

Copyright © 2014 B-Cubed - All Rights Reserved.

LearnThermo

Introduction to Engineering Thermodynamics

4th Edition 2014

By

William B. Baratuci B - Cubed Editor Cover Illustration Layout Illustrations William Baratuci Ariana Pinto and William Baratuci William Baratuci William Baratuci Jennifer Kilwien Kory Mills

Copyright © 2014 by B-Cubed. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying recording, scanning or otherwise except as permitted under Sections 107 or 108 of the United States Copyright Act, without the prior written permission of B-Cubed. Requests for permission should be emailed to Dr.B@LearnThermo.com. To order books or for customer service, send email to Dr.B@LearnThermo.com.

Printed in the United States of America

1098765432

Foreword

This **Workbook** is an integral part of the LearnThermo learning package for the Introduction to Thermodynamics Course. This **Workbook** is intended to provide five benefits to the student of thermodynamics.

- 1- The **Workbook** provides an off-line reference for the LearnThermo website.
- 2- It provides a structured environment for taking **notes** both in class and while interacting with the LearnThermo website.
- 3- It provides <u>all</u> of the <u>thermodynamic data</u> to solve the homework problems, test problems and many real-world problems.
- 4- The **Workbook** contains brief summaries of the chapters that make up the LearnThermo website. These include all of the key equations and concepts from each of the chapters.
- 5- The **Workbook** also contains the <u>151 example problems</u> from the LearnThermo website. These problems are worked out in great detail and the solutions follow the problem solving procedure developed on the LearnThermo website.

LearnThermo.com is an interactive website designed to help students learn thermodynamics without excessive reading. Learning still takes time and effort, but the mini-lecture format of each screen in the LearnThermo website allows students to see and read equations and graphs as well as to <u>hear an explanation</u> of their meaning, use and function.

How to Use This Workbook

Although the LearnThermo website is the centerpiece of this learning package, the key to success is the effective combination of this **Workbook** with the LearnThermo website. This **Workbook** is <u>filled</u> with hyperlinks to specific pages on the LearnThermo <u>website</u>. The <u>header</u> and <u>footer</u> on almost every page are <u>linked</u> to the <u>website</u>. Almost every <u>image</u> in the <u>chapters</u> of the **Workbook** is <u>linked</u> to the related information on the website. Some of the <u>links</u> in Chapter 1 are highlighted to help you learn to use the links.

A good strategy is to take **notes** while studying the LearnThermo website. It might be best to take those **notes** in this **Workbook** using the highlighting and sticky-note capabilities of **Acrobat Reader 11** (or newer). Then, you can bring this **Workbook** to class. You can ask **questions** in class based on the **notes** derived from the LearnThermo website and <u>supplement</u> your **notes** with information from the lecture. This process of <u>repeated exposure</u> to the material, linked by this **Workbook**, helps many students learn thermodynamics faster, more easily and more thoroughly. I hope it works well for you.

Learning thermodynamics is challenging. I hope that the LearnThermo learning package makes it easier. Enjoy the learning process as you might enjoy practicing and training for a sporting event.

TABLE OF CONTENTS

Chapter 1 –	Introduction: Basic Concepts of Thermodynamics	6
CHAPTER 2 –	Properties of Pure Substances	7
Chapter 3 –	Heat Effects	9
Chapter 4 –	The First Law of Thermodynamics – Closed Systems	10
Chapter 5 –	The First Law of Thermodynamics – Open Systems	12
Chapter 6 –	The Second Law of Thermodynamics	14
Chapter 7 –	Entropy	15
CHAPTER 8 –	Thermodynamics of Flow Processes	16
Chapter 9 –	Power Systems	18
Chapter 10 –	Refrigeration and Heat Pump Systems	20

LEARNTHERMO NOTEBOOK

Chapter 1 –	Introduction: Basic Concepts of Thermodynamics	22
Chapter 2 –	Properties of Pure Substances	62
Chapter 3 –	Heat Effects	126
Chapter 4 –	The First Law of Thermodynamics – Closed Systems	164
Chapter 5 –	The First Law of Thermodynamics – Open Systems	216
Chapter 6 –	The Second Law of Thermodynamics	269
Chapter 7 –	Entropy	316
CHAPTER 8 –	Thermodynamics of Flow Processes	380
Chapter 9 –	Power Systems	440
Chapter 10 –	Refrigeration and Heat Pump Systems	488

APPENDICES - THERMODYNAMIC DATA TABLES

Appendix A –	STEAM TABLES	
	SI Units	525
	American Engineering Units	534
Appendix B –	AMMONIA TABLES SI Units American Engineering Units	544 549
Appendix C –	R-134A TABLES	
	SI Units	555
	American Engineering Units	561
Appendix D –	IDEAL GAS PROPERTY TABLES	
	SI Units	567
	American Engineering Units	574
Appendix E -	IDEAL GAS, CONSTANT PRESSURE HEAT CAPACITY	
	Shomate Equation Constants for Common Gases	581
Appendix F -	Conversion Factors and the Universal Gas Constant	582

Thermodynamics

Comes from the Greek words therme (heat) and dynamis (power).

Classical Thermodynamics

Characterizes the behavior of <u>large groups</u> of molecules based on properties of the entire group of molecules, such as **T & P**.

Pure Component Thermodynamics

Characterize the behavior of <u>systems</u> that contain a pure component.

Phase Equilibrium Thermodynamics

Characterizes the behavior of multiple phases that exist in equilibrium with each other.

LearnThermo.com

1st Law of Thermo

Energy can neither be created nor destroyed; it can only change forms.

2nd Law of Thermo

Energy in the form of heat \underline{only} flows spontaneously from regions of higher **T** to regions of lower **T**.

Internal Energy

Energy associated with the <u>structure</u> and <u>motion</u> of molecules within the system.

Potential Energy

Energy associated with the <u>position</u> of the system within a potential field.

$$E_{p} = m \frac{g}{g_{c}} z$$

Kinetic Energy

Energy associated with the net linear or angular velocity of the system.

$$\mathbf{E}_{\mathrm{K}} = \frac{1}{2} \frac{\mathrm{m}\,\mathrm{v}^2}{\mathrm{g}_{\mathrm{c}}}$$

Fundamental Dimensions

Mass, Length, Time, Temperature, moles and sometimes Force.

Derived Dimensions

Can be calculated or derived by multiplying or dividing fundamental dimensions. Examples: area, velocity, density, and volume.

Dimensions

Multiplication/Division is always possible with any dimensions. Addition/Subtraction is only allowed when both quantities have the same dimensions. (If an eqn follows this rule the eqn is said to be dimensionally homogeneous.)

Closed System

A fixed amount of mass. No mass can cross the boundary of the system.

Open System

A fixed region of space, a device, or a collection of devices in which mass crosses the boundary during a process.

State

The condition of a piece of matter or system as determined by its intensive properties.

Process

When the value of a property of the system changes the system is in a different state.

Process Path

The series of states that a system passes through as it moves from an initial state to a final state.

Isobaric- Constant Pressure Isothermal- Constant Temperature Isochoric- Constant Volume

Properties

Characteristics of a substance that do not depend on the events that brought the substance to its current condition. Examples include: **P**, **T**, **m**, **V**, & **U**.

Intensive Properties

Do not depend on the size of the system during a process. Examples include: **P** & **T**.

Extensive Properties

Do depend on the size of the system. Examples include: **m**, **V**, & **U**.

Cycle

A process in which the initial and final states are the same.

Thermodynamic Cycle

When 2 or more processes occur and the system returns to its initial states.

Quasi-Equilibrium

A process during which the system only deviates from equilibrium by an infinitesimal amount.

Molar Properties

The ratio of any extensive property to the number of moles in the system. (intensive properties) Examples include: molar volume, and molar internal energy.

Specific Properties

The ratio of any extensive property to the mass of the system. (Intensive property) Examples include: specific volume and specific internal energy.

<u>Equilibrium</u>

A system is at equilibrium when no unbalanced potentials or driving forces exists within the system boundary.

<u>Thermal Equilibrium</u>

No **T** driving force

Chemical Equilibrium

No chemical driving force

Phase Equilibrium

No mass transfer driving force

Mechanical Equilibrium

No unbalanced forces

Pure Substance

A substance comprised of a <u>single</u> chemical element or compound.

Gas Phase

Molecules move randomly with more vibrational, rotational & translational energies than the liquid & solid phases & are separated by <u>large distances</u>, & travel a long way between collisions.

Miscible

Multiple liquid components that <u>completely dissolve</u> in each other. (Ex. Water and Vinegar)

Subcooled Liquid

A liquid at a T <u>below</u> its b.p. $(T < T_{sat})$ for the existing **P**.

Saturated Liquid

A liquid at exactly T_{sat} at which it would boil at the existing $P(P = P^*)$.

Saturated Mixture

A mixture of sat. liquid & sat. vapor in equilibrium at T_{sat} and P^* .

Saturated Vapor

A vapor at exactly Tsat at which it would condense at the existing $P(P = P^*)$.

Superheated Vapor

A vapor at a T <u>above</u> its b.p. $(T > T_{sat})$ for the existing **P**.

Partial Pressure

The fraction of the total \mathbf{P} in a gas phase due to the presence of 1 particular substance.

 $\frac{Pure \ Substance}{At \ equilibrium:} \quad \begin{array}{l} P_i = (y_i)(P_{total}) \\ P_i = P_{total} = P^* \end{array}$

Single Condensible
$$P_i = (y_i)(P_{total})$$
Species $P_j = (y_j)(P_{total})$ $y_i + y_j = 1$ $P_i + P_j = P_{tot}$ At equilibrium: $P = P_i = P_i^*(T)$

LearnThermo.com

Homogeneous Mixture

A <u>uniform</u> mixture that can often be treated as a pure substance.

Liquid Phase

Molecules move randomly with more vibrational, rotational & translational energies than the solid phase but less than the gas phase but are much closer together than in the gas phase & cannot travel far between collisions.

Immiscible

Multiple liquid components that do not dissolve in each other. (Ex. Oil and Water)

<u>Saturated Liquid Curve</u> The curve where only sat liq exists.

<u>Saturated Vapor Curve</u> The curve where only sat vap exists.

<u>Critical Point</u>

pt where the sat. liq phase = sat. vap phase

$$\mathbf{x} = \frac{\mathbf{m}_{vap}}{\mathbf{m}} = \frac{\mathbf{m}_{vap}}{\mathbf{m}_{vap} + \mathbf{m}_{liq}}$$
$$\hat{\mathbf{V}} = \hat{\mathbf{V}}_{satliq} + \mathbf{x} (\hat{\mathbf{V}}_{satvap} - \hat{\mathbf{V}}_{satliq})$$

Linear Interpolation

Humidity Refers to an <u>air-water</u> system.

Saturation

Refers to any gas-vapor system.

Relative Humidity/Saturation

$$h_{r} = s_{r} = \frac{P_{i}}{P_{i}^{*}(T)} \times 100\%$$

Absolute Humidity/Saturation

$$\mathbf{h}_{a} = \mathbf{s}_{a} = \frac{\mathbf{P}_{i} \mathbf{M} \mathbf{w}_{i}}{\mathbf{P}_{j} \mathbf{M} \mathbf{w}_{j}} \quad \begin{array}{l} \text{IDEAL GAS} \\ \text{PHASE ONLY} \end{array}$$

Heterogeneous Mixture

A <u>non-uniform</u> mixture that cannot be treated as a pure substance.

Solid Phase

Molecules move with less vibrational, rotational & translational energies than the gas & liquid phases & are <u>very close</u> together & cannot travel far at all before they collide.

Vaporization or Boiling

Process where a liq changes into a vap (reverse process is condensation)

Melting

Process where a solid changes into a liq (reverse process is freezing or fusion)

Sublimation

Process where a solid evaporates <u>directly</u> into a vap without melting first. (reverse process is desublimation)

Triple Point

pt where solid, liq & vap <u>can all exist</u> in equilibrium.

$$\mathbf{y}_{?} = \mathbf{y}_{1} + (\mathbf{x}_{?} - \mathbf{x}_{1}) \left[\frac{\mathbf{y}_{2} - \mathbf{y}_{1}}{\mathbf{x}_{2} - \mathbf{x}_{1}} \right]$$

$\begin{array}{l} \underline{Evaporation} \\ \text{Occurs at liq-vap interface} \\ P_{total} > P_{H_2O}^*(T_{liq}) > P_{H_2O} \end{array}$

 $P_{total} > P_{H_2O}(I_{liq}) > P_{H_2O}$ Boiling

 $\begin{aligned} \mathbf{P}^*_{\mathbf{H}_2\mathbf{O}}(\mathbf{T}_{\mathsf{liq}}) &\geq \mathbf{P}_{\mathsf{total}} \\ \underline{\mathbf{Boiling Point}}_{\mathsf{Lowest T that a pure liq can boil at P.} \end{aligned}$

 $\mathbf{P}_{\mathbf{H}_{2}\mathbf{O}}^{*}(\mathbf{T}_{\mathbf{b}\mathbf{p}}) = \mathbf{P}_{\mathbf{total}}$

<u>Normal Boiling Point (T_{nbp})</u> Lowest T that a pure liq can boil at 1 atm.

 $P_{H_2O}^*(T_{nbp}) = 1$ atm

LearnThermo.com

Equations of State (EOS)

An equation that relates P, T & molar V of a substance.

Ideal Gas EOS

Good approximation at high T (above 0° C) & low **P** (1 atm or less).

$$PV = nRT$$

$$P\widetilde{V} = RT$$

Graphical EOS:

Compressibility Charts Z accounts for the deviation from IG.

$$PV = nZRT$$
$$P\widetilde{V} = ZRT$$
$$Z = \frac{PV}{nRT}$$

Virial EOS

Based on the IG EOS where Z is expanded as an infinite power series.

$$\mathbf{Z} = \frac{\mathbf{P}\widetilde{\mathbf{V}}}{\mathbf{R}\mathbf{T}} = \mathbf{1} + \frac{\mathbf{B}(\mathbf{T})}{\widetilde{\mathbf{V}}} + \frac{\mathbf{C}(\mathbf{T})}{\widetilde{\mathbf{V}}^2} + \dots$$

Truncated Virial EOS

$$\mathbf{Z} = \frac{\mathbf{P}\widetilde{\mathbf{V}}}{\mathbf{R}\mathbf{T}} = \mathbf{1} + \frac{\mathbf{B}(\mathbf{T})}{\widetilde{\mathbf{V}}}$$

Van	der	Waal	EOS	
-				

Constant b accounts for the volume the molecules occupy.

 a/\tilde{V}_2 accounts for attractive forces between dependence of the Van der Waal molecules (Van der Waal's forces).

$$P = \frac{RT}{\tilde{V} - b} - \frac{a}{\tilde{V}^2}$$
$$a = \frac{27 R^2 T_C^2}{64 P_C} [=] \frac{P \cdot V^2}{mol^2}$$
$$b = \frac{RT_C}{C} [=] \frac{V}{C}$$

$$b = \frac{RT_{\rm C}}{8P_{\rm C}} [=] \frac{V}{\rm mol}$$

Universal Gas Constant 8.3144621 kJ/kmol•K 8.3144621 kPa•m³/kmol•K 0.083144621 bar•m³/kmol•K R = 82.05746 L•atm/kmol•K 1.985884 Btu/lbmol•R 1545.348 ft•lb_f/lbmol•R

10.73159 psia-ft³ / lbmol-R

Critical Properties

Properties at the critical point such as the critical **T**, critical **P** & critical molar from critical properties. V (although the ideal critical molar volume is ofen used instead).

$$\widetilde{\mathbf{V}}_{\mathrm{C}}^{\mathrm{ideal}} = \mathbf{R}\mathbf{T}_{\mathrm{C}} / \mathbf{P}_{\mathrm{C}}$$

Species		<u>ω</u>
Ammonia		0.250
Argon	-	0.004
Carbon Dioxide	e	0.225
Carbon Monox	ide	0.049
Chlorine		0.073
Ethane	0.	098
Hydrogen Sulfi	de	0.100
Methane		0.008
Methanol		0.559
Nitrogen		0.040
Oxygen	0.	021
Propane	0.	152
Sulfur Dioxide		0.251
Water	0.	344

Redlich-Kwong

Modification of the Van der Waal EOS which includes a correction for the T attraction term.

$$P = \frac{RT}{\widetilde{V} - b} - \frac{a}{\widetilde{V}(\widetilde{V} + b)T^{1/2}}$$
$$a = 0.42748 \frac{R^2 T_C^{5/2}}{P_C}$$
$$b = 0.08664 \frac{R T_C}{P_C}$$

Ideal Gas at Std. Cond. 0°C, 1atm: 22.415L/1	nol
$\frac{\text{Ideal Gas EOS Validity}}{\epsilon = \frac{X_{\text{ideal}} - X_{\text{true}}}{X_{\text{true}}} \times 100$	
$ \varepsilon < 1\%$ if :	
$\widetilde{\mathbf{V}} = \mathbf{RT}/\mathbf{P} > 20 \mathbf{L}/\mathbf{mol}$	for most gases
$\widetilde{\mathbf{V}} = \mathbf{RT}/\mathbf{P} > 5 \mathbf{L} / \mathbf{mol}$	for diatomic & noble gases

Reduced Properties

Dimensionless properties determined

$$P_{R} = \frac{P}{P_{C}} \qquad T_{R} = \frac{T}{T_{C}}$$
$$\widetilde{V}_{R}^{ideal} = \frac{\widetilde{V}}{\widetilde{V}_{C}^{ideal}} = \frac{\widetilde{V}}{RT_{C}/P_{C}}$$

Estimating the first virial coefficient:

$$B = \frac{RT_{\rm C}}{P_{\rm C}} (B_0 + \omega B_1)$$
$$B_0 = 0.083 - \frac{0.422}{T_{\rm R}^{1.6}}$$
$$B_1 = 0.139 - \frac{0.172}{T_{\rm R}^{4.2}}$$

Soave-Redlich-Kwong

$$P = \frac{RT}{\widetilde{V} - b} - \frac{\alpha a}{\widetilde{V}(\widetilde{V} + b)}$$

$$a = 0.42748 \frac{R^2 T_c^2}{P_c}$$

$$b = 0.08664 \frac{RT_c}{P_c}$$

$$m = 0.48508 + 1.55171 \omega - 0.1561 \omega^2$$

$$\alpha = \left[1 + m\left(1 - \sqrt{T_R}\right)\right]^2$$

Real Gases

U is a strong function of T & a weak function of P. H is a function of <u>both</u> T & P.

NIST WebBook

http://webbook.nist.gov

<u>Molar Heat Capacity</u>

Energy required to raise the \mathbf{T} of a mole of a substance by <u>1 degree</u>.

Specific Heat Capacity

Energy required to raise the \mathbf{T} of a unit mass of a substance by <u>1 degree</u>.

Heat Capacity Ratio

$$\gamma = \frac{\widetilde{C}_{P}}{\widetilde{C}_{V}} = \frac{\widehat{C}_{P}}{\widehat{C}_{V}}$$

Change in Internal Energy

As a function of IG const V heat capacity.

$$\Delta \widetilde{\mathbf{U}} = \int_{T_1}^{T_2} \widetilde{\mathbf{C}}_{\mathbf{V}}^{\mathbf{o}} \, \mathbf{dT}$$

IG Heat Capacity Approx

For near room temperature

$$\widetilde{C}_{P}^{o} = (5/2)R$$
 Monatomic Gases:
 $\widetilde{C}_{P}^{o} = (7/2)R$ Diatomic Gases:

Process Path

The actual series of states that the system passes through as it moves from the initial state to the final state during a process.

<u>State Variables</u>

They are not path dependent.

LearnThermo.com

<u>Enthalpy</u> H = U + PV

Ideal Gases U is a function of T <u>only</u>. H is a function of T <u>only</u>.

NIST Thermophysical Properties of

<u>Fluid Systems</u> http://webbook.nist.gov/chemistry/fluid/

Constant V Heat Capacity

$$\widetilde{\mathbf{C}}_{\mathbf{V}} = \left(\frac{\partial \widetilde{\mathbf{U}}}{\partial \mathbf{T}}\right)_{\widetilde{\mathbf{V}}}$$

Constant V Specific Heat

IG Heat Capacities U & H are functions of T only. Indicates IG

$$\widetilde{\mathbf{C}}_{\mathbf{P}}^{\circ} = \left(\frac{\partial \widetilde{\mathbf{H}}}{\partial \mathbf{T}}\right) \qquad \widetilde{\mathbf{C}}_{\mathbf{V}}^{\circ} = \left(\frac{\partial \widetilde{\mathbf{U}}}{\partial \mathbf{T}}\right)$$

<u>Change in Enthalpy</u> As a function of IG const **P** heat capacity.

$$\Delta \widetilde{\mathbf{H}} = \int_{T_1}^{T_2} \widetilde{\mathbf{C}}_P^{o} \, \mathbf{dT}$$

For Liq & Solids (over a moderate T & P range)

$$\widehat{\mathbf{C}}_{\mathbf{P}} = \widehat{\mathbf{C}}_{\mathbf{V}}$$
$$\widetilde{\mathbf{C}}_{\mathbf{P}} = \widetilde{\mathbf{C}}_{\mathbf{V}}$$

Hypothetical Process Path

A path that connects the initial & final states and allows you to solve the problem easier. Construct a path in which each step involves a change in just <u>one</u> key intensive property (usually \mathbf{P} , \mathbf{T} , or \mathbf{V}).

Enthalpy of Vaporization

Energy needed to convert 1 mol of sat liq into 1 mol sat vap at $T_{sat} \& P^*$.

$$\Delta \widehat{\mathbf{H}}_{\mathrm{vap}} = \widehat{\mathbf{H}}_{\mathrm{sat\,vap}} - \widehat{\mathbf{H}}_{\mathrm{sat\,liq}}$$

<u>Clapeyron Equation</u> Relationship of how **P*** depends on **T**.

$$\frac{dP^{*}}{dT} = \frac{\Delta \widetilde{H}_{vap}}{T\left(\widetilde{V}_{sat vap} - \widetilde{V}_{sat liq}\right)}$$

Incompressible Liquid & Solid

U is a function of T <u>only</u>. H is a function of <u>both</u> T & P.

Reference State

A state (**T**, **P**, phase) where 1 property is arbitrarily assigned a value of zero & from this all other properties are determined.

Constant P Heat Capacity

$$\widetilde{\mathbf{C}}_{\mathbf{P}} = \left(\frac{\partial \widetilde{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$$

Constant P Specific Heat

$$\widehat{\mathbf{C}}_{\mathbf{P}} = \left(\frac{\partial \widehat{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$$

Gibbs Phase Rule

Lets you determine how many intensive variables you can choose arbitrarily for a system.

 $^{\circ}\mathbf{F} = \mathbf{C} - \mathbf{P} + \mathbf{2}$

IG Heat Capacity Relationships

$$\widetilde{\mathbf{C}}_{\mathbf{P}}^{o} = \widetilde{\mathbf{C}}_{\mathbf{V}}^{o} + \mathbf{R}$$
$$\widehat{\mathbf{C}}_{\mathbf{P}}^{o} = \widehat{\mathbf{C}}_{\mathbf{V}}^{o} + \frac{\mathbf{R}}{\mathbf{MW}}$$

NIST IG Heat Capacity Polynomial

Approx.in terms of **T** where **a**, **b**, **c**, **d** & **e** are constants for a given substance.

$$\widetilde{C}_{P}^{o} = \mathbf{A} + \mathbf{B}\mathbf{t} + \mathbf{C}\mathbf{t}^{2} + \mathbf{D}\mathbf{t}^{3} + \mathbf{E}/\mathbf{t}^{2}$$
$$\widetilde{C}_{P}^{o} \begin{bmatrix} \mathbf{z} \end{bmatrix} \mathbf{J}/\mathbf{mol} \cdot \mathbf{K} \quad \mathbf{t} = \mathbf{T}(\mathbf{K})/1000$$

IG HPP Simplification

The gas must be considered an IG at <u>both</u> the initial & final states.

$$\Delta \widetilde{\mathbf{H}} = \int_{T_1}^{T_2} \widetilde{\mathbf{C}}_P^o \, \mathbf{dT}$$

<u>Clausius-Clapeyron Equation</u>

- 1- Plot $Ln P^*$ vs. 1/T(K) and use the slope to determine $\Delta Hvap$.
- **2-** Linearly interpolate on **Ln P*** vs. **1/T(K)** to determine **P*** at an intermediate T.
- **3-** Correlate **P***, **T** data by fitting it to an eqn in terms of **Ln P*** vs. **1/T(K)**.

$$Ln P^* = -\frac{\Delta \tilde{H}_{vap}}{R} \frac{1}{T} + C$$
Antoine
Equation

$$Log_{10}P^* = A - \frac{B}{T+C}$$

<u>Work</u>

Is energy transfer associated with a force acting through a distance.

$$W = \int_{1}^{\infty} F dx$$

Work Rate (Power)

$$\dot{\mathbf{W}} = \frac{\delta \mathbf{W}}{\mathrm{dt}}$$
 Watt (W): $1 \mathbf{W} = 1 \mathrm{J/s}$

Accelerational Work

W associated w/ change in velocity of sys.

$$\mathbf{W}_{\mathrm{a}} = \frac{\mathrm{m}}{2\mathrm{g}_{\mathrm{c}}} \left(\mathrm{v}_{2}^{2} - \mathrm{v}_{1}^{2} \right)$$

Gravitational Work

W done by or against a gravitational field.

$$\mathbf{W}_{g} = \mathbf{m} \left(\mathbf{g} / \mathbf{g}_{c} \right) \left(\mathbf{z}_{2} - \mathbf{z}_{1} \right)$$

Electrical Work

W done on the sys whenever electrons cross the boundary in response to an externally supplied electrical potential.

<u>Heat</u>

A <u>form</u> of energy that is transferred between two systems driven by ΔT .

$$\mathbf{Q} = \int_{t_1}^{t_2} \dot{\mathbf{Q}} dt \qquad \mathbf{Q} = \dot{\mathbf{Q}} \Delta t$$

Heat Flux (W/m²)

Heat transfer rate per unit area (area of heat transfer normal/perpendicular to the direction of heat flow).

$$\dot{\mathbf{Q}} = \int_{\mathbf{A}} \dot{\mathbf{q}} \, \mathbf{dA}$$

Conduction

A mode of heat transfer where more energetic atoms, molecules or electrons interact/collide w/less energetic ones.

Fourier's Law of Conduction

Heat conduction flux is proportional to the T gradient driving force. The proportionality constant, **k**, is the thermal conductivity.

$$q = \frac{\dot{Q}_{cond}}{A} = -k \frac{dT}{dx}$$

Conduction	<u>k (W/m K)</u>
	Order of magnitude
Metals	100
Nonmetallic Solids	1 - 10
Liquids	0.1 -10
Insulation Materials	0.1 - 0.01
Gases	0.1 - 0.01

LearnThermo.com

Exact Differential

The differentials of <u>state variables</u> (\mathbf{V} , \mathbf{T} , \mathbf{P} , \mathbf{U} & \mathbf{H}) are <u>exact</u> (they depend only on the state and not the details of the process) & are represented by the prefix " \mathbf{d} ".

Inexact Differential

The differentials of path variable (**W** & **Q**) are inexact (we need to know the process path). & are represented by the prefix " δ ".

Mechanical Work

W associated with the movement of the boundary of a sys or with the movement of the entire sys as a whole. (includes shaft, boundary & spring work)

Spring Work

W that results in a change in the length or displacement of a spring.

$$W_{\rm sp} = 1/2k_{\rm sp} \left(x_2^2 - x_1^2\right)$$

Thermo-CD Sign Convention

- W > 0 work done on the surr (positive)
- $\mathbf{W} = \mathbf{0}$ <u>no</u> work done
- W < 0 work done on the sys (negative)
- Q > 0 heat transferred to the sys (positive)
- $\mathbf{Q} = \mathbf{0}$ no heat transferred (adiabatic)
- Q < 0 heat transferred from the sys (negative)

Adiabatic Process

A process where no heat transfer across the sys boundary occurs.

 $\mathbf{Q} = \mathbf{0}$

Convection

A mode of heat transfer usually between a solid surface at one **T** & an adjacent moving fluid at another **T**. **Forced**- fluid motion caused by external forces. **Free**- fluid motion caused by density differences & buoyancy forces within the fluid phase.

