1.00328 | 1.7267 |
| 350 | 5.03 | 0.00078249 | 0.058319 | 206.52 | 381.10 | 206.79 | 401.51 | 1.02447 | 1.7244 |
| 400 | 8.93 | 0.00079073 | 0.051207 | 211.79 | 383.24 | 212.11 | 403.72 | 1.04333 | 1.7226 |
| 450 | 12.48 | 0.00079852 | 0.045625 | 216.63 | 385.16 | 216.99 | 405.69 | 1.06036 | 1.7210 |
| 500 | 15.73 | 0.00080595 | 0.041123 | 221.10 | 386.91 | 221.50 | 407.47 | 1.07594 | 1.7197 |
| 550 | 18.75 | 0.00081308 | 0.037413 | 225.27 | 388.51 | 225.72 | 409.09 | 1.09032 | 1.7185 |
| 600 | 21.57 | 0.00081998 | 0.034300 | 229.19 | 389.99 | 229.68 | 410.57 | 1.10370 | 1.7175 |
| 650 | 24.22 | 0.00082667 | 0.031650 | 232.89 | 391.36 | 233.43 | 411.94 | 1.11622 | 1.7165 |
| 700 | 26.71 | 0.00083320 | 0.029365 | 236.41 | 392.64 | 236.99 | 413.20 | 1.12801 | 1.7156 |
| 750 | 29.08 | 0.00083959 | 0.027375 | 239.76 | 393.84 | 240.39 | 414.37 | 1.13916 | 1.7148 |
| 800 | 31.33 | 0.00084585 | 0.025625 | 242.97 | 394.96 | 243.65 | 415.46 | 1.14975 | 1.7140 |
| 850 | 33.47 | 0.00085202 | 0.024073 | 246.05 | 396.02 | 246.77 | 416.48 | 1.15984 | 1.7133 |
| 900 | 35.53 | 0.00085811 | 0.022687 | 249.01 | 397.01 | 249.78 | 417.43 | 1.16948 | 1.7126 |
| 950 | 37.50 | 0.00086412 | 0.021442 | 251.86 | 397.95 | 252.69 | 418.32 | 1.17872 | 1.7119 |
| 1000 | 39.39 | 0.00087007 | 0.020316 | 254.63 | 398.85 | 255.50 | 419.16 | 1.18760 | 1.7113 |
| 1100 | 42.97 | 0.00088185 | 0.018360 | 259.90 | 400.49 | 260.87 | 420.69 | 1.20441 | 1.7100 |
| 1200 | 46.31 | 0.00089351 | 0.016718 | 264.88 | 401.98 | 265.95 | 422.04 | 1.22012 | 1.7087 |
| 1300 | 49.46 | 0.00090511 | 0.015319 | 269.60 | 403.32 | 270.78 | 423.24 | 1.23490 | 1.7075 |
| 1400 | 52.42 | 0.00091671 | 0.014110 | 274.12 | 404.54 | 275.40 | 424.30 | 1.24887 | 1.7062 |
| 1500 | 55.23 | 0.00092836 | 0.013056 | 278.45 | 405.64 | 279.84 | 425.23 | 1.26216 | 1.7049 |
| 1600 | 57.91 | 0.00094010 | 0.012126 | 282.61 | 406.64 | 284.11 | 426.04 | 1.27484 | 1.7036 |
| 1700 | 60.46 | 0.00095197 | 0.011301 | 286.63 | 407.54 | 288.25 | 426.75 | 1.28700 | 1.7022 |
| 1800 | 62.90 | 0.00096400 | 0.010562 | 290.52 | 408.35 | 292.26 | 427.36 | 1.29868 | 1.7007 |
| 1900 | 65.23 | 0.00097626 | 0.0098956 | 294.30 | 409.06 | 296.15 | 427.87 | 1.30995 | 1.6992 |
| 2000 | 67.48 | 0.00098877 | 0.0092915 | 297.98 | 409.70 | 299.95 | 428.28 | 1.32085 | 1.6976 |
| 2200 | 71.73 | 0.00101474 | 0.0082357 | 305.07 | 410.72 | 307.30 | 428.84 | 1.34171 | 1.6941 |
| 2400 | 75.69 | 0.00104234 | 0.0073402 | 311.88 | 411.42 | 314.38 | 429.04 | 1.36153 | 1.6902 |
| 2600 | 79.41 | 0.00107211 | 0.0065670 | 318.47 | 411.80 | 321.26 | 428.88 | 1.38054 | 1.6858 |
| 2800 | 82.90 | 0.00110474 | 0.0058879 | 324.92 | 411.84 | 328.01 | 428.33 | 1.39898 | 1.6807 |
| 3000 | 86.20 | 0.00114128 | 0.0052813 | 331.28 | 411.49 | 334.70 | 427.34 | 1.4171 | 1.6748 |
| 3200 | 89.33 | 0.00118330 | 0.0047295 | 337.64 | 410.70 | 341.43 | 425.83 | 1.4350 | 1.6679 |
| 3400 | 92.30 | 0.00123354 | 0.0042160 | 344.12 | 409.32 | 348.31 | 423.65 | 1.4533 | 1.6595 |
| 3600 | 95.12 | 0.00129737 | 0.0037218 | 350.91 | 407.11 | 355.58 | 420.50 | 1.4724 | 1.6487 |
| 3800 | 97.80 | 0.00138860 | 0.0032143 | 358.50 | 403.41 | 363.77 | 415.63 | 1.4939 | 1.6336 |
| 4000 | 100.34 | 0.00158011 | 0.0025626 | 369.25 | 395.13 | 375.57 | 405.38 | 1.5247 | 1.6046 |
| 4059.3 | 101.06 | 0.0019535 | 0.0019535 | 381.71 | 381.71 | 389.64 | 389.64 | 1.5621 | 1.5621 |

Reference States:
$\mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=60 \mathrm{kPa}\left(-36.93{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=100 \mathrm{kPa}\left(-26.36{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=140 \mathrm{kPa}\left(-18.76{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ | $\underset{\left(\mathbf{m}^{3} / \mathbf{k g}\right)}{\mathbf{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(k J / k g * K)}{\mathbf{S}}$ |
| Sat | 0.31123 | 357.27 | 375.94 | 1.7601 | 0.19256 | 363.34 | 382.60 | 1.7475 | 0.14015 | 367.70 | 387.32 | 1.7402 |
| -30 | 0.32149 | 361.93 | 381.22 | 1.7821 |  |  |  |  |  |  |  |  |
| -20 | 0.33608 | 368.74 | 388.91 | 1.8131 | 0.19841 | 367.81 | 387.65 | 1.7677 |  |  |  |  |
| -10 | 0.35049 | 375.70 | 396.73 | 1.8434 | 0.20743 | 374.89 | 395.64 | 1.7986 | 0.14606 | 374.05 | 394.50 | 1.7680 |
| 0 | 0.36476 | 382.80 | 404.69 | 1.8730 | 0.21630 | 382.10 | 403.73 | 1.8288 | 0.15263 | 381.37 | 402.74 | 1.7987 |
| 10 | 0.37893 | 390.07 | 412.81 | 1.9022 | 0.22506 | 389.45 | 411.95 | 1.8584 | 0.15908 | 388.81 | 411.08 | 1.8287 |
| 20 | 0.39303 | 397.50 | 421.08 | 1.9310 | 0.23373 | 396.94 | 420.31 | 1.8874 | 0.16544 | 396.37 | 419.53 | 1.8580 |
| 30 | 0.40705 | 405.10 | 429.52 | 1.9593 | 0.24233 | 404.59 | 428.82 | 1.9160 | 0.17172 | 404.08 | 428.12 | 1.8868 |
| 40 | 0.42102 | 412.86 | 438.12 | 1.9872 | 0.25088 | 412.40 | 437.49 | 1.9441 | 0.17795 | 411.93 | 436.84 | 1.9151 |
| 50 | 0.43495 | 420.79 | 446.88 | 2.0147 | 0.25938 | 420.37 | 446.30 | 1.9718 | 0.18412 | 419.94 | 445.72 | 1.9430 |
| 60 | 0.44884 | 428.88 | 455.81 | 2.0419 | 0.26784 | 428.49 | 455.28 | 1.9991 | 0.19025 | 428.10 | 454.74 | 1.9705 |
| 70 | 0.46269 | 437.14 | 464.90 | 2.0688 | 0.27626 | 436.78 | 464.41 | 2.0261 | 0.19635 | 436.42 | 463.91 | 1.9977 |
| 80 | 0.47652 | 445.56 | 474.15 | 2.0954 | 0.28466 | 445.23 | 473.70 | 2.0528 | 0.20243 | 444.90 | 473.24 | 2.0244 |
| 90 | 0.49032 | 454.14 | 483.56 | 2.1217 | 0.29303 | 453.84 | 483.14 | 2.0792 | 0.20847 | 453.53 | 482.72 | 2.0509 |
| 100 | 0.50410 | 462.89 | 493.14 | 2.1477 | 0.30138 | 462.61 | 492.74 | 2.1053 | 0.21450 | 462.32 | 492.35 | 2.0771 |

$$
\mathrm{P}=180 \mathrm{kPa}\left(-12.71^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{P}=200 \mathrm{kPa}\left(-10.08^{\circ} \mathrm{C}\right)
$$

$$
\mathbf{P}=240 \mathrm{kPa}\left(-5.37^{\circ} \mathrm{C}\right)
$$

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.11042 | 371.15 | 391.02 | 1.7353 | 0.099877 | 372.64 | 392.62 | 1.7334 | 0.083906 | 375.30 | 395.44 | 1.7303 |
| -10 | 0.11190 | 373.17 | 393.31 | 1.7441 | 0.099915 | 372.70 | 392.68 | 1.7337 |  |  |  |  |
| 0 | 0.11722 | 380.62 | 401.72 | 1.7754 | 0.10481 | 380.23 | 401.20 | 1.7654 | 0.086170 | 379.43 | 400.11 | 1.7475 |
| 10 | 0.12240 | 388.15 | 410.18 | 1.8059 | 0.10955 | 387.82 | 409.73 | 1.7961 | 0.090262 | 387.13 | 408.79 | 1.7787 |
| 20 | 0.12748 | 395.79 | 418.73 | 1.8355 | 0.11419 | 395.49 | 418.33 | 1.8259 | 0.094233 | 394.89 | 417.51 | 1.8090 |
| 30 | 0.13248 | 403.55 | 427.40 | 1.8646 | 0.11874 | 403.29 | 427.04 | 1.8551 | 0.098118 | 402.75 | 426.30 | 1.8385 |
| 40 | 0.13742 | 411.46 | 436.19 | 1.8931 | 0.12323 | 411.22 | 435.87 | 1.8838 | 0.10193 | 410.74 | 435.20 | 1.8674 |
| 50 | 0.14230 | 419.51 | 445.13 | 1.9212 | 0.12766 | 419.29 | 444.83 | 1.9120 | 0.10570 | 418.86 | 444.22 | 1.8957 |
| 60 | 0.14715 | 427.71 | 454.20 | 1.9489 | 0.13206 | 427.51 | 453.92 | 1.9397 | 0.10942 | 427.11 | 453.37 | 1.9236 |
| 70 | 0.15196 | 436.06 | 463.41 | 1.9761 | 0.13642 | 435.88 | 463.16 | 1.9670 | 0.11310 | 435.51 | 462.65 | 1.9511 |
| 80 | 0.15674 | 444.56 | 472.78 | 2.0030 | 0.14074 | 444.39 | 472.54 | 1.9939 | 0.11675 | 444.06 | 472.08 | 1.9781 |
| 90 | 0.16149 | 453.22 | 482.29 | 2.0296 | 0.14505 | 453.06 | 482.07 | 2.0206 | 0.12038 | 452.75 | 481.64 | 2.0048 |
| 100 | 0.16622 | 462.03 | 491.95 | 2.0558 | 0.14933 | 461.88 | 491.75 | 2.0468 | 0.12398 | 461.59 | 491.35 | 2.0312 |
| 110 | 0.17094 | 470.99 | 501.76 | 2.0818 | 0.15359 | 470.86 | 501.57 | 2.0728 | 0.12756 | 470.58 | 501.20 | 2.0573 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=280 \mathrm{kPa}\left(-1.23{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathbf{P}=320 \mathrm{kPa}\left(\mathbf{2 . 4 8}^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=400 \mathrm{kPa}\left(8.93{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathrm{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(k J / k g * K)}{\mathbf{S}}$ | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ |
| Sat | 0.072360 | 377.62 | 397.89 | 1.7278 | 0.063611 | 379.69 | 400.04 | 1.7257 | 0.051207 | 383.24 | 403.72 | 1.7226 |
| 0 | 0.072819 | 378.59 | 398.98 | 1.7318 |  |  |  |  |  |  |  |  |
| 10 | 0.076460 | 386.42 | 407.83 | 1.7636 | 0.066088 | 385.69 | 406.83 | 1.7501 | 0.051506 | 384.12 | 404.72 | 1.7261 |
| 20 | 0.079966 | 394.27 | 416.67 | 1.7943 | 0.069252 | 393.64 | 415.80 | 1.7812 | 0.054214 | 392.32 | 414.01 | 1.7584 |
| 30 | 0.083378 | 402.21 | 425.55 | 1.8241 | 0.072313 | 401.65 | 424.79 | 1.8113 | 0.056797 | 400.50 | 423.22 | 1.7893 |
| 40 | 0.086719 | 410.25 | 434.53 | 1.8532 | 0.075299 | 409.75 | 433.85 | 1.8407 | 0.059293 | 408.73 | 432.45 | 1.8192 |
| 50 | 0.090003 | 418.41 | 443.61 | 1.8818 | 0.078226 | 417.96 | 443.00 | 1.8695 | 0.061724 | 417.05 | 441.74 | 1.8484 |
| 60 | 0.093242 | 426.71 | 452.82 | 1.9098 | 0.081106 | 426.30 | 452.25 | 1.8977 | 0.064104 | 425.47 | 451.11 | 1.8770 |
| 70 | 0.096443 | 435.14 | 462.14 | 1.9374 | 0.083947 | 434.77 | 461.63 | 1.9254 | 0.066443 | 434.01 | 460.58 | 1.9050 |
| 80 | 0.099612 | 443.71 | 471.61 | 1.9646 | 0.086755 | 443.37 | 471.13 | 1.9527 | 0.068748 | 442.67 | 470.17 | 1.9325 |
| 90 | 0.10275 | 452.43 | 481.20 | 1.9914 | 0.089536 | 452.11 | 480.77 | 1.9796 | 0.071023 | 451.47 | 479.88 | 1.9597 |
| 100 | 0.10587 | 461.30 | 490.94 | 2.0178 | 0.092293 | 461.00 | 490.54 | 2.0062 | 0.073275 | 460.41 | 489.72 | 1.9864 |
| 110 | 0.10897 | 470.31 | 500.82 | 2.0440 | 0.095030 | 470.03 | 500.44 | 2.0324 | 0.075505 | 469.48 | 499.68 | 2.0127 |
| 120 | 0.11206 | 479.47 | 510.85 | 2.0698 | 0.097749 | 479.21 | 510.49 | 2.0583 | 0.077717 | 478.69 | 509.78 | 2.0387 |
| 130 | 0.11512 | 488.78 | 521.01 | 2.0953 | 0.10045 | 488.54 | 520.68 | 2.0838 | 0.079914 | 488.05 | 520.02 | 2.0645 |
| 140 | 0.11818 | 498.24 | 531.33 | 2.1206 | 0.10314 | 498.01 | 531.02 | 2.1092 | 0.082097 | 497.55 | 530.39 | 2.0899 |

$$
\mathrm{P}=500 \mathrm{kPa}\left(15.73^{\circ} \mathrm{C}\right) \quad \mathrm{P}=600 \mathrm{kPa}\left(21.57^{\circ} \mathrm{C}\right) \quad \mathrm{P}=700 \mathrm{kPa}\left(26.71^{\circ} \mathrm{C}\right)
$$

| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\underset{\left(\mathbf{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathrm{kJ} / \mathrm{kg} * \mathbf{K})}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.041123 | 386.91 | 407.47 | 1.7197 | 0.034300 | 389.99 | 410.57 | 1.7175 | 0.02937 | 392.64 | 413.20 | 1.7156 |
| 20 | 0.042116 | 390.55 | 411.61 | 1.7339 |  |  |  |  |  |  |  |  |
| 30 | 0.044338 | 398.99 | 421.16 | 1.7659 | 0.035984 | 397.37 | 418.96 | 1.7455 | 0.029966 | 395.62 | 416.60 | 1.7269 |
| 40 | 0.046456 | 407.40 | 430.63 | 1.7967 | 0.037865 | 406.01 | 428.73 | 1.7772 | 0.031696 | 404.53 | 426.72 | 1.7598 |
| 50 | 0.048499 | 415.86 | 440.11 | 1.8265 | 0.039659 | 414.63 | 438.43 | 1.8077 | 0.033322 | 413.35 | 436.67 | 1.7910 |
| 60 | 0.050486 | 424.40 | 449.64 | 1.8555 | 0.041389 | 423.30 | 448.13 | 1.8373 | 0.034875 | 422.16 | 446.57 | 1.8212 |
| 70 | 0.052427 | 433.04 | 459.25 | 1.8839 | 0.043070 | 432.04 | 457.88 | 1.8661 | 0.036374 | 431.01 | 456.47 | 1.8505 |
| 80 | 0.054331 | 441.78 | 468.95 | 1.9118 | 0.044710 | 440.87 | 467.70 | 1.8943 | 0.037829 | 439.94 | 466.42 | 1.8791 |
| 90 | 0.056205 | 450.65 | 478.76 | 1.9392 | 0.046319 | 449.82 | 477.61 | 1.9220 | 0.039250 | 448.97 | 476.44 | 1.9070 |
| 100 | 0.058054 | 459.65 | 488.68 | 1.9661 | 0.047900 | 458.88 | 487.62 | 1.9492 | 0.040642 | 458.09 | 486.54 | 1.9345 |
| 110 | 0.059880 | 468.78 | 498.72 | 1.9927 | 0.049459 | 468.06 | 497.74 | 1.9759 | 0.042010 | 467.34 | 496.74 | 1.9615 |
| 120 | 0.061688 | 478.04 | 508.88 | 2.0189 | 0.050998 | 477.37 | 507.97 | 2.0023 | 0.043358 | 476.70 | 507.05 | 1.9880 |
| 130 | 0.063479 | 487.44 | 519.18 | 2.0447 | 0.052520 | 486.82 | 518.33 | 2.0283 | 0.044689 | 486.19 | 517.47 | 2.0142 |
| 140 | 0.065257 | 496.98 | 529.60 | 2.0703 | 0.054027 | 496.39 | 528.81 | 2.0540 | 0.046004 | 495.80 | 528.01 | 2.0400 |
| 150 | 0.067022 | 506.65 | 540.17 | 2.0955 | 0.055522 | 506.11 | 539.42 | 2.0794 | 0.047307 | 505.55 | 538.67 | 2.0655 |
| 160 | 0.068776 | 516.47 | 550.86 | 2.1205 | 0.057006 | 515.96 | 550.16 | 2.1045 | 0.048598 | 515.44 | 549.45 | 2.0907 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=800 \mathrm{kPa}\left(31.33{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathbf{P}=900 \mathrm{kPa}\left(35.53{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1000 \mathrm{kPa}\left(39.39^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{S} \\ (\mathrm{kJ} / \mathrm{kg} * \mathrm{~K} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ |  | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\begin{gathered} S \\ \left(\mathbf{k J} / \mathrm{kg}^{*} \mathbf{K}\right) \end{gathered}$ | $\begin{gathered} V \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\begin{gathered} \mathbf{U} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathbf{H} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\underset{\left(\mathbf{k J} / \mathrm{kg}^{*} \mathrm{~K}\right)}{\mathrm{S}}$ |
| Sat | 0.025625 | 394.96 | 415.46 | 1.7140 | 0.022687 | 397.01 | 417.43 | 1.7126 | 0.020316 | 398.85 | 419.16 | 1.7113 |
| 40 | 0.027036 | 402.97 | 424.59 | 1.7436 | 0.023375 | 401.28 | 422.32 | 1.7283 | 0.020407 | 399.45 | 419.86 | 1.7135 |
| 50 | 0.028547 | 412.00 | 434.84 | 1.7758 | 0.024810 | 410.59 | 432.92 | 1.7616 | 0.021796 | 409.09 | 430.88 | 1.7482 |
| 60 | 0.029974 | 420.97 | 444.95 | 1.8067 | 0.026146 | 419.75 | 443.28 | 1.7932 | 0.023068 | 418.46 | 441.53 | 1.7806 |
| 70 | 0.031340 | 429.96 | 455.03 | 1.8365 | 0.027414 | 428.87 | 453.54 | 1.8236 | 0.024262 | 427.74 | 452.00 | 1.8116 |
| 80 | 0.032659 | 438.99 | 465.12 | 1.8654 | 0.028630 | 438.01 | 463.78 | 1.8530 | 0.025399 | 437.00 | 462.40 | 1.8414 |
| 90 | 0.033942 | 448.10 | 475.25 | 1.8937 | 0.029807 | 447.21 | 474.03 | 1.8816 | 0.026493 | 446.30 | 472.79 | 1.8705 |
| 100 | 0.035193 | 457.30 | 485.45 | 1.9214 | 0.030951 | 456.48 | 484.34 | 1.9096 | 0.027552 | 455.65 | 483.21 | 1.8988 |
| 110 | 0.036420 | 466.60 | 495.74 | 1.9486 | 0.032069 | 465.85 | 494.71 | 1.9370 | 0.028584 | 465.09 | 493.67 | 1.9264 |
| 120 | 0.037626 | 476.02 | 506.12 | 1.9754 | 0.033164 | 475.32 | 505.17 | 1.9640 | 0.029593 | 474.62 | 504.21 | 1.9536 |
| 130 | 0.038813 | 485.55 | 516.60 | 2.0017 | 0.034241 | 484.91 | 515.72 | 1.9905 | 0.030582 | 484.25 | 514.83 | 1.9803 |
| 140 | 0.039985 | 495.21 | 527.20 | 2.0277 | 0.035302 | 494.61 | 526.38 | 2.0166 | 0.031554 | 494.00 | 525.55 | 2.0065 |
| 150 | 0.041144 | 504.99 | 537.91 | 2.0533 | 0.036349 | 504.43 | 537.14 | 2.0423 | 0.032512 | 503.86 | 536.37 | 2.0324 |
| 160 | 0.042291 | 514.91 | 548.74 | 2.0786 | 0.037384 | 514.38 | 548.02 | 2.0678 | 0.033458 | 513.84 | 547.30 | 2.0579 |
| 170 | 0.043427 | 524.96 | 559.70 | 2.1036 | 0.038408 | 524.46 | 559.02 | 2.0929 | 0.034392 | 523.95 | 558.35 | 2.0831 |
| 180 | 0.044554 | 535.14 | 570.78 | 2.1283 | 0.039423 | 534.67 | 570.15 | 2.1177 | 0.035318 | 534.19 | 569.51 | 2.1080 |

$$
\mathrm{P}=1200 \mathrm{kPa}\left(46.31^{\circ} \mathrm{C}\right)
$$

$\mathrm{P}=1400 \mathrm{kPa}\left(52.42^{\circ} \mathrm{C}\right)$

$$
\mathrm{P}=1600 \mathrm{kPa}\left(57.91^{\circ} \mathrm{C}\right)
$$

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ |  | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathbf{k g}^{*} \times \mathbf{K}\right)}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \left(\mathbf{m}^{3} / \mathbf{k g}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{\left(\mathbf{k J} / \mathbf{k g}^{\mathbf{S}} \mathrm{K}\right)}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.016718 | 401.98 | 422.04 | 1.7087 | 0.014110 | 404.54 | 424.30 | 1.7062 | 0.012126 | 406.64 | 426.04 | 1.7036 |
| 50 | 0.017201 | 405.77 | 426.41 | 1.7223 |  |  |  |  |  |  |  |  |
| 60 | 0.018404 | 415.70 | 437.79 | 1.7570 | 0.015005 | 412.61 | 433.62 | 1.7345 | 0.012373 | 409.04 | 428.84 | 1.7120 |
| 70 | 0.019502 | 425.36 | 448.76 | 1.7895 | 0.016060 | 422.77 | 445.25 | 1.7689 | 0.013430 | 419.91 | 441.40 | 1.7491 |
| 80 | 0.020530 | 434.90 | 459.53 | 1.8204 | 0.017023 | 432.65 | 456.48 | 1.8012 | 0.014362 | 430.24 | 453.22 | 1.7831 |
| 90 | 0.021506 | 444.41 | 470.22 | 1.8502 | 0.017923 | 442.42 | 467.52 | 1.8320 | 0.015216 | 440.32 | 464.66 | 1.8150 |
| 100 | 0.022443 | 453.94 | 480.87 | 1.8792 | 0.018778 | 452.16 | 478.45 | 1.8617 | 0.016015 | 450.29 | 475.91 | 1.8456 |
| 110 | 0.023348 | 463.53 | 491.54 | 1.9074 | 0.019597 | 461.90 | 489.34 | 1.8905 | 0.016773 | 460.22 | 487.06 | 1.8751 |
| 120 | 0.024228 | 473.18 | 502.25 | 1.9350 | 0.020388 | 471.70 | 500.24 | 1.9186 | 0.017500 | 470.16 | 498.16 | 1.9037 |
| 130 | 0.025087 | 482.92 | 513.03 | 1.9621 | 0.021156 | 481.55 | 511.17 | 1.9460 | 0.018201 | 480.15 | 509.27 | 1.9316 |
| 140 | 0.025928 | 492.76 | 523.87 | 1.9886 | 0.021904 | 491.49 | 522.16 | 1.9730 | 0.018882 | 490.19 | 520.40 | 1.9589 |
| 150 | 0.026753 | 502.70 | 534.81 | 2.0148 | 0.022636 | 501.52 | 533.21 | 1.9994 | 0.019546 | 500.32 | 531.59 | 1.9856 |
| 160 | 0.027566 | 512.76 | 545.84 | 2.0405 | 0.023355 | 511.65 | 544.35 | 2.0254 | 0.020194 | 510.53 | 542.84 | 2.0119 |
| 170 | 0.028367 | 522.93 | 556.97 | 2.0660 | 0.024061 | 521.89 | 555.58 | 2.0510 | 0.020830 | 520.84 | 554.17 | 2.0378 |
| 180 | 0.029159 | 533.23 | 568.22 | 2.0911 | 0.024758 | 532.25 | 566.91 | 2.0763 | 0.021456 | 531.26 | 565.59 | 2.0632 |
| 190 | 0.029941 | 543.64 | 579.57 | 2.1158 | 0.025445 | 542.72 | 578.34 | 2.1013 | 0.022072 | 541.78 | 577.10 | 2.0884 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=800 \mathrm{kPa}\left(31.33{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=900 \mathrm{kPa}\left(35.53{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1000 \mathrm{kPa}\left(39.39^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\underset{\left(\mathbf{m}^{3} / \mathbf{k g}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ |
| Sat | 0.00084585 | 242.97 | 243.65 | 1.1497 | 0.00085811 | 249.01 | 249.78 | 1.1695 | 0.00087007 | 254.63 | 255.50 | 1.1876 |
| 35 |  |  |  |  | 0.00085646 | 248.23 | 249.01 | 1.1670 | 0.00085591 | 248.14 | 249.00 | 1.1667 |
| 30 | 0.00084199 | 241.05 | 241.72 | 1.1434 | 0.00084151 | 240.96 | 241.72 | 1.1431 | 0.00084104 | 240.87 | 241.72 | 1.1428 |
| 25 | 0.00082814 | 233.89 | 234.55 | 1.1196 | 0.00082772 | 233.81 | 234.55 | 1.1193 | 0.00082731 | 233.73 | 234.56 | 1.1190 |
| 20 | 0.00081527 | 226.83 | 227.49 | 1.0957 | 0.00081491 | 226.76 | 227.50 | 1.0954 | 0.00081454 | 226.69 | 227.50 | 1.0952 |
| 15 | 0.00080324 | 219.88 | 220.52 | 1.0717 | 0.00080292 | 219.81 | 220.53 | 1.0715 | 0.00080260 | 219.74 | 220.55 | 1.0712 |
| 10 | 0.00079193 | 213.01 | 213.64 | 1.0476 | 0.00079165 | 212.95 | 213.66 | 1.0474 | 0.00079136 | 212.88 | 213.68 | 1.0472 |
| 0 | 0.00077115 | 199.50 | 200.12 | 0.99899 | 0.00077092 | 199.45 | 200.14 | 0.99880 | 0.00077069 | 199.39 | 200.16 | 0.99860 |
| -10 | 0.00075236 | 186.26 | 186.86 | 0.94957 | 0.00075217 | 186.21 | 186.89 | 0.94939 | 0.00075198 | 186.17 | 186.92 | 0.94921 |
| -20 | 0.00073517 | 173.26 | 173.85 | 0.89914 | 0.00073501 | 173.22 | 173.88 | 0.89897 | 0.00073485 | 173.18 | 173.91 | 0.89881 |
| -30 | 0.00071929 | 160.46 | 161.04 | 0.84752 | 0.00071916 | 160.43 | 161.07 | 0.84737 | 0.00071903 | 160.39 | 161.11 | 0.84722 |
| -40 | 0.00070451 | 147.86 | 148.42 | 0.79454 | 0.00070440 | 147.82 | 148.46 | 0.79439 | 0.00070428 | 147.79 | 148.50 | 0.79425 |


|  | $\mathrm{P}=1200 \mathrm{kPa}\left(46.31{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1400 \mathrm{kPa}\left(52.42{ }^{\circ} \mathrm{C}\right)$ |  |  |  | $\mathrm{P}=1600 \mathrm{kPa}\left(57.91{ }^{\circ} \mathrm{C}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ | $\underset{\left(\mathbf{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * \mathbf{K})}{\mathbf{S}}$ |
| Sat | 0.00089351 | 264.88 | 265.95 | 1.2201 | 0.00091671 | 274.12 | 275.40 | 1.2489 | 0.00094010 | 282.61 | 284.11 | 1.2748 |
| 55 |  |  |  |  |  |  |  |  | 0.00092620 | 277.92 | 279.41 | 1.2606 |
| 50 |  |  |  |  | 0.00090646 | 270.32 | 271.59 | 1.2371 | 0.00090470 | 270.06 | 271.51 | 1.2363 |
| 45 | 0.00088854 | 262.86 | 263.93 | 1.2138 | 0.00088706 | 262.63 | 263.87 | 1.2131 | 0.00088561 | 262.40 | 263.82 | 1.2123 |
| 40 | 0.00087087 | 255.33 | 256.37 | 1.1899 | 0.00086962 | 255.12 | 256.34 | 1.1892 | 0.00086840 | 254.92 | 256.31 | 1.1885 |
| 35 | 0.00085483 | 247.95 | 248.98 | 1.1660 | 0.00085376 | 247.76 | 248.96 | 1.1654 | 0.00085271 | 247.58 | 248.94 | 1.1648 |
| 30 | 0.00084011 | 240.70 | 241.71 | 1.1423 | 0.00083919 | 240.53 | 241.71 | 1.1417 | 0.00083828 | 240.37 | 241.71 | 1.1412 |
| 25 | 0.00082650 | 233.57 | 234.57 | 1.1185 | 0.00082569 | 233.42 | 234.57 | 1.1180 | 0.00082490 | 233.27 | 234.59 | 1.1175 |
| 20 | 0.00081383 | 226.55 | 227.52 | 1.0947 | 0.00081312 | 226.40 | 227.54 | 1.0942 | 0.00081242 | 226.26 | 227.56 | 1.0937 |
| 15 | 0.00080196 | 219.61 | 220.57 | 1.0708 | 0.00080134 | 219.48 | 220.60 | 1.0703 | 0.00080071 | 219.35 | 220.63 | 1.0699 |
| 10 | 0.00079080 | 212.76 | 213.71 | 1.0467 | 0.00079024 | 212.64 | 213.75 | 1.0463 | 0.00078968 | 212.52 | 213.78 | 1.0459 |
| 5 | 0.00078024 | 205.99 | 206.93 | 1.0226 | 0.00077974 | 205.88 | 206.97 | 1.0222 | 0.00077924 | 205.76 | 207.01 | 1.0218 |
| 0 | 0.00077023 | 199.29 | 200.21 | 0.99821 | 0.00076978 | 199.18 | 200.26 | 0.99782 | 0.00076933 | 199.08 | 200.31 | 0.99743 |
| -5 | 0.00076070 | 192.65 | 193.56 | 0.97365 | 0.00076029 | 192.55 | 193.61 | 0.97327 | 0.00075988 | 192.45 | 193.67 | 0.97290 |
| -10 | 0.00075161 | 186.07 | 186.98 | 0.94885 | 0.00075123 | 185.98 | 187.03 | 0.94850 | 0.00075086 | 185.89 | 187.09 | 0.94814 |
| -15 | 0.00074290 | 179.56 | 180.45 | 0.92380 | 0.00074256 | 179.47 | 180.51 | 0.92346 | 0.00074222 | 179.38 | 180.57 | 0.92312 |
| -20 | 0.00073454 | 173.09 | 173.97 | 0.89848 | 0.00073423 | 173.01 | 174.04 | 0.89815 | 0.00073392 | 172.93 | 174.10 | 0.89783 |
| -25 | 0.00072650 | 166.68 | 167.55 | 0.87286 | 0.00072622 | 166.60 | 167.62 | 0.87254 | 0.00072593 | 166.52 | 167.69 | 0.87223 |
| -30 | 0.00071876 | 160.32 | 161.18 | 0.84691 | 0.00071850 | 160.24 | 161.25 | 0.84661 | 0.00071824 | 160.17 | 161.32 | 0.84631 |
| -40 | 0.00070406 | 147.73 | 148.57 | 0.79397 | 0.00070383 | 147.66 | 148.64 | 0.79368 | 0.00070361 | 147.59 | 148.72 | 0.79340 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