Newton's Law of Cooling

Convection heat flux at a <u>solid-fluid</u> <u>interface</u> is proportional to ΔT between the bulk fluid & the solid surface. The proportionality constant, **h**, is the convective heat transfer coefficient.

$$\mathbf{q} = \frac{\dot{\mathbf{Q}}_{\text{conv}}}{\mathbf{A}} = \mathbf{h} \left(\mathbf{T}_{\text{s}} - \mathbf{T}_{\text{f}} \right)$$

Condvection	$h (W/m^2 K)$
Free Conv. of Gases	2 - 25
Free Conv. of Liquids	50 - 1000
Forced Conv. of Gases	25 - 250
Forced Conv. of Liquids	50 - 20000
Boiling Phase Change	2500 - 10000
	Condvection Free Conv. of Gases Free Conv. of Liquids Forced Conv. of Gases Forced Conv. of Liquids Boiling Phase Change

Quasi-Equilibrium Process

A process in which the sys remains in equilibrium at all times.

$$W_{b} = nRTLn \frac{V_{2}}{V_{1}}$$
 IG Isothermal

$$W_{b} = \frac{P_{2}V_{2} - P_{1}V_{1}}{1 - n}$$
Polytropic
V & P are related
by: PVⁿ=C

$$W_{b} = \frac{nR(T_{2} - T_{1})}{1 - n} \quad \text{IG Polytropic}$$

<u>Shaft Work</u>

W associated w/energy transmission what is either driven by a rotating shaft (pump/compressor) or that causes a shaft to rotate (turbine).

<u>Radiation</u>

A mode of heat transfer that is caused by the emission of photons by the molecules giving up energy & the absorption of photons by the molecules gaining energy.

Stefan-Boltzmann Law

Allows you to calculate the <u>radiation</u> heat transfer rate between 2 objects based on T & surface properties of the emitter & absorber.

$$\dot{\mathbf{Q}}_{e,max} = \boldsymbol{\sigma} \mathbf{A} \mathbf{T}_{s}^{4}$$
 Max

$$\dot{\mathbf{Q}}_{e} = \varepsilon \sigma \mathbf{A} \mathbf{T}_{s}^{4}$$
 Real

Surfaces

$$\dot{\mathbf{Q}}_{\mathrm{net}} = \epsilon \sigma \mathbf{A} \left(\mathbf{T}_{\mathrm{s}}^{4} - \mathbf{T}_{\mathrm{surr}}^{4} \right)$$
 Net

<u>Emissivity</u>

Quantifies the ability of a surface to radiate. Blackbody $\varepsilon = 1$ & Real substance $0 < \varepsilon < 1$.

<u>Absorptivity</u>

Fraction of the incident radiation energy that is absorbed by a surface. Blackbody $\alpha = 1$ & Real substances $0 < \alpha < 1$.

First Law of Thermodynamics

Relationship between **Q**, **W** & **E**_{total}. Energy cannot be created or destroyed; it can only change forms.

$$\Delta \mathbf{E} = \Delta \mathbf{E}_{\mathbf{K}} + \Delta \mathbf{E}_{\mathbf{P}} + \Delta \mathbf{U}$$

 $\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1$

 $\frac{d\mathbf{E}}{dt} = \frac{d\mathbf{E}_{\mathbf{P}}}{dt} + \frac{d\mathbf{E}_{\mathbf{K}}}{dt} + \frac{d\mathbf{U}}{dt} = \dot{\mathbf{Q}} - \dot{\mathbf{W}}$

Problem Solving Procedure

- 1 Read Carefully
- 2 Draw a Diagram
- 3 List Given Information
- 4 List All Assumptions
- 5 Write Equations and Lookup Data
- 6 Solve Equations
- 7 Verify Assumptions
- 8 Answers

First Law for a Thermodynamic Cycle

A sys completes a thermo cycle when it undergoes two or more processes & the system returns to its initial state.

$$\mathbf{Q}_{\text{cycle}} = \mathbf{W}_{\text{cycle}}$$

First Law for Power Cycles

Purpose: to transfer a net work to the surr.

 $\mathbf{W}_{\mathrm{HE}} = \mathbf{Q}_{\mathrm{H}} - \mathbf{Q}_{\mathrm{C}}$

<u>Thermal Efficiency for</u> <u>Power Cycles</u>

$$\eta = \frac{W_{HE}}{Q_H} = \frac{Q_H - Q_C}{Q_H}$$
$$\eta = 1 - \frac{Q_C}{Q_H}$$

First Law for Adiabatic, Closed Systems

The <u>only</u> form of energy which crosses the sys boundary is **W**. For this process the total work depends <u>only</u> on the initial & final states (not path dependent).

$$\Delta \mathbf{E} = \Delta \mathbf{E}_{\mathbf{K}} + \Delta \mathbf{E}_{\mathbf{P}} + \Delta \mathbf{U} = -\mathbf{W}_{\mathrm{ad}}$$

$$\Delta \mathbf{E} = \mathbf{E}_2 + \mathbf{E}_1 = -(\mathbf{W}_{\mathrm{b}} + \mathbf{W}_{\mathrm{sh}} + \mathbf{W}_{\mathrm{e}})$$

First Law for an Isobaric, Quasi-Equilibrium Process in a Closed System $\Delta U = Q - W_{other} - P(V_2 - V_1)$

 $\mathbf{Q} = \Delta \mathbf{H}$ if process involves only $\mathbf{W}_{\mathbf{b}}$

Reservoirs

Systems that are so large that their intensive properties (**T**, **P**) always remain constant.

First Law for Non-Adiabatic, Closed Systems

Energy can cross the sys boundary as <u>both</u> **Q** & **W**. For this process the total work <u>depends</u> on the process path.

$$\Delta \mathbf{E} = \Delta \mathbf{E}_{\mathrm{K}} + \Delta \mathbf{E}_{\mathrm{P}} + \Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}$$
$$\Delta \mathbf{E} = \mathbf{Q} - (\mathbf{W}_{\mathrm{b}} + \mathbf{W}_{\mathrm{sh}} + \mathbf{W}_{\mathrm{e}})$$
$$\mathbf{d}\mathbf{E} = \delta \mathbf{Q} - \delta \mathbf{W}$$

<u>First Law for an Isochoric, Quasi-</u> <u>Equilibrium Process in a Closed</u> <u>System</u>

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}_{\text{other}} - \mathbf{W}_{\text{b}}$$

 $\mathbf{Q} = \Delta \mathbf{U}$ if process involves only \mathbf{W}_{b}

First Law for Refrigeration Cycles Purpose: to maintain the **T** within the sys to be below the **T** of the surr.

 $W_R = Q_H - Q_C$

<u>COP for</u> <u>Refrigeration Cycles</u>

$$COP_{R} = \frac{Q_{C}}{W_{ref}} = \frac{Q_{C}}{Q_{H} - Q_{C}}$$
$$COP_{R} = \frac{1}{Q_{H} / Q_{C} - 1}$$

First Law for Heat Pump Cycles

Purpose: to maintain the **T** within the system to be above the **T** of the surr.

$$\mathbf{W}_{\mathrm{HP}} = \mathbf{Q}_{\mathrm{H}} - \mathbf{Q}_{\mathrm{C}}$$

<u>COP for</u> <u>Heat Pump Cycles</u>

$$COP_{HP} = \frac{Q_{H}}{W_{HP}} = \frac{Q_{H}}{Q_{H} - Q_{C}}$$
$$COP_{HP} = \frac{1}{1 - Q_{C} / Q_{H}}$$

Mass Balance

Mass cannot be created or destroyed.

Integral Mass Balance

$$\begin{split} \Delta \mathbf{m}_{sys} &= \sum_{i} \mathbf{m}_{in,i} - \sum_{j} \mathbf{m}_{out,j} \\ \Delta \mathbf{m}_{sys} &= (\mathbf{m}_{sys})_{initial} - (\mathbf{m}_{sys})_{final} = \mathbf{m}_{in} - \mathbf{m}_{out} \end{split}$$

Integral Energy Balance

$$\Delta E_{sys} = (E_{sys})_{initial} - (E_{sys})_{final} = E_{in} - E_{out}$$

Differential Energy Balance

 $\frac{\mathbf{d}}{\mathbf{dt}} \mathbf{E}_{sys} = \dot{\mathbf{E}}_{in} - \dot{\mathbf{E}}_{out}$

$$\begin{split} \mathbf{m} &= \rho < \mathbf{v} > \mathbf{A} = \frac{< \mathbf{v} > \mathbf{A}}{\hat{\mathbf{V}}} \\ \underline{\text{Differential Mass Balance}} \\ \frac{\mathbf{d}}{\mathbf{dt}} \mathbf{m}_{sys} = \mathbf{m}_{in} - \mathbf{m}_{out} \end{split}$$

Integral Mass Balance

$$\frac{\mathbf{d}}{\mathbf{dt}} \mathbf{m}_{sys} = \sum_{i} \dot{\mathbf{m}}_{in} - \sum_{j} \dot{\mathbf{m}}_{out}$$

Flow Work

Work done when a volume of fluid flows into or out of the system opposed by a pressure.

$$\dot{\mathbf{W}}_{\text{flow}} = \mathbf{P}_{\text{out}} \left(\dot{\mathbf{m}}_{\text{out}} \ \hat{\mathbf{V}}_{\text{out}} \right) - \mathbf{P}_{\text{in}} \left(\dot{\mathbf{m}}_{\text{in}} \ \hat{\mathbf{V}}_{\text{in}} \right)$$

$$\frac{\mathbf{d}}{\mathbf{dt}}\mathbf{E}_{sys} = \dot{\mathbf{Q}} - \dot{\mathbf{W}} + \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{U}}_{in} + \frac{\left\langle \mathbf{v}_{in} \right\rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{in} \right] - \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{U}}_{out} + \frac{\left\langle \mathbf{v}_{out} \right\rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{out} \right]$$

Enthalpy Form of the Differential Energy Balance

$$\frac{\mathbf{d}}{\mathbf{dt}}\mathbf{E}_{sys} = \dot{\mathbf{Q}} - \dot{\mathbf{W}}_{sh} + \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \frac{\langle \mathbf{v}_{in} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{in} \right] - \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \frac{\langle \mathbf{v}_{out} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{out} \right]$$
$$\frac{\mathbf{d}}{\mathbf{dt}}\mathbf{E}_{sys} = \dot{\mathbf{Q}} - \dot{\mathbf{W}}_{sh} + \sum_{i}^{in} \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \frac{\langle \mathbf{v}_{in} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{in} \right] - \sum_{j}^{out} \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \frac{\langle \mathbf{v}_{out} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{out} \right]$$

SS Mass & Energy Balance

$$\frac{d}{dt}m_{sys} = 0 \qquad \dot{m}_{in} = \dot{m}_{out}$$
$$\frac{d}{dt}E_{sys} = 0$$

SISO, SS with no electrical or boundary work interactions

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{\rm sh} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \frac{\Delta \mathbf{v}^2}{2 \mathbf{g}_{\rm c}} + \frac{\mathbf{g}}{\mathbf{g}_{\rm c}} \mathbf{z} \right]$$

<u>1st Law for SISO, SS Nozzles &</u> <u>Diffusers</u>	$\Delta \hat{\mathbf{H}} + \frac{\Delta \mathbf{v}^2}{2\mathbf{g}_{\mathrm{c}}} = 0$	NOZZLE- increases the velocity of a fluid by decreasing P. DIFFUSER- increases the P of a fluid by decreasing its velocity.
<u>1st Law for SISO, SS</u> Turbines & Compressors	$\dot{\mathbf{W}}_{\mathrm{sh}} = -\dot{\mathbf{m}}\Delta\hat{\mathbf{H}}$	TURBINE- W is produced by decreasing the enthalpy. COMPRESSOR- W is input to increase the H & P of fluid.
<u>1st Law for SISO, SS</u> <u>Throttling Devices</u>	$\Delta \hat{\mathbf{H}} = 0$	THROTTLING DEVICES- Decreases P no W & little heat transfer.
<u>1st Law for SISO, SS</u> Heat Exchanger	$\dot{\mathbf{Q}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}} \mathbf{m}_{\mathrm{C}} \Delta \hat{\mathbf{H}}_{\mathrm{C}} = -\mathbf{m}_{\mathrm{H}} \Delta \hat{\mathbf{H}}_{\mathrm{H}}$	HEAT EXCHANGER- 2 streams exchange heat without mixing.
<u>1st Law for MIMO, SS Mixing</u> <u>Chamber</u>	$\sum_{j}^{out} \dot{\mathbf{m}}_{j} \hat{\mathbf{H}}_{j} - \sum_{i}^{in} \dot{\mathbf{m}}_{i} \hat{\mathbf{H}}_{i} = 0$	MIXING CHAMBER- 2 or more feed streams mix & form 1 effluent.
<u>Bernoulli Equation</u>	$\frac{\Delta \mathbf{P}}{\rho} + \frac{\Delta \mathbf{v}^2}{2\mathbf{g}_{\rm c}} + \frac{\mathbf{g}}{\mathbf{g}_{\rm c}} \Delta \mathbf{z} = 0$	PIPES OR DUCTS- fluid flow follows Bernoulli Equation

Copyright © 2014 B-Cubed - All Rights Reserved.

Transient Process (or Unsteady Process)

A process in which 1 or more properties or process variables change as a function of time.

Uniform Flow

The properties and flow rates of all inlet and outlet streams are constant over the cross-sectional area for flow and are also constant with respect to time.

Uniform State

At all times, the properties of the outlet stream are exactly the same as the properties of the system at that point in time. The properties do change with time, but they are always the same as the properties of the outlet stream.

SISO Transient Mass Balance

$$\Delta \mathbf{m}_{sys} = \mathbf{m}_{sys}(t_2) - \mathbf{m}_{sys}(t_1) = \mathbf{\dot{m}}_{in}(t_2 - t_1) - \mathbf{\dot{m}}_{out}(t_2 - t_1) = \mathbf{m}_{in} - \mathbf{m}_{out}$$

MIMO Transient Mass Balance

$$\Delta \mathbf{m}_{sys} = \mathbf{m}_{sys}(t_2) - \mathbf{m}_{sys}(t_1) = (t_2 - t_1) \sum_{i}^{in} \dot{\mathbf{m}}_i - (t_2 - t_1) \sum_{j}^{out} \dot{\mathbf{m}}_j$$

SISO Transient Energy Balance

$$\Delta \mathbf{E}_{sys} = \mathbf{Q} - \mathbf{W}_{sh} + \mathbf{m}_{in} \left[\hat{\mathbf{H}}_{in} + \frac{\langle \mathbf{v}_{in} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{in} \right] - \mathbf{m}_{out} \left[\hat{\mathbf{H}}_{out} + \frac{\langle \mathbf{v}_{out} \rangle^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{z}_{out} \right]$$

MIMO Transient Energy Balance

$$\Delta \mathbf{E}_{sys} = \mathbf{Q} - \mathbf{W}_{sh} + \sum_{i}^{in} \mathbf{m}_{in} \left[\hat{\mathbf{H}}_{in} + \frac{\langle \mathbf{v}_{in} \rangle^{2}}{2\mathbf{g}_{c}} + \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{z}_{in} \right] - \sum_{j}^{out} \mathbf{m}_{out} \left[\hat{\mathbf{H}}_{out} + \frac{\langle \mathbf{v}_{out} \rangle^{2}}{2\mathbf{g}_{c}} + \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{z}_{out} \right]$$

SISO, Uniform State Energy Balance with Negligible Kinetic and Potential Energies

 $m_{sys,2}\hat{U}_{sys,2} - m_{sys,1}\hat{U}_{sys,1} = Q - W_{sh} + m_{in}\hat{H}_{in} - m_{out}\hat{H}_{out}$

Power Cycles

Purpose: to transfer a net work to the surroundings.

$$\mathbf{W}_{\mathrm{HE}} = \mathbf{Q}_{\mathrm{H}} - \mathbf{Q}_{\mathrm{C}}$$

$$\eta = \frac{W_{HE}}{Q_H} = \frac{Q_H - Q_C}{Q_H}$$
$$\eta = 1 - \frac{Q_C}{Q_H}$$

Clausius Statement

A system operating in a thermodynamic cycle can not transfer energy (heat) from a cooler body to a hotter body and produce no other effect.

Reversible Process

Processes where both the system and its surroundings can return to their initial states after the process is completed.

$$W_{\text{cycle}} = 0$$
$$Q_{\text{cycle}} = 0$$

 $\Delta E_{cvcle} = 0$

1st Carnot Principle

No cyclic process can operate with 100% efficiency, and the reversible process is the most efficient.

$$W_{net} = W_{irrev} - W_{rev} < 0$$

 $\eta_{rev} > \eta_{irrev}$

$$COP_{R,rev} > COP_{R,irrev}$$

 $COP_{HP rev} > COP_{HP irrev}$

2nd Carnot Principle

All reversible processes operating between the same two reservoirs will have the same efficiency.

Kelvin Temperature Scale Based in the triple pt of water (273.15K).

Celsius Temperature Scale

Based by assigning the normal melting pt of water a value of **0°C** & the normal boiling pt 100 °C. (273.15K = 0°C)

LearnThermo.com

Refrigeration Cycles

Purpose: to maintain the **T** within the sys to be below the **T** of the surr.

$$W_{R} = Q_{H} - Q_{O}$$

$$COP_{R} = \frac{Q_{C}}{W_{ref}} = \frac{Q_{C}}{Q_{H} - Q_{C}}$$

$$COP_{R} = \frac{1}{Q_{H}/Q_{C}-1}$$

Kelvin-Planck Statement

A system operating on a thermodynamic cycle cannot deliver a net amount of work as a result of exchange of heat from a single thermal reservoir.

Internally Reversible

Tthere are no irreversibilities in the system but there may be irreversibilities in the surroundings.

Externally Reversible

There are no irreversibilities in the surroundings but there may be irreversibilities in the system.

Four Basic Processes of the Carnot Cycle

Maximum Efficiencies

T in Kelvin or Rankine

 $COP_{R,rev} = \frac{T_C}{T_H - T_C}$

 $\text{COP}_{\text{HP,rev}} = \frac{T_{\text{H}}}{T_{\text{H}} - T_{\text{C}}}$

 $\eta_{\rm rev} = 1 - \frac{T_{\rm C}}{T_{\rm H}}$

Heat Pump Cycles

Purpose: to maintain the T within the sys to be above the **T** of the surr.

$$\mathbf{W}_{\mathrm{HP}} = \mathbf{Q}_{\mathrm{H}} - \mathbf{Q}_{\mathrm{C}}$$

$$COP_{HP} = \frac{Q_{H}}{W_{HP}} = \frac{Q_{H}}{Q_{H} - Q_{C}}$$
$$COP_{HP} = \frac{1}{1 - Q_{C} / Q_{H}}$$

Perpetual-Motion Machines

1st Kind- creating mass, energy, or work from nothing. (violates 1st Law) 2nd Kind- extracting heat from a source and converting it completely into work. (violates 2nd Law) 3rd Kind- produces no work, has no friction, and runs indefinitely.

Irreversible Process

Processes where the system and its surroundings cannot return to their initial states after the process is completed

Process 1-2: Reversible Isothermal Process 2-3: Reversible Adiabatic Process 3-4: Reversible Isothermal Process 4-1: Reversible Adiabatic

Quality

100% W can be converted to Q but only fraction of **Q** can be converted to **W**.

Energy in the form of heat for HE $\Delta T = T_H - T_C$

Large ΔT : thermal efficiency high Small ΔT : thermal efficiency low.

Clausius Inequality

Trends for HE

As the irreversibility of the cycle increases, the work output decreases, & the left-hand side of the Clausius Inequality becomes more negative.

LearnThermo.com

Trends for Refrigerators & Heat Pumps

As the irreversibility of the cycle increases, the work input increases & the left-hand side of the Clausius Inequality becomes more negative.

A property that allows us to apply the 2nd Law to processes & to quantitatively assess & compare their performance.

$$\mathbf{dS} = \left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text{int rev}}$$

2
$$\frac{\text{Carnot Cycle}}{\text{Step 1- 2}} \mathbf{Q}_{H} = \int_{1}^{2} \mathbf{T} \, \mathbf{dS} = \mathbf{T}_{H} \left(\mathbf{S}_{2} - \mathbf{S}_{3} \right)$$

3
$$\frac{\text{Step 2- 3}}{\text{Step 3- 4}} \mathbf{Q}_{C} = -\int_{3}^{4} \mathbf{T} \, \mathbf{dS} = \mathbf{T}_{C} \left(\mathbf{S}_{3} - \mathbf{S}_{3} \right)$$

5
$$\frac{\text{Step 4- 1}}{\text{Step 4- 1}} \mathbf{S}_{4} = \mathbf{S}_{1}$$

increasing.

Irrev Path

ISOBARIC PROCESS

Principle of Increasing Entropy

Entropy of the universe is ALWAYS

 $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = S_{gen} \ge 0$

 $\Delta S =$

 $\Lambda S =$

Entropy Generated Reversible Processes: $S_{gen} = 0$ $S_{gen} > 0$ Irreversible Processes:

Impossible Processes: $S_{gen} < 0$ $(\delta 0)$

$$dS = \left(\frac{T}{T}\right) + \delta S_{gen}$$

$$\Delta S = S_2 - S_1 = \int \left(\frac{\delta Q}{T}\right) + S_{gen}$$

$$S_{gen} = \int_1^2 \left(\frac{\delta Q}{T}\right)_{int rev} - \int_1^2 \left(\frac{\delta Q}{T}\right)_{irrev}$$

Relative Molar Volume

Polytropic Processes

 $\mathbf{T}_{1}\widetilde{\mathbf{V}}_{1}^{\delta-1} = \mathbf{T}_{2}\widetilde{\mathbf{V}}_{2}^{\delta-1} = \mathbf{C}_{1}$

 $T_1 P_1^{(1-\delta)/\delta} = T_2 P_2^{(1-\delta)/\delta} = C_2$

$$\begin{split} \widetilde{\mathbf{V}}_{\mathrm{r}} &= \frac{\widetilde{\mathbf{V}}}{\widetilde{\mathbf{V}}_{\mathrm{ref}}} \\ \frac{\widetilde{\mathbf{V}}_{1}}{\widetilde{\mathbf{V}}_{2}} &= \left(\frac{\widetilde{\mathbf{V}}_{\mathrm{r}}(\mathbf{T}_{1})}{\widetilde{\mathbf{V}}_{\mathrm{r}}(\mathbf{T}_{2})}\right) \\ \mathbf{Ln} \, \widetilde{\mathbf{V}}_{\mathrm{r}} &= -\frac{\widetilde{\mathbf{S}}_{\mathrm{T}}^{\circ}}{\mathbf{R}} + \mathbf{Ln} \left(\frac{\mathbf{T}}{\mathbf{T}_{\mathrm{ref}}}\right) \end{split}$$

$$\frac{1}{P_{r} = \frac{P}{P_{ref}}}$$

$$\frac{P_{1}}{P_{2}} = \left(\frac{P_{r}(T_{1})}{P_{r}(T_{2})}\right)$$

$$Ln P_{r} = \frac{\tilde{S}_{T}^{r}}{P_{T}}$$

ISOTHERMAL PROCESS $\delta = 1$ \widetilde{W}

Heat Transfer For an

 $Q = Area - \int_{e}^{2} T \delta S_{gen}$

$$(\mathbf{S}_2 - \mathbf{S}_1)_{\text{intrev}} = (\mathbf{S}_2 - \mathbf{S}_1)_{\text{irrev}} = \int_1^2 \left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\text{int rev}}$$

$$\mathbf{S}_2 - \mathbf{S}_1 = \frac{\mathbf{Q}}{\mathbf{T}_0} \quad \text{Internally Reversible,}$$

$$\text{Isothermal Process}$$

$$S_{3} - S_{4}$$

$$\frac{1 \text{ st } \& 2 \text{ nd } \text{ Gibbs Equat}}{\text{ T } dS = dU + P \, dV}$$

$$T \, dS = dH - V \, dP$$

$$\frac{1 \text{ ncompressible Liquid}}{\Delta \widetilde{S} = \int \widetilde{C}(T) \frac{dT}{T}}$$

ions Easier to apply to

closed systems.

 $Area = Q_{int rev}$

$$\mathbf{T} \, \mathbf{dS} = \mathbf{dH} - \mathbf{V} \, \mathbf{dP} \qquad \begin{array}{l} \text{Easier to apply to} \\ \text{open systems.} \end{array}$$

$$\mathbf{\tilde{Incompressible Liquids \& Solids} \\ \Delta \tilde{\mathbf{S}} = \int \widetilde{\mathbf{C}}(\mathbf{T}) \frac{\mathbf{dT}}{\mathbf{T}} \\ \Delta \tilde{\mathbf{S}} \cong \widetilde{\mathbf{C}}_{ave} \ln \frac{\mathbf{T}_2}{\mathbf{T}} \qquad \begin{array}{l} \text{Constant Heat} \\ \text{Capacity} \end{array}$$

Methods for Ideal Gases METHOD 1: CONSTANT HEAT CAPACITY $\Delta \widetilde{\mathbf{S}} = \widetilde{\mathbf{C}}_{\mathbf{V}}^{o} \mathbf{Ln} \left(\frac{\mathbf{T}_2}{\mathbf{T}_1} \right) + \mathbf{R} \mathbf{Ln} \left(\frac{\mathbf{V}_2}{\widetilde{\mathbf{V}}_1} \right)$ $\Delta \widetilde{\mathbf{S}} = \widetilde{\mathbf{C}}_{\mathbf{P}}^{\circ} \mathbf{Ln} \left(\frac{\mathbf{T}_2}{\mathbf{T}_1}\right) - \mathbf{R} \mathbf{Ln} \left(\frac{\mathbf{P}_2}{\mathbf{P}_2}\right)$

METHOD 2: HEAT CAPACITY POLYNOMIAL $\widetilde{\mathbf{C}}_{\mathbf{P}}^{o} = \mathbf{A} + \mathbf{B}\mathbf{T} + \mathbf{C}\mathbf{T}^{2} + \mathbf{D}\mathbf{T}^{3} + \mathbf{E} / \mathbf{T}^{2}$

METHOD 3: IDEAL GAS ENTROPY TABLES

$$\frac{P_{1}}{P_{2}} = \begin{pmatrix} P_{r}(T_{1}) \\ P_{r}(T_{2}) \end{pmatrix}$$

$$Ln P_{r} = \frac{\widetilde{S}_{T}^{\circ}}{R}$$

$$\int \widetilde{S}_{T} = \int_{Tref}^{T} \widetilde{C}_{P}^{\circ} \frac{dT}{T}$$

$$\Delta \widetilde{S} = \widetilde{S}_{T2}^{\circ} - \widetilde{S}_{T1}^{\circ} - R Ln \left(\frac{T_{2}}{T_{1}}\right) + R Ln \left(\frac{\widetilde{V}_{2}}{\widetilde{V}_{1}}\right)$$

$$\frac{ISOBARIC PROCESS}{ISOTHERMAL PROCESS} \quad \delta = 0 \quad \widetilde{W}_{b} = P \Delta \widetilde{V} \quad \Delta \widetilde{S} = \widetilde{S}_{T2}^{\circ} - \widetilde{S}_{T1}^{\circ} - R Ln \left(\frac{P_{2}}{P_{1}}\right)$$

$$ISOCHORIC PROCESS \quad \delta = \infty \quad \widetilde{W}_{b} = 0$$

$$\frac{P_{1}\widetilde{V}_{1}^{\delta} = P_{2}\widetilde{V}_{2}^{\delta} = C_{3}}{\text{ISENTROPIC PROCESS}} \quad \delta = \gamma \quad \widetilde{W}_{b} = -\widetilde{C}_{v}^{o} \left(T_{2} - T_{1}\right)$$
Copyright © 2014 B-Cubed – All rights reserved.

Closed System Entropy Balance

Integral form	$\Delta S = \int \left(\frac{\delta Q}{T}\right) + S_{gen}$
Differential form	$dS = \left(\frac{\delta Q}{T}\right) + \delta S_{gen}$
Rate form	$\frac{d}{dt}S = \frac{\delta \dot{Q}}{T} + \dot{S}_{gen}$

Open System Entropy Balance

$$\frac{d}{dt}S_{sys} = \sum_{in} \dot{m}_{in} \hat{S}_{in} - \sum_{out} \dot{m}_{out} \hat{S}_{out} + \sum_{sys} \int \frac{d\dot{Q}_{sys}}{T_{sys}} + \dot{S}_{gen}$$

 \dot{S}_{gen}

ṁ

<u>SS</u>

$$\mathbf{0} = \sum_{\text{in}} \dot{\mathbf{m}}_{\text{in}} \, \hat{\mathbf{S}}_{\text{in}} - \sum_{\text{out}} \dot{\mathbf{m}}_{\text{out}} \, \hat{\mathbf{S}}_{\text{out}} + \sum_{\text{sys}} \frac{\dot{\mathbf{Q}}_{\text{sys}}}{\mathbf{T}_{\text{sys}}} + \dot{\mathbf{S}}_{\text{gen}}$$

SS, SISO
$$(\hat{S}_{out} - \hat{S}_{in}) = \frac{1}{\dot{m}} \sum_{sys} \int \frac{d\dot{Q}_{sys}}{T_{sys}} +$$

Mechanical Energy Balance (MEBE)

$$\frac{\dot{\mathbf{W}}_{sh}}{\dot{\mathbf{m}}} = -\int_{in}^{out} \widehat{\mathbf{V}} \, d\mathbf{P} + \frac{\Delta \mathbf{v}^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \Delta \mathbf{z}$$

Reversible Processes

$$\Delta \mathbf{S} = \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}}\right)_{\mathrm{rev}} \quad \text{and} \quad \mathbf{S}_{\mathrm{gen}} = \mathbf{0}$$

Irreversible Processes

$$\Delta S > \int \left(\frac{\delta Q}{T}\right)_{irrev}$$
 and $S_{gen} > 0$

SS, SISO, Int. Rev., One Reservoir

$$\frac{\dot{\mathbf{Q}}_{\rm sys}}{\dot{\mathbf{m}}} = \int_{\rm in}^{\rm out} \mathbf{T}_{\rm sys} \, \mathrm{d}\hat{\mathbf{S}}$$

SS, SISO, Int. Rev., One Reservoir, Isothermal

$$\frac{\dot{\mathbf{Q}}_{sys}}{\dot{\mathbf{m}}} = \mathbf{T}_{sys} \left(\mathbf{\hat{S}}_{out} - \mathbf{\hat{S}}_{in} \right)$$

<u>Bernoulli Eqn</u>

 $-\int_{in}^{out} \widehat{\mathbf{V}} \, d\mathbf{P} + \frac{\Delta \mathbf{v}^2}{2\mathbf{g}_c} + \frac{\mathbf{g}}{\mathbf{g}_c} \Delta \mathbf{z} = \mathbf{0}$

\underline{B} \underline{B}

	Real Fluids	Ideal Gas
Isobaric $\delta = 0$	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}} = 0$	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}}=0$
Isothermal $\delta = 1$	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}} = -\mathbf{P}_1 \mathbf{\widehat{V}}_1 \mathbf{L} \mathbf{n} (\mathbf{P}_2 / \mathbf{P}_1)$	$\frac{\dot{W}_{sh}}{\dot{m}} = -T_1 \left(\frac{R}{MW}\right) Ln(P_2/P_1)$
	$= -\mathbf{P}_2 \mathbf{\hat{V}}_2 \mathbf{Ln}(\mathbf{P}_2 / \mathbf{P}_1)$	$= -T_2 \left(\frac{R}{MW}\right) Ln(P_2 / P_1)$
Polytropic δ≠1	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}} = -\frac{\delta}{\delta - 1} (\mathbf{P}_2 \mathbf{\widehat{V}}_2 - \mathbf{P}_1 \mathbf{\widehat{V}}_1)$	$\frac{\dot{W}_{sh}}{\dot{m}} = -\frac{\delta}{\delta - 1} \left(\frac{R}{MW}\right) (T_2 - T_1)$
Isentropic $(\gamma = constant)$ $\delta = \gamma$	$\frac{\dot{\mathbf{W}}_{\rm sh}}{\dot{\mathbf{m}}} = -\frac{\gamma}{\gamma - 1} \Big(\mathbf{P}_2 \widehat{\mathbf{V}}_2 - \mathbf{P}_1 \widehat{\mathbf{V}}_1 \Big)$	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}} = -\frac{\gamma}{\gamma-1} \frac{\mathbf{R}}{\mathbf{MW}} (\mathbf{T}_2 - \mathbf{T}_1)$
Isochoric $\delta = \infty$	$\frac{\dot{\mathbf{W}}_{\mathrm{sh}}}{\dot{\mathbf{m}}} = -\mathbf{V}(\mathbf{P}_2 - \mathbf{P}_1)$	$\frac{\dot{W}_{sh}}{\dot{m}} = -\frac{R}{MW} (T_2 - T_1)$

Nozzle Isentropic Efficiency

$$\eta_{S,noz} = \frac{v_{2a}^2 / 2g_c}{v_{2S}^2 / 2g_c}$$

If **A**₁>>**A**₂ and the process is not highly irreversible:

$$\eta_{S,noz} = \frac{\widehat{H}_1 - \widehat{H}_{2,act}}{\widehat{H}_1 - \widehat{H}_{2,s}} \quad \text{only exact} \\ \text{when } v_1 = 0$$

Adiabatic Compressor Isentropic Efficiency

$$\eta_{\rm S,comp} = \frac{\widehat{\mathbf{H}}_{2\rm S} - \widehat{\mathbf{H}}_1}{\widehat{\mathbf{H}}_{2,\rm act} - \widehat{\mathbf{H}}_1}$$

<u>Multistage Compressor</u> <u>Isentropic Efficiency</u>

$$\eta_{\mathrm{T,multi}} = \frac{\widehat{\mathbf{H}}_{2\mathrm{T}} - \widehat{\mathbf{H}}_{1}}{\widehat{\mathbf{H}}_{2,\mathrm{act}} - \widehat{\mathbf{H}}_{1}}$$

Optimal Intermediate Pressure for a 2-stage Compressor

$$\mathbf{P}_{\mathbf{x}} = \sqrt{\mathbf{P}_{1} \, \mathbf{P}_{2}} \qquad \qquad \frac{\mathbf{P}_{1}}{\mathbf{P}_{\mathbf{x}}} = \frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{P}_{2}}$$

Lost Work

Work that is wasted due to irreversibilities in a process.

$$\begin{split} \dot{\mathbf{W}}_{\mathrm{Sh,lost}} &= \dot{\mathbf{W}}_{\mathrm{Sh,rev}} - \dot{\mathbf{W}}_{\mathrm{Sh,act}} \\ \dot{\mathbf{W}}_{\mathrm{Sh,lost}} &= \mathbf{T}_{\mathrm{surr}} \, \dot{\mathbf{S}}_{\mathrm{gen,total}} \end{split}$$

<u>Compressor</u> 2nd Law Efficiency

$$\eta_{\rm II, comp} = \frac{{\bf \dot W}_{\rm Sh, rev}}{{\bf \dot W}_{\rm Sh, act}}$$

Lost Work Analysis for a Vapor Cycle <u>Processes that only exchange heat</u> <u>with surroundings</u>

$$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \dot{\mathbf{m}} \mathbf{T}_{\mathrm{surr}} \Delta \mathbf{\hat{S}} - \dot{\mathbf{Q}}_{\mathrm{act}}$$

$$\dot{\mathbf{S}}_{\text{gen,total}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{S}} - \frac{\mathbf{Q}_{\text{act}}}{\mathbf{T}_{\text{surr}}}$$

$$\frac{\text{Turbine}}{\text{2nd Law Efficiency}}$$
$$\eta_{\text{II,turb}} = \frac{\dot{W}_{\text{Sh,act}}}{\dot{W}_{\text{Sh,rev}}}$$

$$(\dot{\mathbf{S}}_{\text{gen}})_{\text{cycle}} = \sum_{i}^{\text{Processes}} (\dot{\mathbf{S}}_{\text{gen}})_{i} = \sum_{i}^{\text{Processes}} (-\dot{\mathbf{Q}}_{i}/T_{i,\text{ext}})$$
$$\dot{\mathbf{W}}_{\text{Sh,lost}} = \mathbf{T}_{\text{surr}} (\dot{\mathbf{S}}_{\text{gen}})_{\text{cycle}} = \mathbf{T}_{\text{surr}} \sum_{i}^{\text{Processes}} (-\dot{\mathbf{Q}}_{i}/T_{i,\text{ext}})$$

<u>Processes that exchange heat with a</u> <u>Thermal Reservoir</u>

$$\begin{split} \dot{\mathbf{W}}_{\mathrm{Sh,lost}} &= \dot{\mathbf{m}} \, \mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}} - \dot{\mathbf{Q}}_{\mathrm{act}} \, \frac{\mathbf{T}_{\mathrm{surr}}}{\mathbf{T}_{\mathrm{res}}} \\ \dot{\mathbf{S}}_{\mathrm{gen,total}} &= \dot{\mathbf{m}} \, \Delta \hat{\mathbf{S}} - \frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{res}}} \end{split}$$

LearnThermo.com

Summary Sheet

Rankine Cycle	
Process 1-2: Boiler	Heat added at constant pressure.
Process 2-3: Turbine	Isentropic expansion.
Process 3-4: Condenser	Heat rejected at constant pressure.
Process 4-1: Pump	Isentropic compression.

Assumptions in applying the 1st Law

- 1-Int. Rev., SS, SISO Process
- 2-Negligible $E_K \& E_P$
- 3- No shaft work in boiler or condenser
- 4- No heat transfer occurs in the turbine or pump

Ratio of pump work required and turbine work generated.

Superheat Rankine Cycle

Boiler produces superheated vapor. Result: η_t increases and quality of the turbine effluent increases.

Reheat Rankine Cycle

A superheat Rankine Cycle that uses 2 turbines to allow the condenser to operate at a low P and still maintain a Boiler very high quality at the turbine effluent. The working fluid LP HP Pump is reheated in the Turbines boiler before it enters the 2^{nd} turbine. Condenser

Binary Vapor Rankine Cycle Consists of 2 separate Rankine

Increasing Boiler Pressure Q_H increases significantly and Q_C decreases slightly. Therefore, η_t increases.

Decreasing Condenser Pressure

 Q_C decreases significantly and **Q_H** increases slightly. Therefore, η_t increases.

Supercritical Rankine Cycle

Boiler operating pressure is greater than the critical pressure of the working fluid.

Result: η_t increases (Q_H increases greatly while $Q_{\rm C}$ increases very little) and quality of the turbine effluent can increase.

Rankine Cycle With Regeneration

The condenser effluent is pumped back up to the high pressure of the boiler in 2 stages. At the intermediate P between the 2 pumps, the working fluid is heated back to the sat. liquid state in the feedwater heater (open or closed).

LearnThermo.com

Chapter 9

Cogeneration Gas-Vapor Rankine Cycle

Uses heat from a high temperature reservoir to simultaneously produce work and heat, at a moderately high temperature and pressure, for use in an external system.

Main reasons real vapor power cycles are not as efficient as ideal Rankine Vapor Power Cycle

- 1. Heat Loses
- 2. Fluid Friction
- 3. Mechanical Losses
- Condenser Subcooling 4.

Air-Standard Assumptions

- The working fluid is air and it behaves as an ideal gas. 1-
- The cycle is modeled as a closed cycle with the air cooled in 2-HEX #2 and recirculated to the compressor.
- 3-The combustion reactor is replaced HEX #1.
- 4- All processes are internally reversible.

Assumptions in applying the 1st Law

- Int. Rev., SS, SISO Process 5-
- 6-Negligible E_K & E_P

- 7- No shaft work in HEX #1 or HEX #2
- No heat transfer occurs in the turbine or comp. 8-

<u>1st Law: HEX #1</u>	$\frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\dot{\mathbf{m}}} = \frac{\dot{\mathbf{Q}}_{12}}{\dot{\mathbf{m}}} = \widehat{\mathbf{H}}_2 - \widehat{\mathbf{H}}_1$
<u>1st Law: Turbine</u>	$\frac{\dot{\mathbf{W}}_{\mathrm{S,turb}}}{\dot{\mathbf{m}}} = \widehat{\mathbf{H}}_2 - \widehat{\mathbf{H}}_3 > 0$
<u>1st Law: HEX #2</u>	$\frac{\dot{\mathbf{Q}}_{\mathrm{C}}}{\dot{\mathbf{m}}} = \frac{\dot{\mathbf{Q}}_{34}}{\dot{\mathbf{m}}} = \widehat{\mathbf{H}}_4 - \widehat{\mathbf{H}}_3$
1st Law: Compressor	$\frac{\dot{\mathbf{W}}_{\mathrm{S,comp}}}{\dot{\mathbf{m}}} = \widehat{\mathbf{H}}_4 - \widehat{\mathbf{H}}_1 < 0$
Back Work Ratio (BWR) Fraction of work produced by the turbine that is consumed by the compressor.	$\mathbf{BWR} = \frac{-\widehat{\mathbf{W}}_{\mathrm{C}}}{\widehat{\mathbf{W}}_{\mathrm{T}}} = \frac{\widehat{\mathbf{H}}_{1} - \widehat{\mathbf{H}}_{4}}{\widehat{\mathbf{H}}_{2} - \widehat{\mathbf{H}}_{3}}$

 $\eta_{\text{Regeb}} = 1 - \frac{T_1}{T_4} (r_p)^{(\gamma - 1)/\gamma}$

The Air-Standard Brayton Cycle

 $\dot{\mathbf{W}}_{\mathrm{S,lost}} = \mathbf{T}_{\mathrm{surr}} \left(\frac{\dot{\mathbf{Q}}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{C}}} - \frac{\dot{\mathbf{Q}}_{\mathrm{H}}}{\mathbf{T}_{\mathrm{H}}} \right) + \dot{\mathbf{Q}}_{\mathrm{lost}}$

Process 1-2: HEX #1 Heat transferred to the working fluid at constant pressure from the external heat source.

Process 2-3: Turbine

Lost Work

Hot gases expand isentropically to produce shaft work. Process 3-2 HEX #2

Heat is rejected to the low temperature reservoir at constant pressure.

Process 4-1: Compressor

Cool gas is compressed isentropically.

Cold Air-Standard Assumptions

Heat capacities of air are constant and have the values determined at 25°C.

Compressor Pressure Ratio

Simple Air-Standard

Brayton Cycle

n – 1 _	1
- I – I	$\overline{r_p^{(\gamma-1)/\gamma}}$

Regenerative Air-Standard

Brayton Cycle

LearnThermo.com

Refrigeration Cycle Maximum COP

The Carnot Refrigeration Cycle provides the upper limit of the **COP**.

Impracticalities of the Carnot Vapor-Compression Refrigeration Cycle

Problem: Most Compressors do not work well on two-phase mixtures.Solution: Completely vaporize the refrigerant in the evaporator.

Ideal Vapor-Compression Refrigeration Cycle

Process 1-2: Evaporator Heat absorbed at constant pressure. Effluent is a saturated vapor. Process 2-3: Compressor Isentropic compression. Process 3-4: Condenser Heat is rejected at constant pressure. Process 4-1: Expansion Valve Isenthalpic expansion. Problem: Turbines are not designed to handle vapor-liquid mixtures.Solution: Replace the turbine with an expansion valve.

<u>COP of Ideal Vapor-Compression</u> <u>Refrigeration Cycles</u>

Factors to Consider in Choosing a Refrigerant

- Cost, the P*-T relationship, enthalpy of vaporization, chemical stability, corrosiveness, toxicity, and flammability.

Condenser

Evaporator

Expansion

Valve

The P*-T Relationship

The saturation temperature of the working fluid at the operating pressure of the **condenser** must be <u>greater than</u> the temperature of the hot reservoir in order to reject heat.

Comp

The saturation pressure of the refrigerant <u>should not</u> be too high because a condenser that is capable of operating at high pressure is much more expensive and hazardous.

The saturation temperature of the working fluid at the operating pressure of the **evaporator** must be <u>less than</u> the temperature of the cold reservoir in order to absorb heat. The saturation pressure of the refrigerant <u>should not</u> be less than atmospheric pressure because air leaks into the system can severely decrease the COP.

Cascade Vapor-Compression Refrigeration Cycle

- Two refrigeration cycles that use two different refrigerants are linked by a HEX.
- The lower cycle is colder and it absorbs heat from the refrigerated space.
- The lower cycle rejects heat into the upper cycle through the HEX.
- The upper cycle absorbs heat from the lower cycle through the HEX.
- The upper cycle is hotter and can reject heat to a very hot reservoir.
- Can use the same refrigerant in both cycles or use a refrigerant with a low vapor pressure in the upper cycle and one with a relatively high vapor pressure in the lower cycle.

Multistage Vapor-Compression Refrigeration Cycle

- Similar to the Cascade Cycle.
- Both cycles must use the same refrigerant.
- Instead of exchanging heat between two cycles, the flash tank separates the saturated liquid and the saturated vapor.
- The saturated liquid leaves the flash drum in stream 4 and proceeds to the lower expansion valve.
- The saturated vapor leaves the flash drum in stream 6 and flows to the mixer and passes through the upper cycle again.
- The saturated vapor, in stream 6, recycled back into the upper cycle has a high enthalpy. By diverting this high enthalpy stream from the lower cycle into the upper cycle, we have accomplished the same energy transfer that the heat exchanger does in a Cascade cycle.

Heat Pump Cycle Maximum COP

The Carnot Heat Pump Cycle provides the upper limit of the COP.

$$\text{COP}_{\text{HP,max}} = \frac{\text{Q}_{\text{H}}}{\text{W}_{\text{cycle}}} = \frac{1}{1 - \text{T}_{\text{C}} / \text{T}_{\text{H}}}$$

COP of Heat Pump Cycles

$$\operatorname{COP}_{\operatorname{HP}} = \frac{\operatorname{Q}_{\operatorname{H}}}{\operatorname{W}_{\operatorname{cycle}}} = \frac{\operatorname{H}_{3} - \operatorname{H}_{4}}{\widehat{\operatorname{H}}_{3} - \widehat{\operatorname{H}}_{2}}$$

Gas Refrigeration Cycles

Disadvantage: tend to be <u>less efficient</u> than Vapor-Compression Cycles. **Advantages**: relatively <u>lightweight</u> and are capable of achieving <u>very low temperatures</u>.

Air-Standard Assumptions

- **1.** The working fluid is air and it behaves as an ideal gas.
- 2. The cycle is modeled as a closed cycle with the air cooled in HEX #2 and recirculated to the compressor.
- **3.** The combustion reactor is replaced HEX #1.
- 4. All processes are internally reversible.

Cold Air-Standard Assumptions

Heat capacities of air are constant and have the values determined at **25°C**.

Regenerative Gas Refrigeration Cycles

Increases the coefficient of performance and it reduces the minimum temperature in the cycle. Multistage regeneration allows the air-standard refrigeration cycle to achieve cryogenic temperatures.

Helical Rotary Water Chiller

Used by permission from Trane

Introduction: Basic Concepts of Thermodynamics

In this chapter, you will discover the nature of thermodynamics and how it effects your life. The scope of this book is provided so you will know what you will and will not learn. Many of the key terms that are used to discuss thermodynamics are introduced and explained.

Chapter 1

How Does Thermo Affect You ?

- Engines: Trains, Planes & Automobiles
- Heating Systems: Heat Pumps
- Cooling Systems:
 - ♦ Air Conditioning
 - ♦ Refrigeration
- Others:
 - Aspects of Thermo that are beyond the scope of this course make it a key aspect of chemical and biological systems

- Thermo touches the lives of most people as a means of transportation.
- Heating and cooling systems make many people's lives more comfortable and keep food from spoiling.
- Thermo is also the key to electrical power generation.

Used by permission from Trane

LearnThermo.com

Looks kind of complicated.

•

- Reversible heat pumps, like this one, can also be used as air-conditioners
- So, what is the purpose of this device ?

- In cooling mode, the heat pump uses electrical work to transfer heat from cool air (inside your home) into the warm air (outside your home).
- The cool part is that, for each Watt of electrical power used by the A/C unit, more than one Watt of energy is removed from the air inside your home.
- Not bad !
- What happens when the reversing valve is switched ?

LearnThermo.com

Chapter 1

- In heating mode, the heat pump uses electrical work to transfer heat from cool air (outside your home) into the warm air (inside your home).
- The cool part is that, for each Watt of electrical power used by the heat pump unit, more than one Watt of energy is added to the air inside your home.
- So, a heat pump is more efficient than an electrical resistance heater ! Nice.
- A refrigerator works in much the same way that a heat pump does.
- In fact an A/C unit is technically a refrigerator because the purpose is to keep the cool space cool.

• The Continuum Scale

- A large group of molecules is larger than 100 mm across
- Behavior of individual molecules is not studied
- Only the properties of the large group of molecules are studied: think P, V and T
- 1st Law Energy is a conserved quantity
 - This is the basis for much of this course.
- 2nd Law A simple and sensible idea, right ?
 - The implications of the 2nd law are ENORMOUS
- Forms of Energy
 - There are many types of potential energy, but we will generally only consider gravitational potential energy
 - I suspect you already have a pretty good understanding of Kinetic Energy
 - You were introduced to Internal Energy in general chemistry, but in this class, you will learn a lot more about how to use this quantity to solve problems.

Th	e Laws of Thermod	ynamics	
•	1 st Law: Energy can neithe change form.	r be created nor des	troyed. It can only
•	2 nd Law: Energy in the form regions of higher temperature	n of heat only flows ure to regions of lov	s spontaneously from ver temperature.
Foi	rms of Energy		
•	Gravitational Potential	$\mathbf{E}_{\mathrm{P}} = \mathbf{m} \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}} \mathbf{z}$	$\hat{\mathbf{E}}_{\mathrm{P}} = \frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\mathbf{z}$
•	Kinetic	$\mathbf{E}_{\mathrm{K}} = \frac{1}{2}\mathbf{m}\frac{\mathbf{v}^2}{\mathbf{g}_{\mathrm{C}}}$	$\hat{\mathbf{E}}_{\mathrm{K}} = \frac{1}{2} \frac{\mathbf{v}^2}{\mathbf{g}_{\mathrm{C}}}$
•	Internal	U	$\mathbf{\hat{U}}$
•	Heat	Q	Ŷ
•	Work	W	$\mathbf{\hat{W}}$

Classical Thermodynamics

<u>Workbook</u>

LearnThermo.com

Dimensions & Units

- Dimensions: Mass, Length, Time
- Units: m, ft, kg, lb_m, J, Btu
- Force
 - IS a fundamental unit in the AE System
 - Is NOT a fundamental unit in the SI System
 - Newton's 2^{nd} Law of Motion: $\mathbf{g}_{C} \mathbf{F} = \mathbf{m} \mathbf{a}$

• AE:
$$\mathbf{g}_{\mathrm{C}} = 32.174 \frac{\mathbf{lb}_{\mathrm{m}} \cdot \mathbf{ft}}{\mathbf{lb}_{\mathrm{f}} \cdot \mathbf{s}^2}$$

• SI:
$$\mathbf{g}_{\mathrm{C}} = \mathbf{1} \frac{\mathbf{kg} \cdot \mathbf{m}}{\mathbf{N} \cdot \mathbf{s}^2}$$

- Conversion Factors
 - Download from the course website
 - Online: "The Foot Rule" website
 - http://www.FootRule.com

- Dimensions are more fundamental than units
- Other dimensions include electrical charge and temperature
- Units are not very difficult except when we must convert between systems of units, such as AE and SI.
- The easiest way to keep this straight is to use gc and Newton's 2nd Law of Motion.
- We will work a problem using this in class.
- Online, I like the FootRule website. Check it out !

Terminology or Nomenclature

- System: The material or volume that we are studying
 - Systems have boundaries
 - Closed Systems: Mass does not cross the boundary
 - Open Systems: Mass does cross the boundary
- Properties
 - Intensive vs. Extensive Properties
 - Extensive properties depend on the size of the system, intensive properties do not.
 - Molar Properties: per mole. Molar volume:
 - Specific Properties: per kg or per lb_m. Specific volume:
- States
 - The condition of a piece of matter or system as determined by its intensive properties.
 - If ANY intensive property is different, then the system is in a different state.

• Systems

- The entire universe is divided into two regions: the system and the surroundings.
- The surface that separates the system from the surroundings is called the boundary of the system.
- If mass flows across the system boundary, then the system is called OPEN.
- If NO mass flows across the system boundary, then the system is called CLOSED.
- Properties
 - Intensive properties are more important in this course because they determine the STATE of the system.
 - Molar and specific properties are intensive variables. We will use them MUCH more than we will use extensive properties, such as volume.
- States

ĩ

Ŷ

- Consider a system that contains a pure substance in a single phase.
- If we measure just TWO intensive properties of the system, then we don't need to measure any more properties.
- They are all fixed and <u>could</u> be determined from the two values that we measured.
- This cool part is a special case of the Gibbs Phase Rule. We'll learn more about this in Lesson 3C.

Workbook

LearnThermo.com

More Nomenclature

- Process
 - ♦ A change in the state of a system
 - Process Path
 - The series of states that a system moves through on its way from the initial state to the final state.
- Special Types of Processes
 - ♦ Isobaric constant pressure
 - ♦ Isothermal constant temperature
 - ◊ Isochoric constant volume
- Cycles
 - ♦ Special process paths in which the initial state is the same as the final state
 - ♦ Thermodynamic cycles are a key topic in this course

- Most of the problems we solve in this course will involve the analysis of processes
- One key to understanding the effects of any process on a system is to know which states the system passes through during the process. That is, we need to understand the process path
- Special types of processes are a little bit easier to analyze because one property does not change.
- These are the big three special processes, but we will add 3 or 4 more special types of processes later in the course.
- Cycles are special and cool types of processes.
- Engines, refrigerators and heat pumps all operate on Thermodynamic Cycles.
- Analysis of cycles is the ultimate goal of this course !

Equilibrium

- A system is in equilibrium when <u>no unbalanced potentials</u> or <u>driving forces</u> exist within the system boundary.
 - Thermal: no temperature driving forces
 - Chemical: no chemical driving forces
 - Phase: no mass transfer driving forces
 - Mechanical: no unbalanced mechanical forces

• Quasi-Equilibrium Processes

- A process during which the system only deviates from equilibrium by an infinitessimal amount.
- Every state along the process path is very nearly an equilibrium state.

- Equilibrium
- For a system to truly be in equilibrium, it must be in equilibrium thermally, chemically, mechanically and it must be in phase equilibrium as well.
- Quasi-Equilibrium Processes
 - All forces are balanced or nearly balanced throughout the process
 - Q-E processes must occur very slowly so the system only deviates slightly from equilibrium.
 - Although no real process is actually a Q-E process, we can use the Q-E process as a best case.
 - Then we can compare the performance of real processes to the performance of equivalent Q-E processes.

Pressure, Volume & Temperature

• Volume:
$$\tilde{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{n}}$$
 $\hat{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{m}}$ $\rho = \frac{\mathbf{m}}{\mathbf{V}} = \frac{1}{\hat{\mathbf{V}}}$

$$\circ$$
 SI: L, m³, mL=cm³

 \diamond AE: ft³

• Pressure: acts in all directions \perp to all surfaces

- ◊ SI: Pa, kPa, MPa, bar, atm
- ◊ AE: psia
- Absolute, Gage and Vacuum Pressures

- Volume is pretty straightforward and the units should be very familiar.
- The units of pressure for SI may not all be familiar.
- My favorite unit for pressure is the kPa. 1 atm = 101.325 kPa = 14.696 psia
- Oddly enough, there are different types of pressures.
- Before today, you only worked with absolute pressure and that is what you want to continue to use.
- So, if you are given a vacuum pressure or gage pressure, the first thing you want to do is convert it to absolute pressure.
- $P_{gage} = P_{abs} P_{atm}$
- $P_{vac} = P_{atm} P_{abs}$
- Remember that absolute pressure cannot be negative, but gage pressure can.
- Technically, vacuum pressure can be negative, but it is not usually expressed as vacuum pressure in that case.

Manometers					
• Barometer Eqn:	$\mathbf{P}_2 = \mathbf{P}_1 + \rho_f \frac{\mathbf{g}}{\mathbf{g}_c} \mathbf{h}$				
• Manometer Eqn:	$P_{in} = P_{out} + \rho_f \; \frac{g}{g_c} \; h$				
 Differential Manometer Eqn: 	$\mathbf{P}_{\rm up} = \mathbf{P}_{\rm down} + \left(\boldsymbol{\rho}_{\rm m} - \boldsymbol{\rho}_{\rm f}\right) \frac{\mathbf{g}}{\mathbf{g}_{\rm c}} \mathbf{h}$				

- The barometer eqn helps you calculate the pressure the bottom of a tank, P2, given the pressure at the top of the tank, P1, and the depth and density of the fluid.
- Remember that the pressure at the bottom of the tank is always greater than the pressure at the surface of the liquid.
- A manometer lets you calculate the difference between the pressure in two different locations, such as the difference between the pressure inside a tank and the ambient pressure.
- All you need to know is the density of the manometer fluid and the difference in the height of the manometer fluid in the two legs of the manometer. (assuming the density of the fluid in the tank is negligible, usually this means it is a gas).
- The differential manometer eqn lets you calculate the difference in pressure between two locations, even if the fluid density is similar to the density of the manometer fluid.
- This is especially useful for measuring the pressure drop that occurs as a fluid flows through a pipe.

Workbook

LearnThermo.com

Temperature

- Thermometers and Thermocouples
- Temperature conversions are straightforward
- ΔT (°C) = $\Delta T(K)$ and ΔT (°F) = $\Delta T(^{\circ}R)$
- Ideal Gas Thermometry
 - ♦ Must be calibrated
 - ♦ Tedious, but extremely accurate
 - ◊ IG T-scale is identical to the Kelvin Scale !

- Engineers usually use thermocouples or other temperature measuring devices because they are well-suited to electronic data acquisition.
- Ideal Gas Thermometers provide some of the most accurate temperature measurements available.
- The downside is that several experiments must be run at decreasing pressure so the results can be extrapolated back to ZERO pressure.
- Why? Because only at zero pressure is any real gas actually ideal.
- Once this calibration is complete, the IG Thermometer is ready to measure the temperature of a sample of the same gas that was used in the calibration.
- In order to measure the temperature of a different gas, the IG Thermometer must be recalibrated.
- The IG thermometer is very accurate, but not practical for most applications.