## Saturation Temperature Table

R-134a
AE

| Temp. <br> ( ${ }^{\mathbf{F}} \mathbf{F}$ ) | Pressure (psia) | $\mathrm{V}\left(\mathrm{ft}^{3} / \mathrm{lb} \mathrm{b}_{\mathrm{m}}\right)$ |  | U (Btu/lb ${ }_{\text {m }}$ ) |  | $\mathrm{H}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |  | $\left.\mathbf{S ~ ( B t u / l b ~}{ }_{\text {m }}{ }^{0} \mathbf{R}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| -40 | 7.4272 | 0.011299 | 5.7839 | 63.718 | 152.95 | 63.733 | 160.90 | 0.19016 | 0.42169 |
| -35 | 8.5756 | 0.011364 | 5.0544 | 65.219 | 153.63 | 65.237 | 161.66 | 0.19371 | 0.42076 |
| -30 | 9.8624 | 0.011429 | 4.4330 | 66.725 | 154.32 | 66.746 | 162.41 | 0.19724 | 0.41989 |
| -25 | 11.299 | 0.011496 | 3.9014 | 68.238 | 155.00 | 68.262 | 163.17 | 0.20074 | 0.41907 |
| -20 | 12.898 | 0.011565 | 3.4449 | 69.756 | 155.69 | 69.784 | 163.92 | 0 | 0.41831 |
| -15 | 14.671 | 0.011635 | 3.0514 | 71.281 | 156.38 | 71.313 | 164.67 | 0.20766 | 0.41760 |
| -10 | 16.632 | 0.011706 | 2.7109 | 72.812 | 157.06 | 72.848 | 165.41 | 0.21109 | 0.41693 |
| -5 | 18.794 | 0.011779 | 2.4154 | 74.350 | 157.75 | 74.391 | 166.15 | 0.21449 | 0.41631 |
| 0 | 21.171 | 0.011853 | 2.1579 | 75.894 | 158.43 | 75.940 | 166.89 | 0.21786 | 0.41572 |
| 5 | 23.777 | 0.011929 | 1.9330 | 77.445 | 159.11 | 77.497 | 167.62 | 0.22122 | 0.41518 |
| 10 | 26.628 | 0.012007 | 1.7357 | 79.002 | 159.79 | 79.062 | 168.35 | 0.22456 | 0.41467 |
| 15 | 29.739 | 0.012086 | 1.5623 | 80.567 | 160.47 | 80.634 | 169.07 | 0.22787 | 0.41419 |
| 20 | 33.124 | 0.012168 | 1.4094 | 82.140 | 161.14 | 82.214 | 169.79 | 0.23117 | 0.41374 |
| 25 | 36.800 | 0.012251 | 1.2742 | 83.720 | 161.82 | 83.803 | 170.50 | 0.23445 | 0.41332 |
| 32 | 42.468 | 0.012372 | 1.1102 | 85.945 | 162.75 | 86.042 | 171.48 | 0.23901 | 0.41278 |
| 40 | 49.741 | 0.012515 | 0.95280 | 88.507 | 163.81 | 88.623 | 172.59 | 0.24418 | 0.41222 |
| 45 | 54.749 | 0.012608 | 0.86796 | 90.120 | 164.47 | 90.248 | 173.27 | 0.24739 | 0.41190 |
| 50 | 60.134 | 0.012703 | 0.79198 | 91.742 | 165.12 | 91.883 | 173.94 | 0.25059 | 0.41159 |
| 55 | 65.913 | 0.012802 | 0.72380 | 93.372 | 165.77 | 93.529 | 174.60 | 0.25378 | 0.41131 |
| 60 | 72.105 | 0.012903 | 0.66246 | 95.013 | 166.41 | 95.185 | 175.26 | 0.25695 | 0.41103 |
| 65 | 78.729 | 0.013008 | 0.60718 | 96.663 | 167.05 | 96.853 | 175.90 | 0.26011 | 0.41077 |
| 70 | 85.805 | 0.013116 | 0.55724 | 98.324 | 167.67 | 98.532 | 176.53 | 0.26327 | 0.41052 |
| 75 | 93.351 | 0.013229 | 0.51204 | 100.00 | 168.30 | 100.22 | 177.15 | 0.26641 | 0.41028 |
| 80 | 101.39 | 0.013345 | 0.47104 | 101.68 | 168.91 | 101.93 | 177.75 | 0.26955 | 0.41005 |
| 85 | 109.93 | 0.013465 | 0.43379 | 103.37 | 169.51 | 103.65 | 178.34 | 0.27268 | 0.40982 |
| 90 | 119.01 | 0.013590 | 0.39988 | 105.08 | 170.11 | 105.38 | 178.92 | 0.27580 | 0.40959 |
| 95 | 128.65 | 0.013720 | 0.36896 | 106.80 | 170.69 | 107.13 | 179.48 | 0.27892 | 0.40937 |
| 100 | 138.85 | 0.013856 | 0.34070 | 108.53 | 171.26 | 108.89 | 180.02 | 0.28204 | 0.40914 |
| 105 | 149.65 | 0.013998 | 0.31483 | 110.28 | 171.82 | 110.67 | 180.55 | 0.28515 | 0.40891 |
| 110 | 161.07 | 0.014146 | 0.29111 | 112.04 | 172.37 | 112.46 | 181.05 | 0.28827 | 0.40867 |
| 115 | 173.14 | 0.014301 | 0.26933 | 113.82 | 172.90 | 114.28 | 181.53 | 0.29139 | 0.40842 |
| 120 | 185.86 | 0.014464 | 0.24928 | 115.62 | 173.41 | 116.12 | 181.99 | 0.29451 | 0.40815 |
| 125 | 199.28 | 0.014636 | 0.23080 | 117.43 | 173.91 | 117.97 | 182.42 | 0.29764 | 0.40787 |
| 130 | 213.41 | 0.014817 | 0.21374 | 119.27 | 174.38 | 119.85 | 182.83 | 0.30077 | 0.40757 |
| 135 | 228.28 | 0.015010 | 0.19795 | 121.12 | 174.83 | 121.76 | 183.20 | 0.30392 | 0.40725 |
| 140 | 243.92 | 0.015214 | 0.18332 | 123.00 | 175.26 | 123.69 | 183.54 | 0.30708 | 0.40689 |
| 145 | 260.36 | 0.015432 | 0.16973 | 124.90 | 175.66 | 125.65 | 183.84 | 0.31026 | 0.40650 |
| 150 | 277.61 | 0.015666 | 0.15709 | 126.84 | 176.02 | 127.64 | 184.10 | 0.31346 | 0.40606 |
| 160 | 314.73 | 0.016191 | 0.13428 | 130.79 | 176.64 | 131.74 | 184.46 | 0.31995 | 0.40503 |
| 170 | 355.53 | 0.016815 | 0.11424 | 134.91 | 177.05 | 136.02 | 184.57 | 0.32659 | 0.40371 |
| 180 | 400.34 | 0.017588 | 0.096375 | 139.24 | 177.19 | 140.54 | 184.33 | 0.33350 | 0.40196 |
| 190 | 588.75 | 0.031292 | 0.031292 | 164.22 | 164.22 | 167.63 | 167.63 | 0.37335 | 0.37335 |
| 200 | 503.59 | 0.020096 | 0.064663 | 149.07 | 175.80 | 150.95 | 181.83 | 0.34896 | 0.39577 |
| 213.91 | 588.72 | 0.031292 | 0.031292 | 164.22 | 164.22 | 167.63 | 167.63 | 0.37335 | 0.37335 |

Reference States:
$\mathrm{H}=85.985 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.
$\mathrm{S}=0.23885 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.

Saturation Pressure Table
R-134a
AE

| Pressure (psia) | Temp. <br> $\left({ }^{\mathbf{o}} \mathbf{F}\right)$ | $\mathrm{V}\left(\mathrm{ft}^{3} / / \mathrm{b}_{\mathrm{m}}\right)$ |  | $\mathrm{U}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)$ |  | H (Btu/lb ${ }_{\text {m }}$ ) |  | $\mathrm{S}\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{\text {c }} \mathbf{R}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sat. Liq | Sat. Vap |
| 5 | -53.07 | 0.011135 | 8.3793 | 59.821 | 151.16 | 59.832 | 158.92 | 0.18072 | 0.42441 |
| 10 | -29.50 | 0.011436 | 4.3756 | 66.877 | 154.39 | 66.898 | 162.49 | 0.19759 | 0.41980 |
| 15 | -14.13 | 0.011647 | 2.9882 | 71.548 | 156.50 | 71.581 | 164.80 | 0.20826 | 0.41748 |
| 20 | -2.40 | 0.011817 | 2.2774 | 75.150 | 158.10 | 75.194 | 166.54 | 0.21624 | 0.41600 |
| 25 | 7.20 | 0.011963 | 1.8431 | 78.129 | 159.41 | 78.184 | 167.94 | 0.22269 | 0.41495 |
| 30 | 15.40 | 0.012093 | 1.5493 | 80.693 | 160.52 | 80.760 | 169.13 | 0.22814 | 0.41415 |
| 35 | 22.60 | 0.012211 | 1.3370 | 82.961 | 161.49 | 83.040 | 170.16 | 0.23288 | 0.41352 |
| 40 | 29.05 | 0.012320 | 1.1761 | 85.004 | 162.36 | 85.095 | 171.07 | 0.23709 | 0.41301 |
| 45 | 34.90 | 0.012423 | 1.0498 | 86.870 | 163.14 | 86.974 | 171.89 | 0.24088 | 0.41257 |
| 50 | 40.27 | 0.012520 | 0.94802 | 88.593 | 163.85 | 88.709 | 172.63 | 0.24435 | 0.41220 |
| 55 | 45.24 | 0.012612 | 0.86410 | 90.198 | 164.50 | 90.326 | 173.30 | 0.24755 | 0.41188 |
| 60 | 49.88 | 0.012701 | 0.79371 | 91.703 | 165.11 | 91.844 | 173.93 | 0.25051 | 0.41160 |
| 65 | 54.23 | 0.012787 | 0.73379 | 93.122 | 165.67 | 93.276 | 174.50 | 0.25329 | 0.41135 |
| 70 | 58.34 | 0.012869 | 0.68214 | 94.467 | 166.20 | 94.633 | 175.04 | 0.25590 | 0.41112 |
| 80 | 65.92 | 0.013028 | 0.59758 | 96.969 | 167.16 | 97.162 | 176.02 | 0.26070 | 0.41073 |
| 85 | 69.45 | 0.013104 | 0.56251 | 98.140 | 167.61 | 98.346 | 176.46 | 0.26292 | 0.41055 |
| 90 | 72.82 | 0.013179 | 0.53121 | 99.265 | 168.03 | 99.484 | 176.88 | 0.26504 | 0.41039 |
| 95 | 76.05 | 0.013253 | 0.50308 | 100.35 | 168.43 | 100.58 | 177.28 | 0.26707 | 0.41023 |
| 100 | 79.16 | 0.013325 | 0.47767 | 101.39 | 168.81 | 101.64 | 177.65 | 0.26902 | 0.41009 |
| 110 | 85.04 | 0.013466 | 0.43353 | 103.38 | 169.52 | 103.66 | 178.35 | 0.27270 | 0.40982 |
| 120 | 90.53 | 0.013604 | 0.39650 | 105.26 | 170.17 | 105.56 | 178.98 | 0.27613 | 0.40957 |
| 130 | 95.68 | 0.013738 | 0.36496 | 107.03 | 170.77 | 107.36 | 179.55 | 0.27935 | 0.40934 |
| 140 | 100.55 | 0.013871 | 0.33777 | 108.72 | 171.32 | 109.08 | 180.08 | 0.28238 | 0.40911 |
| 150 | 105.16 | 0.014002 | 0.31406 | 110.33 | 171.84 | 110.72 | 180.56 | 0.28525 | 0.40890 |
| 160 | 109.54 | 0.014132 | 0.29321 | 111.88 | 172.32 | 112.30 | 181.00 | 0.28798 | 0.40869 |
| 170 | 113.73 | 0.014261 | 0.27471 | 113.37 | 172.76 | 113.82 | 181.41 | 0.29059 | 0.40848 |
| 180 | 117.73 | 0.014389 | 0.25818 | 114.80 | 173.18 | 115.28 | 181.79 | 0.29309 | 0.40827 |
| 190 | 121.57 | 0.014517 | 0.24332 | 116.18 | 173.57 | 116.70 | 182.13 | 0.29549 | 0.40807 |
| 200 | 125.26 | 0.014645 | 0.22988 | 117.53 | 173.93 | 118.07 | 182.45 | 0.29780 | 0.40786 |
| 220 | 132.25 | 0.014902 | 0.20649 | 120.10 | 174.59 | 120.70 | 183.00 | 0.30218 | 0.40743 |
| 240 | 138.77 | 0.015163 | 0.18682 | 122.54 | 175.16 | 123.21 | 183.46 | 0.30630 | 0.40698 |
| 260 | 144.89 | 0.015428 | 0.17001 | 124.86 | 175.65 | 125.61 | 183.84 | 0.31019 | 0.40651 |
| 280 | 150.67 | 0.015699 | 0.15546 | 127.10 | 176.07 | 127.91 | 184.13 | 0.31389 | 0.40600 |
| 300 | 156.15 | 0.015978 | 0.14271 | 129.25 | 176.42 | 130.14 | 184.35 | 0.31743 | 0.40546 |
| 320 | 161.35 | 0.016268 | 0.13143 | 131.34 | 176.71 | 132.30 | 184.50 | 0.32083 | 0.40487 |
| 340 | 166.30 | 0.016570 | 0.12136 | 133.37 | 176.93 | 134.41 | 184.57 | 0.32411 | 0.40424 |
| 360 | 171.04 | 0.016888 | 0.11229 | 135.35 | 177.08 | 136.47 | 184.57 | 0.32730 | 0.40355 |
| 380 | 175.58 | 0.017223 | 0.10404 | 137.29 | 177.17 | 138.50 | 184.49 | 0.33040 | 0.40280 |
| 400 | 179.93 | 0.017582 | 0.096497 | 139.20 | 177.19 | 140.51 | 184.33 | 0.33345 | 0.40197 |
| 450 | 190.09 | 0.018614 | 0.079969 | 143.92 | 176.88 | 145.47 | 183.54 | 0.34089 | 0.39948 |
| 475 | 194.83 | 0.019238 | 0.072617 | 146.29 | 176.50 | 147.98 | 182.88 | 0.34461 | 0.39793 |
| 500 | 199.37 | 0.019977 | 0.065644 | 148.72 | 175.91 | 150.57 | 181.98 | 0.34840 | 0.39607 |
| 588.75 | 213.91 | 0.031292 | 0.031292 | 164.22 | 164.22 | 167.63 | 167.63 | 0.37335 | 0.37335 |

Reference States:
$\mathrm{H}=85.985 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.
$\mathrm{S}=0.23885 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.

## Superheated Vapor

|  | $\mathrm{P}=1 \mathrm{psia}\left(-97.56{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=10 \mathrm{psia}\left(-29.5^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=14.696$ psia $\left(-14.93{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{\text { Btu/f } \mathbf{b}_{\mathrm{m}}{ }^{{ }^{\mathbf{R}}}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u}^{\mathbf{H}} \mathbf{l b}_{\mathrm{m}}}{ }$ | $\underset{\text { Btu/f } \mathbf{b}_{\mathrm{m}}{ }^{{ }^{9} \mathbf{R}}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}} \end{gathered}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathrm{Btu} / \mathbf{l b}_{\mathrm{m}}}{\mathrm{H}}$ | $\underset{\text { Btu/lb }{ }_{m}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| Sat | 37.834 | 145.20 | 152.20 | 0.43789 | 4.3756 | 154.39 | 162.49 | 0.41980 | 3.0465 | 156.39 | 164.68 | 0.41759 |
| -20 | 46.109 | 156.61 | 165.14 | 0.47022 | 4.4856 | 155.93 | 164.23 | 0.42382 |  |  |  |  |
| 0 | 48.229 | 159.78 | 168.72 | 0.47816 | 4.7136 | 159.21 | 167.94 | 0.43206 | 3.1669 | 158.90 | 167.51 | 0.42387 |
| 20 | 50.346 | 163.06 | 172.38 | 0.48597 | 4.9380 | 162.57 | 171.71 | 0.44009 | 3.3248 | 162.30 | 171.35 | 0.43203 |
| 40 | 52.461 | 166.44 | 176.15 | 0.49366 | 5.1601 | 166.00 | 175.56 | 0.44795 | 3.4799 | 165.77 | 175.24 | 0.43998 |
| 60 | 54.574 | 169.91 | 180.01 | 0.50124 | 5.3802 | 169.52 | 179.49 | 0.45565 | 3.6331 | 169.32 | 179.21 | 0.44776 |
| 80 | 56.685 | 173.47 | 183.97 | 0.50871 | 5.5990 | 173.13 | 183.50 | 0.46323 | 3.7848 | 172.95 | 183.25 | 0.45539 |
| 100 | 58.796 | 177.13 | 188.02 | 0.51608 | 5.8166 | 176.82 | 187.59 | 0.47068 | 3.9352 | 176.66 | 187.37 | 0.46289 |
| 120 | 60.906 | 180.88 | 192.16 | 0.52335 | 6.0332 | 180.60 | 191.78 | 0.47802 | 4.0847 | 180.46 | 191.57 | 0.47027 |
| 140 | 63.015 | 184.73 | 196.40 | 0.53053 | 6.2490 | 184.47 | 196.04 | 0.48526 | 4.2334 | 184.34 | 195.86 | 0.47754 |
| 160 | 65.123 | 188.66 | 200.72 | 0.53762 | 6.4643 | 188.43 | 200.40 | 0.49240 | 4.3814 | 188.30 | 200.23 | 0.48470 |
| 180 | 67.231 | 192.68 | 205.13 | 0.54463 | 6.6789 | 192.47 | 204.84 | 0.49945 | 4.5289 | 192.35 | 204.68 | 0.49178 |
| 200 | 69.338 | 196.79 | 209.63 | 0.55156 | 6.8931 | 196.60 | 209.36 | 0.50641 | 4.6759 | 196.49 | 209.22 | 0.49876 |
| 220 | 71.445 | 200.99 | 214.22 | 0.55841 | 7.1069 | 200.81 | 213.97 | 0.51330 | 4.8225 | 200.71 | 213.84 | 0.50566 |
| 240 | 73.552 | 205.28 | 218.90 | 0.56519 | 7.3204 | 205.11 | 218.66 | 0.52010 | 4.9688 | 205.02 | 218.54 | 0.51248 |

$\mathbf{P}=20 \mathrm{psia}\left(-2.4^{\circ} \mathrm{F}\right)$ $\square$ $\mathbf{P}=\mathbf{3 0}$ psia $\left(15.4^{\circ} \mathbf{F}\right)$ $\mathrm{P}=40 \mathrm{psia}\left(29.05^{\circ} \mathrm{F}\right)$

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\mathbf{f t}^{3} / / \mathbf{b}_{\mathbf{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lbm }}{\mathbf{H}}$ | $\begin{gathered} \mathrm{S} \\ \mathbf{B t u} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R} \end{gathered}$ | $\underset{\mathbf{f t}^{\mathbf{3}} / \mathrm{l} \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lbm }}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathbf{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\text { Btu/lbm }}{\mathbf{H}}$ | $\underset{B t u / l b_{m}{ }^{\circ} R}{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 2.2774 | 158.10 | 166.54 | 0.41600 | 1.5493 | 160.52 | 169.13 | 0.41415 | 1.1761 | 162.36 | 171.07 | 0.41301 |
| 0 | 2.2922 | 158.52 | 167.01 | 0.41702 |  |  |  |  |  |  |  |  |
| 20 | 2.4130 | 161.99 | 170.92 | 0.42536 | 1.5691 | 161.35 | 170.07 | 0.41612 |  |  |  |  |
| 40 | 2.5306 | 165.50 | 174.87 | 0.43343 | 1.6528 | 164.97 | 174.15 | 0.42446 | 1.2126 | 164.41 | 173.39 | 0.41770 |
| 60 | 2.6461 | 169.08 | 178.88 | 0.44130 | 1.7338 | 168.62 | 178.26 | 0.43251 | 1.2768 | 168.15 | 177.60 | 0.42597 |
| 80 | 2.7600 | 172.74 | 182.96 | 0.44900 | 1.8130 | 172.33 | 182.41 | 0.44035 | 1.3389 | 171.92 | 181.83 | 0.43396 |
| 100 | 2.8726 | 176.47 | 187.11 | 0.45655 | 1.8908 | 176.11 | 186.62 | 0.44801 | 1.3995 | 175.74 | 186.11 | 0.44173 |
| 120 | 2.9842 | 180.29 | 191.34 | 0.46397 | 1.9675 | 179.96 | 190.89 | 0.45551 | 1.4589 | 179.63 | 190.44 | 0.44933 |
| 140 | 3.0950 | 184.18 | 195.65 | 0.47128 | 2.0434 | 183.89 | 195.24 | 0.46289 | 1.5173 | 183.59 | 194.83 | 0.45678 |
| 160 | 3.2051 | 188.16 | 200.03 | 0.47848 | 2.1185 | 187.90 | 199.67 | 0.47014 | 1.5751 | 187.63 | 199.29 | 0.46410 |
| 180 | 3.3147 | 192.23 | 204.50 | 0.48557 | 2.1931 | 191.98 | 204.16 | 0.47729 | 1.6322 | 191.73 | 203.82 | 0.47130 |
| 200 | 3.4237 | 196.37 | 209.05 | 0.49258 | 2.2672 | 196.15 | 208.74 | 0.48434 | 1.6888 | 195.92 | 208.43 | 0.47839 |
| 220 | 3.5324 | 200.60 | 213.68 | 0.49949 | 2.3408 | 200.39 | 213.40 | 0.49129 | 1.7449 | 200.18 | 213.11 | 0.48537 |
| 240 | 3.6407 | 204.91 | 218.40 | 0.50633 | 2.4141 | 204.72 | 218.13 | 0.49815 | 1.8007 | 204.53 | 217.86 | 0.49227 |

Reference States: $\quad \mathrm{H}=85.985 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.
$\mathrm{S}=0.23885 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.

|  | $\mathrm{P}=50 \mathrm{psia}\left(40.27^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=60 \mathrm{psia}\left(49.88{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=70 \mathrm{psia}\left(58.34{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\left(\mathrm{m}^{3} / \mathrm{kg}\right)}{\mathbf{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\underset{\left(\mathrm{m}^{3} / \mathbf{k g}\right)}{\mathbf{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(k J / k g * K)}{\mathbf{S}}$ | $\stackrel{V}{\mathbf{f t}^{3} / \mathbf{l b}_{\mathrm{m}}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\underset{B_{\text {Bu/ }} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| Sat | 0.94802 | 163.85 | 172.63 | 0.41220 | 0.79371 | 165.11 | 173.93 | 0.41160 | 0.68214 | 166.20 | 175.04 | 0.41112 |
| 60 | 1.0019 | 167.64 | 176.92 | 0.42063 | 0.81790 | 167.11 | 176.20 | 0.41601 | 0.81790 | 167.11 | 176.20 | 0.41601 |
| 80 | 1.0540 | 171.49 | 181.24 | 0.42879 | 0.86356 | 171.03 | 180.63 | 0.42438 | 0.72710 | 170.56 | 179.99 | 0.42048 |
| 100 | 1.1043 | 175.36 | 185.59 | 0.43670 | 0.90725 | 174.97 | 185.05 | 0.43243 | 0.76618 | 174.57 | 184.50 | 0.42869 |
| 120 | 1.1534 | 179.29 | 189.97 | 0.44440 | 0.94955 | 178.95 | 189.50 | 0.44024 | 0.80372 | 178.59 | 189.01 | 0.43661 |
| 140 | 1.2015 | 183.29 | 194.41 | 0.45192 | 0.99079 | 182.98 | 193.99 | 0.44785 | 0.84013 | 182.66 | 193.55 | 0.44431 |
| 160 | 1.2488 | 187.35 | 198.91 | 0.45931 | 1.0312 | 187.07 | 198.53 | 0.45530 | 0.87565 | 186.78 | 198.13 | 0.45183 |
| 180 | 1.2955 | 191.48 | 203.48 | 0.46656 | 1.0709 | 191.23 | 203.13 | 0.46260 | 0.91047 | 190.97 | 202.77 | 0.45919 |
| 200 | 1.3416 | 195.69 | 208.11 | 0.47369 | 1.1101 | 195.46 | 207.79 | 0.46978 | 0.94472 | 195.22 | 207.46 | 0.46642 |
| 220 | 1.3873 | 199.97 | 212.82 | 0.48071 | 1.1489 | 199.76 | 212.52 | 0.47684 | 0.97849 | 199.54 | 212.22 | 0.47352 |
| 240 | 1.4326 | 204.33 | 217.59 | 0.48764 | 1.1872 | 204.13 | 217.32 | 0.48380 | 1.0119 | 203.93 | 217.05 | 0.48051 |
| 260 | 1.4776 | 208.76 | 222.44 | 0.49448 | 1.2252 | 208.58 | 222.19 | 0.49067 | 1.0449 | 208.39 | 221.94 | 0.48741 |
| 280 | 1.5223 | 213.28 | 227.37 | 0.50123 | 1.2629 | 213.10 | 227.14 | 0.49745 | 1.0776 | 212.93 | 226.90 | 0.49421 |
| 300 | 1.5668 | 217.87 | 232.37 | 0.50790 | 1.3004 | 217.71 | 232.15 | 0.50414 | 1.1101 | 217.54 | 231.93 | 0.50092 |
| 320 | 1.6111 | 222.53 | 237.45 | 0.51450 | 1.3377 | 222.38 | 237.25 | 0.51075 | 1.1424 | 222.23 | 237.04 | 0.50756 |

$$
P=80 \text { psia }\left(65.92^{\circ} \mathrm{F}\right) \quad \mathrm{P}=90 \text { psia }\left(72.82^{\circ} \mathrm{F}\right) \quad \mathrm{P}=100 \text { psia }\left(79.16^{\circ} \mathrm{F}\right)
$$

| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\left(\mathbf{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathbf{k g})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathbf{k g} * K)}{\mathbf{S}}$ | $\underset{\left(\mathbf{m}^{3} / \mathrm{kg}\right)}{\mathrm{V}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{U}}$ | $\underset{(\mathbf{k J} / \mathrm{kg})}{\mathbf{H}}$ | $\underset{(\mathbf{k J} / \mathrm{kg} * K)}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\underset{\mathbf{B t u / l} / \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{B \mathrm{Bu} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.59758 | 167.16 | 176.02 | 0.41073 | 0.53121 | 168.03 | 176.88 | 0.41039 | 0.47767 | 168.81 | 177.65 | 0.41009 |
| 80 | 0.62430 | 170.07 | 179.32 | 0.41693 | 0.54389 | 169.55 | 178.61 | 0.41362 | 0.47907 | 168.99 | 177.86 | 0.41047 |
| 100 | 0.66009 | 174.15 | 183.93 | 0.42531 | 0.57729 | 173.71 | 183.33 | 0.42221 | 0.51077 | 173.26 | 182.72 | 0.41931 |
| 120 | 0.69416 | 178.23 | 188.51 | 0.43336 | 0.60874 | 177.85 | 188.00 | 0.43040 | 0.54023 | 177.47 | 187.47 | 0.42766 |
| 140 | 0.72699 | 182.34 | 193.11 | 0.44116 | 0.63885 | 182.01 | 192.65 | 0.43830 | 0.56822 | 181.67 | 192.19 | 0.43566 |
| 160 | 0.75888 | 186.49 | 197.74 | 0.44875 | 0.66796 | 186.20 | 197.33 | 0.44597 | 0.59513 | 185.90 | 196.92 | 0.44342 |
| 180 | 0.79004 | 190.71 | 202.41 | 0.45617 | 0.69629 | 190.44 | 202.04 | 0.45345 | 0.62123 | 190.17 | 201.67 | 0.45097 |
| 200 | 0.82060 | 194.98 | 207.14 | 0.46345 | 0.72400 | 194.74 | 206.80 | 0.46078 | 0.64667 | 194.49 | 206.47 | 0.45835 |
| 220 | 0.85066 | 199.32 | 211.92 | 0.47059 | 0.75120 | 199.10 | 211.62 | 0.46797 | 0.67158 | 198.87 | 211.31 | 0.46558 |
| 240 | 0.88031 | 203.73 | 216.77 | 0.47762 | 0.77797 | 203.52 | 216.49 | 0.47503 | 0.69606 | 203.32 | 216.20 | 0.47268 |
| 260 | 0.90962 | 208.21 | 221.68 | 0.48454 | 0.80438 | 208.02 | 221.42 | 0.48198 | 0.72017 | 207.83 | 221.16 | 0.47966 |
| 280 | 0.93862 | 212.76 | 226.66 | 0.49137 | 0.83049 | 212.58 | 226.42 | 0.48884 | 0.74397 | 212.40 | 226.18 | 0.48654 |
| 300 | 0.96737 | 217.38 | 231.71 | 0.49811 | 0.85634 | 217.22 | 231.49 | 0.49559 | 0.76750 | 217.05 | 231.26 | 0.49332 |
| 320 | 0.99590 | 222.08 | 236.83 | 0.50476 | 0.88196 | 221.92 | 236.62 | 0.50227 | 0.79080 | 221.77 | 236.41 | 0.50001 |