1A-1 Kinetic and Potential Energy of an Airplane in Flight

6 pts

Gravitational acceleration is less at higher altitudes than at sea level. Assume gravitational acceleration as a function of altitude is described by g(m/s²) = 9.806 - 3.2 x 10⁻⁶ * h, where h is the altitude (relative to sea level). Consider an aircraft flying at 750 km/h at an altitude of 12 km. Before take-off, the aircraft weighed 50 kN at sea level.

Determine its:

a.) kinetic energy

b.) potential energy relative to sea level.

Read : Since gravitational acceleration is LESS at higher altitude, the gravitational potential energy of the airplane will not be quite as great as you might ordinarily expect. We need the weight of the airplane at sea level in order to determine the mass of the airplane. We need ot know the mass in order to calculate both the kinetic and gravitation potential energies of the plane.

Given:	$g(m/s^2) = a$	a - b * h		v	750	km/h		
	а	9.8066 m/s	s^2			h	12000	m
	b	3.20E-06 s ⁻²				W _{sea level}	50	kN
						g _c	1	kg-m/N-s ²
Find:	a.)	E _{kin}	???	MJ	b.)	E _{pot}	???	MJ

Assumptions: 1- Gravitational acceleration is a function of altitude only.

Equations / Data / Solve :

Let's begin by determining the mass of the airplane from the weight at sea level.

's 2nd Law of Motion:	$g_{c} F = m a$		Eqn 1
	$\mathbf{g}_{\mathrm{c}} \mathbf{W}_{\mathrm{sealevel}} = \mathbf{m} \mathbf{g}$		Eqn 2
level, according to the eqn given in the mather statement, the acceleration of gravity is	:	g	9.8066 m/s ²
e can solve Eqn 1 for plug in values :	$\mathbf{m} = \mathbf{W}_{\text{sealevel}} \ \frac{\mathbf{g}_{\text{c}}}{\mathbf{g}}$		Eqn 3
e are ready to solve the rest of the proble	m.	m	5099 kg
finition of kinetic energy is :	$E_{K} = \frac{1}{2}m\frac{v^{2}}{g_{C}}$		Eqn 4
	C C	E _k	1.106E+08 J
		E _k	111 MJ

Part a.)

Ek

Part b.) The definition of gravitational potential energy, relative to sea level, is :

$$E_{p} = m \frac{g}{g_{c}}h$$
 Eqn 5

The problem is what value of g do we use ? Do we simply use g at the altitude of the plane? Or do we use some sort of average value of g ?

Let's think about this part a bit more carefully.

$$E_{p} = m \frac{g}{g_{C}}h$$
 Eqn 6

The differential increase in the potential energy of an object infinitessimally above sea level is:

$$dE_{p} = m \frac{g}{g_{C}} dx$$
 Eqn 7

Eqn 8

So, the gravitational potential energy of an oject that is a distance h above sea level is :

Now, if **m**, **g** and \mathbf{g}_{c} are all constants, Eqn 7 simply reduces to Eqn 5 because the integral of **dx** from **0** to **h** is just **h**. In our problem, however, **g** is NOT a constant. Therefore :

$$E_{P} = \frac{m}{g_{C}} \int_{0}^{h} (a - bx) dx = \frac{m}{g_{C}} \left[ax - b\frac{x^{2}}{2} \right]_{0}^{h} = \frac{m}{g_{C}} \left[ah - b\frac{h^{2}}{2} \right] = \frac{m}{g_{C}} \left[a - b\frac{h}{2} \right] h \qquad \text{Eqn 9}$$
5.988E+08 J
$$E_{Pot} = \frac{598.8 \text{ MJ}}{598.8 \text{ MJ}}$$

 $\mathbf{E}_{\mathbf{p}} = \int_{0}^{\mathbf{E}_{\mathbf{p}}} d\mathbf{E}_{\mathbf{p}} = \int_{0}^{\mathbf{h}} m \frac{\mathbf{g}}{\mathbf{g}_{\mathbf{c}}} d\mathbf{x}$

So, what "average" value of g should we have used in Eqn 5? Let's combine Eqns 5 and 8 and see what we get.

So, the average effective value of the gravitational acceleration for determining the potential energy of the airplane in this problem is equal to the gravitational acceleration at HALF of the actual altitude of the airplane. Would this be true if $\mathbf{g} = \mathbf{a} - \mathbf{b} \mathbf{x} - \mathbf{c} \mathbf{x}^2$? Nope. What is special about the equation for \mathbf{g} given in this problem that leads to the interesting result in Eqn 10?

Answers : a.) <mark>E_k 111 MJ</mark>	b.) E _{po}	_t 599 MJ	
---	---------------------	---------------------	--

E_{pot}

1A-2 Conversion of Kinetic Energy into Spring Potential Energy

5 pts

It takes energy to compress a spring. This energy is stored as spring potential energy, which can be calculated using: $E_{spring} = 1/2 K x^2$, where K is the spring constant and x is the distance the spring is compressed.

At a dock, a boat with a **mass** of **50,000 kg** hits a bumper supported by **two** springs that **stop** the boat and absorb its kinetic energy.

Determine the **spring constant** of the springs that is required if the maximum compression is to be **60 cm** for a boat speed of **2.4 m/s**.

Read: It is important to note that two springs are used to stop the vehicle. All of the initial kinetic energy of the vehicle must be absorbed by the springs and converted to spring potential energy.

Given:	$E_{spring} = \frac{1}{2} K x^2$		Eq	K = spring constant	K = spring constant			
		_		\mathbf{x} = displacement of the spring, in th	\mathbf{x} = displacement of the spring, in this case compression.			
	m	50000	kg					
	v	2.4	m/s	g _c	1	kg-m/N-s ²		
	x	0.6	m					
Find:	к	???	N/m					
Assumptions: 1- The spring i		g is a linear	pring and therefore the given equation applies.					

2- All of the kinetic energy of the boat is absorbed by the springs.

Equations / Data / Solve:

The key to solving this problem is to recognize that the final potential energy of the two springs must be equal to the initial kinetic energy of the vehicle. So, we should begin by calculating the initial kinetic energy of the boat.

$$E_{kin} = \frac{1}{2g_c} m v^2$$
 Eqn 2

Because there are two identical springs :

 $\mathsf{E}_{\mathsf{spring}} = \frac{\mathsf{E}_{\mathsf{kin}}}{2}$

Eqn 3

Plugging given values into Eqn 2 and Eqn 3 yields:

E _{kin}	144000		
E _{spring}	72000	J	

Next, we can solve Eqn 1 algebraically for the spring constant, K.

$$K = \frac{2 E_{spring}}{x^2} \qquad Eqn 4$$

First, let's work on the units.

$$\mathsf{K} [=] \frac{\mathsf{J}}{\mathsf{m}^2} [=] \frac{\mathsf{N} \cdot \mathsf{m}}{\mathsf{m}^2} [=] \frac{\mathsf{N}}{\mathsf{m}}$$

Eqn 5

Now, let's calculate the value of the spring constant.

4.00E+05 N/m

Κ

Answers: K

4.00E+05 N/m

1B-1	Mass, Weight and G	ravitational Acceleration			4 pts
A curious a she determ When she r a.) What wi b.) What wi	stronaut took her bathr ined that her mass was reaches the moon ill she weigh on the spri ill the beam scale indica	oom scale (a spring scale) and a bear s 124 lb_m. The gravitational acceleration ing scale? ate for her mass ?	m scale (con on on the mo	npares masses oon is a = 5.3 ft a) to the moon. On Earth, /s ² .
Read:	The key here is that a Use gc in Newton's 1s	spring scale actually measures weigh st Law of Motion to answer this question	nt (which is a on.	force) and not	mass.
Given:	m	124 lb _m		а	5.3 ft/s ²
Find:	a.) F _{wt}	??? lb _f	b.)	m _{beam}	??? lb _m
Assumptio	ons:				
Equations	/ Data / Solve:				
Part a.)	The key equation here	e is Newton's 1st Law of Motion :	$\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\mathrm{wt}}$	a = ma	Eqn 1
	Because a spring sca the force exerted by th need to solve Eqn 1 f	le measures weight, which is ne astronaut on the scale, we or F_{wt}.	$\mathbf{F}_{wt} =$	$\frac{\mathbf{m}\mathbf{a}}{\mathbf{g}_{\mathrm{C}}}$	Egn 2
	Now, we can plug valu	ues into Eqn 2 :		9c F _{wt}	32.174 lb _m -ft/lb _f -s ² 20.43 lb _f

Part b.) A beam balance is the kind of scale used in most medical and sports facilities.

Known masses are moved along the length of the beam until the net torque around the fulcrum is zero. That is the astronaut's weight multiplied by a fixed distance along the beam to fulcrum is equal to the weight of the masses hanging from the beam multiplied by their distance from the fulcrum.

Weight is still involved in a beam balance, but the key is that the local gravitational acceleration applies to BOTH the astronaut AND the masses on the beam balance. This scale will read the same on the moon as it would in the astronaut's bathroom ! Therefore, it is actually measuring the astronaut's MASS (which is the same on the moon as in her or his bathroom.

m_{beam} 124 lb_m

Answers: a.)		F _{wt}	20.4	lb _f
	b.)	m _{beam}	124	lb _m

1B-2 Mass, Force and Acceleration

A strong boy throws a rock straight up with a force of 100 N. At what rate does the rock initially accelerate upwards, in m/s²? Assume the mass of the rock is 2 kg and the local gravitational acceleration is 9.74 m/s².

The key here is to recognize that two forces are acting on the rock: the 100 N and the weight of the rock (due to Read: gravity). Then, the problem becomes an application of Newton's 1st Law of Motion.

Given:	m F _{throw}	2 100	kg N	g	9.74	m/s²
Find:	а	???	m/s ²			
Assumptio	ns:	None.				

Equations / Data / Solve:

The key equation here is Newton's 1st Law of Motion :	$\mathbf{g}_{\mathrm{C}} \mathbf{F}_{\mathrm{net}} = \mathbf{m} \mathbf{a}$	Eqn 1
---	---	-------

We can solve Eqn 1 for the rate at	σF	
which the rock accelerates :	$a = \frac{g_{C} \Gamma_{net}}{2}$	Eqn 2
	m	

We know that :

So, all we need to is determine the net force acting on the stone.

A free-body diagram might be helpful.

The net force acting on the rock in the upward direction is :

 $\mathbf{F}_{\text{net}} = \mathbf{F}_{\text{throw}} - \mathbf{F}_{\text{wt}}$ Eqn 3

We can apply Newton's 1st Law of Motion again to evaluate F_{wt}.

We can solve **Eqn 4** for F_{wt} , as follows :

Plugging values into Eqn 5, then Eqn 3 and, finally, Eqn 2 yields :

40.3 m/s² Answers: a

gc

1 kg-m/N-s²

4 pts

Eqn 4

Eqn 5

 $F_{wt} = m \frac{g}{g_c}$

 $g_{C} F_{wt} = mg$

а	40.26 m/s^2
F _{net}	80.52 N
F _{wt}	19.5 N

а

1B-3 Units and Carbon Dioxide Emissions

4 pts

A new, energy-efficient home refrigerator consumes about 350 kW-h of electricity per year. Assume the electricity is generated by burning fossil fuels. When fossil fuels like coal, oil, natural gas and gasoline are burned, most of the carbon in the fuel burns completely to form carbon dioxide (CO₂). CO₂ is a greenhouse gas that contributes to global warming and that is undesirable. In a typical natural gas power plant, 0.5 kg of CO₂ is produced for each kW-h of electricity generated. Consider a city with 500,000 homes with one refrigerator in each home. How much CO₂, in metric tons, is produced by the refrigerators in the city in one year?

 Read: This problem is all about unit conversions. Keep careful track of units and it will not be difficult. A kW-h is unit of energy. A Watt is energy per time and when you multiply by hours (time) you are left with units of energy. A kW-h is kW times hours. It is the amount of energy consumed in an hour by a device that uses 1 kW of power (1 kJ/s for 3600 sec).

Given:	m _{CO2} N	0.5 500000	kg CO ₂ / kW-h houses	Power	350	kW-h/house/year
Find:	M _{CO2}	???	mton CO ₂ / year			

Assumptions: None.

Equations / Data / Solve:

The total mass of CO_2 produced per year is the product of the rate of CO_2 production per kW-h, the rate at which power is used by each house and the number of houses.

$$\mathbf{M}_{\text{CO2}} = \mathbf{Power} \cdot \mathbf{m}_{\text{CO2}} \cdot \mathbf{N}_{\text{houses}}$$
Eqn 1

Check the units in this equation :

$$\mathbf{M}_{\rm CO2} = \left(\frac{\mathbf{kW} \cdot \mathbf{h}}{\mathbf{house} \cdot \mathbf{year}}\right) \left(\frac{\mathbf{kgCO}_2}{\mathbf{kW} \cdot \mathbf{h}}\right) \cdot \left(\mathbf{house}\right) = \left(\frac{\mathbf{kgCO}_2}{\mathbf{year}}\right)$$
Eqn 2

	Plug in the values :	M _{CO2}	8.75E+07	kg CO ₂ / year		
	Unit conversion factor :	1 metric ton) =	1000	kg	
	Therefore :	M _{CO2}	87500	mton CO ₂ /	year	
:	M _{CO2} 87500 mton CO ₂ / year					

Answers

1B-4	Force F	Force Required to Accelerate a Rocket 4 p						4 pts	
NASA wo upward th	uld like a r rust force	ocket to <mark>accelera</mark> t , in Ib_f , that the ro	te upward a cket engine	at a rate of 125 e must produce	ft/s² . The	e mass of the	rocket is 35,0	00 lb_m. Determir	ne the
Read:	This is a The key	a direct application / to solving this pr	n of <mark>Newto</mark> oblem is a	n's 2nd Law of clear understa	Motion in nding of g	the AE Syste J _c .	m of units.		
Given:	m a	35000 125	lb _m ft/s²			9 _c	32.174	lb _m -ft/lb _f -s ²	
Find:	F_{up}	???	lb _f						
Assumpt	ions:	1- Assume:	g	32.174	ft/s²				
Equation	s / Data / S	Solve:							
We begin with Newton's 2nd Law of Motion : $\mathbf{g}_{c} \mathbf{F} = \mathbf{m} \mathbf{a}$							Eqn 1		

The force required to lift the rocket and accelerate it upward depends on both the weight of the rocket (and therefore the g) and the rate at which the rocket must be accelerated...120 ft/s². Therefore:

$$\mathbf{F}_{up} = \mathbf{F}_{weight} + \mathbf{F}_{accelerate}$$
 Eqn 2

We can now substitute Eqn 1 into Eqn 2 to get :

$$\mathbf{F}_{up} = \frac{\mathbf{m}\,\mathbf{g}}{\mathbf{g}_{c}} + \frac{\mathbf{m}\,\mathbf{a}}{\mathbf{g}_{c}} = \mathbf{m}\,\frac{(\mathbf{g}+\mathbf{a})}{\mathbf{g}_{c}} = \mathbf{m}\,\frac{\mathbf{a}_{total}}{\mathbf{g}_{c}}$$
Eqn 3

Note, in the absence of gravity, weightlessness, it would still require a force of $F_{acc} = 135,979 \text{ lb}_{f}$ to accelerate the rocket at a rate of 125 ft/s².

Answers: F_{up} 171000 lb_f

Now, we can plug in the values :

1B-5 Relationships between Different Types of Pressures

Fill in the blank values in the table below. Assume $P_{atm} = 100 \text{ kPa}$ and the density of liquid mercury (Hg) is 13,600 kg/m³. $P_{gage}(kPa) \quad P_{abs}(kPa) \quad P_{abs}(mmHg) \quad P_{gage}(m H_2O)$ a.) b.) c.) d.) $17 \quad 225 \quad 55 \quad 32$

Read: This problem requires an understanding of the relationship between absolute and gage pressure. It will also require the effective use of unit conversions.

Given:	P _{atm} g _c	100 1	kPa kg-m/N-s ²			Ρн20 Рнg	1000 13600	kg/m ³ kg/m ³
a.)	P _{gage}	17	kPa		c.)	P _{abs}	55	mmHg
b.)	P _{abs}	225	kPa		d.)	P_{gage}	32	m H₂O
Assumptions:	1- Assume:		g	9.8066	m/s²			
Find:	Pgauge	???	kPa			P _{abs}	???	mmHg
	P _{abs}	???	kPa			Pgauge	???	m H₂O

Equations / Data / Solve:

There are two key relationships in the solution to this problem. The first is the relationship between absolute and gage pressure :

$$\mathbf{P}_{\text{gage}} = \mathbf{P}_{\text{abs}} - \mathbf{P}_{\text{atm}}$$

The second relationship is required in order to make sense of the units for pressure in the last two columns of the table in the problem statement. The 2nd relationship is the Manometer Equation.

$$\mathbf{P}_{\rm in} = \mathbf{P}_{\rm out} + \rho_{\rm f} \, \frac{\mathbf{g}}{\mathbf{g}_{\rm c}} \, \mathbf{h}$$
 Eqn 2

The reason we use the Manometer Equation is that when a pressure unit involves a length of a given fluid, as in the last two columns of the table given in this problem, it really means that this is the height that an open-ended manometer (for gage pressure) or a closed end manometer (for absolute pressure) would read if the given fluid were used as the manometer fluid.

Now, let's see how we use these 2 equations to complete the table.

Part a.) In order to fill in the 2nd column, we must solve Eqn 1 for the absolute pressure :

$$P_{abs} = P_{gage} + P_{atm}$$
 Eqn 3

5 pts

P_{abs}

117 kPa

Eqn 4

877 mm Hg

1.734 m H₂O

Therefore :

To complete column 3, we must convert the units from our result for P_{abs} using Eqn 2. In this case, $P_{in} = P_{abs}$ and $P_{out} = 0$ (because it is a closed-end manometer). Actually, P_{out} should be equal to the vapor pressure of the manometer fluid, but that is a topic for chapter 2.

In this case, the answer for column 3 is actually the value of h, so we need to solve Eqn 4 for h :

$$\mathbf{h} = \frac{\mathbf{P}_{abs}}{\mathbf{\rho}_{Hg}} \frac{\mathbf{g}_{c}}{\mathbf{g}}$$
 Eqn 5

Be sure to convert **kPa** to **Pa=N/m²** when plugging values into **Eqn 5**.

$$P_{abs} = h = 0.877 \text{ m Hg}$$

Column 4 requires a gage pressure, so the open-end form of the Manometer Equation is used :

In this case, $P_{in} = P_{abs}$ and $P_{out} = P_{atm}$ (because it is a closed-end manometer).

$$P_{abs} = P_{atm} + \rho_{H2O} \frac{g}{g_c} h$$
 Eqn 6

Next, we solve Eqn 6 for h and make use of Eqn 1 if we want to use the given value of the gage pressure.

$$\mathbf{h} = \frac{\left(\mathbf{P}_{abs} - \mathbf{P}_{atm}\right)}{\rho_{H2O}} \frac{\mathbf{g}_{c}}{\mathbf{g}} = \frac{\mathbf{P}_{gage}}{\rho_{H2O}} \frac{\mathbf{g}_{c}}{\mathbf{g}}$$
Eqn 7

 $P_{abs} = \rho_{Hg} \frac{g}{g} h$

P_{abs}

P_{gage}

 $P_{gage} = h = 1.7335 \text{ m H}_2\text{O}$

Parts b-d) The solution of the remaining parts of this problem involve the algebraic manipulation of Eqns 1, 3, 5 and 7, but does not involve any additional concepts, techniques or data. The final answers to parts b through d are provided in the table below.

	P_{gage}	P_{abs}	P_{abs}	P_{gage}
	(kPa)	(kPa)	(mmHg)	(m H ₂ O)
a.)	17	117	877	1.73
b.)	125	225	1690	22.9
c.)	-92.7	7.34	55	-0.909
d.)	314	414	3100	32

Notice that I chose to use 3 significant figures in my answers.

This is somewhat arbitrary since the problem statement does not make it very clear how many significant figures exist in the given information. When in doubt, 3 significant figures is a reasonable choice.

Answers:

1B-6 Force Required to Lift an Underwater Gate

5 pts

A steel plate rests on the horizontal bottom of a **water** tank that is **3 m** deep. What upward force, in **N**, must be applied to the steel plate to just barely lift it straight upward? The plate is **20 cm** in **diameter**.

Assume the **weight** of the plate is negligible.

Read: The key to this problem is to recognize that the TOTAL force required to just barely lift the man-hole cover is equal to the force exerted on the top surface of the man-hole cover by both the atmosphere and the water. This force is equal to the absolute pressure at the bottom of the tank times the area of the man-hole cover. The force a man or machine would need to exert in order to lift the man-hole cover is less because atmospheric pressure is also acting on the outer or bottom surface of the man-hole cover.

Given:	D h	0.2 3	m m			g _c	1	kg-m/N-s ²
Find:	F_{up}	???	kN					
Assumptio	ons:	1- Assume:		g P _{atm} Рн2о	9.8066 100 1000	m/s ² kPa kg/m ³		

Equations / Data / Solve:

The total force required to just barely lift the man-hole cover is:	$\mathbf{F}_{\mathrm{bottom}} = \mathbf{P}_{\mathrm{bottom}} \ \mathbf{A}_{\mathrm{gate}}$			Eqn 1
The gate is circular, so :	$A_{gate} = \frac{\pi}{4} D^2$			Eqn 2
Plug values into Eqn 2 :	A	gate	0.03142 m ²	

Next, we can use the Barometer Equation to determine the pressure at the bottom of the tank.

$$\mathbf{P}_{\text{bottom}} = \mathbf{P}_{\text{surface}} + \rho_{\text{H2O}} \frac{g}{g_{\text{c}}} \mathbf{h} = \mathbf{P}_{\text{atm}} + \rho_{\text{H2O}} \frac{g}{g_{\text{c}}} \mathbf{h}$$
 Eqn 3

P_{bottom} 129.4 kPa

Finally, we substitute values into Eqn 1 to answer the question : F 4066 N

This is the total force required to lift the man-hole cover. But atmospheric pressure is also acting on the outside or bottom surface of the manhole cover as well. So, since we want to determine how much <u>additional</u> force must be applied in order to lift the man-hole cover, we must subtract the upward force attributable to atmospheric pressure below the cover.

$$\mathbf{F}_{atm} = \mathbf{P}_{atm} \mathbf{A}_{gate}$$
 Eqn 4
 \mathbf{F}_{atm} 3142 N

The additional force that must be exerted to lift the man-hole cover is the difference between the total force required and the force exerted by the atmosphere.

$$F_{up} = F_{total} - F_{atm}$$
 Eqn 5 F_{up} 924.3 N

If the door had a hinge, the problem would be a bit more challenging because it would involve the computation of torques acting around the axis of the hinge. Torques and lever arms are not part of this thermodynamics course.

Answers: F _{up} 924 N

1B-7 Mass, Weight and Gravitational Acceleration: Keebos and Tweeks

5 pts

In the future, we may encounter a civilization from another planet. They will not use the SI or AE systems of units. Suppose we meet aliens who use the **Zerf** as a unit of **mass** and the **Spund** as a unit of **force**.

One Spund is the weight of a mass of one Zerf on the surface of Mars. The gravitational acceleration on Mars is 3.7 m/s².

a.) What is \mathbf{g}_{c} in the alien system of units? Be sure to include the numerical value and the units.

- b.) How much would a 350 Zerf object weigh on the surface of Mars, in Spunds?
- c.) How much would a 350 Zerf object weigh on the surface of the Earth, in Spunds?

d.) To which system of units is the Zerf-Spund system most similar, SI or AE?

Read: 1 Zerf exerts 1 Spund of force when $a = 3.7 \text{ m/s}^2$.

The key here is that Newton's 2nd Law of Motion applies regardless of where the system is located or what system of units is used.

Given:	a _{moon} m	3.7 350	m/s² Zerf					
Find:	a.) b.) c.)	g _c F _{wt} F _{wt}	??? ??? ???	m-Zerf/Spund-s Spund Spund	2 for for	m _{Mars} m _{Earth}	350 350	Zerf Zerf
Assumpt	d.) ions:	Is this Z-S : 1- The acco	Is this Z-S system similer to the SI or AE system? 1- The acceleration of gravity at the surfae of the Earth is: a _{Earth}				9.806	6 m/s²
Equation	s / Data / S	olve:						
	Newton's	s 2nd Law :		g _c	F=ma			Eqn 1
Part a.)	Solve Ne	ewton's 2nd La	w for g _c :	g _c	= <mark>ma</mark> F			Eqn 2
	$\mathbf{g}_{c} = \frac{1}{2}$	1 Zerf)(3.7	m/s²)					

1 Spund

g_c 3.70 m-Zerf/Spund-s²

There are two important points to this problem:

1 - The value of $\mathbf{g}_{\mathbf{c}}$ is the same everywhere in the universe.

2 - If a person weighs a certain amount more on the Earth than on Mars in one system of units, then he or she also weighs proportionally more on the Earth than on Mars in any other system of units as well !

Part d.) The Zerf-Spund system of units is analogous to the American Engineering System of units because **g**_c is not equal to 1 and 1 unit of mass exerts 1 unit of force (on the Mars).

Answers:	a.)	g _c	3.70	m-Zerf/Spur	nd-s ²
	b.)	F _{wt}	350	Spund	
	c.)	F _{wt}	930	Spund	
	d.)	AE			

1B-8 Dimensionless Groups and Equations

Consider the following equation. All three of the terms in parentheses are dimensionless groups. Because \mathbf{k}_{c} is difficult to determine directly, the other variables are measured and \mathbf{k}_{c} is calculated from the given equation.

$$\left(\frac{\mathbf{k}_{c} \mathbf{D}}{\mathbf{D}_{AB}}\right) = \mathbf{0.023} \left(\frac{\mu}{\rho \mathbf{D}_{AB}}\right)^{1/3} \left(\frac{\mathbf{d}_{p} \mathbf{v} \rho}{\mu}\right)^{0.8}$$

What is the estimated value of k_c ? What are the units of k_c ? Show your work. The following values were measured: D = 8.0 mm, D_{AB} = 0.475 cm²/s, μ = 1.12 x 10⁻³ N-s/m², ρ = 1.00 x 10⁻³ g/cm³, v = 18.3 m/s.

 Read: The key here is that the equation and the groups in parentheses are dimensionless. This tells us that the constant 0.023 is also dimensionless. So, we can plug numbers and units into the right-hand side of the equation to determine the value of the dimensionless group on the left-hand side. Then, we use the values and units of D and D_{AB} to determine the value and units of k_c.

It is probably wise to begin the problem by converting all of the given values to one consistent system of units. I chose the MKS system.

Given:	D	0.008	m	μ 1.12E-03	N-s/m ²
	D_{AB}	4.75E-05	m²/s	ρ 1.000	kg/m ³
				v 18.3	m/s

 Find:
 k_c
 ???
 ??? (units)

Assumptions: None.

Equations / Data / Solve:

Once all the given values are in a consistent set of units, we can evaluate each of the dimensionless groups in Eqn 1.

$$\left(\frac{\mathsf{D}\,\mathsf{v}\,\rho}{\mu}\right) =$$
 131 $\left(\frac{\mu}{\rho\mathsf{D}_{\mathsf{AB}}}\right) =$ 23.579

Let's double check the units on these groups using the SI units.

$$\begin{pmatrix} \underline{\mathsf{D}\,\mathsf{v}\,\rho} \\ \mu \end{pmatrix} [=] \frac{\mathsf{m}(\mathsf{m}\,\mathsf{/}\,\mathsf{s})\big(\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}^3\big)}{\big(\mathsf{k}\mathsf{g}\,\cdot\mathsf{m}\,\mathsf{/}\,\mathsf{s}^2\big)\cdot\mathsf{s}\,\mathsf{/}\,\mathsf{m}^2} [=] \frac{\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}\,\cdot\mathsf{s}}{\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}\,\cdot\mathsf{s}} \\ \left(\frac{\mu}{\rho\mathsf{D}_{\mathsf{A}\mathsf{B}}}\right) [=] \frac{\big(\mathsf{k}\mathsf{g}\,\cdot\mathsf{m}\,\mathsf{/}\,\mathsf{s}^2\big)\cdot\mathsf{s}\,\mathsf{/}\,\mathsf{m}^2}{\big(\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}^3\big)\big(\mathsf{m}^2\,\mathsf{/}\,\mathsf{s}\big)} [=] \frac{\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}\,\cdot\mathsf{s}}{\mathsf{k}\mathsf{g}\,\mathsf{/}\,\mathsf{m}\,\cdot\mathsf{s}}$$

Dr. B - LearnThermo.com

5 pts

All the units cancel, so we can conclude that both of these groups are indeed dimensionless.

$$\left(\frac{k_{\text{C}} D}{D_{\text{AB}}} \right) = 0.023 \, \left(\frac{\mu}{\rho D_{\text{AB}}} \right)^{1/3} \left(\frac{D \, v \, \rho}{\mu} \right)^{0.8}$$

3.253 (dimensionless)

First, let's determine the units for $\boldsymbol{k}_g.$

$$k_{c} \ [=] \ \frac{D_{AB}}{D} = \frac{m^{2} / s}{m} \ [=] \ m / s$$

$$k_{c} = 3.253 \frac{D_{AB}}{D} = 0.0193$$

Answers:	k _c 0.0193	m/s
	1.93	cm/s

1C-1 Identifying Open and Closed Sysytems

4 pts

State whether each of the following systems is an **open** system or a **closed** system. **Explain** the reasoning behind your answer. **a.**) human being, **b.**) a bicycle tire, **c.**) your refrigerator, **d.**) the planet Earth.

Read: Not much to say here.

Given:

Find:	a.)	Human being	c.)	A refrigerator
	b.)	Bicycle tire	d.)	Planet Earth
Assump	tions:	Assumptions are part of the answ	vers in this problem.	

Equations / Data / Solve: None.

Answers:

a.) <u>Human Being</u>

If we assume the person is alive, then, under most circumstances she or he should be treated as an open system because air and other gases move in and out of the person's lungs when they breathe in and out. For a short period of time, a person might hold their breathe and you could make a case that a closed system would be a reasonable choice. Over a longer period of time, perhaps days or years, a person would be best described as an open system due to the consumption of food and water and the elimination of waste.

b.) Bicycle Tire

If the tire has no leaks and is not being filled over the time period of interest, the tire can be reasonably modeled as a closed system. If the tire has a leak or the filling process is being studied, then air does cross the system boundary and the tire is an open system.

c.) <u>Refrigerator</u>

There are a few subtleties here.

Some refrigerators have ice makers and water chillers. Water flows into the system in this case. But water only flows into the system when ice is being made or the water tap is being used to obtain a glass of cold water. When water is flowing in and out of the system or ice is flowing out of the system, then the refrigerator can best be described as an open system.

When a person is putting groceries into the refrigerator or taking food out of the refrigerator, mass crosses the system boundary and the refrigerator is again best described as an open system.

Most of the hours in a given day, however, there is no mass crossing the system boundary and the refrigerator can be considered to be a closed system.

d.) <u>Earth</u>

This is a tricky one.

The general answer is that the Earth can be described as a closed system.

But this is not entirely true since meteors are routinely bombarding our atmosphere, if not the surface of the Earth. It is also true that molecules do leave our atmosphere and move off into space. Although these mass flow rates are very modest compared to the mass of the Earth and its atmosphere, under some circumstances, these factors are important and Earth must be considered to be an open system.

1C-2 Identifying Intensive and Extensive Properties

5 pts

State whether each of the following properties is an **intensive** property or an **extensive** property. **Explain** the reasoning behind your answer.

- a.) Density
- b.) Internal energy
- c.) Average molecular weight
- d.) Molar volume
- e.) Number of moles.

Read: Not much to say here.

Given:

Find: Intensive or Extensive ?

a.j	Density
b.)	Internal energy

None.

c.) Average molecular weight

Assumptions:

Equations / Data / Solve: None.

Answers:

a.) Density Intensive

Dividing in half a tank of water at a given T, P and density yields two smaller tanks containing water, but the density of the water in each new, smaller tank is the same as it was intially in the one big tank.

d.)

e.)

Molar volume Number of moles

Density is the ratio of mass to volume. The ratio of two extensive properties is an intensive property.

b.) Internal Energy Extensive

Dividing in half a tank of water at a given T, Pwith a given total internal energy yields two smaller tanks containing water at the same T & P, but the internal energy of the water in each new, smaller tank is half as much as it was intially in the one big tank.

c.) Average Molcular Weight Intensive

Dividing in half a tank of air at a given T, P and average molecular weight yields two smaller tanks containing air, but the average molecular weight of the air in each new, smaller tank is the same as it was intially in the one big tank.

Average molecular weight is the ratio of mass to moles. The ratio of two extensive properties is an intensive property.

d.) Molar Volume Intensive

Dividing in half a tank of air at a given T, P and molar volume yields two smaller tanks containing air, but the molar volume of the air in each new, smaller tank is the same as it was intially in the one big tank.

Molar volume is the ratio of volume to moles. The ratio of two extensive properties is an intensive property.

e.) Number of moles Extensive

Dividing in half a tank of water at a given T, P with a givennumber of moles inside yields two smaller tanks containing water at the same T & P, but thenumber of moles of water in each new, smaller tank is half as much as it was intially in the one big tank.

1C-3	Intensive Properties and the State of a System				2 pts		
Can pure lie	Can pure liquid water exist at 99°C and 1 atm with a density of 0.980 g/cm ³ ? Explain your reasoning.						
Read:	Not much to say	here.					
Given:	T P	99 1	°C atm	ρ	0.98	g/cm³	
Find:	Can pure liquid	l water e	kist under these conditions?				
Assumptio	ons: Non	e.					
Equations / Data / Solve:							
Answers:	No.						

The state of a pure substance that exists in a single phase is uniquely determined when **2** intensive properties are known. Here, the values of **3** intensive properties are specified. Any one of the three could be considered too much, extraneous or redundant information. For example, at the given **T** & **P**, the density of liquid water is **0.959** g/cm³, not **0.980** g/cm³. Similarly, liquid water at the given **T** & **density** exists at a pressure of about **0.471 atm**, not **1 atm**.

1D-1 Bomb Calorimeter

2 pts

Propane and **oxygen** undergo a combustion reaction in a strong, rigid, stainless steel canister called a **bomb calorimeter**. Is this process an isothermal, isobaric or isochoric process? **Explain** your reasoning.

Read: Not much to say here.

Given:

Find:

Assumptions:

Equations / Data / Solve:

Answers: Isochoric

The combustion of propane is exothermic so the temperature will increase. The reaction results in an increase in the number of moles as 1 molecule of propane combines with 5 molecules of **oxygen** to produce 3 molecules of CO_2 and 4 molecules of water. As a result of the increase in T and the number of molecules in the system, the pressure will increase. So, the process is neither **isothermal** nor **isobaric**. The volume of the rigid bomb calorimeter remains constant throughout this process. Therefore, this process is an **isochoric** process.

1D-2 Thermodynamic Cycles in Normal Life

3 pts

List **three** common devices that make use of thermodynamic cycles and **explain** how you know they operate using a thermodynamic cycle.

Read: Not much to say here.

Given:

Find:

Assumptions:

Equations / Data / Solve:

Answers:

1- Refrigerator

Work and heat cross the system boundary, but mass does not. The refrigerant undergoes a cyclic process involving changes in both T & P, but the refrigerant always returns to the same initial state to begin the cycle again.

2- Air conditioner

Work and heat cross the system boundary, but mass does not. The refrigerant undergoes a cyclic process involving changes in both T & P, but the refrigerant always returns to the same initial state to begin the cycle again.

3- Automobile

This one is a bit trickier. **Work** and **heat** cross the system boundary. **Heat** enters the working fluid (air) from the heat source (burning gasoline) and **work** leaves the system in the form of a rotating drive shaft or gear train. It is not as clear that the air undergoes a cyclic process. It may help to consider all the air in the world as the working fluid for the cycle. The engine draws in air at ambient temperature. It undergoes changes in **T** & **P** inside the engine and is exhausted back into the environment at a higher temperature. Eventually, the exhausted air cools back down and returns to its initial state to complete the cycle.

1D-3 Identifying Types of Equilibria

4 pts

State whether each of the following systems are in thermal equilibrium, chemical equilibrium, phase equilibrium or mechanical equilibrium.

Give **all** the correct answers for each system. **a.**) snow resting on the roof of my house on a very cold day, **b.**) a cup of coffee sitting on my desk, **c.**) a bicycle rolling along a level road, **d.**) a river flowing past your city.

Read: Not much to say here.

Given:	a.)	Snow	c.)	Bike
	b.)	Coffee	d.)	River

Find: Is each system in **thermal equilibrium**, **chemical equilibrium**, **phase equilibrium** or **mechanical equilibrium**?

Assumptions:

Equations / Data / Solve:

Answers:

		<u>Thermal</u>	<u>Chemical</u>	<u>Phase</u>	<u>Mechanical</u>	
a.)	Snow	No	Yes	No	Yes	The snow is melting due to heat transfer from my roof and may also be sublimating.
b.)	Coffee	No	Yes	No	Yes	Water and oils are evaporating while heat is being transferred to the surroundings.
c.)	Bike	Yes	Yes	Yes	No	Unbalanced forces cause the bike to roll.
d.)	River	No	Yes	No	No	The water is absorbing heat and evaporating.

1D-4	Problem Ti	tle		4 pts				
 Which of the following processes could be reasonably described as a quasi-equilibrium process? a.) a gas escaping from a high-pressure tank through a tiny pin hole into the surrounding air b.) a boy jumping from a cliff into the ocean c.) a woman blowing up a balloon d.) water flowing from the bottom of a large tank through a hose and a shower-head. 								
Read:	Not much to	o say here.						
Given:	a.) b.)	Gas escaping from a tank Boy jumping from a cliff	c.) d.)	Woman blowing up a balloon Water flowing from a tank				
Find:	Can each p	rocess be considered to be a quasi-equilibrium pro	ocess?					
Assumptio	ns:							
Equations /	Data / Solv	re:						
Answers:								
a.)	No.	The gas escapes from the high pressure tank very not balanced by the pressure force of the surroundi substantially from mechanical equilibrium.	rapidly. The ng atmosphe	outward pressure force of the gas is ere. This system deviates				
b.)	No.	The boy accelerates as he falls because the force of system deviates substantially from mechanical equi	of gravity acti ilibrium.	ing on him is not balanced. This				
c.)	Yes.	The air from the woman's lungs enters the balloon slowly and steadily in each breath. Acceleration is very modest. Under most circumstances, it would be reasonable to describe this as a quasi-steady-state process.						
d.)	Yes.	The tank drains slowly. The water flows slowly and nearly steadily. There are unbalanced forces causing the water to flow from the tank through the tube and the shower head, but the imbalance is modest and the acceleration of the water is very gradual. The pressure at the bottom of the tank decreases as the water level drops. But this occurs slowly. Under most circumstances, it would be reasonable to describe this as a quasi-steady-state process.						

1E-1 Pressure Measurement Using a Multi-Fluid Manometer

6 pts

A pressurized vessel contains water with some air above it, as shown below. A multi-fluid manometer system is used to determine the pressure at the air-water interface, point **F**. Determine the gage pressure at point **F** in **kPa gage**.

Read: Use the barometer equation to work your way through the different fluids from point 1 to point 2.

Remember that gage pressure is the difference between the absolute pressure and atmospheric pressure.

Given:	h₁	0.24	m	ρ _w	1000	kg/m³
	h ₂	0.35	m	ρ _{oil}	790	kg/m ³
	h ₃	0.52	m	ρ _{Hg}	13600	kg/m ³
	P ₂	101.32	5 kPa			
Find:	P _{1,gauge}	???	kPa gauge			
Assumptions:		1- The fluids 2- The dens	in the system are completely static. ties of the liquids are uniform and constant.			
		3- The acce	eration of gravity is:	g	9.8066	m/s²
				g c	1	kg-m/N-s ²

Equations / Data / Solve:

Gage pressure is defined by :

$$\mathbf{P}_{\text{gage}} = \mathbf{P}_{\text{abs}} - \mathbf{P}_{\text{atm}}$$
 Eqn 1

$$\mathbf{P}_{1,\text{gage}} = \mathbf{P}_1 - \mathbf{P}_2$$
 Eqn 2

Eqn 3

Eqn 4

The key equation is the Barometer Equation :

Now, apply **Eqn 1** repeatedly to work our way from point 1 to point 2.

Some key observations are:

 $\mathbf{P}_{\mathrm{C}} = \mathbf{P}_{\mathrm{D}} = \mathbf{P}_{\mathrm{E}}$ Eqn 5

These are true because the points are connected by open tubing, the fluid is not flowing in this system and no change in the composition of the fluid occurs between A & B or C & D or D & E.

$$P_A > P_2$$
, therefore : $P_A = P_2 + \rho_{Hg} \left(\frac{g}{g_C}\right) h_3$ Eqn 6

 $\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{B}}$

 $\mathbf{P}_{\text{bottom}} = \mathbf{P}_{\text{top}} + \rho \left(\frac{\mathbf{g}}{\mathbf{g}_{\text{C}}}\right) \mathbf{h}$

$$\mathbf{P}_{\rm E} = \mathbf{P}_{\rm 1} + \rho_{\rm w} \left(\frac{\mathbf{g}}{\mathbf{g}_{\rm C}}\right) \mathbf{h}_{\rm 1}$$
 Eqn 7

$$\mathbf{P}_{\rm B} = \mathbf{P}_{\rm C} + \rho_{\rm oil} \left(\frac{\mathbf{g}}{\mathbf{g}_{\rm C}}\right) \mathbf{h}_2$$
 Eqn 8

$$P_B > P_C$$
, therefore :

Combine Eqns 2, 5 & 6 to get :

 $P_E > P_1$, therefore :

$$\mathbf{P}_{2} + \rho_{Hg} \left(\frac{\mathbf{g}}{\mathbf{g}_{C}}\right) \mathbf{h}_{3} = \mathbf{P}_{C} + \rho_{oil} \left(\frac{\mathbf{g}}{\mathbf{g}_{C}}\right) \mathbf{h}_{2}$$
 Eqn 9

Use Eqns 3 & 5 to eliminate Pc from Eqn 7 :

$$\mathbf{P}_{2} + \rho_{\mathrm{Hg}} \left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{3} = \mathbf{P}_{1} + \rho_{\mathrm{w}} \left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{1} + \rho_{\mathrm{oil}} \left(\frac{\mathbf{g}}{\mathbf{g}_{\mathrm{C}}}\right) \mathbf{h}_{2}$$
 Eqn 10

Now, solve for
$$P_1 - P_2$$
: $P_1 - P_2 = \rho_{Hg} \left(\frac{g}{g_C} \right) h_3 - \rho_w \left(\frac{g}{g_C} \right) h_1 - \rho_{oil} \left(\frac{g}{g_C} \right) h_2$ Eqn 11

Combining Eqns 10 & 2 yields :

$$\mathbf{P}_{1,\text{gage}} = \left[\rho_{\text{Hg}} \ \mathbf{h}_3 - \rho_{\text{w}} \ \mathbf{h}_1 - \rho_{\text{oil}} \ \mathbf{h}_2 \right] \left(\frac{\mathbf{g}}{\mathbf{g}_{\text{C}}} \right)$$
Eqn 12

Plugging	values	into	Eqn	12 yields :	
----------	--------	------	-----	-------------	--

P _{1,gage}	64287	Pa gage
P _{1,gage}	64.29	kPa gage

Answers:	P _{1,gage}	64.3	kPa gage				
	If you are curi	ous :	P ₁	165.61 kPa	$P_A = P_B$	170.68 kPa	
			P ₂	101.325 kPa	$P_{C} = P_{D} = P_{E}$	167.97 kPa	

1E-2 **Pressure Gage and Manometer Readings** 6 pts A cylindrical tank contains pressurized nitrogen gas. The gage on the tank reads 88 kPa. A manometer is attached to the tank to verify its pressure. Determine the manometer reading in cm if the manometer fluid is ... a.) $\rho_{\text{mercury}} = 13,600 \text{ kg/m}^3$, b.) $\rho_{\text{water}} = 1000 \text{ kg/m}^3$ Read: Remember that gage pressure is the difference between the absolute pressure and atmospheric pressure. Apply the Barometer Equation with a known gage pressure to determine the manometer reading, h. 88 kPa Given: Pgage 1000 kg/m³ ρ_w 13600 kg/m³ ρ_{Ha} Find: h ??? m **Assumptions:** 1- The **nitrogen** and **water** in the system are completely static. 2- The densities of the nitrogen and water are uniform and constant. m/s^2 9.8066 3- The acceleration of gravity is: g kg-m/N-s² 1 g_c Equations / Data / Solve: $\mathbf{P}_{\text{gage}} = \mathbf{P}_{\text{abs}} - \mathbf{P}_{\text{atm}}$ Gage pressure is defined by : Egn 1 $\mathbf{P}_{abs} = \mathbf{P}_{atm} + \rho \left(\frac{\mathbf{g}}{\mathbf{g}_{c}}\right) \mathbf{h}$ The Manometer Equation tells us that : Eqn 2 $\mathbf{P}_{\text{gage}} = \rho \left(\frac{\mathbf{g}}{\mathbf{g}_{C}}\right) \mathbf{h}$ Combining Eqns 1 & 2 gives us : Eqn 3 $\mathbf{h} = \frac{\mathbf{P}_{\text{gage}}}{\rho\left(\frac{\mathbf{g}}{\sigma}\right)}$ Now, we can solve Eqn 3 for h : Eqn 4 Now, we can plug values into Eqn 4: h 0.660 m a.) **b**.) h 8.974 m Answers: 0.66 a.) m h

Dr. B - LearnThermo.com

b.)

h

8.97

m

1E-3 Pressure in a Tank Using a Complex Manometer

The pressure gauge on the air in the tank shown below reads 87 kPa. Determine the manometer reading, h₂, in cm.

Read: The density of the air is so much lover than the density of the liquids in this problem that the weight of the air can be considered negligible in the force balances we will write in this problem.

Given:	P _{gauge}	87	kPa			
	h _{oil}	0.65	m	SG _{oil}	0.7	
	h _{water}	0.25	m	SG_m	13.6	
Find:	h ₂	???	cm			
Assumptions:		1- The fluids 2- The dens 3- The refer	s in the system are completely static. sities of the liquids are uniform and constant. rence density of water used to			2
		determine s	pecific gravity is:	ρ _{water}	1000	kg/m³
		4- The acce	leration of gravity is:	g	9.8066	m/s ²
				g c	1	kg-m/N-s ²

Equations / Data / Solve:

Begin by writing the Manometer Equation for each interval between points A and F on the diagram.

$$P_e = P_f + \rho_{oil} \frac{g}{g_c} h_{oil}$$
 Eqn 1 $P_c = P_d$ Eqn 3

$$\mathbf{P}_{d} = \mathbf{P}_{e} + \rho_{m} \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{h} \qquad \qquad \mathbf{Eqn 2} \qquad \mathbf{P}_{b} = \mathbf{P}_{c} - \rho_{w} \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{h}_{water} \qquad \qquad \mathbf{Eqn 4}$$

$$P_a = P_b$$
 Eqn 5

If we add all 5 of these equations together we obtain :

$$\mathbf{P}_{a} = \mathbf{P}_{f} + \rho_{oil} \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{h}_{oil} + \rho_{m} \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{h} - \rho_{w} \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{h}_{water}$$
Eqn 6

The only unknown in this equation is **h**. So, the next step is to solve the equation for **h**.

$$h = \frac{\frac{g_{c}}{g}(P_{a} - P_{f}) - \rho_{oil} h_{oil} + \rho_{w} h_{water}}{\rho_{m}}$$
Eqn 7

Also, because $P_f = P_{atm}$ and the definition of gauge $P_{gauge} = P_a - P_{atm} = P_a - P_f$ pressure we can use: Eqn 8

 $P_a - P_f = 87000 \text{ N/m}^2$

All we need to do is convert specific gravity into density and we are ready to plug values into Eqn 7.

The definition of specific gravity is : $SG = \frac{\rho}{\rho_{ref}} = \frac{\rho}{\rho_w}$ Eqn 9

This helps us simplify Eqn 7 to :

$$\mathbf{h} = \frac{\mathbf{P}_{gauge}}{\rho_{m}} \frac{\mathbf{g}}{\mathbf{g}_{c}} - \frac{\mathbf{SG}_{oil}}{\mathbf{SG}_{m}} \mathbf{h}_{oil} + \frac{\mathbf{h}_{water}}{\mathbf{SG}_{m}}$$
Eqn 10

$$\mathbf{h} = \frac{\mathbf{P}_{gauge}}{\rho_{m}} \frac{\mathbf{g}}{\mathbf{g}_{c}} + \frac{\mathbf{h}_{water} - \mathbf{SG}_{oil}\mathbf{h}_{oil}}{\mathbf{SG}_{m}}$$
Eqn 11

$$ho = \mathbf{SG} \
ho_{w}$$
 Eqn 12

 ρm
 13600 kg/m³

 Plugging values into Eqn 11 yields :
 h
 0.652 m

 Answers:
 h
 65.2 cm

From Eqn 9 :

1E-4	Temperature L	Jnit Conv	ersions		2 pts
The tempe	rature on the su	rface of th	e radiator of a	n automobile is 134°C. What is the temperature in °R, K, and °F	?
Read:	Not much to rea	ad here.			
Given:	т	134	°C		
Find:	T T	??? ???	°R K	T ??? °F	
Assumptio	ons: Nor	ne.			
Equations	/ Data / Solve: The relationship	o between	Kelvin and Ce	elsius is simplest, so let's begin there.	
	T(K) = T(°C)+2	73.15		Eqn 1
	Therefore :			Т(К) 407.15 К	
	The relationship	o between	Celsius and F	ahrenheit is also fairly simple, so let's work on that next.	
	T(°F)=1.8	·(°C)	+ 32		Eqn 2
	Therefore :			T(°F) 273.20 °F	
There are two straightforward ways to determine T(°R) at this point. We can either convert T(K) to T(°R) or we can convert T(°F) to T(°R) . Let's try both methods, just to be thorough.					
	T(°R)=1.	.8T(K)	Eqn 3	T(°R) 732.87 °F	1
	Alternatively :			T(°R) = T(°F) + 459.67	Eqn 4
				T(°R) 732.87 °F	2
Answers:	T([°] R) T(K)	733 407	°R K		

T(°F)

°F

273

1E-5	Tempera	2 pts				
The temp	perature of	a glass of wate	s 27°C. What is the temperature of the water	in °R, K, and °F?		
Read:	This one is a straightforward temperature conversion.					
Given:	т	27	°C			
Find:	T T	??? ???	°R K			
	Т	???	°F			
Assumpt	tions:	None.				
		_				

Equations / Data / Solve:

The key equations are those that relate T in $^{\circ}C$ to the desired temperature units.

°F

80.6

		$T(K) = T(^{\circ}C) + 273.15$		Eqn 1
			Т	300.15 K
		$T(°F) = T(°C) \cdot 1.8 + 32$		Eqn 2
			Т	80.6 [°] F
		$\mathbf{T}(^{\circ}\mathbf{R}) = \mathbf{T}(^{\circ}\mathbf{F}) + 459.67$		Eqn 3
			Т	540.27 °R
	Alternatively, we could use :	$T(^{\circ}R) = 1.8 \cdot T(K)$		Eqn 4
			Т	540.27 °R
Answers:	T 540.27 [°] R T 300.15 K			

т

1E-6 Temperature Change & Unit Conversions

The **temperature** of a cup of **water** drops by **44°F** when it is placed in a refrigerator for **45 minutes**. How much did the **temperature** of the **water** change in **K**, **°R** and in **°C**.

Read: The key to this problem is that we are considering a **CHANGE** in temperature and **NOT** a temperature of 27°C.

Given:	ΔΤ	-44	°F			
Find:	ΔT ΔT	??? ???	K °R	ΔΤ	???	°C

Assumptions: N	one.
----------------	------

Equations / Data / Solve:

Start with Rankine. The temperature increments for the Fahrenheit and Rankine scales are the same.

-24.444

-24.444

Κ

°C

2 pts

Next, let's work on getting ΔT in the Kelvin scale.

This is straightforward because a temperature change of 1 K is equal to a temperature change of 1.8 °R.

$$\Delta T(K) = \frac{\Delta T(^{\circ}R)}{1.8}$$
 Eqn 1

ΔT

ΔT

Finally, the temperature increments for the Celsius and Kelvin scales are the same.

Therefore :

Answers:	ΔT	-24.4	K	
	ΔT	-44	°R	
	ΔT	-24.4	°C	

Properties of Pure Substances

In this chapter, you will learn to recognize a pure substance. This book focuses on the thermodynamics of pure substances. We will only consider the special case of systems that contain a mixture that consists of a single condensable species, such as the air-water system. The topic of vapor-liquid equilibrium is the central topic of this chapter and it is crucial that you understand this topic well. You will learn to obtain thermodynamic properties from the tables in the Appendices of this book. The chapter concludes with a discussion of equations of state. An equation of state is a relationship between pressure, volume and temperature. You should already be familiar with the Ideal Gas Equation of State. Here you will learn about its limitations and more accurate alternatives.

LearnThermo.com

Chapter 2

Nomenclature

Pure Substance

- Uniform chemical composition throughout the system
- . Phases
 - Liquids: Multiple liquid phase
 - Solids: Multiple solid phases
 - Gases: Only ONE gas phase can exist

. Phase Changes

- Liquid » Gas: Boiling or Evaporating / Condensing
- Liquid » Solid: Melting / Freezing
- Gas » Solid: Sublimating / Desublimating
- Liquid » Gas : An Isobaric Process Path
 - \circ Consider the isobaric process on the next slide in which energy is added to a closed system that initially contains liquid water at a T $< T_{sat}$

Pure Substance

- ♦ Dry air is a pure substance
- Humid air can be considered to be a pure substance
- A tank containing liquid water with humid air above it cannot be considered to be a pure substance !
- Phases
 - Multiple liquid phases can exist in equilibrium: oil and water
 - Multiple solid phases can exist in equilibrium: diamond and carbon, different types of ice crystals, different types of steels.
 - Only ONE gas phase can exist at equilibrium. All the molecules always mix.

Phase Changes

- What is the difference between boiling and evaporating ?
- Sublimation: Did you ever notice that old ice cubes in your home freezer have shrunk ? Do you think they melted ? No. They sublimated !

Phase Diagrams

•

- An isobaric process path is a smooth way to introduce Phase Diagrams
- Phase Diagrams are our FRIENDS...they make any process a little easier to understand.

- Quality: x = fraction of the mass in the system that exists in the gas or vapor phase.
- 1 Subcooled Liquid T < T_{sat} and $P^*(T) < P$ and x is undefined
- 2 Saturated Liquid T = T_{sat} and $P^*(T) = P$ and x = 0
- 3 Saturated Mixture T = T_{sat} and P*(T) = P and 0 < x < 1
- 4 Saturated Vapor T = T_{sat} and $P^*(T) = P$ and x = 1
- 5 Superheated Vapor $T > T_{sat}$ and $P^*(T) > P$ and x is undefined

LearnThermo.com

• Elements of the Vapor-Liquid region of a phase diagram

- ♦ Sat'd Liquid Curve
- Sat'd Vapor curve
- Critical Point
- Two Phase Envelope where vapor and liquid both exist within the system at equilibrium
- ♦ Subcooled liquid region
- Superheated vapor region
- ◊ Supercritical fluid region
- Isobaric Heating Process
- Slides up and to the left along an isobar

LearnThermo.com

Nomenclature

• Latent Heat vs. Sensible Heat

- ♦ Liquids: Multiple liquid phase
- ♦ Liquids: Multiple liquid phase
- ♦ Latent Heat: As heat is added, T does <u>not</u> change
- ♦ Sensible Heat: As heat is added, T <u>does</u> change

• Critical Point

- \diamond Above P_c or T_c two phases cannot exist at equilibrium
- Only one phase exists: a supercritical fluid

• Triple Point

- $\circ \quad \textbf{Liquid} \leftrightarrow \textbf{Gas} \leftrightarrow \textbf{Solid}: \text{ All exist in the system at equilibrium}$
- ♦ **Water:** 0.01°C and 0.612 kPa

Latent Heat Heats associated with phase changes

- Sensible Heat
- Heat flow which causes a change in temperature
- Critical Point
- $\diamond~$ Pc, Tc and critical molar volume
- Above Pc the substance is a supercritical fluid
- ♦ Above Tc the substance is a supercritical fluid

PT Diagrams	 Ice floats Most solids sink because they are more dense than the saturated liquid with which they exist at equilibrium.
 Two Types for the Two Types of Substances Substances that contract when they freeze Most substances fall into this category Substances that expand when they freeze There are very few of these. Most important one is WATER 	

LearnThermo.com

Chapter 2

• Red lines are saturation curves

- Consider an increase in P at constant T for a system on a Saturation Curve
- ♦ VLE: Vapor condenses into a liquid
 - Conclusion: liquid is more dense than vapor
- SVE: Vapor desublimates into a solid
 Conclusion: solid is more dense than vapor
- ♦ SLE: Solid melts into a liquid
 - Conclusion: liquid is more dense than solid
 - The solid is less dense than the liquid because this substance expands on freezing
 - Example: Water

- SLE: Liquid fuses into a solid
- Conclusion: Solid is more dense than solid
- The solid is more dense than the liquid because this substance contracts on freezing
- ◊ Example: Almost everything <u>except</u> water.