[^4]
## Superheated Vapor

|  | $P=150 \text { psia }\left(105.16^{\circ} F\right)$ |  |  |  | $\mathbf{P}=200 \mathrm{psia}\left(125.26{ }^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=250 \mathrm{psia}\left(141.88{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | $\mathbf{H}$ <br> Btu/lb ${ }_{\mathrm{m}}$ | $\begin{gathered} \mathbf{S} \\ \mathbf{B t u}^{\prime} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\text { Btu/lb }}{\mathbf{U}}$ | H <br> Btu/lb ${ }_{\mathrm{m}}$ | $\underset{\text { Btu/lb }{ }_{\mathrm{m}}{ }^{\circ} \mathrm{R}}{\mathrm{~S}}$ |
| Sat | 0.31406 | 171.84 | 180.56 | 0.40890 | 0.22988 | 173.93 | 182.45 | 0.40786 | 0.17810 | 175.41 | 183.66 | 0.40675 |
| 120 | 0.33233 | 175.31 | 184.54 | 0.41585 |  |  |  |  |  |  |  |  |
| 140 | 0.35477 | 179.83 | 189.69 | 0.42458 | 0.24541 | 177.66 | 186.75 | 0.41512 |  |  |  |  |
| 160 | 0.37558 | 184.29 | 194.73 | 0.43285 | 0.26412 | 182.48 | 192.26 | 0.42416 | 0.19527 | 180.33 | 189.37 | 0.41611 |
| 180 | 0.39527 | 188.74 | 199.72 | 0.44078 | 0.28115 | 187.17 | 197.58 | 0.43262 | 0.21146 | 185.40 | 195.19 | 0.42535 |
| 200 | 0.41413 | 193.21 | 204.71 | 0.44846 | 0.29705 | 191.82 | 202.82 | 0.44068 | 0.22600 | 190.30 | 200.76 | 0.43393 |
| 220 | 0.43234 | 197.71 | 209.72 | 0.45594 | 0.31213 | 196.46 | 208.02 | 0.44845 | 0.23945 | 195.13 | 206.21 | 0.44206 |
| 240 | 0.45003 | 202.25 | 214.75 | 0.46324 | 0.32658 | 201.12 | 213.22 | 0.45599 | 0.25213 | 199.93 | 211.60 | 0.44988 |
| 260 | 0.46730 | 206.84 | 219.82 | 0.47039 | 0.34055 | 205.82 | 218.43 | 0.46333 | 0.26421 | 204.74 | 216.97 | 0.45744 |
| 280 | 0.48422 | 211.50 | 224.94 | 0.47740 | 0.35411 | 210.55 | 223.66 | 0.47050 | 0.27584 | 209.56 | 222.33 | 0.46480 |
| 300 | 0.50084 | 216.21 | 230.12 | 0.48430 | 0.36734 | 215.33 | 228.94 | 0.47754 | 0.28709 | 214.43 | 227.72 | 0.47198 |
| 320 | 0.51721 | 220.98 | 235.35 | 0.49110 | 0.38029 | 220.17 | 234.25 | 0.48444 | 0.29803 | 219.33 | 233.13 | 0.47901 |
| 340 | 0.53337 | 225.82 | 240.64 | 0.49780 | 0.39301 | 225.06 | 239.62 | 0.49124 | 0.30872 | 224.28 | 238.58 | 0.48591 |
| 360 | 0.54934 | 230.73 | 245.99 | 0.50441 | 0.40553 | 230.02 | 245.04 | 0.49793 | 0.31919 | 229.29 | 244.07 | 0.49269 |
| 380 | 0.56514 | 235.71 | 251.40 | 0.51094 | 0.41787 | 235.04 | 250.51 | 0.50453 | 0.32947 | 234.36 | 249.61 | 0.49937 |

$$
P=300 \text { psia }\left(156.15^{\circ} \mathrm{F}\right) \quad P=400 \mathrm{psia}\left(179.93^{\circ} \mathrm{F}\right) \quad \mathrm{P}=500 \mathrm{psia}\left(199.37^{\circ} \mathrm{F}\right)
$$

| Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{V} \\ \mathbf{f t}^{3} / / \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\stackrel{\mathbf{U}}{\text { Btu/b/b }}$ | H <br> Btu/lb $\mathbf{m}_{\mathbf{m}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\stackrel{\mathbf{U}}{\mathbf{B t u} / \mathbf{l}_{\mathrm{m}}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} S \\ \text { Btu/lb }_{\mathrm{m}}{ }^{0} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\stackrel{\mathbf{U}}{\mathbf{B t u} / \mathbf{l}_{\mathrm{m}}}$ | $\underset{\text { Btu/lb }}{\mathbf{H}}$ | $\begin{gathered} \text { Stu/lb }{ }_{\mathrm{m}}{ }^{0} R \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sat | 0.14271 | 176.42 | 184.35 | 0.40546 | 0.096497 | 177.19 | 184.33 | 0.40197 | 0.065644 | 175.91 | 181.98 | 0.39607 |
| 160 | 0.14656 | 177.63 | 185.77 | 0.40776 |  |  |  |  |  |  |  |  |
| 180 | 0.16356 | 183.34 | 192.42 | 0.41833 | 0.096581 | 177.22 | 184.37 | 0.40203 | 0.017125 | 138.11 | 139.70 | 0.33168 |
| 200 | 0.17777 | 188.60 | 198.48 | 0.42765 | 0.11440 | 184.33 | 192.81 | 0.41502 | 0.066753 | 176.38 | 182.56 | 0.39695 |
| 220 | 0.19044 | 193.67 | 204.25 | 0.43627 | 0.12746 | 190.26 | 199.70 | 0.42532 | 0.086577 | 185.65 | 193.66 | 0.41355 |
| 240 | 0.20211 | 198.65 | 209.88 | 0.44443 | 0.13853 | 195.77 | 206.03 | 0.43450 | 0.098822 | 192.26 | 201.41 | 0.42479 |
| 260 | 0.21306 | 203.59 | 215.43 | 0.45226 | 0.14844 | 201.09 | 212.08 | 0.44303 | 0.10876 | 198.19 | 208.26 | 0.43444 |
| 280 | 0.22347 | 208.53 | 220.95 | 0.45982 | 0.15756 | 206.31 | 217.98 | 0.45111 | 0.11745 | 203.81 | 214.69 | 0.44326 |
| 300 | 0.23346 | 213.48 | 226.45 | 0.46716 | 0.16611 | 211.48 | 223.78 | 0.45886 | 0.12535 | 209.28 | 220.89 | 0.45153 |
| 320 | 0.24310 | 218.46 | 231.97 | 0.47433 | 0.17423 | 216.64 | 229.54 | 0.46634 | 0.13269 | 214.67 | 226.96 | 0.45942 |
| 340 | 0.25247 | 223.48 | 237.51 | 0.48134 | 0.18201 | 221.81 | 235.29 | 0.47361 | 0.13960 | 220.02 | 232.95 | 0.46700 |
| 360 | 0.26159 | 228.54 | 243.08 | 0.48822 | 0.18951 | 226.99 | 241.03 | 0.48071 | 0.14618 | 225.36 | 238.90 | 0.47435 |
| 380 | 0.27052 | 233.66 | 248.69 | 0.49498 | 0.19678 | 232.22 | 246.79 | 0.48765 | 0.15250 | 230.71 | 244.83 | 0.48150 |
| 400 | 0.27928 | 238.82 | 254.34 | 0.50164 | 0.20386 | 237.48 | 252.58 | 0.49446 | 0.15860 | 236.08 | 250.76 | 0.48848 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at $0^{\circ} \mathrm{C}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $0^{\circ} \mathrm{C}$.

|  | $\mathrm{P}=100 \mathrm{psia}\left(79.16^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=200 \mathrm{psia}\left(\mathbf{1 2 5 . 2 6}^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=300 \mathrm{psia}\left(156.15{ }^{\circ} \mathrm{F}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{0} \mathrm{C}\right)$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathrm{~V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u}^{\mathbf{H} / \mathbf{l b}_{\mathrm{m}}}}{\text { ( }}$ | $\underset{\text { Btu/lbm }{ }^{\circ}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{H}}$ |  | $\stackrel{\mathbf{V}}{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}$ | $\underset{\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{B t u / b_{m}{ }^{\circ} \mathbf{R}}{S}$ |
| Sat | 0.013325 | 101.39 | 101.64 | 0.26902 | 0.014645 | 117.53 | 118.07 | 0.29780 | 0.015978 | 129.25 | 130.14 | 0.31743 |
| 150 |  |  |  |  |  |  |  |  | 0.015624 | 126.70 | 127.57 | 0.31323 |
| 120 |  |  |  |  |  |  |  |  | 0.014360 | 115.20 | 115.99 | 0.29377 |
| 100 |  |  |  |  | 0.013816 | 108.35 | 108.86 | 0.28171 | 0.013754 | 108.06 | 108.83 | 0.28120 |
| 80 |  |  |  |  | 0.013298 | 101.44 | 101.93 | 0.26911 | 0.013253 | 101.21 | 101.95 | 0.26868 |
| 60 |  |  |  |  | 0.012858 | 94.758 | 95.234 | 0.25646 | 0.012823 | 94.565 | 95.277 | 0.25608 |
| 40 |  |  |  |  | 0.012473 | 88.253 | 88.715 | 0.24367 | 0.012446 | 88.089 | 88.780 | 0.24334 |
| 32 | 0.012357 | 85.852 | 86.081 | 0.23882 | 0.012331 | 85.694 | 86.151 | 0.23849 | 0.012307 | 85.539 | 86.223 | 0.23818 |
| 10 | 0.011992 | 78.902 | 79.124 | 0.22434 | 0.011972 | 78.767 | 79.210 | 0.22405 | 0.011952 | 78.634 | 79.298 | 0.22377 |
| 0 | 0.011838 | 75.793 | 76.012 | 0.21765 | 0.011820 | 75.667 | 76.104 | 0.21737 | 0.011803 | 75.542 | 76.198 | 0.21710 |
| -10 | 0.011692 | 72.712 | 72.929 | 0.21086 | 0.011676 | 72.594 | 73.027 | 0.21060 | 0.011660 | 72.478 | 73.125 | 0.21034 |
| -20 | 0.011552 | 69.659 | 69.873 | 0.20399 | 0.011537 | 69.548 | 69.975 | 0.20374 | 0.011522 | 69.438 | 70.078 | 0.20349 |
| -30 | 0.011417 | 66.630 | 66.842 | 0.19702 | 0.011403 | 66.526 | 66.948 | 0.19677 | 0.011390 | 66.423 | 67.056 | 0.19653 |
| -40 | 0.011287 | 63.626 | 63.835 | 0.18994 | 0.011275 | 63.527 | 63.945 | 0.18970 | 0.011262 | 63.430 | 64.056 | 0.18947 |
| -50 | 0.011162 | 60.644 | 60.851 | 0.18274 | 0.011151 | 60.551 | 60.964 | 0.18251 | 0.011139 | 60.460 | 61.079 | 0.18229 |


|  | $\mathrm{P}=500 \mathrm{psia}\left(199.37^{\circ} \mathrm{F}\right)$ |  |  |  | $\mathrm{P}=1000 \mathrm{psia}$ |  |  |  | $\mathrm{P}=5000 \mathrm{psia}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temp. <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\mathbf{B t u / l}_{\mathrm{m}}}{\mathbf{H}}$ | $\begin{gathered} \mathrm{S} \\ \mathbf{B t u} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathbf{R} \end{gathered}$ | $\begin{gathered} \mathbf{V} \\ \mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}} \end{gathered}$ | $\underset{\mathbf{B t u} / \mathbf{l b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/lbm }}{\mathbf{H}}$ | $\underset{\text { Btu/lb }{ }_{m}{ }^{\circ} \mathbf{R}}{\mathbf{S}}$ | $\underset{\mathbf{f t}^{3} / l \mathbf{b}_{\mathrm{m}}}{\mathbf{V}}$ | $\underset{\mathbf{B t u / l} \mathbf{b}_{\mathrm{m}}}{\mathbf{U}}$ | $\underset{\text { Btu/l } \mathbf{b}_{\mathrm{m}}}{\mathbf{H}}$ | $\underset{\text { Btu/lbm }{ }^{{ }^{\circ} \mathbf{R}}}{\mathbf{S}}$ |
| Sat | 0.019977 | 148.72 | 150.57 | 0.34840 | Supercritical |  |  |  | Supercritical |  |  |  |
| 350 |  |  |  |  | 0.057233 | 212.59 | 223.19 | 0.44466 | 0.016647 | 179.06 | 194.48 | 0.38805 |
| 300 |  |  |  |  | 0.042185 | 194.14 | 201.95 | 0.41754 | 0.015546 | 162.68 | 177.08 | 0.36587 |
| 250 |  |  |  |  | 0.023076 | 166.29 | 170.56 | 0.37474 | 0.014574 | 146.58 | 160.07 | 0.34272 |
| 200 |  |  |  |  | 0.016985 | 142.57 | 145.72 | 0.33851 | 0.013722 | 130.79 | 143.50 | 0.31850 |
| 180 | 0.017125 | 138.11 | 139.70 | 0.33168 | 0.015906 | 134.65 | 137.60 | 0.32602 | 0.013411 | 124.57 | 136.99 | 0.30848 |
| 160 | 0.015788 | 129.57 | 131.03 | 0.31791 | 0.015084 | 127.17 | 129.96 | 0.31389 | 0.013116 | 118.40 | 130.55 | 0.29825 |
| 140 | 0.014886 | 121.81 | 123.19 | 0.30507 | 0.014423 | 120.00 | 122.67 | 0.30193 | 0.012836 | 112.29 | 124.18 | 0.28780 |
| 120 | 0.014198 | 114.52 | 115.83 | 0.29258 | 0.013870 | 113.07 | 115.63 | 0.29000 | 0.012569 | 106.24 | 117.87 | 0.27711 |
| 100 | 0.013640 | 107.53 | 108.79 | 0.28022 | 0.013396 | 106.33 | 108.81 | 0.27803 | 0.012314 | 100.23 | 111.64 | 0.26616 |
| 80 | 0.013168 | 100.77 | 101.99 | 0.26784 | 0.012980 | 99.760 | 102.163 | 0.26593 | 0.012071 | 94.289 | 105.47 | 0.25494 |
| 60 | 0.012758 | 94.192 | 95.373 | 0.25536 | 0.012609 | 93.328 | 95.663 | 0.25366 | 0.011839 | 88.398 | 99.359 | 0.24341 |
| 40 | 0.012394 | 87.769 | 88.916 | 0.24269 | 0.012274 | 87.019 | 89.292 | 0.24115 | 0.011617 | 82.559 | 93.315 | 0.23155 |
| 32 | 0.012259 | 85.237 | 86.372 | 0.23756 | 0.012149 | 84.527 | 86.776 | 0.23608 | 0.011531 | 80.239 | 90.915 | 0.22670 |
| 20 | 0.012067 | 81.477 | 82.594 | 0.22978 | 0.011969 | 80.819 | 83.04 | 0.22838 | 0.011404 | 76.774 | 87.332 | 0.21933 |
| 0 | 0.011768 | 75.299 | 76.388 | 0.21656 | 0.011687 | 74.718 | 76.882 | 0.21527 | 0.011199 | 71.041 | 81.409 | 0.20672 |
| -20 | 0.011493 | 69.223 | 70.287 | 0.20299 | 0.011425 | 68.706 | 70.822 | 0.20180 | 0.011002 | 65.359 | 75.545 | 0.19367 |
| -30 | 0.011364 | 66.220 | 67.272 | 0.19606 | 0.011301 | 65.732 | 67.825 | 0.19490 | 0.010906 | 62.536 | 72.634 | 0.18697 |
| -40 | 0.011238 | 63.239 | 64.280 | 0.18901 | 0.011181 | 62.778 | 64.848 | 0.18789 | 0.010811 | 59.726 | 69.736 | 0.18015 |
| -50 | 0.011117 | 60.279 | 61.308 | 0.18184 | 0.011064 | 59.843 | 61.891 | 0.18076 | 0.010719 | 56.929 | 66.853 | 0.17320 |

Reference States: $\quad \mathrm{H}=200 \mathrm{~kJ} / \mathrm{kg}=85.985 \mathrm{Btu} / \mathrm{lbm}$ for Saturated Liquid at $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$.
$\mathrm{S}=1 \mathrm{~kJ} / \mathrm{kg}=0.23885 \mathrm{Btu} / \mathrm{lbm}-{ }^{\circ} \mathrm{R}$ for Saturated Liquid at $0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}$.

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \left.\hat{\mathbf{v}}^{( }\right) \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{(\mathbf{k J} / \mathrm{kg})} \end{gathered}$ | $\hat{\mathrm{S}^{\mathrm{C}}}$ $(\mathrm{kJ} / \mathrm{kg}-\mathrm{K})$ | $\mathbf{P r}_{\text {r }}$ | $\mathrm{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 85.570 | 0 | 1 | 1 |
| 300 | 1.3137 | 87.415 | 0.0061681 | 1.0217 | 0.98481 |
| 310 | 8.4305 | 97.401 | 0.038914 | 1.1452 | 0.90791 |
| 320 | 15.573 | 107.41 | 0.070702 | 1.2793 | 0.83893 |
| 330 | 22.741 | 117.45 | 0.10159 | 1.4247 | 0.77688 |
| 340 | 29.933 | 127.51 | 0.13163 | 1.5819 | 0.72088 |
| 350 | 37.151 | 137.60 | 0.16087 | 1.7516 | 0.67020 |
| 360 | 44.393 | 147.71 | 0.18936 | 1.9344 | 0.62421 |
| 370 | 51.659 | 157.85 | 0.21713 | 2.1309 | 0.58238 |
| 380 | 58.949 | 168.01 | 0.24422 | 2.3419 | 0.54423 |
| 390 | 66.263 | 178.19 | 0.27068 | 2.5680 | 0.50938 |
| 400 | 73.600 | 188.40 | 0.29652 | 2.8099 | 0.47745 |
| 410 | 80.961 | 198.63 | 0.32178 | 3.0685 | 0.44815 |
| 420 | 88.345 | 208.89 | 0.34649 | 3.3444 | 0.42121 |
| 430 | 95.751 | 219.16 | 0.37067 | 3.6383 | 0.39640 |
| 440 | 103.18 | 229.46 | 0.39435 | 3.9512 | 0.37349 |
| 450 | 110.63 | 239.78 | 0.41755 | 4.2839 | 0.35232 |
| 460 | 118.11 | 250.13 | 0.44028 | 4.6370 | 0.33272 |
| 470 | 125.60 | 260.49 | 0.46258 | 5.0116 | 0.31455 |
| 480 | 133.12 | 270.88 | 0.48445 | 5.4084 | 0.29767 |
| 490 | 140.66 | 281.29 | 0.50591 | 5.8284 | 0.28197 |
| 500 | 148.22 | 291.73 | 0.52699 | 6.2725 | 0.26736 |
| 510 | 155.81 | 302.18 | 0.54769 | 6.7417 | 0.25373 |
| 520 | 163.41 | 312.65 | 0.56803 | 7.2368 | 0.24100 |
| 530 | 171.04 | 323.15 | 0.58802 | 7.7590 | 0.22911 |
| 540 | 178.69 | 333.67 | 0.60768 | 8.3091 | 0.21797 |
| 550 | 186.36 | 344.21 | 0.62702 | 8.8882 | 0.20755 |
| 560 | 194.05 | 354.77 | 0.64605 | 9.4975 | 0.19776 |
| 570 | 201.76 | 365.35 | 0.66478 | 10.138 | 0.18858 |
| 580 | 209.49 | 375.95 | 0.68321 | 10.810 | 0.17995 |
| 590 | 217.24 | 386.57 | 0.70137 | 11.516 | 0.17183 |
| 600 | 225.01 | 397.21 | 0.71926 | 12.257 | 0.16418 |
| 610 | 232.80 | 407.88 | 0.73688 | 13.033 | 0.15698 |
| 620 | 240.62 | 418.56 | 0.75425 | 13.846 | 0.15018 |
| 630 | 248.45 | 429.26 | 0.77137 | 14.698 | 0.14377 |
| 640 | 256.30 | 439.98 | 0.78826 | 15.588 | 0.13770 |
| 650 | 264.17 | 450.72 | 0.80492 | 16.520 | 0.13197 |
| 660 | 272.06 | 461.49 | 0.82135 | 17.493 | 0.12654 |
| 670 | 279.98 | 472.27 | 0.83756 | 18.510 | 0.12141 |
| 680 | 287.91 | 483.07 | 0.85356 | 19.571 | 0.11654 |
| 690 | 295.86 | 493.89 | 0.86936 | 20.678 | 0.11192 |
| 700 | 303.82 | 504.73 | 0.88495 | 21.833 | 0.10753 |
| 710 | 311.81 | 515.59 | 0.90035 | 23.037 | 0.10337 |
| 720 | 319.82 | 526.46 | 0.91557 | 24.291 | 0.099416 |
| 730 | 327.85 | 537.36 | 0.93060 | 25.597 | 0.095654 |
| 740 | 335.89 | 548.27 | 0.94545 | 26.956 | 0.092075 |
| 750 | 343.95 | 559.21 | 0.96012 | 28.370 | 0.088667 |
| 760 | 352.04 | 570.16 | 0.97463 | 29.841 | 0.085421 |
| 770 | 360.14 | 581.13 | 0.98897 | 31.370 | 0.082327 |
| 780 | 368.26 | 592.12 | 1.0031 | 32.959 | 0.079376 |
| 790 | 376.39 | 603.12 | 1.0172 | 34.609 | 0.076560 |
| 800 | 384.55 | 614.15 | 1.0310 | 36.322 | 0.073872 |


| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathrm{O}}^{0} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \hat{\mathrm{A}}^{\mathrm{o}} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ |  | $\mathrm{P}_{\mathrm{r}}$ | $V_{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 400.91 | 636.25 | 1.0583 | 39.946 | 0.068851 |
| 840 | 417.35 | 658.43 | 1.0850 | 43.843 | 0.064261 |
| 860 | 433.85 | 680.67 | 1.1112 | 48.029 | 0.060057 |
| 880 | 450.42 | 702.99 | 1.1369 | 52.519 | 0.056200 |
| 900 | 467.07 | 725.37 | 1.1620 | 57.329 | 0.052654 |
| 920 | 483.78 | 747.82 | 1.1867 | 62.475 | 0.049391 |
| 940 | 500.56 | 770.34 | 1.2109 | 67.974 | 0.046382 |
| 960 | 517.40 | 792.92 | 1.2347 | 73.845 | 0.043603 |
| 980 | 534.31 | 815.57 | 1.2580 | 80.104 | 0.041033 |
| 1000 | 551.28 | 838.29 | 1.2810 | 86.771 | 0.038654 |
| 1020 | 568.32 | 861.06 | 1.3035 | 93.864 | 0.036447 |
| 1040 | 585.42 | 883.90 | 1.3257 | 101.40 | 0.034399 |
| 1060 | 602.58 | 906.81 | 1.3475 | 109.41 | 0.032494 |
| 1080 | 619.81 | 929.77 | 1.3690 | 117.91 | 0.030722 |
| 1100 | 637.09 | 952.80 | 1.3901 | 126.91 | 0.029070 |
| 1150 | 680.57 | 1010.6 | 1.4415 | 151.81 | 0.025408 |
| 1200 | 724.40 | 1068.8 | 1.4910 | 180.40 | 0.022310 |
| 1250 | 768.59 | 1127.3 | 1.5388 | 213.09 | 0.019675 |
| 1300 | 813.12 | 1186.2 | 1.5850 | 250.29 | 0.017420 |
| 1350 | 857.98 | 1245.4 | 1.6297 | 292.47 | 0.015482 |
| 1400 | 903.16 | 1305.0 | 1.6730 | 340.09 | 0.013807 |
| 1450 | 948.65 | 1364.8 | 1.7150 | 393.68 | 0.012353 |
| 1500 | 994.44 | 1424.9 | 1.7558 | 453.78 | 0.011087 |
| 1550 | 1040.5 | 1485.4 | 1.7954 | 520.96 | $9.9790 \mathrm{E}-03$ |
| 1600 | 1086.9 | 1546.1 | 1.8339 | 595.85 | 9.0064E-03 |
| 1650 | 1133.5 | 1607.0 | 1.8715 | 679.07 | 8.1495E-03 |
| 1700 | 1180.4 | 1668.3 | 1.9080 | 771.33 | 7.3922E-03 |
| 1750 | 1227.5 | 1729.8 | 1.9437 | 873.32 | 6.7209E-03 |
| 1800 | 1274.9 | 1791.5 | 1.9784 | 985.82 | $6.1241 \mathrm{E}-03$ |
| 1850 | 1322.5 | 1853.4 | 2.0124 | 1109.6 | $5.5920 \mathrm{E}-03$ |
| 1900 | 1370.3 | 1915.6 | 2.0456 | 1245.5 | 5.1164E-03 |
| 1950 | 1418.4 | 1978.0 | 2.0780 | 1394.4 | 4.6903E-03 |
| 2000 | 1466.6 | 2040.6 | 2.1097 | 1557.3 | 4.3075E-03 |
| 2100 | 1563.7 | 2166.4 | 2.1710 | 1928.5 | 3.6522E-03 |
| 2200 | 1661.5 | 2292.9 | 2.2299 | 2367.5 | $3.1168 \mathrm{E}-03$ |
| 2300 | 1760.0 | 2420.1 | 2.2864 | 2882.9 | $2.6758 \mathrm{E}-03$ |
| 2400 | 1859.1 | 2547.9 | 2.3408 | 3484.4 | 2.3102E-03 |
| 2500 | 1958.7 | 2676.2 | 2.3932 | 4182.3 | $2.0049 \mathrm{E}-03$ |
| 2600 | 2058.9 | 2805.1 | 2.4437 | 4987.6 | $1.7484 \mathrm{E}-03$ |
| 2700 | 2159.5 | 2934.4 | 2.4925 | 5912.1 | $1.5317 \mathrm{E}-03$ |
| 2800 | 2260.5 | 3064.1 | 2.5397 | 6968.5 | $1.3477 \mathrm{E}-03$ |
| 2900 | 2361.9 | 3194.2 | 2.5854 | 8170.0 | $1.1905 \mathrm{E}-03$ |
| 3000 | 2463.7 | 3324.7 | 2.6296 | 9530.9 | $1.0557 \mathrm{E}-03$ |
| 3500 | 2976.2 | 3980.7 | 2.8318 | 19282 | $6.0880 \mathrm{E}-04$ |
| 4000 | 3493.0 | 4641.0 | 3.0082 | 35643 | $3.7640 \mathrm{E}-04$ |
| 4500 | 4012.5 | 5304.1 | 3.1644 | 61422 | $2.4573 \mathrm{E}-04$ |
| 5000 | 4535.3 | 5970.3 | 3.3047 | 100177 | $1.6740 \mathrm{E}-04$ |
| 5500 | 5063.7 | 6642.2 | 3.4328 | 156509 | $1.1787 \mathrm{E}-04$ |
| 6000 | 5601.7 | 7323.8 | 3.5514 | 236591 | $8.5059 \mathrm{E}-05$ |