LearnThermo.com

Thermodynamic Data Tables • Look at Appendices A, B and C. • You will become very good at using these data tables to solve problems. • Four Tables in a Complete Thermodynamic Data Table Saturation Temperature Table \diamond Saturation Pressure Table \diamond Subcooled Liquid Table \diamond Superheated Vapor Table \diamond • Appendix Steam Tables, SI & AE \diamond ♦ Appendix A Ammonia Tables, SI & AE \diamond ♦ Appendix B R-134a Tables, SI & AE \Diamond ♦ Appendix C

- Interpolation is about drawing a line between known two points.
- Then, determine the Y value for a given X value that falls between the two know points.
- Y = m X + b
- Use the 2 known points to determine m and • b
- Use m and b to estimate Y at some new value of X.

- Chapter 2
- Double interpolation requires THREE single, linear interpolations.
- The only way to learn how to do double interpolation is to do a few of them.
- Unfortunately, they are pretty tedious.

VLE No	omenclature	• Mole fract in a system
 Mole Fraction: Partial Pressure: Ideal Gases: Vapor Pressure: Condensable and 	y_i P_i $P_i = y_i P$ P_i^*	 Partial pre WOULD & chemical s Vapor pre: Property Same as a pure su Pressure overcom boiling
 Condensable and non-Condensable Water / Air 	Species	 Condensal Could expressure This mea
Evaporation:	$\mathbf{P}_{\text{total}} > \mathbf{P}_{i}^{*} \left(\mathbf{T}_{\text{liquid}} \right) > \mathbf{P}_{i}$ $\mathbf{P}_{i}^{*} \left(\mathbf{T}_{\text{liquid}} \right) > \mathbf{P}_{i}$	 Water in Non-Cond Cannot c T_{svs} beca
Boiling:	$\mathbf{r}_{i} \left(\mathbf{I}_{liquid} \right) \geq \mathbf{r}_{total}$	 ♦ The O₂ a ♦ Evaporation ♦ Molecul por phase
 Vapor bubbles of the condensable Condensable species is muching as 	species form in the liquid phase	 Vapor pr sure of t

- Condensable species is pushing so hard to get into the gas phase, that it overcomes the total pressure and suddenly bursts into a vapor bubble.
- Boiling Point: $P_i^*(T_{BP}) = P$ \diamond
- Normal Boiling Point: $P_i^*(T_{NBP}) = 1$ atm \diamond

- ion is the fraction of all the molecules n that are chemical species "i"
- ssure of species "i" is the pressure that exist in the system if all of the other pecies were removed.
- ssure
- of a pure species depends ONLY T
- saturation pressure: pressure at which ibstance would boil at any fixed T
- that molecules in the liquid phase can e in order to enter the vapor phase by
- ole Species
- tist in the liquid phase at the system if the temperature dropped enough
- ans they are not supercritical fluids.
- the air is a condensable species
- ensable Species
- condense at the system pressure at any use they are supercritical fluids.
- nd N₂ in air are non-condensable.
- on
 - es move from the liquid phase to vae without bubble formation (boiling)
 - ressure is greater than the partial preshe condensable species in the gas phase, but less than the total pressure
 - Evaporation occurs because the water mole-٥ cules in the liquid phase are pushing harder to get into the gas phase (Pi*) than the water molecules in the gas phase are pushing to get into the liquid phase (Pi).

LearnThermo.com

Chapter 2

- Saturation is a general term that describes a relationship between the condensable and non-condensable species in a gas system.
- Humidity is the same as saturation except humidity only applies to a system that contains just air and water.
- · Relative Humidity or Saturation
- Presented in the daily weather report
- Oimensionless because Pi and Pi* have the same units !
- $\label{eq:when hr} \diamond \ \ \ When h_r = 100\%, the gas is ``full'' or saturated. No more water can evaporate.$
- Absolute Humidity
 - Definition here only applies when the gas is an ideal gas
 - At atmospheric conditions, humid air usually behaves as an ideal gas because the molar volume > 20 L/mole.
 - We will learn more about this criterion for ideal gas behavior in the next class.
- Units = [kg condensable / kg noncondensable] = [kg Water / kg Air]
- MW = molecular weight [g/mole or lbm/ lbmole]

- The ideal gas equation is not a "Law" because it is generally NOT accurate !
- The ideal gas equation is an equation of state, a relationship between P, V and T
- We like to write all EOS's in terms of molar volume instead of volume and number of moles in the system.
- In this way, our EOS only contains IN-TENSIVE variables and is therefore applicable to systems without consideration of their SIZE.
- Remember that the values of intensive variables do not depend on the size of the system.
- Be careful, in some texts...
 - They use a different value of R for each substance and use R-bar for the universal gas constant
 - Their nomenclature is, R = R-bar / MW
 [=] J/g-K or kJ/kg-K
- We will NOT follow this convention.

Workbook LearnThermo.co	m Chapter 2
Advanced Equations of State Compressibility Factor EOS (graphical) Virial EOS Van der Waals EOS Redlich-Kwong EOS Soave-Redlich-Kwong EOS 	 There are MANY EOS's. In fact, the "data" in our thermodynamic tables are not really data at all ! The numbers in the thermodynamic tables are the output of very sophisticated EOS's that we will not study. We will just consider the values in thermodynamic tables to be data. We will only gain a passing familiarity with the compressibility EOS because it is an old style graphical EOS. That is not to say it is not accurate. It just is not compatible with our modern computing environment Van der Waals was the 1st cubic EOS Very powerful Can predict properties of liquids, as well as gases RK EOS is a popular EOS that can predict liquid properties reasonably well. SRK is an improved version of RK. None of these cubic EOS's work well for water or other highly polar molecules or ionic solutions Specialized EOS's have been developed for water. Ionic solutions are more complicated and are modeled by specialized EOS's.
Compressibility Factor: $Z = \frac{P\tilde{V}}{RT} = \frac{\tilde{V}}{RT/P} = \frac{\tilde{V}}{\tilde{V}_{IG}}$ • Compressibility Factor: $Z = \frac{P\tilde{V}}{RT} = \frac{\tilde{V}}{RT/P} = \frac{\tilde{V}}{\tilde{V}_{IG}}$ • Principle of Corresponding States• Reduced Properties: $T_R = \frac{T}{T_C}$ $P_R = \frac{P}{P_C}$ $\tilde{V}_R^{ideal} = \frac{\tilde{V}}{\tilde{V}_C^{ideal}} = \frac{\tilde{V}}{RT_C/P_C}$ • Compressibility Charts• Z vs P_R• Curves of constant T_R • Curves of constant \tilde{V}_R^{ideal}	 For an IG, Z = 1 The further Z is from 1, the more non-ideal the behavior of the gas. Many properties of gases, including Z, depend primarily on how close the state of a system is to the critical state of the gas. Reduced properties are the ratio of the real system properties to the properties of the system at the critical point. Reduced ideal molar volume is more convenient because you can calculate it without knowing the critical molar volume. This is important, because the critical molar volume is not as frequently tabulated as the critical T and P.

LearnThermo.com

Virial EOS

• Uses a power series expansion to describe deviations of Z from 1, the IG value

$$\mathbf{Z} = \frac{\mathbf{P}\,\tilde{\mathbf{V}}}{\mathbf{R}\,\mathbf{T}} = \mathbf{1} + \frac{\mathbf{B}}{\tilde{\mathbf{V}}} + \frac{\mathbf{C}}{\tilde{\mathbf{V}}^2} + \frac{\mathbf{D}}{\tilde{\mathbf{V}}^3} + \frac{\mathbf{E}}{\tilde{\mathbf{V}}^4} + \dots$$

- B, C, D, etc are the Virial "constants"
 Functions of T, <u>only</u>
 - Determined experimentally
- Truncated Virial EOS: $Z = \frac{P\tilde{V}}{RT} = 1 + \frac{B}{\tilde{V}}$

$$\mathbf{B} = \frac{\mathbf{R} \mathbf{T}_{\mathrm{C}}}{\mathbf{P}} \left(\mathbf{B}_{\mathrm{0}} + \right)$$

Estimating B:

$$B_0 = 0.083 - \frac{0.422}{T_R^{1.6}}$$

 \diamond

$$B = \frac{K I_C}{P_C} (B_0 + \omega B_1)$$
$$B_1 = 0.139 - \frac{0.172}{T_R^{4.2}}$$

- The Virial EOS can be very very accurate if you keep enough terms in the series.
- The problem is that it is difficult to determine the values of D, E etc.
- It is relatively easy to measure or look up values of the 1st 2 Virial constants, B and C.
- If you cannot find values for B & C, you can use the truncated Virial EOS and AP-PROXIMATE the value of B using the equations given here.

Van der Waals EOS	This EOS was a big breakthrough in model- ing PVT behavior. It is not used much enumers		
P = $\frac{RT}{\tilde{V}-b} - \frac{a}{\tilde{V}^2}$ • First cubic EOS • Constants have physical interpretation	 It is not used inden allymore. The constant a represents a correction for inter-molecular forces called Van der Waals Forces. a > 0 B is the molar volume of the molecules themselves, with the absolute minimum amount of space between molecules This is the molar volume at T = 0 K 		
$a = \frac{27}{64} \frac{R^2 T_C^2}{P_C}$ $b = \frac{1}{8} \frac{R T_C}{P_C}$			

LearnThermo.com

a

RK & SRK EOS's

- **Redlich-**•
 - $a = 0.42748 \frac{R^2 T_c^3}{P_c}$

$$P = \frac{RT}{\tilde{V} - b} - \frac{a}{\tilde{V}(\tilde{V} + b)T^{1/2}}$$
$$b = 0.08664 \frac{RT_{c}}{R}$$

$$\mathbf{b} = \mathbf{0}$$

Soave-Redlich-Kwong : $P = \frac{RT}{\tilde{V}-b} - \frac{\alpha a}{\tilde{V}(\tilde{V}+b)}$. $a = 0.42748 \frac{R^2 T_C^2}{R}$ $\mathbf{b} = \mathbf{0.08664} \frac{\mathbf{R} \mathbf{T}_{\mathrm{C}}}{\mathbf{P}_{\mathrm{C}}}$

$$\alpha = \left[1 + m\left(1 - \sqrt{T_{\rm R}}\right)\right]^2$$

$$m = 0.48508 + 1.55171 \omega - 0.1561 \omega^2$$

- These two EOS's are very popular choices, especially for hydrocarbon molecules.
- SRK is preferred to RK
- · SRK modification tries to take polarity and molecular geometry into account
- It still doesn't work well for water or other • highly polar molecules

2A-1 Think About Tea

2 pts

Tea is a mixture of one or more tasty **oils** dissolved in hot **water**. Is this a heterogeneous or homogeneous mixture? Are there any conditions under which this **tea** can be considered to be a **pure substance**? **Explain**.

If the tea is well-mixed, perhaps by stirring, then the mixture can be adequately described as homogeneous.

As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

2A-2 Automobile Fuel

2 pts

Automobile **fuel**, known as **gasoline** or **petrol**, is a mixture of many types of hydrocarbon molecules. Is the **fuel** a heterogeneous or homogeneous mixture?

Are there any conditions under which this **fuel** can be considered to be a pure substance? **Explain**.

If the fuel is well-mixed, then the mixture can be adequately described as homogeneous. The different types of hydrocarbon molecules in gasoline are **miscible**, so the fuel tends toward uniform composition because the molecules mix by a random, wandering motion called **diffusion**.

As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

2A-3 Think About Fog

2 pts

Fog is very large number of liquid **water** droplets suspended in **air**. Can fog be considered to be a pure substance? Do you think fog is heterogeneous or homogeneous? **Explain** your answers.

As long as the composition remains constant and uniform throughout, a homogeneous mixture can be treated as a pure substance. We call this a pseudo-component.

This is a tricky question. If you look very closely or only consider a small sample of fog, say **1 mm³**, then you could see the water doplets and the air surrounding them. You would conclude that the fog sample is not homogeneous but heterogeneous because the composition is **not** everywhere the same.

If you consider a medium-sized sample of fog, perhaps 1 m^3 , and you did **not** look at it with a **microscope**, you would conclude that the composition **is** the **same** at all positions and the fog was **homogeneous**. This would depend on how big your sample was from different positions within the 1 m^3 you were considering.

To make matters even more complex, if you considered a **cubic kilometer** of fog above your neighborhood, you might notice patches of dense fog with volumes of relatively clear air with few water droplets. In this case, you would conclude that fog is definitely heterogeneous.

From some perspective, the fog could be accurately described as homogeneous, but for **most** purposes, fog is heterogeneous.

2B-1 Condensing Water Vapor by Increasing the Pressure

3 pts

A piston-and-cylinder device contains water vapor at 135°C and 1 atm in state 1. The cylinder contains no air and no liquid water. The cylinder is surrounded by a water bath at 135°C that keeps the temperature of the contents of the cylinder constant. The piston is pushed slowly downward causing the pressure to increase steadily. Eventually, a small droplet of liquid water forms in state 2.

a.) Describe the state of the contents of the cylinder in state 1 and in state 2.

b.) Sketch the path of this process on a **PV Diagram**. Be sure to label **all** the regions on the diagram and include the two-phase envelope and all relevant isotherms.

Read : The keys to this problem are...

- 1- The process is isothermal because the constant temperature bath keeps the system at 135°C and
- 2- The final state is saturated vapor because the 1st micro-droplet of lquid water condenses.

Given:	T ₁	135 °C	T ₂	135	°C
	P ₁	1 atm	$P_2 > P_1$		
			x ₂	1	kg vap/kg
Find:	a)	Describe states 1 & 2			

	,	
	b.)	Sketch process path on a PV Diagram
Assump	tions:	1- The constant temperature bath is prefectly effective in keeping the contents of the cylinder at a
		constant and uniform temperature of 135°C.

Equations / Data / Solve:

- Part a.) In state 1, the cylinder contains all water vapor.
 - The pressure must be increased on this vapor in order to cause any liquid water droplets to condense.
 - We can conclude that $P_1 = 1$ atm is <u>lower</u> than the vapor pressure (or saturation pressure) of water

at **T**₁ = **135°C**.

- Therefore the water vapor in state 1 is a superheated vapor.
- In state 1, the cylinder contains all water vapor.
- The pressure on this vapor is just exactly high enough to cause a micro-droplet of liquid water to condense.
- We can conclude that $P_2 = P^*(135^\circ C)$, the vapor pressure (or saturation pressure) of water at $T_1 = 135^\circ C$.

- Therefore the water vapor in state 1 is a saturated vapor.

Verify: This assumption cannot be veriefied without experimentation.

Answers : See above.

2B-2 Problem Title

Ammonia exists as a saturated mixture at 240.21 kPa and -14.6°C in a rigid vessel with a volume of 1.0 m³. The specific volume of the saturated liquid and saturated vapor are 1.5195 L/kg and 0.50063 m³/kg, respectively. The **quality** of the **ammonia** is 0.275 kg vap/kg. What is the total mass of Ammonia inside the vessel in kg?

Read : There are two keys to this problem. The first is the relationship between the total mass, the total volume and the overall, average or mixture specific volume. The other key is how to use quality and specific properties of saturated liquid and saturated vapor to determine a specific property of a saturated mixture.

Given:	P	240.21	kPa	V _{sat liq}	1.5195	L
	T	-14.6	°C	V _{sat vap}	0.50063	m ³ /kg
	V _{total}	1	m ³	X	0.275	kg vap/kg
Find:	M _{total}	???	kg			

Assumptions: None.

Equations / Data / Solve:

Let's begin with the relationship between mass, volume and specific volume for the entire system.

$$\mathbf{M}_{\text{total}} = \frac{\mathbf{V}_{\text{total}}}{\hat{\mathbf{V}}_{\text{mix}}}$$
Eqn 1

We want to determine \mathbf{M}_{total} and we know \mathbf{V}_{total} , so all we need to do is determine \mathbf{V}_{mix} and we will be able to use Eqn 1 to solve this problem.

The specific volume of the two-phase mixture is related to the **quality** and the specific volumes of the saturated liquid and saturated vapor by the following equation.

$$\hat{\mathbf{V}}_{\text{mix}} = \mathbf{x} \, \hat{\mathbf{V}}_{\text{sat vap}} + (1 - \mathbf{x}) \, \hat{\mathbf{V}}_{\text{sat liq}}$$
 Eqn 2

We know the values of all of the variables on the right-hand side of Eqn 2, so we can plug-in values to determine V_{mix} .

V_{mix} 1.1373 m³/kg

4 pts

Be careful with the units in Eqn 2. You must convert L to \mathbf{m}^3 in $\mathbf{V}_{\mathsf{sat liq}}$ to make all of the units work out properly. Now, we can plug values into Eqn 1 to complete this problem.

M_{total} 0.8793 kg

Verify: There are no assumptions to verify in this problem.

Answers : M_{total} 0.879 kg

2C-1	Specific Volume of Saturated Mixtures	4 pts
Calculate t	he specific volume for the following situations:	
a.) Water a	at 300°C and 72% quality	
b.) R-134a	at -50°C and 83% quality	
c.) Ammo	nia at 750 kPa and 48% quality	

Read : This is an exercise designed to drive home the meaning and use of the new concept of the quality of a saturated mixture. It is crucial to remember that if a quality is given, then the system contains a saturated mixture and you probably need to look up properties of both the saturated liquid and the saturated vapor.

Given:	a.)	Water	т	300	°C	X	0.72	kg vap/kg tot
	b.)	R134a	т	-50	°C	X	0.83	kg vap/kg tot
	c.)	Ammonia	Р	750	kPa	x	0.48	kg vap/kg tot
Find:	v	???	m³/kg	for each c	of the three p	parts of this prol	blem.	
Assumpti	ons:	None.						

Equations / Data / Solve:

Part a.) Data from the Saturation Temperature Table of the Steam Tables at 300°C:

V _{sat liq}	0.0014042	m³/kg
V _{sat vap}	0.02166	m ³ /kg
P*	8587.9	kPa _

0.01599

Egn 1

m³/kg

The key equation for this problem is the relationship between the properties of a saturated mixture and the properties of saturated liquid and vapor and the **quality**.

$$\hat{\mathbf{V}} = \mathbf{x} \, \hat{\mathbf{V}}_{\text{sat vap}} + (1 - \mathbf{x}) \, \hat{\mathbf{V}}_{\text{sat liq}}$$

Now, we can plug numbers into **Eqn 1** to answer this part of the question.

Notice that I kept 4 significan figures in this answer istead of the usual 2 or 3 because there are 4 significant digits in the sat'd liquid and sat'd vapor values. Perhaps I should have only retained 2 significant digits because there only appear to be 2 significant digits in the quality. I have assumed that there are more than 2, really 4 or more, digits in the quality. This may not be a good assumption.

V

Part b.)	Data from the Saturation Temperature Table of the R-134a Tables at -50°C:	V _{sat liq} V _{sat vap} P*	0.00069142 m ³ /kg 0.60620 m ³ /kg 29.451 kPa
	Now, we can plug numbers into Eqn 1 to answer this part of the question.	V	0.50326 m ³ /kg
	Significant figures are a bit tricky here.		
Part c.)	Data from the Saturation Pressure Table of the Ammonia Tables at 400 kPa:	V _{sat liq} V _{sat vap} T _{sat}	0.0016228 m ³ /kg 0.16980 m ³ /kg 15.88 °C
	Now, we can plug numbers into Eqn 1 to answer this part of the question.	V	7.7095 m ³ /kg
	Significant figures are a bit tricky here as well.		
Verify:	No assumptions to verify.		
Answers :	a.) V 0.015988 m³/kg b.)	V	0.50326 m ³ /kg

c.)

۷

7.7095

m³/kg

2C-2 State of a System at a Given Temperature and Pressure

Ammonia exists in a sealed tank at each of the following temperatures and pressures. In each case, what phase or phases could exist in the system? Show your work and explain your reasoning.

a.) 25°C, 114.7 kPa

b.) -31.59°C, 50 kPa

c.) -18.85°C, 200 kPa

d.) -37.41°C, 100 kPa

Read : At these temperatures and pressures, it is safe to assume that no solid water, or ice, exists in the system. So, the question becomes whether the system contains superheated vapor or subcooled liquid or whether the system is in VLE. If the system is in VLE, then P = P*(T). Another way to look at this is that T = T_{sat}(P). At saturation, it is not possible to determine the quality of the system without knowing the value of another intensive variable, such as v, u or h. So, we are not able to state whether both vapor and liquid exist, but we can say that both could exist under these conditions. Fortunately, that is exactly what we are asked to determine in this problem.

Given:	Part a.)	т	25	°C	Р	114.7	kPa
	Part b.)	т	-31.59	°C	Р	50	kPa
	Part c.)	т	-18.85	°C	Р	200	kPa
	Part d.)	т	-37.41	°C	Р	100	kPa

Find:What phase or phases could exist in the system?Explain.

Assumptions: 1- No solid water, or ice, exists in the system.

Equations / Data / Solve:

In each part of this problem, we need to determine the saturation temperature associated with the system

lf :	T _{sys} > T _{sat}	Then :	The system contains a superheated vapor.
lf:	T _{sys} < T _{sat}	Then :	The system contains a subcooled liquid.
lf:	T _{sys} = T _{sat}	Then :	The system $\underline{could}\xspace$ contain an equilibrium mixture of saturated

This is not always the easiest approach and for this part of the problem, there is an easier approach.

Another way to solve this problem is to determine the vapor pressure of water at the actual system temperature.

lf :	P _{sys} < P*(T _{sys}) P _{sys} > P*(T _{sys})	Then :	The system contains a superheated vapor.
lf:		Then :	The system contains a subcooled liquid.
lf :	$P_{svs} = P^*(T_{svs})$	Then :	The system could contain an equilibrium mixture of saturated

4 pts

Part a.)	The second method is easier for part (a) because $T_{sys} = 25^{\circ}C$ is listed in the Saturated Temperature Table while $P_{sys} = 114.7 \text{ kPa}$ is not listed in the Saturation Pressure Table. So, let's use the 2nd method !						
	From the Saturation Temperature Table of the Amr	nonia Tables :	P*(25°C)	1003.2	kPa		
	Since P _{sys} < P*(T _{sys}), we conclude :	The system contains	superheated ar	nmonia va	por.		
Part b.)	In this part of the problem, it is easier to use method	d 1, described in part (a), because P _{svs}	appears in t	the		
	From the Saturation Pressure Table of the Ammoni	a Tables :	T _{sat} (50 kPa)	-46.52	°C		
	Since T _{sys} > T _{sat} (P _{sys}), we conclude :	The system contains	superheated ar	nmonia va	por.		
Part c.)	In this part of the problem, it is easier to use method saturation tables, while \mathbf{T}_{sys} does not.	d 1, described in part (a) , because P_{sys}	appears in t	he		
	From the Saturation Pressure Table of the Steam T	ables :	T _{sat} (200 kPa)	-18.85	°C		
	Since $T_{sys} = T_{sat}(P_{sys})$, we conclude :	The system <u>could</u> co saturated liquid and	ontain an equilib saturated vapor	rium mixtu	re of		
Part d.)	In this part of the problem, it is easier to use method tables, while \mathbf{T}_{sys} does not.	d 1, described in part a	, because P_{sys} a p	opears in the	e saturation		
	From the Saturation Pressure Table of the Ammoni	a Tables :	T _{sat} (100 kPa)	-33.59	°C		
	Since $T_{sys} < T_{sat}(P_{sys})$, we conclude :	The system contains	subcooled liqu	<mark>id ammoni</mark>	a.		
Verify:	Since all of the temperature and pressure combinat equilibrium, no solid ammonia, or ammonia ice, is p	ion in this problm appe present in any of the for	ear in the ammoni ur systems consic	a tables for lered.	vapor-liquid		
A			Coturnate d min	4	-		

Answers : Part a.) Superheated vapor. Part b.) Superheated vapor. Part c.)Saturated mixture.Part d.)Subcooled liquid.

2C-3 Water Boils at a Higher Temperature in a Covered Pot

4 pts

A large pot has a **diameter** of **14 cm**. It is filled with **water** and covered with a **heavy lid** that weighs **3.7 kg**. At what **temperature** does the **water** begin to boil if ambient **pressure** is **101.325 kPa**?

Read : The key to this problem is to recognize that the total pressure at the surface of the liquid water must be greater than **101 kPa** before the water can boil because of the weight of the lid. This is true whether there is an air space between the liquid water and the lid or not. As the temperature of the contents of the pot rises, the pressure will increase. When the 1st bubble of water vapor forms, it will displace some air. The displaced air will escape by lifting the lid.

Given:	D m _{lid}	0.14 3.7	m kg	P _{atm}	101.325	kPa
Find:	T _{boil}	???	°C			
Assumpt	ions:	None.				

Equations / Data / Solve:

The liquid water will boil when it reaches the temperature at which the vapor pressure of the water is equal to the pressure required to lift the lid and let some air escape.

Let's begin by determining the pressure within the pot required to lift the lid. This can be accomplished by writing a force balance on the lid. See the diagram.

The lid will lift slightly and let some air escape when the upward force exerted by the gas inside the pot just balances the sum of the weight of the lid and the downward force due to atmospheric pressure on the outside of the lid.

$$\mathbf{F}_{\mathbf{P},\mathrm{in}} = \mathbf{F}_{\mathbf{P},\mathrm{out}} + \mathbf{F}_{\mathrm{wt}}$$
 Eqn 1

The fact that the lid is not flat on top does not affect the solution of this problem, as long as the lid is axially symmetric about its centerline.

All of the horizontal components of the forces acting on the lid cancel each other out (vector sum is zero). The downward force is the same regardless of the shape of the top of the lid. Remember that pressure always acts in the direction perpendicular or normal to a surface. So as the lid surface curves, the downward component of the pressure force decreases. But the total surface area of the pot increases. These two factors are equal and opposite. The result is that the force exerted by the outside atmosphere on the pot lid is the same as if the lid were flat. The area of an equivalent flat surface is called the projected area (I use the symbol Aproj).

$$F_{P,out} = P_{atm} A_{proj}$$
 Eqn 2

Ex 2C-3

Following the same logic, the upward force exerted by the air in the pot on the lid can be determined using :

$$\mathbf{F}_{\mathbf{P},in} = \mathbf{P}_{in} \mathbf{A}_{proj}$$
 Eqn 3

The only term left is the weight of the pot lid. This is an application of Newton's 2nd Law.

$$F_{wt} = m_{lid} \frac{g}{g_c}$$
 Eqn 4

Now, we can substitute Eqns 2, 3 & 4 into Eqn 1 :

$$\mathbf{P}_{in} \ \mathbf{A}_{proj} = \mathbf{P}_{atm} \ \mathbf{A}_{proj} + \mathbf{m}_{lid} \ \frac{\mathbf{g}}{\mathbf{g}_{c}}$$
 Eqn 5

The goal is to determine the pressure inside the pot when the lid lifts and the water boils, so let's solve Eqn 5 for the unknown P_{in} .

$$P_{in} = P_{atm} + \frac{M_{lid}}{A_{proj}} \frac{g}{g_c}$$
 Eqn 6

The only unknown quantity on the right-hand side of Eqn 6 is the projected area. We can calculate its value using :

$$A_{proj} = \frac{\pi}{4} D^2$$
 Eqn 7 A_{proj} 0.015394 m²

At last, we can plug numbers into Eqn 6 and evaluate the pressure in the pot when the water boils. Just be sure to use the unit conversion :

			1 kPa	1000	N/m ²
g	9.8066	m/s ²			
9 _c	1	kg-m/N-s ²	P _{in}	103.68	kPa

Finally, we can go to the Saturation Pressure Table in the Steam Tables to determine the saturation pressure at P_{in} . This is the temperature at which the water in the pot will boil.

Because 102.25 kPa is not an entry in the Saturation Pressure Table, an interpolation is required.

T _{sat} (°C)	P _{sat} (kPa)]		
100.00	101.42	1		
T _{boil}	103.68			
105.00	120.90	Interpolation yields :	T _{boil}	100.

Verify: None.

2D-1 Isothermal Vaporization of Water

4 pts

Egn 1

A piston-and-cylinder device contains 25 lb_m of water at 195°F. The cylinder rests in a constant temperature bath that

keeps the temperature of the water in the cylinder at 195°F.

Weights are removed one at a time from the back of the piston causing the **pressure** inside the cylinder to drop from a very high value until the **water** inside begins to boil.

Eventually, the last drop of **water** in the cylinder **vaporizes**. Determine the **total volume** of the **steam** in the cylinder at this point, in **ft**³.

Read : The initial state of the water is probably a subcooled liquid (or even a supercritical fluid), since the pressure is "very high". The final state of the water is a saturated vapor because the vaporization of the water is just barely complete. The temperature of the final saturated vapor is the same as the initial temperature: 205°F. This is an isothermal process !

Given:	m	25	lb _m	т	195	°F
Find:	V_{final}	???	ft ³			
Accumptional		1 The initia	Land final states are equilibrium states			

Assumptions:

The initial and final states are equilibrium states.
In the initial state, the system contains subcooled liquid water.

3- In the final state, the system contains saturated water vapor.

x_{final} 1 lb_m vap/lb_m

Equations / Data / Solve:

We need to determine the volume of the system and we are given the mass of water in the system. We need to determine the specific volume of the system because :

$$\mathbf{V} = \mathbf{m} \left(\mathbf{lb}_{\mathrm{m}} \right) \ \hat{\mathbf{V}} \left(\mathbf{ft}^{3} / \mathbf{lb}_{\mathrm{m}} \right)$$

Because we know that the water in the final state is a saturated vapor, we can look up its specific volume in the Saturated Temperature Table of the Steam Tables at **195°F**.

The problem is that a temperature of **195°F** is not listed in the Saturation Temperature Table.

So, we must interpolate to determine the value :

T _{sat}	V _{sat vap}
(°F)	(ft ³ /lb _m)
190	40.916
195	???
200	33.609

$V(195) = slope \cdot$	(195–190)	+ 40.916
------------------------	-----------	----------

slope = $\frac{33}{2}$	3.609 - 40 200 - 19).916 90			Eqn 3
slope	-0.73071	(ft ³ /lb _m)/ ^o F	V _{sat vap}	37.263	ft ³ /lb _m
Now that we saturated va	where $x = 1$	value of the specific volume of the saturated vap , we can plug values into Eqn 1 and answer the	oor, and the syste question.	em contain	IS ALL

V_{final} 931.6 ft³

Verify: None of these assumptions can be verified.

	Answers :	V _{final}	932	ft ³
--	-----------	--------------------	-----	-----------------

2D-2 Dew Point Calculations for R-134a

4 pts

Ammonia is contained in sealed test tube at **25°C**. The test tube is slowly cooled until liquid **ammonia** droplets condense on the inside of the test tube. At this point, the **temperature** of the **ammonia** is **-20°C**. Determine the initial **pressure** in the test tube, **before** the cooling process began.

Read : We know the initial temperature of the ammonia. If we knew the initial temperature, we could look up the specific volume in the Superheated Vapor Tables for ammonia. There is only one pressure that yields this value of the specific volume when the system is at 25°C. Therefore, we could also look at the problem in the following way. We know the initial temperature of the ammonia and IF we also knew the specific volume of the ammonia, we could use the Superheated Vapor Tables to work backwards and determine the initial pressure! That is what we are going to need to do in this problem.

When the 1st droplet of liquid appears on the wall of the glass vessel, the vapor inside the vessel is a satuated vapor. We can look up the properties of this saturated vapor in the Ammonia Tables. Since the vapor is saturated at **-20°C**, it must be superheated at **25°C**. But at both the initial and final state the specific volume must be the same because neither the mass nor the volume of the system changed! This is the key to the problem. Because we know the values of 2 intensive variables at the initial state, specific volume and temperature, and the initial state is a pure substance in a single phase, we can determine the values of ALL other properties! In this case we need to determine the pressure.

Given:	T ₁	25	°C	Find:	P ₁	???	kPA
	T ₂	-20	°C				
	X ₂	1	kg vap/kg				

Assumptions: 1- The system contains saturated vapor in the final state.

Equations / Data / Solve:

The specific volume of the system is equal to the specific volume of saturated ammonia vapor at T_2 .

We can look up this value in the Saturated Temperature table of the Ammonia Tables at -20°C :

V_{sat vap} 0.62373 m³/kg

Next, we scan the Superheated R-134a Tables to determine the 2 pressures between which this value of specific volume falls, at the given temperature of 25°C.

Here are the data at 25°C :	_	P (kPa)	V (m ³ /kg)
		100	1.1381
		200	0.59465
		400	0.30941
		500	0.25032
		600	0.21035
		700	0.18145

We need to interpolate between **100 kPa** and **200 kPa** to determine the system pressure that corresponds to our value of specific volume at a temperature of **25°C**.

	P(0.6237	$73) = slope \cdot ($	0.62373-1.	100		Eqn
	slope = -	200 – 100 0.59465 – 1.1	381			Eqn
	slope	-184.0134	kPa/(m³/kg)	P	194.6	kPa
Verify:	The assum	nption cannot b	e verified.			
Answers :	P ₁	195	kPa			

2D-3Volume Occupied by 10 kg of Water at Various Temperatures6 pts

Determine the volume occupied by 25 kg of R-134a at a pressure of 800 kPa and the following temperatures: a.) -12°C, b.) -40°C, c.) 70°C, d.) 160°C, e.) 325°C

Read : This problem is an exercise in how to read and interpolate values from the Steam Tables.

It covers the use of the Subcooled Liquid Tables and the Superheated Vapor Tables, but does not involve double interpolation because the pressure value, **800 kPa** does appear explicitly in both the Subcooled Liquid and Superheated Vapor Tables.

Given:	m	25	kg	Р	800	kPa
	T _a	-12	°C	Т _d	160	°C
	T _b	-40	°C	T _e	325	°C
	T _c	70	-C			
Find:	V	???	m ³			

Assumptions: None.

Equations / Data / Solve:

We need to determine the volume of the system and we are given the mass of water in the system.

We need to determine the specific volume of the system because :

$$\mathbf{V} = \mathbf{m} \left(\mathbf{kg} \right) \ \hat{\mathbf{V}} \left(\mathbf{m}^3 \, / \, \mathbf{kg} \right)$$
 Eqn 1

So, for each part of this problem, we must evaluate the specific volume and plug this into **Eqn 1** to determine the total volume of the system.

The first step in determining the specific volume is to determine the phase or phases present in the system. From the R-134a Tables, we can obtain the saturation temperature associated with 800 kPa.

T_{sat} 31.33 °C

This makes it easy to determine the phase or phases in the system for each part of the problem.

lf :	T _{sys} > T _{sat}	Then :	The system contains a superheated vapor.
lf:	T _{sys} < T _{sat}	Then :	The system contains a subcooled liquid.
lf :	T _{sys} = T _{sat}	Then :	The system <u>could</u> contain an equilibrium mixture of saturated liquid and saturated vapor.

Part a.) The system contains a subcooled liquid. Here are the key data values from the Subcooled Liquid Table of the R-134a Tables :

T (°C)	V (m ³ /kg)
-10	0.00075236
-12	Va
-20	0.00073517

 $V(5) = slope \cdot (5 - 0) + 0.0009952$

slope =
$$\frac{0.00099731 - 0.0009952}{5 - 0}$$
 Eqn 3

slope	1.7191E-06	(m³/kg)/°C			
V	0.00074892	m³/kg	V	0.018723	m³
		_		18.723	L

Part b.) The system contains a subcooled liquid. Here are the key data values from the Subcooled Liquid Table of the R-134a Tables :

Т _ь	-40	°C	No interpolation required !	V	0.00070451 m³/kg
				V	0.017613 m ³
					17.613 L

Part c.) The system contains a superheated vapor. Here are the key data values from the Superheated Vapor Table of the R-134a Tables :

T _c	70	°C	No interpolation required !	V	0.031340	m³/kg
				v	0.78350	m ³
					783.50	L

Part d.) The system contains a superheated vapor. Here are the key data values from the Superheated Vapor Table of the R-134a Tables :

T _d	160	°C	No interpolation required !	V	0.042291	m³/kg
				V	1.05726	m³
					1057.26	L

Part e.) T_e 325 °C

This temperature is too high for our steam tables ! At very high temperatures, most gases behave as Ideal Gases. The criterion by which we know whether it is reasonable to approximate real gases as ideal gases is :

			$\tilde{V} > 20 L / mole$			Eqn 4
The Ideal Gas	EOS is :		$P \tilde{V} = R T$			Eqn 5
or :			$\tilde{\mathbf{V}} = \frac{\mathbf{R}\mathbf{T}}{\mathbf{P}}$			Eqn 6
R	8.314	J/mole-K		V	0.006216	m ³ /mole

The Ideal Gas EOS does NOT apply because V << 20 L/mole !						
Our only choice is to EXTRAPOLATE from the data in the steam tables	3.					
That is not very safe and I do not want to encourage you to do this, so I will not do it here.						
The best course of action is to find another data source.						
The NIST Webbook yields:	V	0.060298	m ³ /kg			
	V	1.50744	m ³			
		1507.4	L			

Verify: No assumptions to verify.

Answers :	Va	18.7	L
	V _b	17.6	L
	V _c	783	L

V _d	1060	L
V _e	1510	L

2D-4 **Determine Properties Using Thermodynamic Tables** 8 pts Complete the following table by determining the values of all the blank entries. The system contains only H₂O. Т P v h u x (m^3/kg) (°C) (kPa) (kJ/kg) (kJ/kg) (kg vap/kg tot) 50 2125 12.35 a.) 273 b.) 187

Read : The key to this problem is to recognize that all of the variables in the table are state variables (except maybe x), or properties, and that they are all intensive properties. It is also important to assume that either one or two phases exist. The triple point of water does not appear in this table. Also, since we have no data availabe about solid water, we can assume that we have either a subcooled liquid, a superheated vapor or an equilibrium mixture of saturated vapor and saturated liquid in the system. Gibbs Phase Rule tells us that for a pure substance in a single phase there are 2 degrees of freedom. If two phases are present, then there is just 1 degree of freedom. In either case, the two values of intensive properties given in each part of this problem will be sufficient to completely determine the values of all of the other intensive properties of the system. So, we are in good shape to move forward on solving this problem.

			Г	Р	V	U	Н		х	
Given:		(°	C)	(kPa)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kg	vap/kg tot)	
	a.)	5	0	12.35			2125			
	b.)	27	73	187						
Find:	a.)	V		???	m ³ /kg		b.)	v	???	m ³ /kq
		U		???	kJ/kg			U	???	kJ/kg
		н		???	kJ/kg			н	???	kJ/kg
								x	???	kg vap/kg

Assumptions: 1- No ice exists in the system in either part of the problem.

Equations / Data / Solve:

Part a.)	Given :	Т	50	°C
		Ρ	12.35	kPa

The first step in solving each part of this problem is to determine the state of the system. Is it subcooled liquid, superheated vapor or a two-phase VLE mixture.

We could do this by determining the boiling point or saturation temperature at the system pressure. But, since **12.35 kPa** does not appear in the Saturation Pressure Table for water, this would require an interpolation. It is easier to determine the saturation pressure or vapor pressure based on the system temperature because **50°C** does appear in the Saturation Temperature Table and therefore does not require an interpolation.

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m³/kg)	V _{sat vap} (m³/kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
12.352	50	0.0010121	12.027	209.33	2442.7	209.34	2591.3

P*(50°C) 12.352 kPa

Since the actual system pressure is EQUAL TO the vapor pressure, the system is at saturation.

In order to determine the values of the other properties of the system using the following equation, we will need to know the quality, \mathbf{x} .

$$\mathbf{M}_{\text{VLE}} = \mathbf{M}_{\text{satliq}} + \mathbf{x} \left(\mathbf{M}_{\text{satvap}} - \mathbf{M}_{\text{satliq}} \right)$$
Eqn 1

We can determine x from the saturation data and the known value of u for the system using :

$$\mathbf{x} = \frac{\mathbf{v} - \mathbf{v}_{\text{satliq}}}{\mathbf{v}_{\text{satvap}} - \mathbf{v}_{\text{satliq}}}$$
Eqn 2

0.804

kg vap/kg

Х

Now, we can plug **x** back into **Eqn 1** and apply it to the unknown properties, **V** and **U**.

	V	9.673	m³/kg		U	2005.5	kJ/kg
Part b.)	Given :	т	273	°C	Р	187	kPa

We again begin by determining the state of the system. Unfortunately the system temperature is not listed in the Saturation Temperature Table and the system pressure is is not listed in the Saturation Pressure Table. Either way we go, interpolation is required.

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
5503.0	270	0.0013030	0.035621	1178.1	2593.7	1185.3	2789.7
5946.4	275	0.0013175	0.032766	1203.1	2590.3	1210.9	2785.2
175	116.0	0.0010568	1.0036	486.82	2524.5	239.42	2700.1
200	120.2	0.0010605	0.88568	504.49	2529.1	251.38	2706.2

We could interpolate to determine the saturation properties at **187 kPa**, but there isn't much point! Since the system temperature is higher than the saturation temperature at EITHER **175 kPa** or **200 kPa**, the system temperature must also be higher than the interpolated value of **T**_{sat}(**187 kPa**).

Since the system temperature is greater than the saturation temperature at the system pressure, the system contains a superheated vapor. Therefore, we must use data from the Superheated Vapor Table to determine the unknown properties of the system.

x N/A - Superheated

The Superheated Vapor Table includes tables for pressure of **100** and **200 kPa**, but not **187 kPa**. These two tables include rows for **250°C** and **300°C**, but not for **273°C**. Consequently a double interpolation is required for each unknown system propert, V, U and H.

The double interpolation can be done with the aid of tables like the ones developed in Lesson 2C on page 18. The data required for the double interpolation tables are :

P*(kPa)	T (°C)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)
100	250	2.4062	2733.9	2974.5
100	300	2.6388	2810.6	3074.5
200	250	1.1989	2731.4	2971.2
200	300	1.3162	2808.8	3072.1

Here is the double interpolation table for ${\bf V}$:

	Pressure (kPa)					
T(°C)	100	187	200			
250	2.4062	1.3558	1.1989			
273	2.5132	1.4167	1.2529			
300	2.6388	1.4882	1.3162			

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

Here is the double interpolation table for **U** :

V 1.417 m³/kg

	Pressure (kPa)					
T(°C)	100	187	200			
250	2733.9	2731.8	2731.4			
273	2769.2	2767.3	2767.0			
300	2810.6	2809.1	2808.8			

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

U 2767.3 kJ/kg

3018.0

kJ/kg

Here is the double interpolation table for ${\boldsymbol{\mathsf{H}}}$:

	Pressure (kPa)					
T(°C)	100	187	200			
250	2974.5	2971.6	2971.2			
273	3020.5	3018.0	3017.6			
300	3074.5	3072.4	3072.1			

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

Verify: The assumption that there is no ice in the is confirmed by the fact that the the states in **part (a)** and **part (b)** are both located in the Steam Tables. The Steam Tables only consider states in which no ice can exist at equilibrium.

	Т	Р	V	U	Н	X
Answers :	(°C)	(kPa)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kg vap/kg tot)
a.)	50	12.35	9.673	2005.5	2125	0.804
b.)	273	187	1.417	2767.3	3018.0	N/A - Superheated

н

2D-5 Relative and Absolute Humidity of Air

A **pressure** gauge on a rigid steel tank reads **50 kPa**. The tank holds **2.1 kg** of **air** and **0.250 kg** of **water** vapor at **70°C**. Calculate the **relative humidity** of the **air** in the tank.

Read : The keys here are the definition of relative humidity and the relationships between mass, moles, molecular weight, mole fraction and partial pressure.

We need to assume the humid air behaves as an ideal gas in order to determine the partial pressures from the given m_{water} and m_{BDA} .

Given:	T	70	°C	m _{tot}	2.100	kg wet air
	P _{tot}	50	kPa	m _{H2O}	0.250	kg H₂O
Find:	h _r =	???	%			

Assumptions:1- Air is a non-condensable gas.
2- Humid air behaves as an ideal gas.

Equations / Data / Solve:

Let's begin with the definition of relative humidity:	$\mathbf{h}_{\mathbf{r}} = \frac{\mathbf{P}_{\mathbf{H}20}}{\mathbf{P}_{\mathbf{H}20}^*}$	Eqn 1
---	---	-------

The vapor pressure is equal to the saturation pressure at the system temperature.We can find this in the saturation
temperature section of the steam tables: $P^* (80^\circ C) = 47.39$ kPaFor an ideal gas: $P_{H20} = y_{H20}$ P_{tot} Eqn 2Test if ideal:Ideal Gas EOS : $P \tilde{V} = R T$ Eqn 3

 $\tilde{\mathbf{V}} = \frac{\mathbf{R}\,\mathbf{T}}{\mathbf{P}} \tag{Eqn 4}$

57.06 L/mole

4 pts

Solve for the molar volume :

V

Therefore, since V > 20 L/mole, we can treat the wet gas as an ideal gas.

For all gases, mole fraction is defined as :

 $y_{H2O} = \frac{n_{H2O}}{n_{wetgas}} = \frac{n_{H2O}}{(n_{H2O} + n_{BDA})}$ Eqn 5

Where :

Data:

 $n_i = m_i / MW_i$ Eqn 6

Since we know the mass of water and bone-dry air in the tank, as well as their molecular weights, we can calculate the number of moles of water and BDA in the tank using **Eqn 6**.

Then, we can calculate the mole fraction of water in the gas in the tank, using **Eqn 5**. Next, we can use the given total pressure to calculate the partial pressure of water in the gas using **Eqn 2**.

Here are the numerical results:	n _{H2O}	13.88	mol H₂O		
	m _{BDA}	1.850	kg BDA		
	n _{BDA}	63.88	mol BDA		
	У н20	0.178	mol H ₂ O /	mol wet gas	
	P _{H2O}	8.92	kPa		
Finally, we can calculate the relative					
humidity using Eqn 1 :			h _r =	18.8%	%

Verify: 1 - The assumption is sound since the normal boiling points of oxygen and nitrogen are 68 K and 70 K and our system is at 343 K.

2 - The ideal gas assumption was verified above because V = 57 L/mol which is greater than 20 L/mole. The limit for non-diatomic gases applies because of the water in the air.

Answers :	h _r =	19%	%
-----------	------------------	-----	---

2D-6 Humidity and Partial Pressure in a Humid Ideal Gas

The rigid tank shown below contains **5 kg** of a non-condensable gas with a **molecular weight** of **44.1 g/mol**. The tank also contains **water** vapor. The gas in the tank is at **140 kPa** and **80°C** and the **relative humidity** is **72%**.

Assuming the gas in the tank behaves as an ideal gas, calculate the mass of water vapor in the tank.

Read : The keys here are the definition of relative humidity and the relationship between mole fraction and partial pressure.

We need to assume the humid air behaves as an ideal gas in order to determine the partial pressure of water from the given h_r . We can use the mole fraction of water in the gas to determine the mass of water in the gas.

Given:	m _{NCG} = MW _{NCG} = T =	5 44.1 80	kg NCG g NCG / mole NCG °C	P _{tot} = h _r =	140 kPa 72%
Find:	m _{H2O} =	???	kg		

Assumptions: 1- The gas in the tank behaves as an ideal gas. This must be verified.

Equations / Data / Solve:

Let's begin with the definition of relative humidity:	$\mathbf{h}_{\mathbf{r}} = \frac{\mathbf{P}_{\mathbf{H20}}}{\mathbf{P}_{\mathbf{H20}}^*}$	Eqn 1

The vapor pressure is equal to the saturation pressure at the system temperature. We can find this in the saturation temperature section of the steam $P_{H20}^*(70^\circ C)$ 47.41 kPa Plug P_{H20}^* and h_r into Eqn 1 to get the partial pressure of water from the definition of relative humidity.

> P_{H20} 34.138 kPa P_{H20} = y_{H20} P_{tot} E

6 pts

Egn 2

Eqn 3

For an ideal gas:

 $\mathbf{y}_{H2O} = \frac{\mathbf{P}_{H2O}}{\mathbf{P}}$

or:

Plugging values into Eqn 3 yields: $y_{H2O} = 0.244 \text{ mol } H_2O \text{ / mol wet gas}$

For all gases, mole fraction is defined as:

$$y_{H2O} = \frac{n_{H2O}}{n_{gas}} = \frac{n_{H2O}}{(n_{H2O} + n_{NCG})}$$
 Eqn 4

$$n_i = m_i / MW_i$$
 Eqn 5

Now, we solve Eqn 4 for n_{H20} :

Where :

$$\mathbf{n}_{\mathrm{H2O}} = \mathbf{y}_{\mathrm{H2O}} \left(\mathbf{n}_{\mathrm{H2O}} + \mathbf{n}_{\mathrm{NCG}} \right)$$
 Eqn 6

$$n_{H20} = n_{NCG} \frac{y_{H20}}{1 - y_{H20}}$$
 Eqn 7

Now, we can plug the numbers into equations...

Eqn 5 yields :	n _{NCG} =	113.38 moles NCG
Eqn 7 yields :	n _{H2O} =	36.56 moles H ₂ O

Finally, Eqn 5 can be rewritten as : $m_i = n_i MW_i$ Eqn 8

We can answer the question posed by plugging numbers into Eqn 8 :

	Data: MW _{H20}	$_{0} = 18.016 \text{ g H}_{2}\text{O}/$	mol H₂O	m _{H2O} =	658.7	g H₂O
Verify:	Test if ideal:	Ideal Gas EOS :	$P \tilde{V} = R T$			Eqn 3
	Solve for the mola	r volume :	$\tilde{\mathbf{V}} = \frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}$			Eqn 4
	Therefore. since V	∕ > 20 L/mole . we can trea	V t the wet gas as an ideal gas.		20.97	L/mole
		,,	geo es en es geo			

Answers : $m_{H2O} = 659 g H_2O$

2D-7 Humid Air and Relative Humidity

6 pts

Air is fed to a furnace at a volumetric flow rate of 745 m³/h. The air is at 50°C, 100 kPa and has a relative humidity of 37%.

a.) Calculate the molar flow rate of bone dry air (BDA) into the furnace in mole/h.

b.) Calculate the molar flow rate of water (within the humid air) into the furnace in mole/h.

The two keys to this problem is that the humid air behaves as an ideal gas and the definition of relative humidity. Read: You can determine the mole fraction of water in humid air from the relative humidity. You can use the Ideal Gas EOS to determine the total molar flow rate from the volumetric flow rate. The product of the mole fraction of water and the total molar flow rate is the molar flow rate of water. Finally, the molar flow rate of BDA is just the difference between the total molar flow rate and molar flow rate of water.

Given:	т	50	°C	Find :	n _{H2O}	???	mol H₂O/h
	Р	100	kPa		n _{BDA}	???	mol BDA/h
	h _R	37%					
	V_{dot}	745	m³/h				

Diagram: None for this problem.

Assumptions : 1 -Humid air behaves as an ideal gas. This allows us to use the Ideal Gas EOS and tells us that the partial pressure is equal to the product of the mole fraction and the total pressure.

Equations / Data / Solve :

The molar flow rates of BDA and water are related to the total molar flow rate of humid air by the mole fractions. The equations are :

$\dot{\mathbf{n}}_{\text{H2O}}=\mathbf{y}_{\text{H2O}}\dot{\mathbf{n}}_{ ext{total}}$	Eqn 1	$\dot{\mathbf{n}}_{\scriptscriptstyle BDA}=\mathbf{y}_{\scriptscriptstyle BDA}\dot{\mathbf{n}}_{\scriptscriptstyle total}$	Eqn 2
Because humid air is made up of bone dry air (BDA) and water, only :		$\mathbf{y}_{\scriptscriptstyle BDA} + \mathbf{y}_{\scriptscriptstyle H2O} = 1$	Eqn 3
Solve Eqn 3 for y _{BDA} .		$y_{BDA} = 1 - y_{H2O}$	Egn 4

Solve Eqn 3 for y_{BDA} .

So, we need to determine n_{total} and y_{H2O} before we can use Eqns 1, 2 & 4 to answer this question. Let's begin by evaluating the total molar flow

For this, we can use the rate version of the Ideal Gas EOS: $P\dot{V}_{total} = \dot{n}_{total} R T$ Eqn 5

Solve Eqn 5 for the total molar flow rate.	$\dot{\mathbf{n}}_{\text{total}} = \frac{\mathbf{P} \check{\mathbf{V}}_{\text{total}}}{\mathbf{P} \mathbf{T}}$	Eqn 6
	RI	

27730

n_{total}

P*_{H20}

Y_{H2O}

n_{H2O}

YBDA

n_{BDA}

7730 mol total/h

kPa

mol H₂O/mol

mol H₂O/h

mol BDA/h

mol BDA/mol

The key to solving this problem is using the definition of relative humidity to determine the mole fraction of water in the humid air.

$$h_{R} = \frac{P_{H2O}}{P_{H2O}^{*}} = \frac{Y_{H2O}P}{P_{H2O}^{*}}$$
 Eqn 7

We can now solve Eqn 7 for the mole fraction of water in the humid air.

$$\mathbf{y}_{\text{H2O}} = \mathbf{h}_{\text{R}} \frac{\mathbf{P}_{\text{H2O}}^{*}}{\mathbf{P}}$$
 Eqn 8

38.595

0.1428

3960

0.8572

23770

We can look up the vapor pressure of water at **50°C** in the Saturated Temperature Table of the Steam Tables.

Now, plug values back into Eqn 8 :

Finally, plug values into Eqns 1, 4 & 2 :

Verify: The ideal gas assumption needs to be verified. We need to determine the specific volume and check if :

 \widetilde{V} > 20 L/mol

$$\widetilde{\mathbf{V}}_{\text{out}} = \frac{\mathbf{R} \, \mathbf{T}_{\text{out}}}{\mathbf{P}_{\text{out}}} \qquad \qquad \text{Eqn 9}$$

	V	26.87 L/mol		
Answers :	n _{H2O}	3960	mol H₂O/h	

The ideal gas assumption is valid because V > 20 L/mole.

n_{BDA} 23800 mol BDA/h

2D-8	Determining \$	System Prop	perties Usir	ng Thermo	dynamic Ta	ables		10 pts
Comple	te the following tab	le by determ	ining the va	lues of all th	ne blank en	tries. The sy	stem contains only R	-134a.
		T (°C)	P (kPa)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	x (kg vap/kg tot)	
	a.)	-15			369.85			
	b.)	43	728					
	c.)		250	0.049				
	d.)	50	1547					
	e.)		976			318.7		
		(· · · · · · · · · · · · · · · · · · ·	

Read : The key to this problem is to recognize that all of the variables in the table are state variables, or properties, and that they are all intensive properties. It is also important to assume that either one or two phases exist. The triple point of R-134a is not common knowledge, but it is pretty safe to assume that it does not appear in this table. We can verify this assumption later. Also, since we have no data availabe about solid R-134a, we can assume that we have either a subcooled liquid, a superheated vapor or an equilibrium mixture of saturated vapor and saturated liquid in the system. Gibbs Phase Rule tells us that for a pure substance in a single phase there are 2 degrees of freedom. If two phases are present, then there is just 1 degree of freedom. In either case, the two values of intensive properties given in each part of this problem will be sufficient to completely determine the values of all of the other intensive properties of the system. So, we are in good shape to move forward on solving this problem.

Given:	T (°C)	P (kPa)	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	x (kg vap/kg tot)
a.)	-15			369.85		
b.)	43	728				
c.)		250	0.049			
d.)	50	1547				
e.)		976			318.7	

Find: Fill in all the blank values in the table, above.

Assumptions: - No solid phase exists in any of these 5 systems

Equations / Data / Solve:

Part a.)	Given :	т	-15 °C	U	369.85	kJ/kg
----------	---------	---	--------	---	--------	-------

We again begin by determining the state of the system. In this case, it would be easiest to lookup the Usat vap and

lf:	U > U _{sat vap}	Then :	The system contains a superheated vapor.
lf:	U < U _{sat liq}	Then :	The system contains a subcooled liquid.
lf:	U _{sat vap} > U > U _{sat liq}	Then :	The system contains an equilibrium mixture of saturated
			liquid and saturated vapor.

Data :

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m³/kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
163.94	-15	7.4469E-04	0.12067	180.02	369.85	180.14	389.63

Because $U = U_{sat vap}$, our system contains a saturated vapor. The bonus here is that the quality is 1 and all the

Given : т Part B.)

°C Ρ 728 43 kPa We again begin by determining the state of the system. Unfortunately the system temperature is not listed in the

Х

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
1016.6	40	8.7204E-04	0.019966	255.52	399.13	256.41	419.43
1159.9	45	8.8885E-04	0.0173439	262.91	401.40	263.94	421.52
700	26.71	8.3320E-04	0.0293654	236.41	392.64	236.99	413.20
750	29.08	8.3959E-04	0.027375	239.76	393.84	240.39	414.37

We could interpolate to determine the saturation properties at 728 kPa, but there isn't much point ! Since the

Since the system temperature is greater than the saturation temperature at the system pressure, the system

The Superheated Vapor Table includes tables for pressure of 700 and 800 kPa, but not 728 kPa. These two The double interpolation can be done with the aid of tables like the ones developed in Lesson 2C on page 18. The data required for the double interpolation tables are :

P*(kPa)	T (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)
700	40	0.031696	404.53	426.72
700	50	0.033322	413.35	436.67
800	40	0.027036	402.97	424.59
800	50	0.028547	412.00	434.84

Here is the double interpolation table for V :

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

	Pressure (kPa)						
T(°C)	700 728 80						
40	0.031696	0.030391	0.0270357				
43	0.032184	0.030869	0.027489				
50	0.033322	0.031985	0.028547				

N/A - Superheated

V 0.030869 m³/kg

Here is the double interpolation table for **U** :

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

406.76 kJ/kg

Here is the double interpolation table for **H** :

I chose to interpolate on pressure first and then to interpolate on temperature. If you do the interpolations in the opposite order, you will get a slightly different answer. Either method is satisfactory.