Ideal Gas Property Table: CO

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \\ \hline \end{gathered}$ |  | $\begin{gathered} \hat{\mathbf{H}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathbf{k g}-\mathbf{K}) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 88.493 | 0 | 1 | 1 |
| 300 | 1.3758 | 90.418 | 0.0064361 | 1.0219 | 0.98462 |
| 310 | 8.8090 | 100.82 | 0.040542 | 1.1464 | 0.90700 |
| 320 | 16.239 | 111.22 | 0.073554 | 1.2812 | 0.83770 |
| 330 | 23.668 | 121.61 | 0.10555 | 1.4271 | 0.77560 |
| 340 | 31.100 | 132.01 | 0.13659 | 1.5844 | 0.71974 |
| 350 | 38.535 | 142.42 | 0.16675 | 1.7539 | 0.66933 |
| 360 | 45.978 | 152.83 | 0.19608 | 1.9360 | 0.62368 |
| 370 | 53.429 | 163.25 | 0.22463 | 2.1315 | 0.58222 |
| 380 | 60.890 | 173.68 | 0.25244 | 2.3408 | 0.54447 |
| 390 | 68.362 | 184.12 | 0.27956 | 2.5648 | 0.51000 |
| 400 | 75.848 | 194.57 | 0.30602 | 2.8040 | 0.47846 |
| 410 | 83.347 | 205.04 | 0.33187 | 3.0592 | 0.44952 |
| 420 | 90.862 | 215.52 | 0.35713 | 3.3309 | 0.42291 |
| 430 | 98.393 | 226.02 | 0.38184 | 3.6200 | 0.39840 |
| 440 | 105.94 | 236.54 | 0.40601 | 3.9272 | 0.37578 |
| 450 | 113.51 | 247.07 | 0.42969 | 4.2533 | 0.35485 |
| 460 | 121.09 | 257.62 | 0.45288 | 4.5990 | 0.33547 |
| 470 | 128.70 | 268.20 | 0.47562 | 4.9652 | 0.31749 |
| 480 | 136.32 | 278.79 | 0.49792 | 5.3526 | 0.30077 |
| 490 | 143.97 | 289.40 | 0.51980 | 5.7622 | 0.28522 |
| 500 | 151.63 | 300.04 | 0.54129 | 6.1947 | 0.27072 |
| 510 | 159.32 | 310.69 | 0.56239 | 6.6512 | 0.25718 |
| 520 | 167.03 | 321.37 | 0.58312 | 7.1324 | 0.24453 |
| 530 | 174.76 | 332.07 | 0.60350 | 7.6394 | 0.23269 |
| 540 | 182.52 | 342.79 | 0.62355 | 8.1731 | 0.22160 |
| 550 | 190.29 | 353.54 | 0.64327 | 8.7345 | 0.21120 |
| 560 | 198.10 | 364.31 | 0.66267 | 9.3247 | 0.20143 |
| 570 | 205.92 | 375.10 | 0.68177 | 9.9446 | 0.19224 |
| 580 | 213.77 | 385.92 | 0.70059 | 10.595 | 0.18360 |
| 590 | 221.64 | 396.76 | 0.71912 | 11.278 | 0.17546 |
| 600 | 229.54 | 407.63 | 0.73738 | 11.994 | 0.16779 |
| 610 | 237.46 | 418.52 | 0.75538 | 12.744 | 0.16055 |
| 620 | 245.41 | 429.43 | 0.77313 | 13.529 | 0.15371 |
| 630 | 253.38 | 440.37 | 0.79063 | 14.351 | 0.14724 |
| 640 | 261.38 | 451.33 | 0.80790 | 15.210 | 0.14113 |
| 650 | 269.40 | 462.32 | 0.82494 | 16.109 | 0.13534 |
| 660 | 277.44 | 473.34 | 0.84175 | 17.048 | 0.12985 |
| 670 | 285.52 | 484.38 | 0.85836 | 18.029 | 0.12465 |
| 680 | 293.61 | 495.44 | 0.87475 | 19.052 | 0.11971 |
| 690 | 301.74 | 506.53 | 0.89094 | 20.120 | 0.11502 |
| 700 | 309.88 | 517.65 | 0.90693 | 21.234 | 0.11057 |
| 710 | 318.05 | 528.79 | 0.92273 | 22.396 | 0.10633 |
| 720 | 326.25 | 539.95 | 0.93835 | 23.606 | 0.10230 |
| 730 | 334.48 | 551.15 | 0.95379 | 24.866 | 0.098466 |
| 740 | 342.72 | 562.36 | 0.96905 | 26.178 | 0.094813 |
| 750 | 351.00 | 573.60 | 0.98414 | 27.543 | 0.091331 |
| 760 | 359.30 | 584.87 | 0.99906 | 28.963 | 0.088010 |
| 770 | 367.62 | 596.16 | 1.0138 | 30.440 | 0.084842 |
| 780 | 375.97 | 607.48 | 1.0284 | 31.975 | 0.081818 |
| 790 | 384.34 | 618.82 | 1.0429 | 33.570 | 0.078930 |
| 800 | 392.74 | 630.19 | 1.0572 | 35.227 | 0.076170 |

MW $=28.013 \mathrm{~g} / \mathrm{mole}$
SI

| $\mathbf{T}$ $(\mathbf{K})$ | $\begin{gathered} \hat{\mathrm{U}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ |  | $\begin{gathered} \mathrm{S}^{0} \\ (\mathbf{k J} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 409.61 | 653.00 | 1.0853 | 38.733 | 0.071007 |
| 840 | 426.58 | 675.90 | 1.1129 | 42.507 | 0.066281 |
| 860 | 443.65 | 698.90 | 1.1400 | 46.565 | 0.061945 |
| 880 | 460.81 | 722.00 | 1.1665 | 50.923 | 0.057961 |
| 900 | 478.07 | 745.20 | 1.1926 | 55.596 | 0.054295 |
| 920 | 495.42 | 768.49 | 1.2182 | 60.603 | 0.050917 |
| 940 | 512.87 | 791.87 | 1.2433 | 65.959 | 0.047799 |
| 960 | 530.40 | 815.34 | 1.2680 | 71.685 | 0.044917 |
| 980 | 548.02 | 838.89 | 1.2923 | 77.797 | 0.042250 |
| 1000 | 565.73 | 862.54 | 1.3162 | 84.317 | 0.039779 |
| 1020 | 583.52 | 886.27 | 1.3397 | 91.262 | 0.037486 |
| 1040 | 601.40 | 910.08 | 1.3628 | 98.655 | 0.035357 |
| 1060 | 619.36 | 933.97 | 1.3856 | 106.52 | 0.033378 |
| 1080 | 637.39 | 957.94 | 1.4080 | 114.87 | 0.031535 |
| 1100 | 655.50 | 981.99 | 1.4300 | 123.73 | 0.029818 |
| 1150 | 701.09 | 1042.4 | 1.4838 | 148.28 | 0.026012 |
| 1200 | 747.10 | 1103.3 | 1.5356 | 176.55 | 0.022797 |
| 1250 | 793.47 | 1164.5 | 1.5855 | 208.93 | 0.020067 |
| 1300 | 840.16 | 1226.0 | 1.6338 | 245.82 | 0.017738 |
| 1350 | 887.21 | 1287.9 | 1.6805 | 287.72 | 0.015737 |
| 1400 | 934.57 | 1350.1 | 1.7258 | 335.09 | 0.014013 |
| 1450 | 982.21 | 1412.6 | 1.7696 | 388.44 | 0.012520 |
| 1500 | 1030.1 | 1475.3 | 1.8122 | 448.31 | 0.011222 |
| 1550 | 1078.3 | 1538.3 | 1.8535 | 515.25 | 0.010090 |
| 1600 | 1126.6 | 1601.5 | 1.8936 | 589.86 | 0.0090977 |
| 1650 | 1175.2 | 1665.0 | 1.9326 | 672.77 | 0.0082259 |
| 1700 | 1224.0 | 1728.6 | 1.9706 | 764.62 | 0.0074571 |
| 1750 | 1273.0 | 1792.4 | 2.0076 | 866.11 | 0.0067769 |
| 1800 | 1322.1 | 1856.4 | 2.0437 | 977.94 | 0.0061734 |
| 1850 | 1371.4 | 1920.5 | 2.0788 | 1100.9 | 0.0056363 |
| 1900 | 1420.9 | 1984.8 | 2.1131 | 1235.7 | 0.0051571 |
| 1950 | 1470.4 | 2049.2 | 2.1466 | 1383.2 | 0.0047283 |
| 2000 | 1520.2 | 2113.8 | 2.1793 | 1544.3 | 0.0043437 |
| 2100 | 1620.0 | 2243.3 | 2.2425 | 1910.8 | 0.0036862 |
| 2200 | 1720.4 | 2373.3 | 2.3029 | 2342.6 | 0.0031498 |
| 2300 | 1821.1 | 2503.8 | 2.3609 | 2848.0 | 0.0027087 |
| 2400 | 1922.3 | 2634.6 | 2.4166 | 3435.7 | 0.0023430 |
| 2500 | 2023.8 | 2765.8 | 2.4702 | 4115.1 | 0.0020376 |
| 2600 | 2125.6 | 2897.3 | 2.5217 | 4896.2 | 0.0017811 |
| 2700 | 2227.8 | 3029.2 | 2.5715 | 5789.9 | 0.0015641 |
| 2800 | 2330.3 | 3161.3 | 2.6196 | 6807.5 | 0.0013795 |
| 2900 | 2433.0 | 3293.7 | 2.6660 | 7961.1 | 0.0012218 |
| 3000 | 2536.0 | 3426.4 | 2.7110 | 9263.7 | 0.0010862 |
| 3500 | 3054.3 | 4093.1 | 2.9165 | 18514 | $6.3405 \mathrm{E}-04$ |
| 4000 | 3577.1 | 4764.4 | 3.0958 | 33869 | $3.9611 \mathrm{E}-04$ |
| 4500 | 4103.7 | 5439.3 | 3.2548 | 57868 | $2.6082 \mathrm{E}-04$ |
| 5000 | 4633.3 | 6117.3 | 3.3976 | 93644 | $1.7908 \mathrm{E}-04$ |
| 5500 | 5165.7 | 6798.1 | 3.5274 | 144997 | $1.2722 \mathrm{E}-04$ |
| 6000 | 5700.8 | 7481.6 | 3.6463 | 216472 | $9.2964 \mathrm{E}-05$ |

Ideal Gas Property Table: $\quad \mathbf{C O}_{\mathbf{2}}$

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{0} \\ (\mathbf{k J} / \mathbf{k g}-\mathbf{K}) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 56.327 | 0 | 1 | 1 |
| 300 | 1.2131 | 57.890 | 0.0052249 | 1.0280 | 0.97876 |
| 310 | 7.8336 | 66.400 | 0.033127 | 1.1917 | 0.87252 |
| 320 | 14.558 | 75.013 | 0.060474 | 1.3773 | 0.77929 |
| 330 | 21.384 | 83.728 | 0.087289 | 1.5873 | 0.69730 |
| 40 | 28.307 | 92.541 | 0.11360 | 1.8245 | 0.62504 |
| 350 | 35.326 | 101.45 | 0.13942 | 2.0917 | 0.56122 |
| 360 | 42.438 | 110.45 | 0.16478 | 2.3921 | 0.50476 |
| 370 | 49.640 | 119.54 | 0.18969 | 2.7293 | 0.45469 |
| 380 | 56.931 | 128.72 | 0.21417 | 3.1069 | 0.41023 |
| 390 | 64.308 | 137.99 | 0.23824 | 3.5290 | 0.37066 |
| 400 | 71.770 | 147.34 | 0.26191 | 4.0002 | 0.33539 |
| 410 | 79.314 | 156.77 | 0.28520 | 4.5251 | 0.30389 |
| 420 | 86.939 | 166.29 | 0.30813 | 5.1089 | 0.27573 |
| 430 | 94.643 | 175.88 | 0.33070 | 5.7573 | 0.25050 |
| 440 | 102.42 | 185.55 | 0.35293 | 6.4763 | 0.22787 |
| 450 | 110.28 | 195.30 | 0.37484 | 7.2724 | 0.20754 |
| 460 | 118.21 | 205.12 | 0.39642 | 8.1526 | 0.18925 |
| 470 | 126.22 | 215.01 | 0.41770 | 9.1244 | 0.17277 |
| 480 | 134.29 | 224.98 | 0.43868 | 10.196 | 0.15790 |
| 49 | 142.44 | 235.01 | 0.45937 | 11.376 | 0.14447 |
| 500 | 150.65 | 245.11 | 0.47978 | 12.674 | 0.13232 |
| 510 | 158.94 | 255.29 | 0.49992 | 14.100 | 0.12132 |
| 520 | 167.28 | 265.52 | 0.51980 | 15.664 | 0.11134 |
| 530 | 175.70 | 275.82 | 0.53942 | 17.379 | 0.10229 |
| 540 | 184.17 | 286.19 | 0.55880 | 19.256 | 0.094058 |
| 550 | 192.71 | 296.62 | 0.57793 | 21.308 | 0.086572 |
| 560 | 201.31 | 307.11 | 0.59683 | 23.550 | 0.079754 |
| 570 | 209.97 | 317.66 | 0.61550 | 25.997 | 0.073539 |
| 58 | 218.69 | 328.27 | 0.63395 | 28.664 | 0.067867 |
| 590 | 227.47 | 338.93 | 0.65219 | 31.568 | 0.062686 |
| 600 | 236.30 | 349.66 | 0.67021 | 34.728 | 0.057948 |
| 610 | 245.19 | 360.43 | 0.68803 | 38.163 | 0.053611 |
| 620 | 254.14 | 371.27 | 0.70565 | 41.893 | 0.049638 |
| 630 | 263.14 | 382.16 | 0.72307 | 45.940 | 0.045996 |
| 640 | 272.19 | 393.10 | 0.74030 | 50.326 | 0.042653 |
| 650 | 281.29 | 404.09 | 0.75734 | 55.078 | 0.039582 |
| 660 | 290.45 | 415.14 | 0.77420 | 60.220 | 0.036760 |
| 670 | 299.65 | 426.23 | 0.79089 | 65.779 | 0.034163 |
| 680 | 308.91 | 437.37 | 0.80739 | 71.786 | 0.031771 |
| 690 | 318.21 | 448.56 | 0.82373 | 78.27 | 0.029568 |
| 700 | 327.56 | 459.80 | 0.83990 | 85.266 | 0.027535 |
| 710 | 336.96 | 471.09 | 0.85591 | 92.806 | 0.025660 |
| 720 | 346.40 | 482.42 | 0.87176 | 100.93 | 0.023927 |
| 730 | 355.88 | 493.80 | 0.88745 | 109.67 | 0.022326 |
| 740 | 365.42 | 505.22 | 0.90299 | 119.07 | 0.020845 |
| 750 | 374.99 | 516.68 | 0.91838 | 129.17 | 0.019474 |
| 760 | 384.61 | 528.19 | 0.93362 | 140.03 | 0.018204 |
| 770 | 394.27 | 539.74 | 0.94872 | 151.67 | 0.017027 |
| 780 | 403.97 | 551.33 | 0.96367 | 164.17 | 0.015936 |
| 790 | 413.71 | 562.96 | 0.97848 | 177.56 | 0.014923 |
| 800 | 423.49 | 574.62 | 0.99316 | 191.90 | 0.013982 |

MW $=44.010 \mathrm{~g} / \mathrm{mole}$

| (K) | $\underset{(\mathbf{k J} / \mathrm{kg})}{\hat{\mathbf{U}}^{0}}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathrm{S}^{0} \\ (\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 443.16 | 598.08 | 1.0221 | 223.6 | . 012295 |
| 840 | 462.9 | 621.6 | . 0506 | 0.0 | 0.010835 |
| 860 | 482.95 | 645.43 | 1.0785 | 301.47 | 0.0095679 |
| 880 | 503.06 | 66 | 1060 | 348.63 | 0.0084661 |
| 900 | 523.30 | 693.33 | . 132 | 02.1 | ,007 |
| 920 | 43. | 7.4 | 159 | 462.83 | 0.0066671 |
| 940 | 564.17 | 741.76 | 1856 | 531.40 | 0.0059329 |
| 960 | 584.79 | 6.15 | 2113 | 608.77 | 891 |
| 980 | 605.52 | 790.67 | 1.2365 | 695.90 | 0.0047233 |
| 1000 | 626.37 | 815.29 | . 2614 | 3.82 | 2251 |
| 1020 | 647.32 | 40.02 | 2859 | 903.68 | 857 |
| 104 | 66 | 864.86 | 1310 | 1026.7 | 0.0033974 |
| 1060 | 689 | 889.80 | . 3338 | 64. | 0030537 |
| 1080 | 710.8 | 4.8 | 3572 | 1317.8 | 489 |
| 100 | 732. | 939.96 | 1.3802 | 1488.8 | 0.0024781 |
| 1150 | 785.93 | 1003.2 | 1.4364 | 2004.7 | 0.0019240 |
| 1200 | 840 | 1066.9 | . 4907 | 671.8 | 064 |
| 1250 | 89 | 31 | 543 | 3526.5 | 0.00 |
| 1300 | 950.27 | 1195.9 | 1.5939 | 4613.2 | 0.00094516 |
| 1350 | 10 | 1261.0 | 1.6430 | 594.2 | 0.00075665 |
| 140 | 106 | 326. | . 6907 | 7700. | 0.00060975 |
| 1450 | 1118.4 | 1392.4 | 1.7369 | 983 | 0.0004944 |
| 1500 | 1175.2 | 1458.6 | .7818 |  |  |
| 155 | 1232.3 | 1525 | 1.825 | 15713 | 00 |
| 1600 | 1289. | 1591.9 | 1.867 | 19666 | 2.728 |
| 1650 | 1347.2 | 1658.9 | . 9091 | 退 |  |
| 170 | 1405.0 | 1726.2 | 1.9492 | 30264 | $1.8840 \mathrm{E}-04$ |
| 1750 | 1463.1 | 1793.7 | 1.9884 | 37231 | 1.5765 |
| 18 | 1521.4 | 1861.4 | 2.0265 |  |  |
| 185 | 1579 | 1929.4 | 2.0638 | 55487 | 1.11 |
| 1900 | 1638.5 | 1997.5 | 2.100 | 67253 | 9.4757 E |
| 1950 |  | 2065. | 2.1356 |  |  |
| 2000 | 175 | 2134.2 | 2.1702 | 97492 | 6.88 |
| 00 | 18 | 2271.7 | 2.237 | $1.3902 \mathrm{E}+0$ | 5.066 |
| 2200 | 1994.0 | 2409.6 | 2.3015 |  | $3.7787 \mathrm{E}-05$ |
| 2300 | 2113. | 2548.2 | 2.3631 | $2.7051 \mathrm{E}+05$ | $2.8517 \mathrm{E}-0$ |
| 2400 | 2233.8 | 2687.2 | 2.422 | $3.6999 \mathrm{E}+05$ | $2.1757 \mathrm{E}-0$ |
| 250 | 23 | 2826.6 | 2.4791 | $5.0009 \mathrm{E}+05$ | $1.6767 \mathrm{E}-05$ |
| 260 | 24 | 2966.5 | 2.5340 | 6.6857E+05 | $1.3043 \mathrm{E}-05$ |
| 2700 | 2596.6 | 3106.7 | 2.586 | $8.8475 \mathrm{E}+05$ | $1.0236 \mathrm{E}-0$ |
| 2800 | 2718.3 | 71.3 | . 6381 | $1.1597 \mathrm{E}+06$ | 0977E-06 |
| 2900 | 2840.4 | 3388.3 | 687 | $1.5068 \mathrm{E}+06$ | . 45 |
| 300 | 2962.7 | 3529.5 | 2.735 | $1.9415 \mathrm{E}+06$ | 5.1827E-0 |
| 350 | 3578.6 | 239.8 | 954 | 6.1873E+ | 1.8973 |
| 4000 | 4200.2 | 55. | . 145 | $1.7025 \mathrm{E}+$ | 7.880 |
| 4500 | 4826.7 | 5676.9 | 3.3154 | $4.1829 \mathrm{E}+07$ | 3.6083E-07 |
| 5000 | 5457.8 | 6402.4 | 3.4683 | $9.3949 \mathrm{E}+07$ | $1.7850 \mathrm{E}-07$ |
| 5500 | 6093.4 | 7132.5 | 3.6075 | $1.9625 \mathrm{E}+0$ | $9.3996 \mathrm{E}-08$ |
| 6000 | 6734. | 7867.8 | 3.7354 | $3.8634 \mathrm{E}+08$ | $5.2089 \mathrm{E}-0$ |


| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 1229.6 | 0 | 1 | 1 |
| 300 | 18.838 | 1256.1 | 0.088501 | 1.0217 | 0.98484 |
| 310 | 120.85 | 1399.4 | 0.55823 | 1.1449 | 0.90812 |
| 320 | 223.14 | 1542.9 | 1.0139 | 1.2787 | 0.83935 |
| 330 | 325.67 | 1686.7 | 1.4563 | 1.4235 | 0.77754 |
| 340 | 428.41 | 1830.6 | 1.8861 | 1.5799 | 0.72182 |
| 350 | 531.31 | 1974.8 | 2.3040 | 1.7483 | 0.67145 |
| 360 | 634.37 | 2119.1 | 2.7105 | 1.9294 | 0.62581 |
| 370 | 737.56 | 2263.5 | 3.1062 | 2.1237 | 0.58435 |
| 380 | 840.86 | 2408.1 | 3.4917 | 2.3318 | 0.54659 |
| 390 | 944.25 | 2552.7 | 3.8674 | 2.5542 | 0.51213 |
| 400 | 1047.7 | 2697.4 | 4.2338 | 2.7915 | 0.48061 |
| 410 | 1151.3 | 2842.2 | 4.5913 | 3.0442 | 0.45172 |
| 420 | 1254.9 | 2987.1 | 4.9403 | 3.3131 | 0.42519 |
| 430 | 1358.5 | 3132.0 | 5.2813 | 3.5986 | 0.40077 |
| 440 | 1462.2 | 3276.9 | 5.6145 | 3.9014 | 0.37826 |
| 450 | 1566.0 | 3421.9 | 5.9403 | 4.2222 | 0.35747 |
| 460 | 1669.7 | 3566.9 | 6.2591 | 4.5614 | 0.33824 |
| 470 | 1773.6 | 3711.9 | 6.5710 | 4.9198 | 0.32042 |
| 480 | 1877.4 | 3857.0 | 6.8765 | 5.2980 | 0.30387 |
| 490 | 1981.3 | 4002.1 | 7.1757 | 5.6966 | 0.28850 |
| 500 | 2085.2 | 4147.3 | 7.4689 | 6.1164 | 0.27418 |
| 510 | 2189.1 | 4292.4 | 7.7563 | 6.5579 | 0.26084 |
| 520 | 2293.0 | 4437.6 | 8.0383 | 7.0219 | 0.24838 |
| 530 | 2397.0 | 4582.8 | 8.3149 | 7.5090 | 0.23673 |
| 540 | 2501.0 | 4728.1 | 8.5864 | 8.0199 | 0.22583 |
| 550 | 2605.0 | 4873.3 | 8.8529 | 8.5553 | 0.21562 |
| 560 | 2709.1 | 5018.6 | 9.1147 | 9.1161 | 0.20604 |
| 570 | 2813.2 | 5164.0 | 9.3719 | 9.7027 | 0.19704 |
| 580 | 2917.3 | 5309.3 | 9.6248 | 10.316 | 0.18857 |
| 590 | 3021.4 | 5454.7 | 9.8733 | 10.957 | 0.18060 |
| 600 | 3125.6 | 5600.2 | 10.118 | 11.626 | 0.17310 |
| 610 | 3229.9 | 5745.7 | 10.358 | 12.324 | 0.16601 |
| 620 | 3334.2 | 5891.2 | 10.595 | 13.052 | 0.15933 |
| 630 | 3438.5 | 6036.8 | 10.828 | 13.810 | 0.15301 |
| 640 | 3542.9 | 6182.4 | 11.057 | 14.600 | 0.14703 |
| 650 | 3647.3 | 6328.0 | 11.283 | 15.422 | 0.14137 |
| 660 | 3751.8 | 6473.8 | 11.505 | 16.276 | 0.13600 |
| 670 | 3856.3 | 6619.6 | 11.725 | 17.165 | 0.13092 |
| 680 | 3960.9 | 6765.4 | 11.941 | 18.088 | 0.12609 |
| 690 | 4065.6 | 6911.3 | 12.154 | 19.047 | 0.12150 |
| 700 | 4170.4 | 7057.3 | 12.364 | 20.042 | 0.11714 |
| 710 | 4275.2 | 7203.4 | 12.571 | 21.075 | 0.11299 |
| 720 | 4380.1 | 7349.5 | 12.775 | 22.146 | 0.10904 |
| 730 | 4485.1 | 7495.8 | 12.977 | 23.256 | 0.10528 |
| 740 | 4590.1 | 7642.1 | 13.176 | 24.406 | 0.10170 |
| 750 | 4695.3 | 7788.5 | 13.373 | 25.597 | 0.098274 |
| 760 | 4800.5 | 7935.0 | 13.567 | 26.830 | 0.095008 |
| 770 | 4905.9 | 8081.6 | 13.758 | 28.106 | 0.091888 |
| 780 | 5011.3 | 8228.2 | 13.948 | 29.426 | 0.088906 |
| 790 | 5116.9 | 8375.0 | 14.135 | 30.791 | 0.086054 |
| 800 | 5222.5 | 8521.9 | 14.319 | 32.202 | 0.083326 |


| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\mathbf{o}} \\ (\mathrm{kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathbf{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 5434.2 | 8816.1 | 14.683 | 35.166 | 0.078210 |
| 840 | 5646.3 | 9110.7 | 15.038 | 38.326 | 0.073511 |
| 860 | 5858.9 | 9405.8 | 15.385 | 41.692 | 0.069184 |
| 880 | 6072.1 | 9701.4 | 15.725 | 45.273 | 0.065194 |
| 900 | 6285.7 | 9997.6 | 16.057 | 49.078 | 0.061507 |
| 920 | 6500.0 | 10294 | 16.383 | 53.116 | 0.058094 |
| 940 | 6714.9 | 10592 | 16.703 | 57.398 | 0.054929 |
| 960 | 6930.4 | 10890 | 17.017 | 61.934 | 0.051989 |
| 980 | 7146.5 | 11188 | 17.325 | 66.734 | 0.049254 |
| 1000 | 7363.4 | 11488 | 17.627 | 71.810 | 0.046707 |
| 1020 | 7580.9 | 11788 | 17.924 | 77.173 | 0.044330 |
| 1040 | 7799.1 | 12088 | 18.216 | 82.834 | 0.042110 |
| 1060 | 8018.1 | 12390 | 18.503 | 88.806 | 0.040034 |
| 1080 | 8237.8 | 12692 | 18.786 | 95.101 | 0.038089 |
| 1100 | 8458.3 | 12995 | 19.064 | 101.73 | 0.036266 |
| 1150 | 9013.0 | 13756 | 19.740 | 119.86 | 0.032179 |
| 1200 | 9572.7 | 14522 | 20.392 | 140.39 | 0.028669 |
| 1250 | 10138 | 15293 | 21.022 | 163.55 | 0.025635 |
| 1300 | 10708 | 16070 | 21.631 | 189.58 | 0.022999 |
| 1350 | 11284 | 16852 | 22.221 | 218.75 | 0.020699 |
| 1400 | 11865 | 17639 | 22.794 | 251.35 | 0.018682 |
| 1450 | 12452 | 18432 | 23.351 | 287.66 | 0.016906 |
| 1500 | 13044 | 19231 | 23.892 | 328.00 | 0.015338 |
| 1550 | 13636 | 20028 | 24.415 | 372.37 | 0.013961 |
| 1600 | 14235 | 20833 | 24.926 | 421.49 | 0.012732 |
| 1650 | 14840 | 21645 | 25.426 | 475.75 | 0.011632 |
| 1700 | 15451 | 22463 | 25.914 | 535.54 | 0.010647 |
| 1750 | 16069 | 23286 | 26.391 | 601.27 | 0.0097618 |
| 1800 | 16692 | 24115 | 26.858 | 673.39 | 0.0089655 |
| 1850 | 17320 | 24950 | 27.316 | 752.33 | 0.0082476 |
| 1900 | 17953 | 25789 | 27.763 | 838.60 | 0.0075991 |
| 1950 | 18591 | 26633 | 28.202 | 932.69 | 0.0070123 |
| 2000 | 19234 | 27482 | 28.632 | 1035.1 | 0.0064804 |
| 2100 | 20532 | 29193 | 29.466 | 1267.3 | 0.0055579 |
| 2200 | 21846 | 30920 | 30.269 | 1539.8 | 0.0047920 |
| 2300 | 23176 | 32662 | 31.044 | 1857.9 | 0.0041521 |
| 2400 | 24521 | 34419 | 31.792 | 2227.2 | 0.0036143 |
| 2500 | 25879 | 36190 | 32.514 | 2653.8 | 0.0031596 |
| 2600 | 27251 | 37974 | 33.214 | 3144.5 | 0.0027732 |
| 2700 | 28635 | 39770 | 33.892 | 3706.4 | 0.0024433 |
| 2800 | 30032 | 41579 | 34.550 | 4347.5 | 0.0021602 |
| 2900 | 31440 | 43401 | 35.189 | 5076.1 | 0.0019162 |
| 3000 | 32861 | 45233 | 35.811 | 5901.4 | 0.0017050 |
| 3500 | 40128 | 54563 | 38.686 | 11850 | $9.9061 \mathrm{E}-04$ |
| 4000 | 47652.0 | 64149 | 41.245 | 22041 | 6.0868E-04 |
| 4500 | 55409 | 73968 | 43.558 | 38615 | $3.9086 \mathrm{E}-04$ |
| 5000 | 63375 | 83996 | 45.670 | 64451 | $2.6020 \mathrm{E}-04$ |
| 5500 | 71521 | 94204 | 47.616 | 103302 | $1.7857 \mathrm{E}-04$ |
| 6000 | 79814 | 104559 | 49.418 | 159903 | $1.2585 \mathrm{E}-04$ |

Ideal Gas Property Table: $\quad \mathbf{H}_{2} \mathbf{O}$

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{0} \\ (\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 137.60 | 0 | 1 | 1 |
| 500 | 291.18 | 521.93 | 0.98239 | 8.4037 | 0.19956 |
| 510 | 306.14 | 541.51 | 1.0212 | 9.1402 | 0.18715 |
| 520 | 321.16 | 561.14 | 1.0593 | 9.9274 | 0.17568 |
| 530 | 336.24 | 580.84 | 1.0968 | 10.768 | 0.16508 |
| 540 | 351.38 | 600.59 | 1.1337 | 11.665 | 0.15526 |
| 550 | 366.58 | 620.41 | 1.1701 | 12.621 | 0.14616 |
| 560 | 381.84 | 640.29 | 1.2059 | 13.640 | 0.13770 |
| 570 | 397.17 | 660.22 | 1.2412 | 14.724 | 0.12984 |
| 580 | 412.55 | 680.22 | 1.2760 | 15.876 | 0.12253 |
| 590 | 428.00 | 700.29 | 1.3103 | 17.101 | 0.11572 |
| 600 | 443.51 | 720.42 | 1.3441 | 18.402 | 0.10936 |
| 610 | 459.09 | 740.61 | 1.3775 | 19.782 | 0.10343 |
| 620 | 474.73 | 760.86 | 1.4104 | 21.245 | 0.097881 |
| 630 | 490.43 | 781.18 | 1.4429 | 22.796 | 0.092694 |
| 640 | 506.20 | 801.56 | 1.4750 | 24.438 | 0.087838 |
| 650 | 522.04 | 822.01 | 1.5067 | 26.176 | 0.083287 |
| 660 | 537.94 | 842.53 | 1.5381 | 28.014 | 0.079019 |
| 670 | 553.90 | 863.11 | 1.5690 | 29.957 | 0.075013 |
| 680 | 569.94 | 883.76 | 1.5996 | 32.010 | 0.071250 |
| 690 | 586.04 | 904.48 | 1.6298 | 34.178 | 0.067712 |
| 700 | 602.20 | 925.26 | 1.6597 | 36.466 | 0.064384 |
| 710 | 618.44 | 946.11 | 1.6893 | 38.879 | 0.061250 |
| 720 | 634.74 | 967.02 | 1.7186 | 41.424 | 0.058298 |
| 730 | 651.11 | 988.01 | 1.7475 | 44.105 | 0.055514 |
| 740 | 667.55 | 1009.1 | 1.7762 | 46.929 | 0.052888 |
| 750 | 684.06 | 1030.2 | 1.8045 | 49.902 | 0.050409 |
| 760 | 700.63 | 1051.4 | 1.8326 | 53.031 | 0.048067 |
| 770 | 717.28 | 1072.6 | 1.8604 | 56.323 | 0.045853 |
| 780 | 733.99 | 1094.0 | 1.8879 | 59.784 | 0.043760 |
| 790 | 750.77 | 1115.4 | 1.9151 | 63.421 | 0.041779 |
| 800 | 767.62 | 1136.8 | 1.9422 | 67.242 | 0.039904 |
| 810 | 784.54 | 1158.4 | 1.9689 | 71.256 | 0.038127 |
| 820 | 801.53 | 1180.0 | 1.9954 | 75.469 | 0.036443 |
| 830 | 818.59 | 1201.6 | 2.0217 | 79.890 | 0.034846 |
| 840 | 835.72 | 1223.4 | 2.0477 | 84.527 | 0.033331 |
| 850 | 852.92 | 1245.2 | 2.0735 | 89.391 | 0.031893 |
| 860 | 870.19 | 1267.1 | 2.0991 | 94.489 | 0.030527 |
| 870 | 887.53 | 1289.0 | 2.1245 | 99.831 | 0.029229 |
| 880 | 904.94 | 1311.1 | 2.1497 | 105.43 | 0.027996 |
| 890 | 922.42 | 1333.2 | 2.1747 | 111.29 | 0.026823 |
| 900 | 939.98 | 1355.3 | 2.1994 | 117.42 | 0.025707 |
| 910 | 957.60 | 1377.6 | 2.2240 | 123.84 | 0.024645 |
| 920 | 975.29 | 1399.9 | 2.2484 | 130.56 | 0.023634 |
| 930 | 993.05 | 1422.3 | 2.2726 | 137.59 | 0.022671 |
| 940 | 1010.9 | 1444.7 | 2.2966 | 144.94 | 0.021753 |
| 950 | 1028.8 | 1467.2 | 2.3204 | 152.62 | 0.020878 |
| 960 | 1046.8 | 1489.8 | 2.3441 | 160.64 | 0.020044 |
| 970 | 1064.8 | 1512.5 | 2.3675 | 169.03 | 0.019248 |
| 980 | 1082.9 | 1535.2 | 2.3909 | 177.78 | 0.018488 |
| 990 | 1101.1 | 1558.0 | 2.4140 | 186.93 | 0.017763 |
| 1000 | 1119.4 | 1580.9 | 2.4370 | 196.47 | 0.017071 |

MW = $18.016 \mathrm{~g} / \mathrm{mole}$

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathrm{kg}) \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\circ} \\ (\mathrm{kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 1119.4 | 1580.9 | 2.4370 | 196.47 | 0.017071 |
| 1020 | 1156.1 | 1626.8 | 2.4825 | 216.83 | 0.015778 |
| 1040 | 1193.1 | 1673.0 | 2.5274 | 238.98 | 0.014596 |
| 1060 | 1230.4 | 1719.6 | 2.5717 | 263.05 | 0.013515 |
| 1080 | 1267.9 | 1766.3 | 2.6154 | 289.20 | 0.012526 |
| 1100 | 1305.8 | 1813.4 | 2.6586 | 317.56 | 0.011618 |
| 1120 | 1343.9 | 1860.8 | 2.7012 | 348.31 | 0.010785 |
| 1140 | 1382.3 | 1908.4 | 2.7434 | 381.61 | 0.010020 |
| 1160 | 1420.9 | 1956.3 | 2.7850 | 417.65 | 0.0093156 |
| 1180 | 1459.9 | 2004.4 | 2.8262 | 456.62 | 0.0086675 |
| 1200 | 1499.1 | 2052.9 | 2.8669 | 498.72 | 0.0080703 |
| 1220 | 1538.5 | 2101.6 | 2.9071 | 544.17 | 0.0075196 |
| 1240 | 1578.3 | 2150.5 | 2.9469 | 593.20 | 0.0070111 |
| 1260 | 1618.3 | 2199.8 | 2.9863 | 646.05 | 0.0065414 |
| 1280 | 1658.5 | 2249.3 | 3.0253 | 702.97 | 0.0061071 |
| 1330 | 1760.3 | 2374.1 | 3.1210 | 864.95 | 0.0051574 |
| 1380 | 1863.7 | 2500.6 | 3.2143 | 1058.8 | 0.0043715 |
| 1430 | 1968.6 | 2628.6 | 3.3054 | 1289.8 | 0.0037185 |
| 1480 | 2075.0 | 2758.0 | 3.3944 | 1564.1 | 0.0031736 |
| 1500 | 2117.9 | 2810.2 | 3.4294 | 1687.4 | 0.0029814 |
| 1550 | 2226.3 | 2941.6 | 3.5156 | 2033.9 | 0.0025560 |
| 1600 | 2336.0 | 3074.4 | 3.5999 | 2441.5 | 0.0021980 |
| 1650 | 2446.9 | 3208.4 | 3.6824 | 2919.3 | 0.0018957 |
| 1700 | 2559.0 | 3343.6 | 3.7631 | 3477.2 | 0.0016398 |
| 1750 | 2672.3 | 3479.9 | 3.8421 | 4126.8 | 0.0014223 |
| 1800 | 2786.7 | 3617.5 | 3.9196 | 4881.2 | 0.0012368 |
| 1850 | 2902.3 | 3756.1 | 3.9956 | 5754.5 | 0.0010783 |
| 1900 | 3018.9 | 3895.8 | 4.0701 | 6762.7 | $9.4233 \mathrm{E}-04$ |
| 1950 | 3136.5 | 4036.5 | 4.1432 | 7923.1 | 8.2548E-04 |
| 2000 | 3255.1 | 4178.1 | 4.2149 | 9255.3 | $7.2478 \mathrm{E}-04$ |
| 2050 | 3374.6 | 4320.7 | 4.2853 | 10781 | $6.3779 \mathrm{E}-04$ |
| 2100 | 3494.9 | 4464.1 | 4.3544 | 12523 | $5.6246 \mathrm{E}-04$ |
| 2150 | 3616.1 | 4608.4 | 4.4223 | 14507 | $4.9707 \mathrm{E}-04$ |
| 2250 | 3860.9 | 4899.3 | 4.5546 | 19321 | $3.9058 \mathrm{E}-04$ |
| 2350 | 4108.6 | 5193.1 | 4.6824 | 25485 | $3.0927 \mathrm{E}-04$ |
| 2450 | 4359.1 | 5489.8 | 4.8060 | 33312 | $2.4668 \mathrm{E}-04$ |
| 2550 | 4612.1 | 5788.9 | 4.9256 | 43173 | $1.9810 \mathrm{E}-04$ |
| 2650 | 4867.4 | 6090.4 | 5.0416 | 55507 | $1.6013 \mathrm{E}-04$ |
| 2750 | 5124.9 | 6394.1 | 5.1541 | 70826 | $1.3023 \mathrm{E}-04$ |
| 2850 | 5384.5 | 6699.8 | 5.2633 | 89733 | $1.0653 \mathrm{E}-04$ |
| 2950 | 5645.9 | 7007.4 | 5.3694 | 112922 | $8.7621 \mathrm{E}-05$ |
| 3000 | 5777.4 | 7161.9 | 5.4213 | 126371 | $7.9623 \mathrm{E}-05$ |
| 3100 | 6041.4 | 7472.1 | 5.5230 | 157534 | $6.6001 \mathrm{E}-05$ |
| 3500 | 7113.0 | 8728.2 | 5.9040 | 359705 | $3.2635 \mathrm{E}-05$ |
| 4000 | 8480.1 | 10326 | 6.3307 | 906669 | $1.4797 \mathrm{E}-05$ |
| 4500 | 9870.8 | 11948 | 6.7126 | 2074198 | 7.2766E-06 |
| 5000 | 11280 | 13588 | 7.0582 | 4385884 | $3.8236 \mathrm{E}-06$ |
| 5500 | 12706 | 15244 | 7.3739 | 8693076 | $2.1220 \mathrm{E}-06$ |
| 6000 | 14148 | 16917 | 7.6650 | 16334017 | $1.2320 \mathrm{E}-06$ |

Ideal Gas Property Table: $\quad \mathbf{N}_{\mathbf{2}}$

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{0} \\ (\mathbf{k J} / \mathbf{k g}-\mathbf{K}) \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathbf{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 88.503 | 0 | 1 | 1 |
| 300 | 1.3579 | 90.410 | 0.0063766 | 1.0217 | 0.98482 |
| 310 | 8.7063 | 100.73 | 0.040205 | 1.1450 | 0.90804 |
| 320 | 16.069 | 111.06 | 0.073005 | 1.2788 | 0.83927 |
| 330 | 23.447 | 121.40 | 0.10484 | 1.4236 | 0.77748 |
| 340 | 30.841 | 131.77 | 0.13578 | 1.5800 | 0.72176 |
| 350 | 38.252 | 142.15 | 0.16586 | 1.7485 | 0.67137 |
| 360 | 45.680 | 152.54 | 0.19515 | 1.9298 | 0.62567 |
| 370 | 53.126 | 162.96 | 0.22369 | 2.1245 | 0.58412 |
| 380 | 60.590 | 173.39 | 0.25151 | 2.3333 | 0.54623 |
| 390 | 68.072 | 183.84 | 0.27865 | 2.5567 | 0.51162 |
| 400 | 75.573 | 194.31 | 0.30516 | 2.7955 | 0.47991 |
| 410 | 83.093 | 204.80 | 0.33106 | 3.0504 | 0.45081 |
| 420 | 90.632 | 215.30 | 0.35638 | 3.3220 | 0.42404 |
| 430 | 98.191 | 225.83 | 0.38115 | 3.6111 | 0.39938 |
| 440 | 105.77 | 236.38 | 0.40539 | 3.9185 | 0.37662 |
| 450 | 113.37 | 246.94 | 0.42914 | 4.2448 | 0.35556 |
| 460 | 120.99 | 257.53 | 0.45241 | 4.5909 | 0.33606 |
| 470 | 128.62 | 268.14 | 0.47522 | 4.9576 | 0.31797 |
| 480 | 136.28 | 278.76 | 0.49759 | 5.3457 | 0.30116 |
| 490 | 143.96 | 289.41 | 0.51954 | 5.7560 | 0.28552 |
| 500 | 151.66 | 300.08 | 0.54109 | 6.1894 | 0.27095 |
| 510 | 159.37 | 310.76 | 0.56225 | 6.6468 | 0.25735 |
| 520 | 167.11 | 321.47 | 0.58304 | 7.1290 | 0.24465 |
| 530 | 174.87 | 332.20 | 0.60348 | 7.6370 | 0.23276 |
| 540 | 182.65 | 342.94 | 0.62356 | 8.1717 | 0.22164 |
| 550 | 190.45 | 353.71 | 0.64332 | 8.7342 | 0.21121 |
| 560 | 198.27 | 364.50 | 0.66276 | 9.3252 | 0.20142 |
| 570 | 206.11 | 375.31 | 0.68189 | 9.9460 | 0.19222 |
| 580 | 213.97 | 386.14 | 0.70072 | 10.597 | 0.18357 |
| 590 | 221.85 | 396.98 | 0.71926 | 11.281 | 0.17542 |
| 600 | 229.75 | 407.85 | 0.73753 | 11.997 | 0.16775 |
| 610 | 237.67 | 418.74 | 0.75553 | 12.746 | 0.16051 |
| 620 | 245.61 | 429.65 | 0.77327 | 13.531 | 0.15368 |
| 630 | 253.57 | 440.58 | 0.79075 | 14.352 | 0.14723 |
| 640 | 261.55 | 451.52 | 0.80799 | 15.210 | 0.14112 |
| 650 | 269.55 | 462.49 | 0.82500 | 16.107 | 0.13535 |
| 660 | 277.56 | 473.48 | 0.84177 | 17.044 | 0.12988 |
| 670 | 285.60 | 484.49 | 0.85832 | 18.021 | 0.12470 |
| 680 | 293.66 | 495.51 | 0.87466 | 19.041 | 0.11978 |
| 690 | 301.74 | 506.56 | 0.89079 | 20.104 | 0.11512 |
| 700 | 309.84 | 517.62 | 0.90671 | 21.212 | 0.11069 |
| 710 | 317.95 | 528.71 | 0.92243 | 22.365 | 0.10647 |
| 720 | 326.09 | 539.81 | 0.93796 | 23.567 | 0.10247 |
| 730 | 334.24 | 550.94 | 0.95331 | 24.817 | 0.098660 |
| 740 | 342.42 | 562.08 | 0.96847 | 26.117 | 0.095032 |
| 750 | 350.61 | 573.24 | 0.98345 | 27.469 | 0.091575 |
| 760 | 358.82 | 584.42 | 0.99826 | 28.874 | 0.088280 |
| 770 | 367.06 | 595.62 | 1.0129 | 30.334 | 0.085138 |
| 780 | 375.31 | 606.84 | 1.0274 | 31.850 | 0.082139 |
| 790 | 383.57 | 618.08 | 1.0417 | 33.424 | 0.079275 |
| 800 | 391.86 | 629.33 | 1.0558 | 35.057 | 0.076539 |

MW = $28.010 \mathrm{~g} / \mathrm{mole}$

| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{n}} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\mathbf{o}} \\ (\mathrm{kJ} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathrm{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 408.49 | 651.90 | 1.0837 | 38.507 | 0.071424 |
| 840 | 425.20 | 674.54 | 1.1110 | 42.213 | 0.066742 |
| 860 | 441.97 | 697.25 | 1.1377 | 46.189 | 0.062449 |
| 880 | 458.82 | 720.04 | 1.1639 | 50.450 | 0.058504 |
| 900 | 475.74 | 742.89 | 1.1896 | 55.009 | 0.054875 |
| 920 | 492.73 | 765.82 | 1.2148 | 59.882 | 0.051530 |
| 940 | 509.79 | 788.82 | 1.2395 | 65.084 | 0.048442 |
| 960 | 526.92 | 811.88 | 1.2638 | 70.631 | 0.045587 |
| 980 | 544.11 | 835.01 | 1.2876 | 76.540 | 0.042944 |
| 1000 | 561.37 | 858.21 | 1.3111 | 82.827 | 0.040494 |
| 1020 | 578.70 | 881.48 | 1.3341 | 89.511 | 0.038220 |
| 1040 | 596.10 | 904.81 | 1.3568 | 96.610 | 0.036106 |
| 1060 | 613.56 | 928.21 | 1.3790 | 104.14 | 0.034139 |
| 1080 | 631.08 | 951.67 | 1.4010 | 112.13 | 0.032306 |
| 1100 | 648.67 | 975.20 | 1.4226 | 120.58 | 0.030597 |
| 1150 | 692.91 | 1034.3 | 1.4751 | 143.92 | 0.026800 |
| 1200 | 737.54 | 1093.7 | 1.5257 | 170.68 | 0.023581 |
| 1250 | 782.52 | 1153.6 | 1.5745 | 201.21 | 0.020837 |
| 1300 | 827.87 | 1213.8 | 1.6217 | 235.89 | 0.018484 |
| 1350 | 873.55 | 1274.3 | 1.6674 | 275.14 | 0.016457 |
| 1400 | 919.57 | 1335.1 | 1.7117 | 319.39 | 0.014702 |
| 1450 | 965.91 | 1396.3 | 1.7546 | 369.10 | 0.013176 |
| 1500 | 1012.6 | 1457.8 | 1.7963 | 424.76 | 0.011844 |
| 1550 | 1059.5 | 1519.6 | 1.8368 | 486.88 | 0.010678 |
| 1600 | 1106.7 | 1581.7 | 1.8763 | 556.02 | $9.6515 \mathrm{E}-03$ |
| 1650 | 1154.2 | 1644.0 | 1.9146 | 632.75 | 8.7461E-03 |
| 1700 | 1202.0 | 1706.6 | 1.9520 | 717.68 | 7.9448E-03 |
| 1750 | 1250.1 | 1769.5 | 1.9885 | 811.45 | $7.2334 \mathrm{E}-03$ |
| 1800 | 1298.3 | 1832.6 | 2.0240 | 914.72 | $6.6001 \mathrm{E}-03$ |
| 1850 | 1346.8 | 1896.0 | 2.0587 | 1028.2 | $6.0347 \mathrm{E}-03$ |
| 1900 | 1395.6 | 1959.6 | 2.0927 | 1152.6 | 5.5287E-03 |
| 1950 | 1444.5 | 2023.4 | 2.1258 | 1288.8 | $5.0748 \mathrm{E}-03$ |
| 2000 | 1493.7 | 2087.4 | 2.1582 | 1437.5 | $4.6666 \mathrm{E}-03$ |
| 2100 | 1592.6 | 2216.0 | 2.2209 | 1775.8 | $3.9664 \mathrm{E}-03$ |
| 2200 | 1692.2 | 2345.3 | 2.2811 | 2174.7 | $3.3931 \mathrm{E}-03$ |
| 2300 | 1792.5 | 2475.2 | 2.3389 | 2641.9 | $2.9200 \mathrm{E}-03$ |
| 2400 | 1893.4 | 2605.8 | 2.3944 | 3185.7 | $2.5268 \mathrm{E}-03$ |
| 2500 | 1994.8 | 2736.9 | 2.4479 | 3815.0 | $2.1979 \mathrm{E}-03$ |
| 2600 | 2096.6 | 2868.4 | 2.4995 | 4539.2 | $1.9211 \mathrm{E}-03$ |
| 2700 | 2198.9 | 3000.4 | 2.5493 | 5368.4 | $1.6869 \mathrm{E}-03$ |
| 2800 | 2301.6 | 3132.7 | 2.5975 | 6313.3 | $1.4875 \mathrm{E}-03$ |
| 2900 | 2404.5 | 3265.4 | 2.6440 | 7385.2 | $1.3170 \mathrm{E}-03$ |
| 3000 | 2507.8 | 3398.3 | 2.6891 | 8596.0 | $1.1706 \mathrm{E}-03$ |
| 3500 | 3026.9 | 4065.8 | 2.8949 | 17193 | $6.8277 \mathrm{E}-04$ |
| 4000 | 3548.2 | 4735.6 | 3.0737 | 31409 | $4.2714 \mathrm{E}-04$ |
| 4500 | 4070.2 | 5406.0 | 3.2317 | 53472 | $2.8226 \mathrm{E}-04$ |
| 5000 | 4593.4 | 6077.6 | 3.3732 | 86133 | $1.9470 \mathrm{E}-04$ |
| 5500 | 5120.4 | 6753.0 | 3.5019 | 132894 | $1.3881 \mathrm{E}-04$ |
| 6000 | 5655.8 | 7436.8 | 3.6209 | 198429 | $1.0142 \mathrm{E}-04$ |


| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{\mathbf{o}} \\ (\mathbf{k J} / \mathbf{k g}-\mathrm{K}) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 298.15 | 0 | 77.467 | 0 | 1 | 1 |
| 300 | 1.1921 | 79.140 | 0.0055933 | 1.0218 | 0.98478 |
| 310 | 7.6755 | 88.222 | 0.035371 | 1.1458 | 0.90741 |
| 320 | 14.222 | 97.367 | 0.064404 | 1.2813 | 0.83766 |
| 330 | 20.827 | 106.57 | 0.092725 | 1.4289 | 0.77463 |
| 340 | 27.488 | 115.83 | 0.12036 | 1.5892 | 0.71756 |
| 350 | 34.200 | 125.14 | 0.14735 | 1.7632 | 0.66579 |
| 360 | 40.961 | 134.50 | 0.17372 | 1.9515 | 0.61873 |
| 370 | 47.767 | 143.90 | 0.19949 | 2.1549 | 0.57588 |
| 380 | 54.618 | 153.35 | 0.22468 | 2.3744 | 0.53678 |
| 390 | 61.510 | 162.84 | 0.24934 | 2.6107 | 0.50104 |
| 400 | 68.442 | 172.37 | 0.27346 | 2.8648 | 0.46831 |
| 410 | 75.411 | 181.94 | 0.29709 | 3.1374 | 0.43830 |
| 420 | 82.417 | 191.54 | 0.32023 | 3.4297 | 0.41073 |
| 430 | 89.458 | 201.18 | 0.34291 | 3.7426 | 0.38536 |
| 440 | 96.531 | 210.86 | 0.36515 | 4.0770 | 0.36198 |
| 450 | 103.64 | 220.56 | 0.38696 | 4.4339 | 0.34040 |
| 460 | 110.77 | 230.30 | 0.40835 | 4.8145 | 0.32046 |
| 470 | 117.94 | 240.06 | 0.42936 | 5.2198 | 0.30200 |
| 480 | 125.14 | 249.86 | 0.44998 | 5.6510 | 0.28489 |
| 490 | 132.36 | 259.68 | 0.47023 | 6.1091 | 0.26902 |
| 500 | 139.62 | 269.53 | 0.49013 | 6.5954 | 0.25427 |
| 510 | 146.89 | 279.41 | 0.50969 | 7.1111 | 0.24055 |
| 520 | 154.20 | 289.31 | 0.52892 | 7.6573 | 0.22777 |
| 530 | 161.53 | 299.24 | 0.54783 | 8.2355 | 0.21585 |
| 540 | 168.88 | 309.19 | 0.56644 | 8.8468 | 0.20473 |
| 550 | 176.26 | 319.17 | 0.58474 | 9.4926 | 0.19433 |
| 560 | 183.67 | 329.17 | 0.60276 | 10.174 | 0.18461 |
| 570 | 191.09 | 339.19 | 0.62051 | 10.893 | 0.17550 |
| 580 | 198.54 | 349.24 | 0.63798 | 11.651 | 0.16697 |
| 590 | 206.01 | 359.31 | 0.65519 | 12.449 | 0.15896 |
| 600 | 213.50 | 369.40 | 0.67215 | 13.289 | 0.15144 |
| 610 | 221.02 | 379.51 | 0.68886 | 14.172 | 0.14437 |
| 620 | 228.55 | 389.64 | 0.70534 | 15.099 | 0.13772 |
| 630 | 236.11 | 399.80 | 0.72159 | 16.074 | 0.13146 |
| 640 | 243.68 | 409.97 | 0.73761 | 17.096 | 0.12556 |
| 650 | 251.28 | 420.17 | 0.75342 | 18.168 | 0.11999 |
| 660 | 258.89 | 430.38 | 0.76901 | 19.292 | 0.11474 |
| 670 | 266.53 | 440.61 | 0.78440 | 20.469 | 0.10978 |
| 680 | 274.18 | 450.87 | 0.79959 | 21.702 | 0.10509 |
| 690 | 281.86 | 461.14 | 0.81458 | 22.991 | 0.10066 |
| 700 | 289.55 | 471.43 | 0.82939 | 24.339 | 0.096462 |
| 710 | 297.26 | 481.74 | 0.84401 | 25.748 | 0.092486 |
| 720 | 304.99 | 492.06 | 0.85846 | 27.220 | 0.088718 |
| 730 | 312.73 | 502.41 | 0.87272 | 28.757 | 0.085143 |
| 740 | 320.50 | 512.77 | 0.88682 | 30.360 | 0.081751 |
| 750 | 328.28 | 523.15 | 0.90076 | 32.033 | 0.078530 |
| 760 | 336.08 | 533.55 | 0.91453 | 33.776 | 0.075469 |
| 770 | 343.90 | 543.96 | 0.92814 | 35.593 | 0.072558 |
| 780 | 351.73 | 554.40 | 0.94160 | 37.486 | 0.069790 |
| 790 | 359.58 | 564.84 | 0.95491 | 39.456 | 0.067155 |
| 800 | 367.45 | 575.31 | 0.96808 | 41.507 | 0.064645 |


| $\begin{gathered} \mathbf{T} \\ (\mathbf{K}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{0} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{A}}^{\mathbf{0}} \\ (\mathbf{k J} / \mathbf{k g}) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{S}}^{0} \\ (\mathbf{k J} / \mathrm{kg}-\mathrm{K}) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 820 | 383.23 | 596.29 | 0.99398 | 45.858 | 0.059974 |
| 840 | 399.08 | 617.33 | 1.0193 | 50.559 | 0.055725 |
| 860 | 414.99 | 638.44 | 1.0442 | 55.629 | 0.051851 |
| 880 | 430.96 | 659.61 | 1.0685 | 61.091 | 0.048313 |
| 900 | 447.00 | 680.84 | 1.0924 | 66.966 | 0.045077 |
| 920 | 463.10 | 702.14 | 1.1158 | 73.277 | 0.042110 |
| 940 | 479.25 | 723.49 | 1.1387 | 80.047 | 0.039386 |
| 960 | 495.47 | 744.90 | 1.1613 | 87.301 | 0.036882 |
| 980 | 511.74 | 766.37 | 1.1834 | 95.063 | 0.034576 |
| 1000 | 528.07 | 787.89 | 1.2051 | 103.36 | 0.032450 |
| 1020 | 544.45 | 809.48 | 1.2265 | 112.22 | 0.030485 |
| 1040 | 560.89 | 831.11 | 1.2475 | 121.67 | 0.028669 |
| 1060 | 577.39 | 852.80 | 1.2682 | 131.74 | 0.026987 |
| 1080 | 593.94 | 874.55 | 1.2885 | 142.46 | 0.025427 |
| 1100 | 610.54 | 896.35 | 1.3085 | 153.86 | 0.023980 |
| 1150 | 652.27 | 951.07 | 1.3571 | 185.54 | 0.020789 |
| 1200 | 694.33 | 1006.1 | 1.4040 | 222.20 | 0.018113 |
| 1250 | 736.69 | 1061.5 | 1.4492 | 264.42 | 0.015856 |
| 1300 | 779.35 | 1117.1 | 1.4928 | 312.79 | 0.013940 |
| 1350 | 822.30 | 1173.1 | 1.5351 | 367.99 | 0.012304 |
| 1400 | 865.54 | 1229.3 | 1.5760 | 430.72 | 0.010902 |
| 1450 | 909.06 | 1285.8 | 1.6156 | 501.75 | $9.6928 \mathrm{E}-03$ |
| 1500 | 952.84 | 1342.6 | 1.6541 | 581.87 | $8.6463 \mathrm{E}-03$ |
| 1550 | 996.89 | 1399.6 | 1.6915 | 671.97 | $7.7366 \mathrm{E}-03$ |
| 1600 | 1041.2 | 1456.9 | 1.7279 | 772.95 | $6.9427 \mathrm{E}-03$ |
| 1650 | 1085.7 | 1514.5 | 1.7633 | 885.82 | $6.2475 \mathrm{E}-03$ |
| 1700 | 1130.5 | 1572.2 | 1.7978 | 1011.6 | $5.6364 \mathrm{E}-03$ |
| 1750 | 1175.6 | 1630.3 | 1.8315 | 1151.4 | $5.0976 \mathrm{E}-03$ |
| 1800 | 1220.8 | 1688.5 | 1.8643 | 1306.4 | $4.6211 \mathrm{E}-03$ |
| 1850 | 1266.3 | 1747.0 | 1.8963 | 1477.9 | $4.1984 \mathrm{E}-03$ |
| 1900 | 1312.0 | 1805.7 | 1.9276 | 1667.1 | $3.8225 \mathrm{E}-03$ |
| 1950 | 1357.9 | 1864.6 | 1.9582 | 1875.5 | $3.4872 \mathrm{E}-03$ |
| 2000 | 1404.0 | 1923.7 | 1.9882 | 2104.5 | $3.1874 \mathrm{E}-03$ |
| 2100 | 1496.9 | 2042.5 | 2.0461 | 2630.7 | $2.6774 \mathrm{E}-03$ |
| 2200 | 1590.5 | 2162.1 | 2.1018 | 3258.8 | $2.2643 \mathrm{E}-03$ |
| 2300 | 1684.9 | 2282.5 | 2.1553 | 4003.8 | $1.9267 \mathrm{E}-03$ |
| 2400 | 1779.9 | 2403.5 | 2.2068 | 4881.7 | $1.6489 \mathrm{E}-03$ |
| 2500 | 1875.6 | 2525.2 | 2.2565 | 5910.3 | $1.4187 \mathrm{E}-03$ |
| 2600 | 1972.0 | 2647.5 | 2.3044 | 7109.0 | $1.2267 \mathrm{E}-03$ |
| 2700 | 2069.0 | 2770.5 | 2.3508 | 8498.9 | $1.0655 \mathrm{E}-03$ |
| 2800 | 2166.5 | 2894.0 | 2.3958 | 10103 | $9.2956 \mathrm{E}-04$ |
| 2900 | 2264.6 | 3018.1 | 2.4393 | 11946 | $8.1423 \mathrm{E}-04$ |
| 3000 | 2363.2 | 3142.7 | 2.4815 | 14055 | $7.1592 \mathrm{E}-04$ |
| 3500 | 2863.5 | 3772.9 | 2.6758 | 29683 | $3.9548 \mathrm{E}-04$ |
| 4000 | 3374.5 | 4413.9 | 2.8469 | 57356 | $2.3391 \mathrm{E}-04$ |
| 4500 | 3895.4 | 5064.7 | 3.0002 | 103464 | $1.4588 \mathrm{E}-04$ |
| 5000 | 4426.5 | 5725.6 | 3.1395 | 176825 | $9.4840 \mathrm{E}-05$ |
| 5500 | 4969.0 | 6398.0 | 3.2676 | 289571 | $6.3705 \mathrm{E}-05$ |
| 6000 | 5525.5 | 7084.4 | 3.3871 | 458547 | $4.3887 \mathrm{E}-05$ |

Ideal Gas Property Table:
AIR
MW =
28.970
lb ${ }_{\mathrm{m}} / \mathrm{lbmole}$
AE

| $\begin{gathered} \mathbf{T} \\ \left({ }^{\mathbf{o}} \mathbf{R}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathrm{b}} \\ \left(\mathbf{B t u} / \mathbf{l} \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{\mathbf{o}} \\ \left(\mathbf{B t u} / \mathbf{l b _ { m }}\right) \end{gathered}$ | $\begin{gathered} \hat{S}^{\delta} \\ \left(B t u / 1 b_{m}{ }^{0} R\right) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 536.67 | 0 | 36.789 | 0 | 1 | 1 |
| 540 | 0.56481 | 37.582 | 0.0014732 | 1.0217 | 0.98481 |
| 550 | 2.2632 | 39.966 | 0.0058475 | 1.0890 | 0.94104 |
| 560 | 3.9651 | 42.353 | 0.010149 | 1.1596 | 0.89987 |
| 570 | 5.6704 | 44.744 | 0.014381 | 1.2334 | 0.86111 |
| 580 | 7.3790 | 47.138 | 0.018545 | 1.3107 | 0.82458 |
| 590 | 9.0910 | 49.535 | 0.022643 | 1.3914 | 0.79012 |
| 600 | 10.806 | 51.936 | 0.026678 | 1.4758 | 0.75758 |
| 610 | 12.525 | 54.340 | 0.030652 | 1.5638 | 0.72682 |
| 620 | 14.247 | 56.748 | 0.034566 | 1.6558 | 0.69773 |
| 630 | 15.972 | 59.158 | 0.038424 | 1.7516 | 0.67020 |
| 640 | 17.701 | 61.572 | 0.042225 | 1.8515 | 0.64410 |
| 650 | 19.432 | 63.989 | 0.045973 | 1.9555 | 0.61937 |
| 660 | 21.167 | 66.410 | 0.049668 | 2.0638 | 0.59589 |
| 670 | 22.905 | 68.833 | 0.053312 | 2.1765 | 0.57360 |
| 680 | 24.646 | 71.260 | 0.056908 | 2.2937 | 0.55241 |
| 690 | 26.391 | 73.690 | 0.060455 | 2.4155 | 0.53227 |
| 700 | 28.138 | 76.123 | 0.063956 | 2.5421 | 0.51310 |
| 710 | 29.889 | 78.559 | 0.067411 | 2.6735 | 0.49484 |
| 720 | 31.643 | 80.998 | 0.070823 | 2.8099 | 0.47745 |
| 730 | 33.399 | 83.441 | 0.074192 | 2.9515 | 0.46087 |
| 740 | 35.159 | 85.886 | 0.077519 | 3.0983 | 0.44505 |
| 750 | 36.922 | 88.334 | 0.080805 | 3.2504 | 0.42995 |
| 760 | 38.688 | 90.786 | 0.084052 | 3.4081 | 0.41552 |
| 770 | 40.457 | 93.241 | 0.087261 | 3.5714 | 0.40174 |
| 780 | 42.229 | 95.698 | 0.090432 | 3.7405 | 0.38856 |
| 790 | 44.004 | 98.159 | 0.093567 | 3.9155 | 0.37595 |
| 800 | 45.782 | 100.62 | 0.096665 | 4.0966 | 0.36388 |
| 810 | 47.564 | 103.09 | 0.099730 | 4.2839 | 0.35232 |
| 820 | 49.348 | 105.56 | 0.10276 | 4.4775 | 0.34125 |
| 830 | 51.135 | 108.03 | 0.10576 | 4.6776 | 0.33064 |
| 840 | 52.924 | 110.51 | 0.10872 | 4.8843 | 0.32046 |
| 850 | 54.717 | 112.98 | 0.11165 | 5.0978 | 0.31069 |
| 860 | 56.513 | 115.47 | 0.11456 | 5.3183 | 0.30132 |
| 870 | 58.312 | 117.95 | 0.11743 | 5.5458 | 0.29231 |
| 880 | 60.113 | 120.44 | 0.12027 | 5.7806 | 0.28366 |
| 890 | 61.918 | 122.93 | 0.12308 | 6.0228 | 0.27535 |
| 900 | 63.725 | 125.42 | 0.12587 | 6.2725 | 0.26736 |
| 910 | 65.535 | 127.92 | 0.12863 | 6.5300 | 0.25967 |
| 920 | 67.348 | 130.41 | 0.13136 | 6.7954 | 0.25227 |
| 930 | 69.164 | 132.92 | 0.13406 | 7.0688 | 0.24515 |
| 940 | 70.983 | 135.42 | 0.13674 | 7.3505 | 0.23829 |
| 950 | 72.805 | 137.93 | 0.13939 | 7.6406 | 0.23168 |
| 960 | 74.629 | 140.44 | 0.14202 | 7.9392 | 0.22531 |
| 970 | 76.456 | 142.95 | 0.14463 | 8.2466 | 0.21918 |
| 980 | 78.286 | 145.46 | 0.14721 | 8.5628 | 0.21326 |
| 990 | 80.119 | 147.98 | 0.14976 | 8.8882 | 0.20755 |
| 1000 | 81.955 | 150.50 | 0.15230 | 9.2229 | 0.20203 |
| 1010 | 83.793 | 153.03 | 0.15481 | 9.5670 | 0.19671 |
| 1020 | 85.634 | 155.55 | 0.15730 | 9.9208 | 0.19158 |
| 1030 | 87.478 | 158.08 | 0.15976 | 10.284 | 0.18662 |
| 1040 | 89.324 | 160.62 | 0.16221 | 10.658 | 0.18182 |


| $\begin{gathered} \mathbf{T} \\ \left({ }^{0} \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ \left(\mathbf{B t u} / \mathbf{l b}_{\mathbf{m}}\right) \end{gathered}$ |  | $\begin{gathered} S^{o} \\ \text { Btu/lb } b_{m}{ }^{0} R \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1060 | 93.026 | 165.69 | 0.16704 | 11.436 | 0.172708 |
| 1080 | 96.738 | 170.77 | 0.17179 | 12.257 | 0.164184 |
| 1100 | 100.46 | 175.87 | 0.17647 | 13.122 | 0.156204 |
| 1120 | 104.19 | 180.97 | 0.18106 | 14.032 | 0.148725 |
| 1140 | 107.94 | 186.08 | 0.18559 | 14.990 | 0.141707 |
| 1160 | 111.69 | 191.21 | 0.19005 | 15.997 | 0.135115 |
| 1180 | 115.46 | 196.35 | 0.19444 | 17.055 | 0.128919 |
| 1200 | 119.23 | 201.49 | 0.19876 | 18.166 | 0.123088 |
| 1250 | 128.72 | 214.40 | 0.20930 | 21.186 | 0.109941 |
| 1300 | 138.26 | 227.38 | 0.21948 | 24.577 | 0.098563 |
| 1350 | 147.87 | 240.42 | 0.22932 | 28.370 | 0.088667 |
| 1400 | 157.55 | 253.51 | 0.23885 | 32.600 | 0.080020 |
| 1450 | 167.28 | 266.67 | 0.24808 | 37.302 | 0.072431 |
| 1500 | 177.07 | 279.89 | 0.25705 | 42.512 | 0.065746 |
| 1550 | 186.92 | 293.17 | 0.26575 | 48.270 | 0.059834 |
| 1600 | 196.82 | 306.50 | 0.27422 | 54.616 | 0.054587 |
| 1650 | 206.79 | 319.90 | 0.28246 | 61.593 | 0.049916 |
| 1700 | 216.81 | 333.34 | 0.29049 | 69.246 | 0.045745 |
| 1750 | 226.88 | 346.84 | 0.29832 | 77.622 | 0.042009 |
| 1800 | 237.01 | 360.40 | 0.30596 | 86.771 | 0.038654 |
| 1850 | 247.19 | 374.01 | 0.31341 | 96.742 | 0.035633 |
| 1900 | 257.42 | 387.67 | 0.32070 | 107.59 | 0.032906 |
| 1950 | 267.71 | 401.38 | 0.32782 | 119.37 | 0.030439 |
| 2000 | 278.04 | 415.14 | 0.33479 | 132.15 | 0.028201 |
| 2100 | 298.86 | 442.81 | 0.34829 | 160.91 | 0.024318 |
| 2200 | 319.86 | 470.67 | 0.36125 | 194.40 | 0.021087 |
| 2300 | 341.05 | 498.72 | 0.37372 | 233.17 | 0.018380 |
| 2400 | 362.42 | 526.94 | 0.38573 | 277.83 | 0.016096 |
| 2500 | 383.96 | 555.34 | 0.39732 | 329.01 | 0.014159 |
| 2600 | 405.67 | 583.90 | 0.40852 | 387.42 | 0.012505 |
| 2700 | 427.53 | 612.62 | 0.41936 | 453.78 | 0.011087 |
| 2800 | 449.55 | 641.49 | 0.42986 | 528.89 | 0.0098647 |
| 2900 | 471.71 | 670.51 | 0.44004 | 613.60 | 0.0088066 |
| 3000 | 494.02 | 699.67 | 0.44993 | 708.79 | 0.0078867 |
| 3100 | 516.46 | 728.97 | 0.45954 | 815.41 | 0.0070840 |
| 3200 | 539.04 | 758.39 | 0.46888 | 934.48 | 0.0063808 |
| 3300 | 561.73 | 787.95 | 0.47797 | 1067.0 | 0.0057627 |
| 3400 | 584.55 | 817.62 | 0.48683 | 1214.2 | 0.0052176 |
| 3500 | 607.48 | 847.41 | 0.49546 | 1377.2 | 0.0047354 |
| 3600 | 630.53 | 877.31 | 0.50389 | 1557.3 | 0.0043075 |
| 3700 | 653.67 | 907.31 | 0.51211 | 1755.7 | 0.0039269 |
| 3800 | 676.92 | 937.41 | 0.52014 | 1973.8 | 0.0035873 |
| 3900 | 700.27 | 967.61 | 0.52798 | 2213.1 | 0.0032836 |
| 4000 | 723.70 | 997.90 | 0.53565 | 2475.1 | 0.0030114 |
| 4500 | 842.10 | 1150.6 | 0.57161 | 4182.3 | 0.0020049 |
| 5000 | 962.19 | 1304.9 | 0.60413 | 6721.7 | $1.3861 \mathrm{E}-03$ |
| 5500 | 1083.5 | 1460.6 | 0.63380 | 10361 | $9.8909 \mathrm{E}-04$ |
| 6000 | 1205.8 | 1617.1 | 0.66104 | 15418 | $7.2513 \mathrm{E}-04$ |
| 6500 | 1328.8 | 1774.4 | 0.68621 | 22258 | $5.4415 \mathrm{E}-04$ |
| 7000 | 1452.2 | 1932.1 | 0.70959 | 31303 | $4.1668 \mathrm{E}-04$ |
| 7500 | 1576.0 | 2090.2 | 0.73140 | 43032 | $3.2476 \mathrm{E}-04$ |
| 8000 | 1700.2 | 2248.6 | 0.75185 | 57990 | $2.5706 \mathrm{E}-04$ |

Ideal Gas Property Table: CO

| $\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathbf{R}\right) \end{gathered}$ | $\hat{\mathbf{U}}^{\mathbf{o}}$ <br> (Btu/lb ${ }_{\mathrm{m}}$ ) | $\mathbf{H}^{\mathbf{B}}$ (Btu/lb ${ }_{\mathrm{m}}$ ) | $\begin{gathered} \mathbf{S}^{\mathbf{o}} \\ \left(\mathrm{Btu}^{\prime} / \mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathbf{R}\right) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 536.67 | 0 | 38.045 | 0 | 1 | 1 |
| 540 | 0.59148 | 38.873 | 0.0015372 | 1.0219 | 0.98462 |
| 550 | 2.3671 | 41.357 | 0.0060962 | 1.0898 | 0.94039 |
| 560 | 4.1422 | 43.841 | 0.010572 | 1.1608 | 0.89891 |
| 570 | 5.9168 | 46.325 | 0.014968 | 1.2351 | 0.85995 |
| 580 | 7.6912 | 48.808 | 0.019287 | 1.3127 | 0.82332 |
| 590 | 9.4656 | 51.292 | 0.023532 | 1.3937 | 0.78883 |
| 600 | 11.240 | 53.775 | 0.027706 | 1.4782 | 0.75633 |
| 610 | 13.015 | 56.259 | 0.031812 | 1.5663 | 0.72567 |
| 620 | 14.791 | 58.744 | 0.035852 | 1.6582 | 0.69671 |
| 630 | 16.567 | 61.229 | 0.039828 | 1.7539 | 0.66933 |
| 640 | 18.345 | 63.715 | 0.043743 | 1.8534 | 0.64342 |
| 650 | 20.123 | 66.202 | 0.047600 | 1.9571 | 0.61887 |
| 660 | 21.902 | 68.690 | 0.051399 | 2.0648 | 0.59561 |
| 670 | 23.683 | 71.180 | 0.055142 | 2.1768 | 0.57353 |
| 68 | 25.465 | 73.671 | 0.058833 | 2.2931 | 0.55256 |
| 690 | 27.248 | 76.163 | 0.062471 | 2.4139 | 0.53264 |
| 700 | 29.033 | 78.657 | 0.066060 | 2.5392 | 0.51368 |
| 710 | 30.820 | 81.153 | 0.069600 | 2.6692 | 0.49564 |
| 720 | 32.609 | 83.651 | 0.073093 | 2.8040 | 0.47846 |
| 730 | 34.399 | 86.150 | 0.076540 | 2.9438 | 0.46208 |
| 740 | 36.192 | 88.651 | 0.079944 | 3.0885 | 0.44645 |
| 750 | 37.986 | 91.155 | 0.083304 | 3.2384 | 0.43154 |
| 760 | 39.783 | 93.660 | 0.086623 | 3.3936 | 0.41729 |
| 770 | 41.581 | 96.168 | 0.089901 | 3.5543 | 0.40368 |
| 780 | 43.382 | 98.678 | 0.093139 | 3.7204 | 0.39066 |
| 790 | 45.186 | 101.19 | 0.096340 | 3.8922 | 0.37820 |
| 800 | 46.991 | 103.70 | 0.099503 | 4.0698 | 0.36628 |
| 810 | 48.800 | 106.22 | 0.10263 | 4.2533 | 0.35485 |
| 820 | 50.610 | 108.74 | 0.10572 | 4.4429 | 0.34391 |
| 830 | 52.423 | 111.26 | 0.10878 | 4.6387 | 0.33341 |
| 840 | 54.239 | 113.79 | 0.11180 | 4.8408 | 0.32334 |
| 850 | 56.057 | 116.32 | 0.11479 | 5.0494 | 0.31367 |
| 860 | 57.879 | 118.85 | 0.11775 | 5.2646 | 0.30438 |
| 870 | 59.702 | 121.38 | 0.12068 | 5.4866 | 0.29546 |
| 880 | 61.529 | 123.91 | 0.12358 | 5.7155 | 0.28689 |
| 890 | 63.358 | 126.45 | 0.12645 | 5.9515 | 0.27865 |
| 900 | 65.190 | 128.99 | 0.12928 | 6.1947 | 0.27072 |
| 910 | 67.025 | 131.54 | 0.13210 | 6.4453 | 0.26308 |
| 920 | 68.863 | 134.08 | 0.13488 | 6.7034 | 0.25573 |
| 930 | 70.704 | 136.63 | 0.13764 | 6.9692 | 0.24865 |
| 940 | 72.548 | 139.19 | 0.14037 | 7.2428 | 0.24183 |
| 950 | 74.395 | 141.74 | 0.14307 | 7.5245 | 0.23526 |
| 960 | 76.244 | 144.30 | 0.14575 | 7.8143 | 0.22892 |
| 970 | 78.097 | 146.86 | 0.14840 | 8.1125 | 0.22280 |
| 980 | 79.953 | 149.43 | 0.15103 | 8.4191 | 0.21690 |
| 990 | 81.812 | 151.99 | 0.15364 | 8.7345 | 0.21120 |
| 1000 | 83.674 | 154.57 | 0.15623 | 9.0588 | 0.20570 |
| 1010 | 85.539 | 157.14 | 0.15879 | 9.3920 | 0.20038 |
| 1020 | 87.408 | 159.72 | 0.16133 | 9.7345 | 0.19524 |
| 1030 | 89.279 | 162.30 | 0.16384 | 10.086 | 0.19028 |
| 1040 | 91.154 | 164.88 | 0.16634 | 10.448 | 0.18548 |

MW = $28.013 \quad \mathbf{l b}_{\mathrm{m}} /$ Ibmole
AE

| $\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{0}}^{0} \\ \left(\mathbf{B t u} / \mathbf{b b}_{\mathbf{m}}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{0} \\ \left(\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}\right. \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\mathrm{o}} \\ \left.\mathrm{tu} / \mathrm{lb}_{\mathrm{m}}{ }^{0}\right] \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathrm{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1060 | 94.913 | 170.06 | 0.17127 | 11.200 | 17634 |
| 1080 | 98.685 | 175.25 | 0.17612 | 11.994 | 0.16779 |
| 1100 | 102.47 | 180.45 | 0.18089 | 12.829 | 0.15977 |
| 1120 | 106.27 | 185.67 | 0.18559 | 13.708 | 0.15224 |
| 1140 | 110.08 | 190.90 | 0.19022 | 14.633 | 0.14517 |
| 1160 | 113.90 | 196.14 | 0.19478 | 15.605 | 0.13851 |
| 1180 | 117.74 | 201.39 | 0.19927 | 16.626 | 0.13225 |
| 1200 | 121.59 | 206.66 | 0.20370 | 17.697 | 0.12635 |
| 1250 | 131.28 | 219.89 | 0.21450 | 20.610 | 0.11301 |
| 1300 | 141.05 | 233.21 | 0.22494 | 23.881 | 0.10143 |
| 1350 | 150.90 | 246.61 | 0.23506 | 27.543 | 0.091331 |
| 1400 | 160.84 | 260.09 | 0.24486 | 31.629 | 0.082478 |
| 1450 | 170.86 | 273.65 | 0.25438 | 36.175 | 0.074689 |
| 1500 | 180.96 | 287.30 | 0.26364 | 41.218 | 0.067811 |
| 1550 | 191.14 | 301.03 | 0.27264 | 46.799 | 0.061715 |
| 1600 | 201.41 | 314.83 | 0.28141 | 52.960 | 0.056295 |
| 1650 | 211.75 | 328.72 | 0.28995 | 59.744 | 0.051461 |
| 1700 | 222.17 | 342.68 | 0.29829 | 67.199 | 0.047139 |
| 1750 | 232.66 | 356.72 | 0.30642 | 75.373 | 0.043263 |
| 1800 | 243.22 | 370.83 | 0.31437 | 84.3 | 0.039779 |
| 1850 | 253.86 | 385.00 | 0.32214 | 94.083 | 0.036640 |
| 1900 | 264.56 | 399.25 | 0.32974 | 104.73 | 0.033805 |
| 1950 | 275.33 | 413.56 | 0.33718 | 116.31 | 0.031240 |
| 2000 | 286.15 | 427.94 | 0.34446 | 128.88 | 0.028915 |
| 2100 | 307.99 | 456.86 | 0.35857 | 157.27 | 0.024881 |
| 2200 | 330.04 | 486.00 | 0.37212 | 190.41 | 0.021529 |
| 2300 | 352.27 | 515.32 | 0.38515 | 228.84 | 0.018728 |
| 2400 | 374.67 | 544.81 | 0.39771 | 273.17 | 0.016371 |
| 2500 | 397.26 | 574.49 | 0.40982 | 324.06 | 0.014375 |
| 2600 | 419.99 | 604.31 | 0.42152 | 382.20 | 0.012676 |
| 2700 | 442.87 | 634.28 | 0.43283 | 448.31 | 0.011222 |
| 2800 | 465.88 | 664.37 | 0.44377 | 523.15 | 0.0099729 |
| 2900 | 489.00 | 694.59 | 0.45437 | 607.55 | 0.0088943 |
| 3000 | 512.24 | 724.91 | 0.46465 | 702.36 | 0.0079589 |
| 3100 | 535.57 | 755.34 | 0.47463 | 808.49 | 0.0071446 |
| 3200 | 559.01 | 785.86 | 0.48432 | 926.91 | 0.0064329 |
| 3300 | 582.53 | 816.47 | 0.49374 | 1058.6 | 0.0058085 |
| 3400 | 606.13 | 847.16 | 0.50290 | 1204.7 | 0.0052590 |
| 3500 | 629.81 | 877.93 | 0.51182 | 1366.2 | 0.0047736 |
| 3600 | 653.56 | 908.77 | 0.52051 | 1544.3 | 0.0043437 |
| 3700 | 677.38 | 939.68 | 0.52898 | 1740.3 | 0.0039616 |
| 3800 | 701.27 | 970.66 | 0.53724 | 1955.4 | 0.0036211 |
| 3900 | 725.22 | 1001.7 | 0.54530 | 2190.9 | 0.0033169 |
| 4000 | 749.23 | 1032.8 | 0.55318 | 2448.3 | 0.0030443 |
| 4500 | 870.07 | 1189.1 | 0.58999 | 4115.1 | 0.0020376 |
| 5000 | 992.03 | 1346.5 | 0.62315 | 6570.0 | $1.4181 \mathrm{E}-03$ |
| 5500 | 1114.9 | 1504.8 | 0.65333 | 10057 | $1.0191 \mathrm{E}-03$ |
| 6000 | 1238.6 | 1663.9 | 0.68102 | 14862 | $7.5227 \mathrm{E}-04$ |
| 6500 | 1362.9 | 1823.7 | 0.70660 | 21318 | $5.6814 \mathrm{E}-04$ |
| 7000 | 1487.8 | 1984.0 | 0.73036 | 29808 | $4.3757 \mathrm{E}-04$ |
| 7500 | 1613.2 | 2144.9 | 0.75256 | 40767 | $3.4281 \mathrm{E}-04$ |
| 8000 | 1739.0 | 2306.2 | 0.77338 | 54682 | $2.7261 \mathrm{E}-04$ |


| $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathbf{R}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{\mathbf{v}^{2}} \\ \left(\text { Btu/b } \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\underset{\left(\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}\right)}{\hat{2}}$ | $\begin{gathered} \hat{S}^{\mathrm{S}} \\ \left(\text { Btu } / \mathrm{b}_{\mathrm{m}}{ }^{0} \mathbf{R}\right) \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{r}}$ | $\begin{gathered} \mathbf{T} \\ \left({ }^{( } \mathbf{R}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{\mathbf{O}}^{0} \\ \left(\mathrm{Btu} / \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \mathbf{A}^{\circ} \\ \left(\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}\right. \end{gathered}$ | $\begin{gathered} S^{\circ} \\ \left(\mathrm{Btu} / \mathrm{b}_{\mathrm{m}}{ }^{0} \mathrm{R}\right. \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 536.67 | 0 | 24.216 | 0 | 1 | 1 | 1060 | 97.373 | 145.20 | 0.15529 | 31.233 | . 0632 |
| 540 | 0.52155 | 24.888 | 0.0012480 | 1.0280 | 0.97876 | 1080 | 101.59 | 150.33 | 0.16008 | 34.728 | 0.057948 |
| 550 | 2.0972 | 26.915 | 0.0049671 | 1.1164 | 0.91801 | 1100 | 105.84 | 155.48 | 0.16480 | 38.562 | 0.053152 |
| 560 | 3.6869 | 28.956 | 0.0086445 | 1.2112 | 0.86155 | 1120 | 110.12 | 160.66 | 0.16947 | 42.764 | 0.048802 |
| 570 | 5.2903 | . 011 | 0.012281 | 1.3128 | 0.80903 | 1140 | 114.42 | 165.8 | 0.17408 | 47.363 | , 044850 |
| 580 | 6.9073 | 33.079 | 0.015878 | 1.4217 | 0.76015 | 1160 | 118.76 | 171.10 | 0.17863 | 52.392 | 0.041256 |
| 590 | 8.5375 | 35.160 | 0.019436 | 1.5384 | 0.71463 | 1180 | 123.12 | 176.36 | 0.18313 | 57.884 | 0.037985 |
| 600 | 10 | . 255 | 022957 | 1.6632 | 0.67220 | 1200 | 127.51 | 181.65 | 0.18758 | 3.878 | 035004 |
| 610 | 11.837 | 39.362 | 0.026440 | 1.7967 | 0.63263 | 1250 | 138.59 | 194.99 | 0.19847 | 81.315 | 0.028644 |
| 620 | 13.506 | 41.483 | 0.029887 | 1.9393 | 0.59570 | 130 | 149.83 | 208.49 | 0.20905 | 102.81 | 0.023560 |
| 630 | 15.187 | 43.615 | 0.033300 | 2.0917 | 0.56122 | 1350 | 161.22 | 222.13 | 0.21935 | 129.17 | 0.019474 |
| 640 | 16.881 | 45.760 | 0.036678 | 2.2543 | 0.52901 | 1400 | 172.75 | 235.92 | 0.22938 | 161.31 | 0.016171 |
| 650 | 18.587 | 47.917 | 0.040022 | 2.4277 | 0.49889 | 1450 | 184.41 | 249.84 | 0.23915 | 200.31 | 0.013489 |
| 660 | 20.305 | 50.087 | 0.043334 | 2.6126 | 0.47072 | 1500 | 196.20 | 263.89 | 0.24867 | 247.38 | 0.011299 |
| 670 | 22.035 | 52.268 | 0.046614 | 2.8096 | 0.44435 | 1550 | 208.11 | 278.05 | 0.25796 | 303.94 | 0.0095026 |
| 680 | 23.776 | 54.460 | 0.049862 | 3.0193 | 0.41966 | 160 | 220.14 | 292.34 | 0.26703 | 371.60 | 0.0080231 |
| 690 | 25.529 | 56.664 | 0.053080 | 3.2424 | 0.39652 | 1650 | 232.28 | 306.73 | 0.27589 | 452.19 | 0.0067992 |
| 700 | 27.294 | 58.880 | 0.056268 | 3.4798 | 0.37483 | 1700 | 244.52 | 321.23 | 0.28454 | 547.80 | 0.0057825 |
| 710 | 29.069 | 61.107 | 0.059426 | 3.7321 | 0.35448 | 1750 | 256.86 | 335.82 | 0.29301 | 660.79 | 0.0049347 |
| 720 | 30.856 | . 345 | 0.062556 | 4.0002 | 0.33539 | 1800 | 269.29 | 350.51 | 0.30128 | 793.82 | 0.0042251 |
| 730 | 32.653 | 65.593 | 0.065658 | 4.2848 | 0.31746 | 1850 | 281.81 | 365.29 | 0.30938 | 949.89 | 0.0036290 |
| 740 | 34.462 | 67.853 | 0.068733 | 4.5869 | 0.30061 | 1900 | 294.42 | 380.16 | 0.31731 | 1132.4 | 0.0031265 |
| 750 | 36.281 | 70.123 | 0.071780 | 4.9074 | 0.28477 | 1950 | 307.12 | 395.11 | 0.32508 | 1345.0 | 0.0027015 |
| 760 | 38.110 | 72.404 | 0.074801 | 5.2472 | 0.26988 | 2000 | 319.89 | 410.13 | 0.33268 | 1592.0 | 0.0023408 |
| 770 | 39.950 | 74.696 | 0.077796 | 5.6073 | 0.25587 | 2100 | 345.65 | 440.41 | 0.34745 | 2208.6 | $1.7717 \mathrm{E}-03$ |
| 780 | 41.801 | 76.997 | 0.080766 | 5.9888 | 0.24269 | 2200 | 371.68 | 470.95 | 0.36166 | 3026.0 | $1.3547 \mathrm{E}-03$ |
| 790 | 43 | 79.309 | 0.083711 | 6.3927 | 0.23027 | 2300 | 397.96 | 501.75 | 0.37535 | 4098.5 | $1.0457 \mathrm{E}-03$ |
| 800 | 45.532 | 81.631 | 0.086632 | 6.8202 | 0.21857 | 2400 | 424.48 | 532.78 | 0.38856 | 5492.0 | $8.1428 \mathrm{E}-04$ |
| 810 | 47.413 | 83.963 | 0.089529 | 7.2724 | 0.20754 | 2500 | 451.22 | 564.03 | 0.40131 | 7286.0 | $6.3935 \mathrm{E}-04$ |
| 820 | 49. | 86.305 | 0.092402 | 7.7505 | 0.19714 | 2600 | 478.14 | 595.46 | 0.41364 | 9575.5 | $5.0594 \mathrm{E}-04$ |
| 830 | 51.204 | 88.656 | 0.095252 | 8.2559 | 0.18733 | 2700 | 505.24 | 627.08 | 0.42558 | 12474 | $4.0333 \mathrm{E}-04$ |
| 840 | 53.113 | 91.017 | 0.098080 | 8.7 | 0.17807 | 2800 | 532.51 | 658.85 | 0.43713 | 16114 | $3.2377 \mathrm{E}-04$ |
| 850 | 55. | 93.388 | 10089 | 9.3537 | 0.16933 | 2900 | 559.92 | 690.78 | 0.44833 | 20655 | $2.6162 \mathrm{E}-04$ |
| 860 | 56.962 | 95.768 | 0.10367 | 9.9489 | 0.16107 | 3000 | 587.46 | 722.83 | 0.45920 | 26280 | $2.1271 \mathrm{E}-04$ |
| 870 | 58.900 | 98.157 | 0.10643 | 10.577 | 0.15327 | 3100 | 615.14 | 755.02 | 0.46975 | 33205 | $1.7396 \mathrm{E}-04$ |
| 880 | 60 | 100.56 | 0.10917 | 11.239 | 0.14589 | 3200 | 642 | 787.32 | 0.48001 | 678 | $1.4307 \mathrm{E}-04$ |
| 890 | 62.804 | 102.96 | 0.11189 | 11.938 | 0.13892 | 3300 | 670.83 | 819.73 | 0.48998 | 51988 | $1.1828 \mathrm{E}-04$ |
| 900 | 64.769 | 105.38 | 0.11459 | 12.674 | 0.13232 | 3400 | 698.83 | 852.25 | 0.49969 | 64465 | $9.8276 \mathrm{E}-05$ |
| 910 | 66.74 | 107.81 | 0.11727 | 13.450 | 0.12607 | 3500 | 726.93 | 884.86 | 0.50914 | 79489 | $8.2046 \mathrm{E}-05$ |
| 920 | 68.727 | 110.24 | 0.11994 | 14.267 | 0.12016 | 3600 | 755.12 | 917.56 | 0.51836 | 97492 | $6.8806 \mathrm{E}-05$ |
| 930 | 70.719 | 112.68 | 0.12258 | 15.127 | 0.11456 | 3700 | 783.39 | 950.35 | 0.52734 | 118968 | $5.7952 \mathrm{E}-05$ |
| 940 | 72.720 | 115.14 | 0.12520 | 16.032 | 0.10925 | 3800 | 811.75 | 983.22 | 0.53610 | 144474 | $4.9010 \mathrm{E}-05$ |
| 950 | 74.730 | 117.60 | 0.12780 | 16.984 | 0.10422 | 3900 | 840.18 | 1016.2 | 0.54466 | 174643 | $4.1611 \mathrm{E}-05$ |
| 960 | 76.747 | 120.07 | 0.13039 | 17.986 | 0.099456 | 4000 | 868.68 | 1049.2 | 0.55302 | 210185 | $3.5461 \mathrm{E}-05$ |
| 970 | 78.774 | 122.54 | 0.13296 | 19.039 | 0.094934 | 4500 | 1012.2 | 1215.2 | 0.59213 | 50008 | $1.6767 \mathrm{E}-05$ |
| 980 | 80.808 | 125.03 | 0.13551 | 20.146 | 0.090644 | 5000 | 1157.0 | 1382.7 | 0.62741 | $1.0929 \mathrm{E}+06$ | $8.5247 \mathrm{E}-06$ |
| 990 | 82.851 | 127.52 | 13804 | 21.308 | 0.086572 | 5500 | 1303.0 | 1551.2 | 0.65954 | $2.2274 \mathrm{E}+06$ | $4.6010 \mathrm{E}-06$ |
| 1000 | 84.902 | 130.03 | 0.14055 | 22.530 | 0.082706 | 6000 | 1450.0 | 1720.7 | 0.68904 | $4.2824 \mathrm{E}+06$ | $2.6107 \mathrm{E}-06$ |
| 1010 | 86.961 | 132.54 | 0.14305 | 23.812 | 0.079035 | 6500 | 1597.7 | 1891.0 | 0.71630 | $7.8361 \mathrm{E}+06$ | $1.5456 \mathrm{E}-06$ |
| 1020 | 89.028 | 135.05 | 0.14553 | 25.158 | 0.075548 | 7000 | 1746.2 | 2062.1 | 0.74165 | $1.3743 \mathrm{E}+07$ | $9.4908 \mathrm{E}-07$ |
| 1030 | 91.102 | 137.58 | 0.14799 | 26.570 | 0.072234 | 7500 | 1895.3 | 2233.8 | 0.76534 | $2.3234 \mathrm{E}+07$ | $6.0150 \mathrm{E}-07$ |
| 1040 | 93.185 | 140.11 | 0.15044 | 28.051 | 0.069083 | 8000 | 2045.1 | 2406.1 | 0.78759 | $3.8035 \mathrm{E}+07$ | 3.9192E-07 |

Ideal Gas Property Table: $\quad \mathbf{C O}_{\mathbf{2}}$
$M W=44.010 \quad \mathrm{lb}_{\mathrm{m}} / \mathrm{Ibmole}$
AE

| Idea | as $\mathbf{P}$ | erty | ble: | $\mathbf{H}_{2}$ |  |  |  |  | m/lb |  | AE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\left(\mathbf{B t u} / \mathbf{l b}_{\mathbf{m}}\right)} \end{gathered}$ | $\underset{\left(\mathbf{B t u} / \mathbf{l} \mathbf{b}_{\mathbf{m}}\right)}{\left.\hat{\mathrm{H}}^{( }\right)}$ | $\begin{gathered} \hat{S^{\prime}} \\ \left(\mathbf{B t u} / \mathrm{b}_{\mathrm{m}}{ }^{0} R\right) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $V_{r}$ | $\begin{gathered} \mathbf{T} \\ \left({ }^{( } \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ \left(\mathbf{B t u} / \mathbf{b}_{\mathbf{m}}\right) \end{gathered}$ | $\underset{(\text { Btu }}{\mathbf{A}^{\mathbf{o}}}$ | $\begin{gathered} S^{0} \\ \left.3 \mathbf{t u / l b _ { m }}{ }^{0} R\right) \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $V_{r}$ |
| 536.67 | 0 | 528.65 | 0 | 1 | 1 | 1060 | 1294.0 | 2338.2 | 2.3517 | 10.884 | 0.18147 |
| 540 | 8.0991 | 540.03 | 0.021138 | 1.0217 | 0.98484 | 1080 | 1343.8 | 2407.7 | 2.4166 | 11.626 | 0.17310 |
| 550 | 32.449 | 574.23 | 0.083893 | 1.0889 | 0.94117 | 1100 | 1393.6 | 2477.1 | 2.4803 | 12.403 | 0.16525 |
| 560 | 56.838 | 608.47 | 0.14559 | 1.1593 | 0.90011 | 1120 | 1443.4 | 2546.7 | 2.5430 | 13.218 | 0.15789 |
| 570 | 81.263 | 642.75 | 0.20625 | 1.2329 | 0.86146 | 1140 | 1493.2 | 2616.2 | 2.6045 | 14.070 | 0.15098 |
| 580 | 105.72 | 677.06 | 0.26592 | 1.3099 | 0.82505 | 1160 | 1543.1 | 2685.8 | 2.6650 | 14.961 | 0.14447 |
| 590 | 130.21 | 711.40 | 0.32463 | 1.3903 | 0.79072 | 1180 | 1593.0 | 2755.4 | 2.7245 | 15.892 | 0.13835 |
| 600 | 154.73 | 745.76 | 0.38239 | 1.4743 | 0.75833 | 1200 | 1642.9 | 2825.0 | 2.7830 | 16.865 | 0.13258 |
| 610 | 179.27 | 780.16 | 0.43924 | 1.5619 | 0.72773 | 1250 | 1767.9 | 2999.2 | 2.9253 | 19.485 | 0.11954 |
| 620 | 203.84 | 814.57 | 0.49520 | 1.6532 | 0.69881 | 1300 | 1893.1 | 3173.7 | 3.0621 | 22.389 | 0.10819 |
| 630 | 228.42 | 849.01 | 0.55030 | 1.7483 | 0.67145 | 1350 | 2018.6 | 3348.5 | 3.1940 | 25.597 | 0.098274 |
| 640 | 253.03 | 883.47 | 0.60457 | 1.8473 | 0.64555 | 1400 | 2144.4 | 3523.5 | 3.3213 | 29.129 | 0.089557 |
| 650 | 277.66 | 917.95 | 0.65802 | 1.9503 | 0.62101 | 1450 | 2270.5 | 3698.9 | 3.4444 | 33.006 | 0.081860 |
| 660 | 302.30 | 952.44 | 0.71069 | 2.0574 | 0.59773 | 1500 | 2397.1 | 3874.7 | 3.5636 | 37.250 | 0.075034 |
| 670 | 326.96 | 986.95 | 0.76258 | 2.1687 | 0.57565 | 1550 | 2524.0 | 4050.8 | 3.6791 | 41.885 | 0.068954 |
| 680 | 351.63 | 1021.5 | 0.81373 | 2.2843 | 0.55468 | 1600 | 2651.3 | 4227.4 | 3.7913 | 46.936 | 0.063520 |
| 690 | 376.32 | 1056.0 | 0.86415 | 2.4043 | 0.53476 | 1650 | 2779.1 | 4404.5 | 3.9003 | 52.426 | 0.058645 |
| 700 | 401.02 | 1090.6 | 0.91386 | 2.5287 | 0.51581 | 1700 | 2907.5 | 4582.1 | 4.0063 | 58.383 | 0.054257 |
| 710 | 425.72 | 1125.1 | 0.96288 | 2.6577 | 0.49778 | 1750 | 3036.3 | 4760.2 | 4.1095 | 64.835 | 0.050295 |
| 720 | 450.44 | 1159.7 | 1.0112 | 2.7915 | 0.48061 | 1800 | 3165.7 | 4938.8 | 4.2102 | 71.810 | 0.046707 |
| 730 | 475.17 | 1194.3 | 1.0589 | 2.9299 | 0.46426 | 1850 | 3295.7 | 5118.0 | 4.3084 | 79.338 | 0.043449 |
| 740 | 499.91 | 1228.9 | 1.1060 | 3.0733 | 0.44866 | 1900 | 3426.2 | 5297.8 | 4.4043 | 87.451 | 0.040484 |
| 750 | 524.65 | 1263.4 | 1.1524 | 3.2216 | 0.43379 | 1950 | 3557.4 | 5478.3 | 4.4980 | 96.182 | 0.037777 |
| 760 | 549.40 | 1298.0 | 1.1982 | 3.3751 | 0.41959 | 2000 | 3689.2 | 5659.3 | 4.5897 | 105.56 | 0.035302 |
| 770 | 574.16 | 1332.7 | 1.2435 | 3.5337 | 0.40603 | 2100 | 3954.9 | 6023.5 | 4.7674 | 126.43 | 0.030951 |
| 780 | 598.92 | 1367.3 | 1.2881 | 3.6976 | 0.39307 | 2200 | 4223.2 | 6390.4 | 4.9380 | 150.34 | 0.027266 |
| 790 | 623.69 | 1401.9 | 1.3323 | 3.8669 | 0.38068 | 2300 | 4494.4 | 6760.1 | 5.1024 | 177.64 | 0.024126 |
| 800 | 648.47 | 1436.5 | 1.3758 | 4.0417 | 0.36882 | 2400 | 4768.5 | 7132.6 | 5.2609 | 208.66 | 0.021432 |
| 810 | 673.25 | 1471.1 | 1.4188 | 4.2222 | 0.35747 | 2500 | 5045.5 | 7508.1 | 5.4142 | 243.79 | 0.019108 |
| 820 | 698.03 | 1505.8 | 1.4613 | 4.4083 | 0.34661 | 2600 | 5325.3 | 7886.5 | 5.5626 | 283.43 | 0.017093 |
| 830 | 722.82 | 1540.4 | 1.5033 | 4.6003 | 0.33619 | 2700 | 5608.1 | 8267.7 | 5.7065 | 328.00 | 0.015338 |
| 840 | 747.62 | 1575.1 | 1.5448 | 4.7982 | 0.32621 | 2800 | 5890.9 | 8649.0 | 5.8451 | 377.58 | 0.013818 |
| 850 | 772.41 | 1609.7 | 1.5858 | 5.0021 | 0.31663 | 2900 | 6177.4 | 9034.1 | 5.9803 | 433.09 | 0.012477 |
| 860 | 797.22 | 1644.4 | 1.6263 | 5.2122 | 0.30745 | 3000 | 6467.4 | 9422.6 | 6.1120 | 495.05 | 0.011292 |
| 870 | 822.02 | 1679.0 | . 6664 | 5.4 | 0.29862 | 3100 | 6760.6 | 9814.3 | 6.2404 | 564.00 | 0.010242 |
| 880 | 846.83 | 1713.7 | 1.7060 | 5.6513 | 0.29015 | 3200 | 7056.9 | 10209 | 6.3657 | 640.52 | 0.0093091 |
| 890 | 871.64 | 1748.3 | 1.7452 | 5.8806 | 0.28201 | 3300 | 7356.0 | 10607 | 6.4881 | 725.23 | 0.0084787 |
| 900 | 896.46 | 1783.0 | 1.7839 | 6.116 | 0.27418 | 3400 | 7657.8 | 11007 | 6.6076 | 818.77 | 0.0077376 |
| 910 | 921.28 | 1817.7 | 1.8222 | 6.3589 | 0.26665 | 3500 | 7962.2 | 11410 | 6.7244 | 921.83 | 0.0070747 |
| 920 | 946.10 | 1852.4 | 1.8601 | 6.6083 | 0.25941 | 3600 | 8269.0 | 11815 | 6.8386 | 1035.1 | 0.0064804 |
| 930 | 970.93 | 1887.0 | 1.8976 | 6.8647 | 0.25244 | 3700 | 8578.1 | 12223 | 6.9503 | 1159.4 | 0.0059465 |
| 940 | 995.76 | 1921.7 | 1.9347 | 7.1281 | 0.24572 | 3800 | 8889.5 | 12633 | 7.0596 | 1295.5 | 0.0054657 |
| 950 | 1020.6 | 1956.4 | 1.9714 | 7.3987 | 0.23926 | 3900 | 9203.1 | 13045 | 7.1666 | 1444.2 | 0.0050320 |
| 960 | 1045.4 | 1991.1 | 2.0077 | 7.6766 | 0.23302 | 4000 | 9518.7 | 13459 | 7.2715 | 1606.4 | 0.0046399 |
| 970 | 1070.3 | 2025.8 | 2.0437 | 7.9619 | 0.22701 | 4500 | 11126 | 15559 | 7.7660 | 2653.8 | 0.0031596 |
| 980 | 1095.1 | 2060.5 | 2.0793 | 8.2548 | 0.22121 | 5000 | 12777 | 17703 | 8.2177 | 4197.8 | 0.0022194 |
| 990 | 1120.0 | 2095.2 | 2.1145 | 8.5553 | 0.21562 | 5500 | 14469 | 19887 | 8.6339 | 6405.3 | $1.6000 \mathrm{E}-03$ |
| 1000 | 1144.8 | 2129.9 | 2.1494 | 8.8637 | 0.21022 | 6000 | 16198 | 22108 | 9.0205 | 9483.1 | $1.1789 \mathrm{E}-03$ |
| 1010 | 1169.7 | 2164.6 | 2.1839 | 9.1799 | 0.20501 | 6500 | 17962 | 24365 | 9.3816 | 13683 | $8.8514 \mathrm{E}-04$ |
| 1020 | 1194.5 | 2199.3 | 2.2181 | 9.5042 | 0.19998 | 7000 | 19759 | 26654 | 9.7210 | 19311 | $6.7544 \mathrm{E}-04$ |
| 1030 | 1219.4 | 2234.0 | 2.2520 | 9.8367 | 0.19511 | 7500 | 21588 | 28976 | 10.041 | 26731 | $5.2280 \mathrm{E}-04$ |
| 1040 | 1244.3 | 2268.7 | 2.2855 | 10.177 | 0.19041 | 8000 | 23446 | 31327 | 10.345 | 36376 | $4.0980 \mathrm{E}-04$ |


|  |  |  |  | , |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathbf{T} \\ \left({ }^{( } \mathbf{R}\right) \end{gathered}$ |  | $\underset{\left(\mathbf{B t u} / \mathbf{l} \mathbf{b}_{\mathbf{m}}\right)}{\hat{(1)}}$ | $\begin{gathered} S^{\hat{c}} \\ \left.\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathbf{R}\right) \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathrm{V}_{\mathrm{r}}$ |
| 536.67 | 0 | 59.157 | 0 | 1 | 1 |
| 900 | 125.18 | 224.39 | 0.23464 | 8.4037 | 0.19956 |
| 910 | 128.75 | 229.06 | 0.23980 | 8.8068 | 0.19254 |
| 920 | 132.33 | 233.74 | 0.24492 | 9.2251 | 0.18583 |
| 930 | 135.92 | 238.43 | 0.24999 | 9.6592 | 0.17941 |
| 940 | 139.51 | 243.13 | 0.25501 | 10.110 | 0.17326 |
| 950 | 143.11 | 247.83 | 0.25999 | 10.577 | 0.16737 |
| 960 | 146.72 | 252.54 | 0.26492 | 11.061 | 0.16173 |
| 970 | 150.34 | 257.26 | 0.26982 | 11.563 | 0.15632 |
| 980 | 153.97 | 261.99 | 0.27466 | 12.083 | 0.151133 |
| 990 | 157.60 | 266.73 | 0.27947 | 12.621 | 0.14616 |
| 1000 | 161.24 | 271.47 | 0.28424 | 13.179 | 0.14138 |
| 1010 | 164.89 | 276.23 | 0.28897 | 13.757 | 0.13680 |
| 1020 | 168.55 | 280.99 | 0.29366 | 14.355 | 0.13240 |
| 1030 | 172.22 | 285.75 | 0.29831 | 14.974 | 0.12817 |
| 1040 | 175.89 | 290.53 | 0.30293 | 15.614 | 0.12411 |
| 1050 | 179.58 | 295.32 | 0.30751 | 16.276 | 0.12021 |
| 1060 | 183.27 | 300.11 | 0.31205 | 16.961 | 0.11645 |
| 1070 | 186.97 | 304.91 | 0.31656 | 17.670 | 0.11284 |
| 1080 | 190.68 | 309.72 | 0.32104 | 18.402 | 0.10936 |
| 1090 | 194.39 | 314.54 | 0.32548 | 19.158 | 0.10601 |
| 1100 | 198.12 | 319.37 | 0.32989 | 19.940 | 0.10279 |
| 1110 | 201.85 | 324.21 | 0.33426 | 20.748 | 0.099688 |
| 1120 | 205.59 | 329.05 | 0.33861 | 21.582 | 0.096698 |
| 1130 | 209.35 | 333.90 | 0.34292 | 22.443 | 0.093817 |
| 1140 | 213.11 | 338.77 | 0.34720 | 23.333 | 0.091040 |
| 1150 | 216.87 | 343.64 | 0.35146 | 24.251 | 0.088362 |
| 1160 | 220.65 | 348.52 | 0.35568 | 25.198 | 0.085779 |
| 1170 | 224.44 | 353.40 | 0.35988 | 26.176 | 0.083287 |
| 1180 | 228.23 | 358.30 | 0.36405 | 27.184 | 0.080883 |
| 1190 | 232.03 | 363.21 | 0.36819 | 28.225 | 0.078562 |
| 1200 | 235.85 | 368.12 | 0.37230 | 29.297 | 0.07632 |
| 1210 | 239.67 | 373.04 | 0.37638 | 30.404 | 0.074157 |
| 1220 | 243.50 | 377.97 | 0.38044 | 31.544 | 0.072066 |
| 1230 | 247.33 | 382.92 | 0.38448 | 32.720 | 0.070047 |
| 1240 | 251.18 | 387.86 | 0.38848 | 33.931 | 0.068095 |
| 1250 | 255.04 | 392.82 | 0.39247 | 35.180 | 0.066208 |
| 1260 | 258.90 | 397.79 | 0.39642 | 36.466 | 0.064384 |
| 1270 | 262.78 | 402.77 | 0.40036 | 37.791 | 0.062620 |
| 1280 | 266.66 | 407.75 | 0.40427 | 39.155 | 0.060913 |
| 1290 | 270.55 | 412.75 | 0.40815 | 40.560 | 0.059262 |
| 1300 | 274.45 | 417.75 | 0.41202 | 42.007 | 0.057665 |
| 1310 | 278.36 | 422.76 | 0.41586 | 43.497 | 0.056119 |
| 1320 | 282.28 | 427.78 | 0.41968 | 45.030 | 0.054622 |
| 1330 | 286.21 | 432.81 | 0.42347 | 46.608 | 0.053172 |
| 1340 | 290.15 | 437.85 | 0.42725 | 48.232 | 0.051768 |
| 1350 | 294.09 | 442.90 | 0.43100 | 49.902 | 0.050409 |
| 1360 | 298.05 | 447.96 | 0.43473 | 51.621 | 0.049091 |
| 1370 | 302.01 | 453.03 | 0.43845 | 53.389 | 0.047815 |
| 1380 | 305.99 | 458.10 | 0.44214 | 55.207 | 0.046577 |
| 1390 | 309.97 | 463.19 | 0.44581 | 57.077 | 0.045378 |
| 1400 | 313.96 | 468.28 | 0.44946 | 59.000 | 0.044215 |

MW = $18.016 \quad \mathbf{l b}_{\mathrm{m}} /$ lbmole
AE

| $\begin{gathered} \mathbf{T} \\ \left({ }^{\circ} \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ \left(\mathbf{B t u} / \mathbf{b b}_{\mathbf{m}}\right) \end{gathered}$ | $\begin{gathered} \mathbf{A}^{0} \\ (\text { Btu/lb } \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\mathrm{o}} \\ \mathrm{tu} / \mathrm{lb}_{\mathrm{m}}^{0} \end{gathered}$ | $\mathbf{P}_{\mathrm{r}}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1420 | 321.97 | 478.50 | 0.45671 | 63.008 | 0.041994 |
| 1440 | 330.02 | 488.75 | 0.46388 | 67.242 | 0.039904 |
| 1460 | 338.10 | 499.04 | 0.47097 | 71.714 | 0.037935 |
| 1480 | 346.23 | 509.36 | 0.47800 | 76.433 | 0.036081 |
| 1500 | 354.38 | 519.73 | 0.48495 | 81.4 | 2 |
| 1520 | 362.58 | 530.13 | 0.49184 | 86.660 | 0.032683 |
| 1540 | 370.81 | 540.57 | 0.49866 | 92.193 | 0.031125 |
| 1560 | 379.08 | 551.04 | 0.50542 | 98.022 | 0.029655 |
| 1580 | 387.39 | 561.55 | 0.51212 | 104.16 | 0.028265 |
| 1600 | 395.74 | 572.10 | 0.51875 | 110.62 | 0.026950 |
| 1650 | 416.76 | 598.64 | 0.53508 | 128.29 | 0.023965 |
| 1700 | 438.02 | 625.41 | 0.55107 | 148.31 | 0.021359 |
| 1750 | 459.51 | 652.41 | 0.56672 | 170.94 | 0.019076 |
| 1800 | 481.24 | 679.65 | 0.58207 | 196.47 | 0.017071 |
| 1850 | 503.20 | 707.12 | 0.59712 | 225.22 | 0.015306 |
| 1900 | 525.39 | 734.82 | 0.61189 | 257.53 | 0.013747 |
| 1950 | 547.81 | 762.76 | 0.62641 | 293.77 | 0.012369 |
| 2000 | 570.46 | 790.92 | 0.64067 | 334.34 | 0.011146 |
| 2050 | 593.34 | 819.31 | 0.65469 | 379.69 | 0.010060 |
| 2100 | 616.45 | 847.93 | 0.66848 | 430.30 | 0.0090936 |
| 2150 | 639.79 | 876.78 | 0.68206 | 486.70 | 0.0082314 |
| 2200 | 663.34 | 905.85 | 0.69542 | 549.43 | 0.0074611 |
| 2250 | 687.12 | 935.13 | 0.70858 | 619.13 | 0.0067717 |
| 2300 | 711.12 | 964.64 | 0.72156 | 696.44 | 0.0061537 |
| 2400 | 759.75 | 1024.3 | 0.74694 | 876.82 | 0.0051003 |
| 2500 | 809.22 | 1084.8 | 0.77164 | 1097.0 | 0.0042465 |
| 2600 | 859.50 | 1146.1 | 0.79568 | 1364.4 | 0.0035509 |
| 2700 | 910.55 | 1208.2 | 0.81911 | 1687.4 | 0.0029814 |
| 2800 | 962.35 | 1271.0 | 0.84195 | 2076.0 | 0.0025131 |
| 2900 | 1014.8 | 1334.5 | 0.86424 | 2541.3 | 0.0021264 |
| 3000 | 1068.0 | 1398.7 | 0.88600 | 3095.8 | 0.0018057 |
| 3100 | 1121.8 | 1463.5 | 0.90724 | 3753.9 | 5388E-03 |
| 3200 | 1176.2 | 1528.9 | 0.92801 | 4532.1 | $1.3157 \mathrm{E}-03$ |
| 3300 | 1231.2 | 1594.9 | 0.94832 | 5449.3 | $1.1284 \mathrm{E}-03$ |
| 3400 | 1286.7 | 1661.5 | 0.96820 | 6526.1 | $9.7077 \mathrm{E}-04$ |
| 3500 | 1342.8 | 1728.6 | 0.98766 | 7786.1 | $8.3761 \mathrm{E}-04$ |
| 3600 | 1399.4 | 1796.3 | 1.0067 | 9255.3 | $7.2478 \mathrm{E}-04$ |
| 3700 | 1456.5 | 1864.4 | 1.0254 | 10963 | $6.2888 \mathrm{E}-04$ |
| 3800 | 1514.1 | 1933.0 | 1.0437 | 12942 | $5.4713 \mathrm{E}-04$ |
| 3900 | 1572.1 | 2002.0 | 1.0616 | 15228 | $4.7723 \mathrm{E}-04$ |
| 4000 | 1630.5 | 2071.4 | 1.0792 | 861 | $4.1730 \mathrm{E}-04$ |
| 4500 | 1928.3 | 2424.3 | 1.1623 | 37963 | $2.2088 \mathrm{E}-04$ |
| 5000 | 2234.2 | 2785.4 | 1.2384 | 75690 | $1.2309 \mathrm{E}-04$ |
| 5500 | 2546.8 | 3153.1 | 1.3084 | 142940 | $7.1697 \mathrm{E}-05$ |
| 6000 | 2864.9 | 3526.3 | 1.3734 | 257641 | 4.3394E-05 |
| 6500 | 3187.6 | 3904.1 | 1.4339 | 445964 | $2.7159 \mathrm{E}-05$ |
| 7000 | 3514.2 | 4285.8 | 1.4904 | 745055 | $1.7507 \mathrm{E}-05$ |
| 7500 | 3844.1 | 4670.8 | 1.5435 | 1206399 | $1.1584 \mathrm{E}-05$ |
| 8000 | 4176.8 | 5058.7 | 1.5936 | 1899904 | $7.8460 \mathrm{E}-06$ |


| Idea | S | ert | le: | $\mathbf{N}_{2}$ |  | MW |  |  | $1 \mathrm{lb}_{\mathrm{m}} / \mathrm{lb}$ |  | AE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathbf{T} \\ \left({ }^{( } \mathbf{R}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{\mathbf{v}^{2}} \\ \left(\text { Btu/b } \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\underset{\left(\mathbf{B t u} / \mathbf{b}_{\mathbf{m}}\right)}{\hat{c}}$ | $\begin{gathered} \hat{\mathrm{B}}^{\mathbf{b}} \\ \left(\mathbf{B t u} / \mathrm{b}_{\mathrm{m}}{ }^{\mathrm{o}} \mathbf{R}\right) \end{gathered}$ | $\mathrm{P}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{r}}$ | $\begin{gathered} \mathbf{T} \\ \left({ }^{( } \mathbf{R}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \hat{0}^{0} \\ \left(\mathbf{B t u} / \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{A}}^{0} \\ \left(\mathbf{B t u / l} / \mathbf{b}_{\mathrm{m}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{S}^{\mathrm{S}_{0}} \\ \left(\mathrm{Btu} / \mathrm{b}_{\mathrm{m}}{ }^{\circ} \mathrm{R}\right. \end{gathered}$ | $\mathbf{P r}_{\text {r }}$ | $\mathrm{V}_{\mathrm{r}}$ |
| 536.67 | 0 | 38.049 | 0 | 1 | 1 | 1060 | 95.001 | 170.15 | 0.17131 | 11.203 | 0.17630 |
| 540 | 0.583 | 38.869 | 0.001523 | 1.02 | . 98482 | 1080 | 98.774 | 175.3 | 0.17616 | 11.997 | 年75 |
| 550 | 2.3382 | 41.333 | . 0060 | 1.0890 | 0.94110 | 1100 | 102.56 | 0.55 | 0.18093 | 12.832 | 73 |
| 560 | 4.0944 | 43.798 | . 010485 | 1.1594 | . 90002 | 112 | 106.35 | 185.76 | 0.18563 | 13.710 | 0.15222 |
| 570 | 5.8 | 46.265 | 0.014852 | 1.2 | . 86137 | 140 | 110.16 | 190.98 | 0.19025 | 14.634 | . 14515 |
| 580 | 7.6128 | . 734 | 0.019146 | 1.3100 | . 824 | 1160 | 113.97 | 96.22 | 0.19480 | 15. | 52 |
| 590 | 9.3750 | 1.206 | . 02337 | 1.3905 | 0.79066 | 1180 | 117.80 | 1.46 | 0.1992 | 16.623 | 0.13227 |
| 600 | 11.1 | 3.679 | . 027528 | 1.4 | . 75827 | 1200 | 121.63 | 206.71 | 0.20370 | 17.691 | 0.12639 |
| 610 | 12.906 | .154 | 0.031619 | 1.5 | 72767 | 12 | 131.27 | 219.90 | 0.21446 | 20.590 | 0.11312 |
| 620 | 14.675 | 58.632 | 0.035648 | 1.6533 | 0.69875 | 1300 | 140.97 | 233.14 | 0.22485 | 23.840 | 0.10161 |
| 630 | 16.446 | 61.112 | 0.039616 | 1.7 | 0.67137 | 1350 | 150.74 | 246.45 | 0.23489 | 27.469 | 0.091575 |
| 640 | 18.219 | 63.594 | . 0435 | 1.8476 | 64544 | 1400 | 160.56 | 259.8 | 0.24462 | 98 | 0.082793 |
| 650 | 19.994 | 66.079 | 0.047377 | 1.9508 | 0.62086 | 1450 | 170.45 | 273.26 | 0.25405 | 35.990 | 0.075072 |
| 660 | 21.772 | 68.566 | 0.051174 | 2.0 | 0.59754 | 1500 | 180.40 | 286.75 | 0.26320 | 40.948 | 0.068258 |
| 70 | 23.553 | 71.055 | 05 | 2.1697 | 0.57540 | 15 | 190.42 | 300.31 | 0.27209 | 46.418 | 0.062221 |
| 680 | 25.335 | 73.547 | 0.058609 | 2.2857 | 0.55436 | 1600 | 200.49 | 313.93 | 0.28073 | 52.438 | 0.056854 |
| 690 | 27.120 | 6.041 | 062250 | 2.4061 | 0.53435 | 1650 | 210.62 | 327.60 | 0.28915 | 59.047 | 0.052069 |
| 00 | 28. | 78.537 | . 0658 | 2.5312 | 0.51531 | 1700 | 220.80 | 341.33 | 35 | 66.286 | 0.04778 |
| 710 | 30.698 | 81.036 | 0.069387 | 2.6609 | 0.49718 | 1750 | 231.05 | 355.12 | 0.30534 | 74.198 | 0.043948 |
| 720 | 32.491 | . 538 | 0.072886 | 2.7955 | 07991 | 1800 | 241.35 | 368.97 | 0.31314 | . 827 | 494 |
| 30 | 34.286 | 86.042 | 0763 | 2.9351 | 0.46344 | 1850 | 251.70 | 2.87 | 0.3207 | 92.22 | 0.037379 |
| 740 | 36.083 | 88.549 | 0.079751 | 3.0797 | 0.44772 | 1900 | 262.11 | 396.82 | 0.32820 | 102.43 | 0.034564 |
| 750 | 37.884 | . 058 | 3119 | 3.2296 | 272 | 1950 | 272.58 | 410.83 | 3548 | 113.5 | 0,032013 |
| 760 | 39.686 | .57 | . 08644 | 3.3847 | 418 | 200 | 283 | 424.89 | 0.34260 | 25.49 | . 02969 |
| 770 | 41.492 | 96.084 | 0.089732 | 3.5453 | 0.40469 | 2100 | 304.28 | 453.17 | 0.35640 | 152.45 | 0.025668 |
| 780 | 43.300 | 601 | 2980 | 3.7115 | 159 | 2200 | 325.66 | 1.6 | 36964 | 83.76 | 308 |
| 790 | 45. | 1.1 | 0.096190 | 3.8 | . 37906 | 230 | 347.24 | 10.30 | 0.38 | 219.94 | 0.019486 |
| 800 | 46.923 | 103.64 | 0.099362 | 4.0611 | 0.36706 | 2400 | 369.00 | 539.16 | 0.39466 | 261.53 | 0.017100 |
| 810 | 48.739 | 6.17 | 0.10250 | 4.2448 | 0.35556 | 2500 | 390.94 | 568.18 | 0.40651 | 9.1 | , 15071 |
| 820 | 50.558 | 108.69 | 0.10560 | 4.4346 | 34 | 2600 | 413.05 | 597.39 | 0.41 | 363.29 | 013336 |
| 830 | 52.379 | 111.23 | 0.10867 | 4.6306 | 0.33399 | 2700 | 435.32 | 626.75 | 0.42905 | 424.76 | 0.011844 |
| 840 | 54 | 113.76 | 111 | 4.8331 | 323 | 2800 | 457.76 | 65.2 | 0.439 | 94. | 01055 |
| 850 | 56 | 116.29 | 11470 | 5.0420 | 0.31413 | 2900 | 480.34 | 685.95 | 0.45020 | 572.40 | 0.0094405 |
| 860 | 57.858 | 118.83 | 0.11767 | 5.2576 | 0.30479 | 300 | 503.07 | 715.77 | 0.46031 | 660.12 | 0.0084682 |
| 870 | 59.690 | 121.37 | 0.12061 | 5.4800 | 0.29582 | 3100 | 525.94 | 745.73 | . 470 | 758.23 | 6183 |
| 880 | 61.524 | 3.92 | 12351 | 5. | 0.28721 | 3200 | 8.95 | 75.82 | 0.47968 | 867.61 | 0.0068726 |
| 890 | 63.361 | 126.46 | 0.12639 | 5.9457 | 0.27892 | 33 | 572.08 | 806.04 | 0.48898 | 989.20 | 0.0062162 |
| 900 | 65.2 | 9, 01 | . 129 | 6. | 0.27095 | 3400 | 595. | 36.3 | 0.4980 | 124. | 0.0056364 |
| 910 | 67. | 131.56 | 13206 | 6. | 0.2632 | 3500 | 618.70 | 866.84 | 0.50687 | 1273.1 | . 0051228 |
| 920 | 68.888 | 134.12 | 0.13485 | 6.6991 | 0.25590 | 3600 | 642.17 | 897.41 | 0.51548 | 1437.5 | 0.0046666 |
| 930 | 70 | 136.67 | 0.13761 | 6. | 0.24879 | 3700 | 665.76 | 928.08 | 0.523 | 1618.4 | 0.0042601 |
| 940 | 72.587 | 139.23 | 0.14035 | 7.2396 | 0.24194 | 3800 | 689.44 | 958.86 | 0.53209 | 1817.0 | 0.0038970 |
| 950 | 74.440 | 141.79 | 0.14306 | 7.5218 | 0.23534 | 3900 | 713.22 | 989.72 | 0.54011 | 2034.5 | 0.0035719 |
| 960 | 76 | 144 | 0.14575 | 7.8 | 0.22898 | 4000 | 737.08 | 1176 | 0.5479 | 2272.3 | 0.0032801 |
| 970 | 78.154 | 146.93 | 0.14841 | 8.1110 | 0.22284 | 4500 | 857.60 | 1176.6 | 0.58468 | 3815.0 | 0.0021979 |
| 980 | 80.015 | 149.50 | 0.15104 | 8.4182 | 0.21692 | 5000 | 979.68 | 1334.2 | 0.61787 | 6092.8 | $1.5291 \mathrm{E}-03$ |
| 99 | 81.8 | 152.07 | 0.15366 | 8.73 | 0.21121 | 5500 | 1102.9 | 1492.8 | 0.64811 | 9333.2 | 1.0981E-03 |
| 1000 | 83.746 | 154.64 | 0.15624 | 9.0589 | 0.20569 | 6000 | 1226.8 | 1652.2 | 0.67584 | 13800 | $8.1012 \mathrm{E}-04$ |
| 1010 | 85.615 | 157.22 | 0.15881 | 9.3927 | 0.20037 | 6500 | 1351.1 | 1811.9 | 0.70142 | 19795 | $6.1185 \mathrm{E}-04$ |
| 1020 | 87.487 | 9.8 | 0.16 | 9.73 | 0.19522 | 7000 | 75.6 | 1971.9 | 0.72513 | 27658 | $4.7160 \mathrm{E}-04$ |
| 1030 | 89.361 | 162.39 | 0.16387 | 10.088 | 0.19025 | 7500 | 1600.3 | 2132.0 | 0.74722 | 37768 | $3.7002 \mathrm{E}-04$ |
| 40 | 91.238 | 164.97 | 0.16637 | 10.450 | 0.18544 | 8000 | 1724.9 | 2292.1 | 0.76789 | 50553 | $2.9488 \mathrm{E}-04$ |

Ideal Gas Property Table: $\mathbf{O}_{2}$

| $\begin{gathered} T \\ \left({ }^{( } \mathbf{R}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{U}}^{\mathbf{o}} \\ \left(\mathbf{B t u} / \mathbf{l b}_{\mathbf{m}}\right) \end{gathered}$ | $\begin{gathered} \hat{\mathbf{H}}^{\mathbf{n}} \\ \left(\mathbf{B t u} / \mathbf{l} \mathbf{b}_{\mathbf{m}}\right) \end{gathered}$ | $\begin{gathered} \hat{S}^{\hat{c}} \\ \left(\text { Btu/lb }{ }_{m}{ }^{0} \mathbf{R}\right) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\text {r }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 536.67 | 0 | 33.305 | 0 | 1 | 1 |
| 540 | 0.51252 | 34.024 | 0.0013359 | 1.0218 | 0.98478 |
| 550 | 2.0576 | 36.190 | 0.0053097 | 1.0893 | 0.94080 |
| 560 | 3.6113 | 38.364 | 0.0092274 | 1.1603 | 0.89930 |
| 570 | 5.1733 | 40.547 | 0.013091 | 1.2348 | 0.86012 |
| 580 | 6.7433 | 42.737 | 0.016900 | 1.3130 | 0.82310 |
| 590 | 8.3210 | 44.936 | 0.020658 | 1.3950 | 0.78809 |
| 600 | 9.9061 | 47.141 | 0.024365 | 1.4808 | 0.75498 |
| 610 | 11.498 | 49.354 | 0.028023 | 1.5707 | 0.72363 |
| 620 | 13.097 | 51.574 | 0.031632 | 1.6648 | 0.69393 |
| 630 | 14.703 | 53.800 | 0.035195 | 1.7632 | 0.66579 |
| 640 | 16.316 | 56.033 | 0.038711 | 1.8660 | 0.63910 |
| 650 | 17.934 | 58.272 | 0.042183 | 1.9733 | 0.61377 |
| 660 | 19.559 | 60.518 | 0.045610 | 2.0854 | 0.58973 |
| 670 | 21.189 | 62.769 | 0.048996 | 2.2023 | 0.56688 |
| 680 | 22.826 | 65.026 | 0.052339 | 2.3242 | 0.54516 |
| 690 | 24.467 | 67.288 | 0.055642 | 2.4513 | 0.52451 |
| 700 | 26.115 | 69.556 | 0.058905 | 2.5836 | 0.50485 |
| 710 | 27.767 | 71.829 | 0.062129 | 2.7214 | 0.48614 |
| 720 | 29.425 | 74.107 | 0.065316 | 2.8648 | 0.46831 |
| 730 | 31.087 | 76.390 | 0.068465 | 3.0139 | 0.45132 |
| 740 | 32.755 | 78.679 | 0.071578 | 3.1689 | 0.43512 |
| 750 | 34.427 | 80.972 | 0.074656 | 3.3301 | 0.41966 |
| 760 | 36.104 | 83.269 | 0.077699 | 3.4974 | 0.40491 |
| 770 | 37.786 | 85.571 | 0.080709 | 3.6712 | 0.39082 |
| 780 | 39.472 | 87.878 | 0.083685 | 3.8516 | 0.37735 |
| 790 | 41.163 | 90.189 | 0.086629 | 4.0387 | 0.36448 |
| 800 | 42.857 | 92.504 | 0.089542 | 4.2328 | 0.35218 |
| 810 | 44.556 | 94.824 | 0.092423 | 4.4339 | 0.34040 |
| 820 | 46.259 | 97.148 | 0.095274 | 4.6424 | 0.32913 |
| 830 | 47.967 | 99.475 | 0.098096 | 4.8583 | 0.31834 |
| 840 | 49.678 | 101.81 | 0.10089 | 5.0819 | 0.30800 |
| 850 | 51.393 | 104.14 | 0.10365 | 5.3134 | 0.29809 |
| 860 | 53.111 | 106.48 | 0.10639 | 5.5529 | 0.28858 |
| 870 | 54.834 | 108.83 | 0.10910 | 5.8007 | 0.27947 |
| 880 | 56.560 | 111.17 | 0.11178 | 6.0569 | 0.27072 |
| 890 | 58.290 | 113.52 | 0.11444 | 6.3217 | 0.26233 |
| 900 | 60.024 | 115.88 | 0.11707 | 6.5954 | 0.25427 |
| 910 | 61.761 | 118.23 | 0.11967 | 6.8782 | 0.24652 |
| 920 | 63.502 | 120.60 | 0.12225 | 7.1702 | 0.23908 |
| 930 | 65.246 | 122.96 | 0.12481 | 7.4718 | 0.23193 |
| 940 | 66.993 | 125.33 | 0.12734 | 7.7830 | 0.22505 |
| 950 | 68.744 | 127.70 | 0.12985 | 8.1042 | 0.21843 |
| 960 | 70.498 | 130.07 | 0.13234 | 8.4355 | 0.21206 |
| 970 | 72.255 | 132.45 | 0.13480 | 8.7772 | 0.20593 |
| 980 | 74.016 | 134.83 | 0.13724 | 9.1295 | 0.20002 |
| 990 | 75.780 | 137.22 | 0.13966 | 9.4926 | 0.19433 |
| 1000 | 77.547 | 139.61 | 0.14206 | 9.8668 | 0.18885 |
| 1010 | 79.316 | 142.00 | 0.14444 | 10.252 | 0.18357 |
| 1020 | 81.089 | 144.39 | 0.14680 | 10.649 | 0.17847 |
| 1030 | 82.866 | 146.79 | 0.14914 | 11.058 | 0.17356 |
| 1040 | 84.645 | 149.19 | 0.15146 | 11.479 | 0.16882 |

MW $=32.000 \quad \mathrm{Ib}_{\mathrm{m}} / \mathrm{lbmole}$
AE

| $\begin{gathered} \mathbf{T} \\ \left({ }^{0} \mathbf{R}\right) \\ \hline \end{gathered}$ | $\hat{\mathbf{0}}^{0}$ (Btu/lb ${ }_{\mathrm{m}}$ ) | $\qquad$ | $\begin{gathered} S^{o} \\ \left.3 t u / l b_{m}{ }^{0} R\right) \end{gathered}$ | $\mathbf{P}_{\text {r }}$ | $\mathbf{V}_{\mathbf{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1060 | 88.211 | 153.99 | 0.15604 | 12.358 | 0.15982 |
| 1080 | 91.790 | 158.81 | 0.16054 | 13.289 | 0.15144 |
| 1100 | 95.380 | 163.64 | 0.16497 | 14.273 | 0.14361 |
| 1120 | 98.981 | 168.49 | 0.16934 | 15.312 | 0.13630 |
| 1140 | 102.59 | 173.34 | 0.17363 | 16.409 | 0.12945 |
| 1160 | 106.22 | 178.20 | 0.17786 | 17.566 | 0.12305 |
| 1180 | 109.85 | 183.08 | 0.18203 | 18.786 | 0.11704 |
| 1200 | 113.49 | 187.96 | 0.18613 | 20.071 | 0.11141 |
| 1250 | 122.65 | 200.22 | 0.19614 | 23.583 | 0.098766 |
| 1300 | 131.86 | 212.54 | 0.20580 | 27.556 | 0.087907 |
| 1350 | 141.14 | 224.92 | 0.21514 | 32.033 | 0.078530 |
| 1400 | 150.47 | 237.35 | 0.22419 | 37.059 | 0.070393 |
| 14 | 159.86 | 249.84 | 0.23295 | 42.681 | 0.063303 |
| 1500 | 169.30 | 262.39 | 0.24146 | 48.952 | 0.057098 |
| 1550 | 178.80 | 274.99 | 0.24972 | 55.922 | 0.051646 |
| 1600 | 188.34 | 287.64 | 0.25776 | 63.650 | 0.046840 |
| 1650 | 197.94 | 300.34 | 0.26557 | 72.194 | 0.042587 |
| 1700 | 207.59 | 313.09 | 0.27318 | 81.616 | 0.038812 |
| 1750 | 217.29 | 325.89 | 0.28060 | 91.982 | 0.035451 |
| 1800 | 227.03 | 338.73 | 0.28784 | 103.36 | 0.032450 |
| 1850 | 236.82 | 351.63 | 0.29491 | 115.82 | 0.029762 |
| 1900 | 246.65 | 364.57 | 0.30181 | 129.45 | 0.027350 |
| 1950 | 256.54 | 377.55 | 0.30855 | 144.31 | 0.025179 |
| 2000 | 266.46 | 390.58 | 0.31515 | 160.49 | 0.023220 |
| 2100 | 286.44 | 416.76 | 0.32793 | 197.18 | 0.019845 |
| 2200 | 306.59 | 443.11 | 0.34018 | 240.24 | 0.017063 |
| 2300 | 326.89 | 469.63 | 0.35197 | 290.49 | 0.014753 |
| 2400 | 347.36 | 496.30 | 0.36332 | 348.79 | 0.012822 |
| 2500 | 367.98 | 523.12 | 0.37427 | 416.09 | 0.011195 |
| 2600 | 388.74 | 550.09 | 0.38485 | 493.42 | 0.0098186 |
| 2700 | 409.65 | 577.21 | 0.39508 | 581.87 | 0.0086463 |
| 2800 | 430.70 | 604.46 | 0.40499 | 682.63 | 0.0076430 |
| 2900 | 451.88 | 631.85 | 0.41460 | 796.97 | 0.0067803 |
| 3000 | 473.19 | 659.37 | 0.42393 | 926.26 | 0.0060351 |
| 3100 | 494.63 | 687.02 | 0.43300 | 1071.9 | 0.0053887 |
| 3200 | 516.20 | 714.79 | 0.44182 | 1235.6 | 0.0048258 |
| 3300 | 537.88 | 742.68 | 0.45040 | 1418.8 | 0.0043338 |
| 3400 | 559.69 | 770.69 | 0.45876 | 1623.5 | 0.0039023 |
| 3500 | 581.60 | 798.81 | 0.46691 | 1851.4 | 0.0035226 |
| 3600 | 603.63 | 827.04 | 0.47486 | 2104.5 | 0.0031874 |
| 3700 | 625.77 | 855.38 | 0.48263 | 2385.0 | 0.0028907 |
| 3800 | 648.01 | 883.83 | 0.49022 | 2695.2 | 0.0026272 |
| 3900 | 670.35 | 912.38 | 0.49763 | 3037.2 | 0.0023927 |
| 4000 | 692.79 | 941.02 | 0.50488 | 3413.7 | 0.0021833 |
| 4500 | 806.38 | 1085.6 | 0.53895 | 5910.3 | $1.4187 \mathrm{E}-03$ |
| 5000 | 922.09 | 1232.4 | 0.56986 | 9726.7 | $9.5785 \mathrm{E}-04$ |
| 5500 | 1039.6 | 1381.0 | 0.59818 | 15352 | $6.6757 \mathrm{E}-04$ |
| 6000 | 1158.8 | 1531.2 | 0.62433 | 23394 | $4.7791 \mathrm{E}-04$ |
| 6500 | 1279.5 | 1682.9 | 0.64861 | 34599 | $3.5006 \mathrm{E}-04$ |
| 7000 | 1401.6 | 1836.0 | 0.67130 | 49871 | $2.6154 \mathrm{E}-04$ |
| 7500 | 1525.0 | 1990.4 | 0.69261 | 70298 | $1.9880 \mathrm{E}-04$ |
| 8000 | 1649.7 | 2146.1 | 0.71270 | 97181 | $1.5339 \mathrm{E}-04$ |

Gas Phase Heat Capacity (Shomate Equation)
$\mathrm{C}_{\mathrm{p}}{ }^{\circ}=\mathbf{A}+(\mathrm{B} / 1000) \mathrm{T}+\left(\mathrm{C} / 1000^{2}\right) \mathrm{T}^{2}+\left(\mathrm{D} / 1000^{3}\right) \mathrm{T}^{3}+\left(\mathrm{E} / 1000^{-2}\right) \mathrm{T}^{-2}$
$\mathrm{C}_{\mathrm{p}}=$ heat capacity $(\mathrm{J} / \mathrm{mol} * \mathrm{~K})$
T = temperature ( $K$ )

| Compound | Symbol | Temperature <br> Range (K) | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Air * | $\mathrm{N}_{2}(\mathrm{~g}) / \mathrm{O}_{2}(\mathrm{~g})$ | 298-6000 | 26.84107 | 7.7816776 | -1.8103208 | 0.14594026 | -0.01102637 |
| Ammonia | $\mathrm{NH}_{3}(\mathrm{~g})$ | 298-1400 | 19.99563 | 49.77119 | -15.37599 | 1.921168 | 0.189174 |
| Ammonia | $\mathrm{NH}_{3}(\mathrm{~g})$ | 1400-6000 | 52.02427 | 18.48801 | -3.765128 | 0.248541 | -12.45799 |
| Oxygen | $\mathrm{O}_{2}(\mathrm{~g})$ | 298-6000 | 29.659 | 6.137261 | -1.186521 | 0.09578 | -0.219663 |
| Carbon Dioxide | $\mathrm{CO}_{2}(\mathrm{~g})$ | 298-1200 | 24.99735 | 55.18696 | -33.69137 | 7.948387 | -0.136638 |
| Carbon Dioxide | $\mathrm{CO}_{2}(\mathrm{~g})$ | 1200-6000 | 58.16639 | 2.720074 | -0.492289 | 0.038844 | -6.447293 |
| Carbon Monoxide | $\mathrm{CO}(\mathrm{g})$ | 298-1300 | 25.56759 | 6.09613 | 4.054656 | -2.671301 | 0.131021 |
| Carbon Monoxide | $\mathrm{CO}(\mathrm{g})$ | 1300-6000 | 35.1507 | 1.300095 | -0.205921 | 0.01355 | -3.28278 |
| Methane | $\mathrm{CH}_{4}(\mathrm{~g})$ | 298-1300 | -0.703029 | 108.4773 | -42.52157 | 5.862788 | 0.678565 |
| Methane | $\mathrm{CH}_{4}(\mathrm{~g})$ | 1300-6000 | 85.81217 | 11.26467 | -2.114146 | 0.13819 | -26.42221 |
| Nitrogen | $\mathrm{N}_{2}(\mathrm{~g})$ | 298-6000 | 26.092 | 8.218801 | -1.976141 | 0.159274 | 0.044434 |
| Nitrogen Dioxide | $\mathrm{NO}_{2}(\mathrm{~g})$ | 298-1200 | 16.10857 | 75.89525 | -54.3874 | 14.30777 | 0.239423 |
| Nitrogen Dioxide | $\mathrm{NO}_{2}(\mathrm{~g})$ | 1200-6000 | 56.82541 | 0.738053 | -0.144721 | 0.009777 | -5.459911 |
| Nitric Oxide | $\mathrm{NO}(\mathrm{g})$ | 298-1200 | 23.83491 | 12.58878 | -1.139011 | -1.497459 | 0.214194 |
| Nitric Oxide | $\mathrm{NO}(\mathrm{g})$ | 1200-6000 | 35.99169 | 0.95717 | -0.148032 | 0.009974 | -3.004088 |
| Nitrous Oxide | $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ | 298-1400 | 27.67988 | 51.14898 | -30.64454 | 6.847911 | -0.157906 |
| Nitrous Oxide | $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ | 1400-6000 | 60.30274 | 1.034566 | -0.192997 | 0.01254 | -6.860254 |
| Sulfuric Acid | $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})$ | 298-1200 | 47.28924 | 190.3314 | -148.1299 | 43.86631 | -0.740016 |
| Sulfuric Acid | $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})$ | 1200-6000 | 139.2289 | 9.513663 | -1.795577 | 0.118069 | -15.61486 |
| Hydrogen | $\mathrm{H}_{2}(\mathrm{~g})$ | 298-1500 | 33.1078 | -11.508 | 11.6093 | -2.8444 | -0.159665 |
| Hydrogen | $\mathrm{H}_{2}(\mathrm{~g})$ | 1500-6000 | 34.1434 | 0.503927 | 0.372036 | -0.038599 | -8.074761 |
| Hydrogen | H (g) | 298-6000 | 20.78603 | 0 | 0 | 0 | 0 |
| Helium | $\mathrm{He}(\mathrm{g})$ | 298-6000 | 20.78603 | 0 | 0 | 0 | 0 |
| Water | $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | 500-1700 | 30.092 | 6.832514 | 6.793435 | -2.53448 | 0.082139 |
| Water | $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | 1700-6000 | 41.96426 | 8.622053 | -1.49978 | 0.098119 | -11.15764 |
| Sulfur | $\mathrm{S}_{2}(\mathrm{~g})$ | 298-6000 | 33.51313 | 5.06536 | -1.05967 | 0.089905 | -0.211911 |
| Sulfur Dioxide | $\mathrm{SO}_{2}(\mathrm{~g})$ | 298-1200 | 21.43049 | 74.35094 | -57.75217 | 16.35534 | 0.086731 |
| Sulfur Dioxide | $\mathrm{SO}_{2}(\mathrm{~g})$ | 1200-6000 | 57.48188 | 1.009328 | -0.07629 | 0.005174 | -4.045401 |

* Air is assumed to consist of 79 mole\% $\mathrm{N}_{2}$ and 21 mole\% $\mathrm{O}_{2}$.
© 1991, 1994, 1996, 1997, 1998, 1999, 2000, 2001 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.


## For Metric Units

| Unit Prefix | Multiple | Unit Prefix | Multiple |
| :---: | :---: | :---: | :---: |
| tetra (T) | $10^{12}$ | deci (d) | $10^{-1}$ |
| giga (G) | $10{ }^{9}$ | centi (c) | $10^{-2}$ |
| mega (M) | $10{ }^{6}$ | milli (m) | $10^{-3}$ |
| kilo (k) | $10^{3}$ | micro ( $\mu$ ) | $10^{-6}$ |
| hecto (h) | $10^{2}$ | nano (n) | $10^{-9}$ |
| deka (da) | $10{ }^{1}$ | pico (p) | $10^{-12}$ |

## Conversion Factors

| Length | m | ft | in | yd | mi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 m | 1 | 3.2808 | 39.3701 | 1.0936 | 6.2137E-04 |
| 1 ft | 0.30480 | 1 | 12 | 0.33333 | 1.894E-04 |
| 1 in | 0.02540 | 0.08333 | 1 | 0.027777 | $1.5782 \mathrm{E}-05$ |
| 1 yd | 0.91440 | 3 | 36 | 1 | 5.6812E-04 |
| 1 mi | 1609.34 | 5280 | 63360 | 1760 | 1 |


| Mass | kg | $\mathrm{lb}_{\mathrm{m}}$ | slug | ton | tonne |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 kg | 1 | 2.20462 | 0.06852 | 0.001102 | 0.001 |
| $1 \mathrm{lb}_{\mathrm{m}}$ | 0.453592 | 1 | 0.031081 | 0.00050 | $4.5359 \mathrm{E}-04$ |
| 1 slug | 14.5939 | 32.174 | 1 | 0.01609 | 0.01459 |
| 1 ton | 907.1847 | 2000 | 62.1619 | 1 | 0.90718 |
| 1 tonne | 1000 | 2204.62 | 68.5218 | 1.10231 | 1 |


| Area | $1 \mathrm{~m}^{2}$ | $1 \mathrm{ft}^{2}$ | $1 \mathrm{in}^{2}$ |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{~m}^{2}$ | 1 | 10.7639 | 1550.00 |
| $1 \mathrm{ft}^{2}$ | 0.092903 | 1 | 144 |
| $\mathbf{1} \mathrm{in}^{2}$ | 0.00064516 | 0.0069444 | 1 |
|  |  |  |  |

Example
$1 \mathrm{~m}^{2}=10.7639 \mathrm{ft}^{\mathbf{2}}$

| Volume | $\mathrm{m}^{3}$ | $\mathrm{ft}^{3}$ | L | US gallon |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{~m}^{3}$ | 1 | 35.3147 | 1000 | 264.172 |
| $1 \mathrm{ft}^{3}$ | 0.028317 | 1 | 28.317 | 7.48052 |
| 1 L | 0.001 | 0.035315 | 1 | 0.264172 |
| 1 US gallon | 0.0037854 | 0.133681 | 3.78541 | 1 |


| Velocity | $\mathbf{m} / \mathrm{s}$ | $\mathbf{f t} / \mathrm{s}$ | $\mathrm{mi} / \mathrm{h}$ |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{~m} / \mathrm{s}$ | 1 | 3.28084 | 2.23964 |
| $1 \mathrm{ft} / \mathrm{s}$ | 0.30480 | 1 | 0.68182 |
| $1 \mathrm{mi} / \mathrm{h}$ | 0.44704 | 1.46667 | 1 |
|  |  |  |  |


| Temperature | K | R |
| :---: | :---: | :---: |
| 1 K | 1 | $1 / 1.8$ |
| 1 R | 1.8 | 1 |
|  |  |  |

Example
$\mathrm{T}\left({ }^{\mathrm{o}} \mathrm{C}\right)=\mathrm{T}(\mathrm{K})-273.15=\left[\mathrm{T}\left({ }^{\mathbf{0}} \mathrm{F}\right)-32\right] / 1.8$
$\mathbf{T}\left({ }^{\mathbf{0}} \mathbf{F}\right)=\mathrm{T}\left({ }^{\circ} \mathrm{R}\right)-459.67=1.8 \mathrm{~T}\left({ }^{\mathbf{0}} \mathrm{C}\right)+32$

## Conversion Factors

| Density |  | $\mathrm{kg} / \mathrm{m}^{3}$ | $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ |
| :--- | :---: | :---: | :---: |
| $1 \mathrm{~kg} / \mathrm{m}^{3}$ | 1 | 0.06243 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{in}^{3}$ |
| $1 \mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3}$ | $16.613 \mathrm{E}-05$ |  |  |
| $1 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}^{3}$ | 27679 | 1 | $5.787 \mathrm{E}-04$ |
|  |  |  |  |


| Force | N | $\mathrm{lb}_{\mathrm{f}}$ | dyne | $\mathrm{kg}_{\mathrm{f}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 N | 1 | 0.224809 | 100000 | 0.101972 |
| $1 \mathrm{lb}_{\mathrm{f}}$ | 4.44822 | 1 | 444822 | 0.4536 |
| 1 dyne | 0.00001 | $2.2481 \mathrm{E}-06$ | 1 | 1.01972E-06 |
| $1 \mathrm{~kg}_{\mathrm{f}}$ | 9.80665 | 2.20462 | 980665 | 1 |
| $1 \mathrm{~N}=\mathrm{kg}-\mathrm{m} / \mathrm{s}^{2}$ |  |  |  |  |


| Pressure | Pa | bar | atm | torr | $1 b_{f} / \mathrm{in}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Pa | 1 | 1.0E-05 | $9.86923 \mathrm{E}-06$ | 0.00750064 | 1.45037E-04 |
| 1 bar | $1.0 \mathrm{E}+05$ | 1 | 0.986923 | 750.064 | 14.5038 |
| 1 atm | 101325 | 1.01325 | 1 | 760 | 14.6959 |
| 1 torr | 133.322 | 1.33322E-03 | 1.31579E-03 | 1 | 0.0193367 |
| $1 \mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ | 6894.76 | 0.068948 | 0.0680461 | 51.7151 | 1 |
| $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~kg} / \mathrm{m}-\mathrm{s}^{2}$ |  |  |  |  |  |


| Energy | J | cal | Btu | $\mathbf{l b}_{\text {f }} \mathrm{ft}$ | erg | eV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 J | 1 | 0.238845 | $9.47817 \mathrm{E}-04$ | 0.73756 | $1.00 \mathrm{E}+07$ | $6.242 \mathrm{E}+18$ |
| 1 cal | 4.1868 | 1 | 0.0039683 | 3.088025 | $4.1868 \mathrm{E}+07$ | $2.613 \mathrm{E}+19$ |
| 1 Btu | 1055.055 | 251.996 | 1 | 778.169 | $1.055 \mathrm{E}+10$ | $6.585 \mathrm{E}+21$ |
| $1 \mathrm{lb}_{\mathrm{f}} \mathrm{ft}$ | 1.355818 | 0.323831 | 0.00128507 | 1 | $1.35582 \mathrm{E}+07$ | $8.462 \mathrm{E}+18$ |
| 1 erg | $1.00 \mathrm{E}-07$ | $2.388 \mathrm{E}-08$ | 9.478E-11 | $7.376 \mathrm{E}-08$ | 1 | $6.242 \mathrm{E}+11$ |
| 1 eV | $1.6022 \mathrm{E}-19$ | 3.827E-20 | $1.5185 \mathrm{E}-22$ | 1.182E-19 | 1.6022E-12 | 1 |


| Power | W | hp | Btu/hr | $\mathrm{lb}_{\mathrm{f}} \mathrm{ft} / \mathrm{s}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 W | 1 | 0.001341 | 3.413 | 0.73756 |
| 1 hp | 745.7 | 1 | 2544.53 | 550.001 |
| $1 \mathrm{Btu} / \mathrm{hr}$ | 0.293000 | 3.9003 | 1 | 0.216150 |
| $1 \mathrm{lb}_{\mathrm{f}} \mathrm{ft} / \mathrm{s}$ | 1.35582 | 0.00181818 | 4.62641 | 1 |

Examples
$1 \mathrm{Btu}=1055.1 \mathrm{~J}$
$1 \mathrm{hP}=745.7 \mathrm{~W}$

## Physical Constants

Universal Gas Constant

| 8.31434621 | $\mathrm{J} / \mathrm{mol} \mathrm{K}$ |
| :---: | :---: |
| 8.314344621 | $\mathbf{P a ~ m}{ }^{3} / \mathrm{mol} \mathrm{K}$ |
| 1.985884 | cal / mol K |
| 0.08205746 | $\operatorname{atm} \mathrm{L} / \mathrm{mol} \mathrm{K}$ |
| 1.985884 | Btu / lbmol ${ }^{0} \mathrm{R}$ |
| 1545.34896 | $\mathrm{lb}_{\mathrm{f}} \mathrm{ft} / \mathrm{lbmol}^{0} \mathrm{R}$ |
| 10.73159 | psift ${ }^{3} / \mathrm{lbmol}^{0} \mathrm{R}$ |
| 0.7302413 | $\operatorname{atmft}{ }^{3} / \operatorname{lbmol}{ }^{0} \mathrm{R}$ |

Standard Acceleration of Gravity

| $9.80665 \mathrm{~m} / \mathrm{s}^{2}$ |
| :---: |
| $32.174 \mathrm{ft} / \mathrm{s}^{2}$ |


[^0]:    A large pot has a diameter of 14 cm . It is filled with water and covered with a heavy lid that weighs 3.7 kg . At what temperature does the water begin to boil if ambient pressure is 101.325 kPa ?

[^1]:    - Examples of bodies that are nearly perfect thermal reservoirs include a lake, an ocean and the Earth's atmosphere.
    - For practical purposes, their temperature does not change because my kitchen refrigerator is operating.
    - Another good example of a thermal reservoir is a body in which phase equilibrium exists.
    - The temperature of an ice-water bath does not change as heat is transferred into the bath.
    - Instead the heat transferred supplies the latent heat of fusion required to melt some of the ice.

[^2]:    Reference States: $\quad \mathrm{U}=0$ and $\mathrm{S}=0$ at for saturated liquid at the triple point $\left(0.01^{\circ} \mathrm{C}\right.$ and 0.61165 kPa$)$.

[^3]:    Reference States:
    $\mathrm{H}=0 \mathrm{~kJ} / \mathrm{kg}$ for saturated liquid at- $40^{\circ} \mathrm{C}$.
    $\mathrm{S}=0 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for saturated liquid at $-40^{\circ} \mathrm{C}$.

[^4]:    Reference States: $\quad \mathrm{H}=85.985 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.
    $\mathrm{S}=0.23885 \mathrm{Btu} / \mathrm{b}_{\mathrm{m}}-{ }^{\circ} \mathrm{R}$ for Saturated Liquid at $32^{\circ} \mathrm{F}$.