н 429.14 kJ/kg

	Pressure (kPa)							
T(°C)	700	728	800					
40	404.53	404.09	402.97					
43	407.18	406.76	405.68					
50	413.35	412.97	412.00					

	Pressure (kPa)						
T(°C)	700	728	800				
40	426.72	426.13	424.59				
43	429.71	429.14	427.67				
50	436.67	436.16	434.84				

U

Part c.)	Given :	Р	250	kPa			v	0.049	m³/kg
	We again	begin by detern	nining the st	ate of the syst	tem. In this c	ase, it would	be easiest t	o lookup the	V _{sat vap} and
	If :	V > V _{sat vap}		Then :	The system	contains a	superheated	vapor.	
	lf : V < V _{sat lig}			Then :	The system contains a subcooled liquid.				
	lf :	V _{sat vap} > V >	$_{p}$ > V > V _{sat liq} Then : The system contains an equilibriu liquid and saturated vapor.						aturated
	Data :								
	P*(kPa)	T _{sat} (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)]

Because V lies between $V_{sat liq}$ and $V_{sat vap}$, the system is the two-phase envelope and T = T_{sat} .

0.080685

7.6406E-04

kJ/kg

°C т -4.284

396.08

0.604

kg vap/kg

kJ/kg

In order to determine the values of the other properties of the system using the following equation, we will need to

194.08

$$\mathbf{M}_{\mathsf{VLE}} = \mathbf{M}_{\mathsf{satliq}} + \mathbf{x} \left(\mathbf{M}_{\mathsf{satvap}} - \mathbf{M}_{\mathsf{satliq}} \right)$$
Eqn 1

375.91

194.27

Х

We can determine x from the saturation data and the known value of u for the system using :

$$\mathbf{x} = \frac{\mathbf{v} - \mathbf{v}_{\text{satliq}}}{\mathbf{v}_{\text{satvap}} - \mathbf{v}_{\text{satliq}}}$$
Eqn 2

Now, we can plug x back into Eqn 1 and apply it to the unknown properties, U and H. U 303.82 316.07 н

°C 50 Ρ Part d.) Given : т 1547 kPa

The first step in solving each part of this problem is to determine the state of the system. Is it subcooled liquid, superheated vapor or a two-phase VLE mixture.

We could do this by determining the boiling point or saturation temperature at the system pressure. But, since 1547 kPa does not appear in the Saturation Pressure Table for R-134a, this would require an interpolation. It is easier to determine the saturation pressure or vapor pressure based on the system temperature because 50°C does appear in the Saturation Temperature Table and therefore does not require an interpolation.

P*(50°C)	1317.9	kPa
----------	--------	-----

Since the actual system pressure is ABOVE the vapor pressure, the system contains a subcooled liquid. The quality of a subcooled liquid is undefined. Therefore : N/A - Subcooled x =

The Subcooled Liquid Table for R-134 includes data fo 50°C at both 1400 kPa and 1600 kPa. Therefore, a single-interpolation is required for each unknown property in the problem statement.

P*(kPa)	T (°C)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)			
1400	50	9.0646E-04	270.32	271.59	V	9.0517E-04	m
1547	50	9.0517E-04	270.13	271.53	U	270.13	k
1600	50	9.0470E-04	270.06	271.51	H	271.53	k

250

-4.28

Part e.) Given : P 976 kPa

н

This part of the problem is very similar to part a.

We again begin by determining the state of the system. In this case, it would be easiest to lookup the $H_{sat vap}$ and $H_{sat lig}$ at the given temperature.

lf:	H > H _{sat vap}	Then :	The system contains a superheated vapor.
lf:	H < H _{sat liq}	Then :	The system contains a subcooled liquid.
lf:	H _{sat vap} > H > H _{sat liq}	Then :	The system contains an equilibrium mixture of saturated
			liquid and saturated vapor.

Data :

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
950	37.50	8.6412E-04	0.0214415	251.86	397.95	252.69	418.32
1000	39.39	8.7007E-04	0.020316	254.63	398.85	255.50	419.16

Unfortunately, the system pressure of **976 kPa** does not appear in the Saturation Pressure Table. So, we will have to interpolate between the two rows in the table shown here to determine the saturation properties at **976 kPa**.

P*(kPa)	T _{sat} (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	U _{sat liq} (kJ/kg)	U _{sat vap} (kJ/kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
976	38.479	8.6721E-04	0.0208563	253.30	398.42	254.15	418.76

Because H lies between $H_{sat liq}$ and $H_{sat vap}$, the system is the two-phase envelope and T = T_{sat} .

In order to determine the values of the other properties of the system using the following equation, we will need to know the quality, \mathbf{x} .

$$\mathbf{M}_{\mathsf{VLE}} = \mathbf{M}_{\mathsf{satliq}} + \mathbf{x} \left(\mathbf{M}_{\mathsf{satvap}} - \mathbf{M}_{\mathsf{satliq}} \right)$$
 Eqn 3

т

We can determine ${f x}$ from the saturation data and the known value of ${f U}$ for the system using :

$$\mathbf{x} = \frac{\mathbf{h} - \mathbf{h}_{\text{satliq}}}{\mathbf{h}_{\text{satvap}} - \mathbf{h}_{\text{satliq}}}$$

Eqn 4

x 0.392 kg vap/kg rties, V and U.

38.5

°C

Now, we can plug x back into Eqn 1 and apply it to the unknown properties, V and U.

Verify: The assumption that there is no ice in the is confirmed by the fact that the the states in **part (a)** and **part (b)** are both located in the R-134a Tables. The R-134a Tables only consider states in which no solid R-134a can exist at equilibrium.

Ar	ารง	vei	s :

	T (°C)	P (kPa)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	x (kg vap/kg tot)
a.)	-15	163.9	0.120671	369.85	389.63	1
b.)	43	728	0.030869	406.76	429.14	N/A - Superheated
c.)	-4.284	250	0.049	303.82	316.07	0.604
d.)	50	1547	9.0517E-04	270.13	271.53	N/A - Subcooled
e.)	0	976	8.6721E-04	253.30	318.70	0.392

2D-9 Relative Humidity, Partial Pressure and Mole and Mass Fractions

My classroom contains **250** m³ of humid air at **26°C** and **44% relative humidity**. Calculate the **mass** of **dry air** (**BDA**) and the **mass** of **water** vapor in the room.

Read : The key to this problem is the definition of relative humidity. When the relative humidity and temperature are given, we can use data from the Steam Tables to determine the partial pressure and mole fraction of water in the gas phase. We can convert the mole fraction into a mass fraction. Then, by assuming the gas phase is an ideal gas, we can determine the total mass of air in the room. And, finally we can determine the mass of BDA and water in the gas in the room.

Given:	V _{tot} P _{tot}	250 105	m ³ kPa	T h _r	26 44%	°C
Find:	m _{H2O}	???	kg H₂O	m _{BDA}	???	kg BDA

Assumptions: - The air-water gas mixture behaves as an ideal gas. At the end of the problem we will be able to determine the molar volume of the air-water gas mixture so we can verify this assumption.

Equations / Data / Solve:

Using the IG EOS and the known **P**, **T** and **V** of the room, we can determine the mass of air-water gas mixture in the room.

Ideal Gas EOS :
$$PV = nRT = \frac{m}{MW}RT$$
 Eqn 1

Solve Eqn 1 for
$$m_{gas}$$
: $m_{gas} = MW_{gas} \frac{P v}{R T}$ Eqn 2

The following equation allows us to calculate the average molecular weight of a gas mixture using the mole fractions and molecular weights of its constituents.

$$\overline{\mathbf{MW}}_{\text{mix}} = \sum_{i=1}^{\text{#of}} \mathbf{y}_i \, \mathbf{MW}_i$$
 Eqn 3

6 pts

For our system, Eqn 3 becomes : $\overline{MW}_{gas} = y_{BDA} MW_{BDA} + y_{H2O} MW_{H2O}$ Eqn 4 MW_{BDA} 29g BDA/mole BDA MW_{H2O} 18.016g H₂O/mole H₂O

So, in order to determine the average molecular weight of the gas, we need to know the composition of the gas. That is, we need to know the mole fractions of BDA and water in the gas mixture. Given the relative humidity and the temperature of an ideal gas mixture of air and water, we can determine the composition.

Begin with the definition of relative humidity :

$$h_{r} = \frac{P_{H20}}{P_{H20}^{*}}$$
 Eqn 5

Since we know the temperature of the system is 26°C, we can look up the vapor pressure of water at this temperature in the Saturation Temperature Table in the Steam Tables. Unfortunately, because 26°C is not listed in the Saturation Temperature Table, interpolation is required.

T _{sat} (°C)	P _{sat} (kPa)
25	3.170
26	???
30	4.247

Interpolation yields :

P*_{H20}(26°C) 3.385 kPa

We can plug the vapor pressure, along with the given value of the relative humidity into Eqn 5 to determine the partial pressure of water in the gas.

		Р _{н20}	1.490 kPa
The last key relationship is the one between partial pressure and the mole fraction for ideal gases :		$\mathbf{P}_{_{\mathrm{H20}}}=\mathbf{y}_{_{\mathrm{H20}}}$	P _{tot} Eqn 6
Solving for the mole fraction yields :		$\mathbf{y}_{_{_{_{H2O}}}} = \frac{\mathbf{P}_{_{_{H2O}}}}{\mathbf{P}_{_{tot}}}$	Eqn 7
Plugging numbers into Eqn 7 yields :	<mark>У</mark> н20	0.0142 m	ol H ₂ O / mol gas
We can calculate \mathbf{y}_{BDA} because $\Sigma \mathbf{y}_i = 1$:	<mark>y_{bda}</mark>	0.986 m	ol BDA / mol gas

At last, we can use these mole fractions in **Eqn 4** to determine the value of **MW**_{gas} and then use that in **Eqn 2** to determine the total mass of gas in the room.

MW_{gas} 28.844 g gas / mol gas

mol gas m_{gas} 304.43 kg gas

Here we can either determine the mass fractions of BDA and water in the gas or we can determine the number of moles of BDA and water in the room. I will use both methods here.

ı Jıga	15		-q., v	n _{BDA}	10.405	mol BDA
$m_{_{gas}}=n_{_{g}}$	_{as} MW _{gas}		Eqn 10	BDA		-
m _{H2O}	2.70	kg H₂O		m _{BDA}	302	kg BDA
						-

Alternate Ending

Convert mole fractions into mass fractions :

 $\mathbf{x}_{i} = \mathbf{y}_{i} \frac{\mathbf{M}\mathbf{W}_{i}}{\mathbf{M}\mathbf{W}_{gas}}$ Eqn 11

302

 $\mathbf{m}_{\mathsf{BDA}}$

kg BDA

.

The following unit analysis shows why Eqn 11 is true.

Answers :	m _{u20}	2.70	ka H₂O
	111H2O	2.70	Kg H ₂ O

Verify :

2E-1 Mass of Propane in a Rigid Tank

Determine the **mass** of **propane** in a **10 L** tank if a **temperature** gauge on the tank reads **-20°C** and a **pressure** gauge on the tank reads **10 kPa**. Assume **propane** behaves as an ideal gas, but **verify** this assumption.

Read :	Apply the Ideal Gas EOS to determine the molar volume of the propane in the tank. If this value is greater than 20 L/mol , the IG EOS is accurate to within 1% . Use the molar volume, the molecular weight and the volume of the tank to determine the mass of propane in the tank.								
Given:	v	10	L	P _{gauge}	10	kPa			
	т	-20	°C						
Find:	М _{сз}	???	g						

Assumptions: 1- Assume the propane behaves as an ideal gas. Be sure to verify this assumption.

Equations / Data / Solve:

We could use the following equation to determine the mass of propane in the tank if we knew the specific volume.

$$\mathbf{M} = \frac{\mathbf{V}}{\hat{\mathbf{V}}}$$
 Eqn 1

Equations of state are written in terms of the molar volume. So we need the following equation to get from molar volume to the specific volume that we need to make use of **Eqn 1**.

$$\hat{\mathbf{V}} = \frac{\tilde{\mathbf{V}}}{\mathbf{MW}}$$
 Eqn 2

Now, we need to us the Ideal Gas EOS to determine the molar volume.

Ideal Gas EOS :
$$P \tilde{V} = R T$$
 Eqn 3

Let's solve for the molar volume because we know we will need this value to test whether the Ideal Gas EOS is applicable.

$$\tilde{V} = \frac{RT}{P}$$
 Eqn 4

We need to be careful with our units in **Eqn 2**. Let's begin by looking up the **Universal Gas Constant** in my favorite units, **J/mol-K**.

R 8.314 J/mol-K

2 pts
Next we need to convert the temperature to Kelvins and the gauge pressure to absolute pressure in Pascals.

$T(K) = T(^{\circ}C) + 273.15$		т	253.15	к
$\mathbf{P}_{\mathrm{abs}} = \mathbf{P}_{\mathrm{gauge}} + \mathbf{P}_{\mathrm{atm}}$	Assume:	P _{atm}	101.325	kPa
		P _{abs}	111.325 111,325	kPa Pa
Plugging values into Eqn 2 yields:		v	0.018906 18.91	m ³ /mol L/mol
We can now look up the molecular weight of propane:		MW	44.1	g/mol
Now, we can plug values into Eqn 2 and then Eqn 1 to complet	te this soluti	on.		
(Watch the u	units here!)	V	0.42870	m³/kg
		M _{C3}	0.02333 23.33	kg g

Verify: Propane is not a diatomic molecule. Therefore, it cannot be accurately treated as an ideal gas unless its molar volume is greater than 20 L/mol.

Above, we found the molar volume of propane under the conditions in this problem is **18.91 L/mol**. Therefore we conclude that it may not be accurate to use the Ideal Gas EOS to solve this problem. You should probably try a <u>more sophisticated</u> **EOS** such as the <u>Generalized Compresibility EOS</u> in **this lesson** or one of the equations of state in the **next lesson**.

Answers : M_{C3} 23.33 g

(But this result is not reliable because the Ideal Gas assumption is not valid. A more accurate analysis yields $M_{C3} = 24.1 \text{ g.}$)

2E-2	Ideal Gas or No	ot: Dioxid	e An Ideal G	as?				2 pts
Carbon Die less than 1	oxide (CO ₂) gas i <mark>% erro</mark> r?	s held in a	a tank at 225	kPa and 240 K. Can t	he carbon dic	oxide be tre	ated as an idea	al gas with
Read :	Apply the Ideal (L/mol, the IG E	Gas EOS OS is acc	to determine urate to withir	the molar volume of the 1% .	he CO₂ in the t	ank. If this	value is greate	⁻ than 20
Given:	т	240	к			Р	225	kPa
Find:	Can CO ₂ be accurate treated as an ideal gas?							
Assumptions: 1- Assume the CO ₂ behaves as an ideal gas. Be sure to verify this assumption.								
Equations	/ Data / Solve:							
	Ideal Gas EOS	:		$\mathbf{P}\mathbf{\tilde{V}}=\mathbf{R}\mathbf{T}$				Eqn 1
	Let's solve for th applicable.	ne molar v	olume becau	se we know we will ne	ed this value t	o test whet	ner the Ideal G	as EOS is
				$\tilde{\mathbf{V}} = \frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}$				Eqn 2
	We need to be of favorite units, J/	careful wit / mol-K .	h our units in	Eqn 2. Let's begin by	looking up the	e Universal	Gas Constant i	n my
						R	8.314	J/mol-K
	Next we need to	convert f	he pressure f	rom kPa to Pascals .		Р	225,000	Ра
	Plugging values	into Eqn	2 yields:			V	0.0088683 8.87	m³/mol L/mol
Verify:	CO ₂ is not a dia volume is greate	tomic mol er than 20	ecule. Theref L/mol .	ore, it cannot be accu	rately treated a	as an <mark>ideal</mark> (<mark>gas</mark> unless its r	nolar

Above, we found the molar volume of propane under the conditions in this problem is **8.87 L/mol**.

Therefore, we conclude that it may not be accurate to use the Ideal Gas EOS to solve this problem.

You should probably try a <u>more sophisticated</u> **EOS** such as the <u>Generalized Compresibility EOS</u> in **this lesson** or one of the equations of state in the **next lesson**.

Answers : No. Under these conditions, CO₂ cannot be accurately treated as an ideal gas.

2E-3	Compress	Compressibility Factor: Methanol 2 pts							
Use the G	eneralized C	ompressibility l	Factor EOS	to determine th	e molar volume of	methanol at 725	K and 27 M	Pa.	
Read :	We can us V _R ^{ideal} . The volume sh	e T & P to calc en, we can use ould agree with	culate T _R and either Z or V hin about 5%	d P_R and use th V _R ^{ideal} to deterr 5.	ne Generalized Com nine the molar volur	n <mark>pressibility Chart</mark> me. The values w	s to determir e get for the	ne Z & molar	
Given:	T P	725 27	K MPa		Find:	V	???	L/mol	
Assumpti	ions:	None.							
Equations	s / Data / Sol	ve:							
	Begin by c	ollecting all of	the constant	s needed for a	I Generalized Comp	pressibility Equation	on of State.		
	R	8.314	J/mol-K			Τ _c	513.38	К	
	MW	32.042	g NH₃ / m	ol NH ₃		Pc	8.216	МРа	
	Compress	sibility EOS :							
	Given T_R a compressi	and the ideal re bility, Z . T_R, P_R	duced mola and Z are d	r volume, use t efined as follov	he compressibility c vs.	harts to evaluate	either P_R or	the	
	$T_R = \frac{T}{T_c}$	Eqn	1	$P_{R} = \frac{P}{P_{c}}$	Eqn 2	$\mathbf{Z} = \frac{\mathbf{P}\tilde{\mathbf{V}}}{\mathbf{R}\mathbf{T}}$		Eqn 3	
	Because w	ve know both T	and P , we c	can immediatel	y plug values into E	qns 1 & 2.			
	T _R	1.41	2			P _R	3.28	6	
	Read the (Generalized Co	mpressibility	ý					
	Chart for F	P _R = 0 to 7 :				Z	0.7	4	
						V_{R}^{ideal}	0.32	5	
	We can so	olve Eqn 3 for t	he molar vol	lume and use t	he value of Z we jus	st found to evalua	te V.		
		-		7.0	r T				

$$\tilde{\mathbf{V}} = \frac{\mathbf{Z}\,\mathbf{R}\,\mathbf{T}}{\mathbf{P}} \tag{Eqn 4}$$

V

0.0001652 m³/mol

0.165

L/mol

Plugging values into Eqn 4 yields:

Alternatively, we could us the **ideal reduced molar volume** that we found on the Generalized Compressibility Chart to determine the molar volume.

$$\tilde{V}_{R}^{ideal} = \frac{\tilde{V}}{R T_{c} / P_{c}}$$
 Eqn 5

Now, we can solve Eqn 5 and plug in values to determine V.

$$\tilde{\mathbf{V}} = \tilde{\mathbf{V}}_{\mathsf{R}}^{\mathsf{ideal}} \cdot \frac{\mathsf{R}\,\mathsf{T}_{\mathsf{c}}}{\mathsf{P}_{\mathsf{c}}} \qquad \qquad \mathsf{Eqn}\,6$$

V 0.0001688 m³/mol 0.169 L/mol

Verify: There are no assumptions to verify.

Answers : Z:	V	0.165	L/mol	V _r ^{ideal}	V	0.169	L/mol

These values differ by less than **3%**. If you read the chart correctly, they should agree to within about **5%**.

2E-4 Equilibrium Pressure When Two Gases Are Mixed

Two rigid tanks are connected by a large duct, as shown below. Tank **A** initially contains **3 kg** of **hydrogen** gas at **125°C** and **175 KPa**. Tank **B** initially contains **5 kg** of **methane** gas at **85°C** and **65 KPa**.

5 pts

a.) Can either gas be treated as an ideal gas?

b.) The valve in the duct is opened and the gases in the tanks mix. If both tanks eventually cool to room temperature (25°C) after mixing, what will the final **pressure** be at equilibrium?

Read : The key here is to assume that both the pure gases and the final mixture of gases behave as ideal gases. We can immediately verify that the pure gases in their initial state are ideal gases, but we cannot verify that the final mixture of gases is ideal until we solve the problem and determine the final pressure.

Choose the contents of both tanks as the system. The fact that links the initial and final states of this system is that the total number of moles in the system does not change. This is a closed system.

Given:	m _{H2} =	3	kg	Т _в =	85	°C
	T _A =	125	°C		358.15	Κ
		398.15	К	Р _в =	65	KPa
	P _A =	175	КРа	T _{equ} =	25	°C
	т _{сн4} =	5	kg		298.15	κ
Find:	P _{equ} =	???	kPa			

Assumptions: - Both pure gases, as well as the final mixture, behave as ideal gases.

Equations / Data / Solve:

Part a.)	A diatomic following c	gas can be c riterion is sati	onsidered ideal when the sfied:	$\widetilde{V} = \frac{RT}{P}$	$> 5 \frac{L}{mol}$		Eqn 1
	V _{N2} = V ₀₂ =	18.92 45.81	L/mol L/mol	Where:	R	8.314	J/mol K

Since both molar volumes are much greater than **5 L/mole**, it is safe to consider both gases to be ideal gases.

Part b.)	The key to solving the problem is to ASSUME that the equilibrium mixture will be an ideal gas:	$P_{eq} = \frac{n_{tot} R I_{eq}}{V_{tot}}$	Eqn 2
	Let's begin by determining how many moles of gas are initially in each tank.	$\mathbf{n}_{i} = \frac{\mathbf{m}_{i}}{\mathbf{MW}_{i}}$	Eqn 3

Then we can determine the total moles of gas in the system :

$MW_{N2} =$	28.01	g/mol	
MW ₀₂ =	32.00	g/mol	

n_{N2} = 107.1 mole N₂ n₀₂ = 156.3 mole O₂

263.4

Eqn 4

mole total

 $n_{tot} = n_{0_2} + n_{N_2}$

n_{total} = The total number of moles in the system does not changes as the gases mix! The system, consisting of both tanks, is closed.

Next, we can use the IG EOS to determine the volume of each tank and then the total volume of the system.

$V_{tot} = V_A +$	V _B	E	qn 5	Where (for idea	al gases) :	$V_A = n_{N2} \tilde{V}_{N2}$	N2	Eqn 6
$V_A =$ $V_B =$ $V_{tot} =$	2.03 7.16 9.18	m ³ m ³ m ³				$V_{B} = n_{O2} \tilde{V}_{C}$	02	Eqn 7
From the IG EC equilibrium pres	S we deri sure :	ve the fo	llowing eq	uation for the		$P_{eq} = \frac{n_{tot}R}{V_{to}}$	T _{eq}	Eqn 8
						P _{eq}	71.08	kPa

Verify: Now, calculate the molar volume at the equilibrium state, just to be sure it is still safe to treat the gas as an ideal gas !

V_{eq} = 34.87 L/mol

Since V_{eq} is greater than **5** L/mole, we were justified in using the Ideal Gas EOS for the equilibrium state as well.

Answers : a.) Since both molar volumes are much greater than **5 L/mole**, it is safe to consider both gases to be ideal gases.

b.) P_{eq} = 71.1 kPa

2F-1	An Application of Equations of State 1							10	pts	
Estimate the pressure of ammonia at a temperature of 27°C and a specific volume of 0.526 m ³ /kg. a.) Ideal Gas EOS b.) Virial EOS c.) van der Waal EOS d.) Soave-Redlich-Kwong EOS e.) Compressibility Factor EOS f.) Steam Tables.										
Read :	Not much to sa	ay here.								
Given:	T V	27 0.526	°C m³/kg		Find:	Ρ		???	kPa	
Assumptio	ns: Nor	ne.								
Equations	/ Data / Solve: Begin by collec	ting all of	the constants	needed for all the Fr	uations of St	tate in	this proh	lem		
	R MW	8.314 17.03	J/mol-K g NH ₃ / mol	NH ₃		Τ _c Ρ _c ω		405.55 1.128E+07 0.250	K Pa	
Part a.)	Ideal Gas EOS	8:		$P \tilde{V} = R T$					E	qn 1
	Solve for press	sure :		$\mathbf{P} = \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}}$					E	qn 2
	We must deter	mine the r	molar volume	before we can use E	qn 2 to answ	er the	question			
	Use the definiti	ion of mola	ar volume:	$\tilde{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{n}}$					E	qn 3
	Where :			$n = \frac{m}{MW}$					E	qn 4
	Therefore :			$\tilde{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{m} / \mathbf{M} \mathbf{W}} = \hat{\mathbf{V}} \cdot \mathbf{N}$	ИW				E	qn 5
	Now, plug valu	es back in	to Eqn 2 .			V T P		8.958E-03 300.15 2.786E+05	m ³ /mol K Pa	
	Be careful with	the units.					Ρ	278.6	kPa	1

Part b.) Truncated Virial EOS: $Z = \frac{P\tilde{V}}{RT} = 1 + \frac{B}{\tilde{V}}$ Eqn 6

We can estimate B using :
$$\mathbf{B} = \frac{\mathbf{R} \mathbf{T}_{C}}{\mathbf{P}_{C}} \left(\mathbf{B}_{0} + \boldsymbol{\omega} \mathbf{B}_{1} \right)$$
Eqn 7

$$B_0 = 0.083 - \frac{0.422}{T_R^{1.6}}$$
 Eqn 8

$$B_1 = 0.139 - \frac{0.172}{T_R^{4.2}}$$
 Eqn 9

Where :
$$T_R = \frac{T}{T_c}$$
Eqn 10We can solve Eqn 6 for P : $P = Z \frac{R T}{\tilde{V}}$ Eqn 11

Plugging numbers into Eqns 10, 8, 9, 7 and 11 (in that order) yields :

T _R	0.740		В	-2.14E-04 r	m³/mol
B ₀	-0.6000	<u>.</u>	Z	9.76E-01	
B ₁	-0.4698		Р	271.9	kPa

Part c)	van der Waal FOS ·	$\mathbf{P} - \frac{\mathbf{RT}}{\mathbf{A}} - \frac{\mathbf{a}}{\mathbf{A}}$	Egn 12
r art o.y		$\tilde{\mathbf{V}} - \tilde{\mathbf{V}} - \mathbf{b}$ $\tilde{\mathbf{V}}^2$	Equ 12

We can determine the values of **a** and **b**, which are constants that depend only on the chemical species in the system, from the following equations.

$a = \frac{27}{6}$	$\frac{7 \mathbf{R}^2 \mathbf{T}_c^2}{64 \mathbf{P}_c}$	Eqn 13	$\mathbf{b} = \frac{\mathbf{R} \mathbf{T}_{c}}{8 \mathbf{P}_{c}}$	Eqn 14
T _c	405.55	к	a 0.4252	Pa-mol ² /m ⁶
Pc	1.128E+07	Ра	b 3.74E-05	m³/mol
Now, we	e can plug the co	nstants a and b	into Eqn 12 to determine the pressure.	
			P 274.4	kPa

Part d.) Soave-Redlich-Kwong EOS :

$$\mathbf{P} = \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}} - \mathbf{b}} - \frac{\alpha \mathbf{a}}{\tilde{\mathbf{V}} \left(\tilde{\mathbf{V}} + \mathbf{b} \right)}$$
 Eqn 15

We can determine the values of **a**, **b** and α , which are constants that depend only on the chemical species in the system, from the following equations.

$$a = 0.42748 \frac{R^2 T_c^2}{P_c} \qquad \text{Eqn 16} \qquad b = 0.08664 \frac{R T_c}{P_c} \qquad \text{Eqn 17}$$

$$\alpha = \left[1 + m\left(1 - \sqrt{T_R}\right)\right]^2 \qquad \text{Eqn 18} \qquad T_R = \frac{T}{T_c} \qquad \text{Eqn 19}$$

$$m = 0.48508 + 1.55171 \omega - 0.1561 \omega^2$$
 Eqn 20

T _R	0.7401	а	0.43084 Pa-mol ² /m ⁶
m	0.8633	b	2.590E-05 m ³ /mol
α	1.25575		
		P	272.7 kPa

Part e.) Compressibility EOS :

Given T_R and the ideal reduced molar volume, use the compressibility charts to evaluate either P_R or the compressibility, Z

$Z = \frac{P \tilde{V}}{R T} $ Eqn 2	:1	From part c : T _R	0.7401	
Defiition of the ideal red	uced molar volume :	$\tilde{\mathbf{V}}_{\mathbf{R}}^{\mathrm{ideal}} = \frac{1}{\mathbf{R} \mathbf{T}}$	$\frac{\tilde{\mathbf{V}}}{\tilde{\mathbf{C}}_{c} / \mathbf{P}_{c}}$	Eqn 22
Read the Generalized C Chart for $P_R = 0$ to 1 :	compressibility	V _R ^{ideal} P _R Z	29.97 0.0228 0.957	
We can use the definitio	n of P _R to calculate P :			
$P_{R} = \frac{P}{P_{c}}$	Eqn 23	$\mathbf{P} = \mathbf{P}_{\mathrm{R}} \; \mathbf{P}_{\mathrm{c}}$		Eqn 24

Or, we can use Z and its definition to determine P :

$$\mathbf{P} = \mathbf{Z} \ \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}}} = \mathbf{Z} \cdot \mathbf{P}^{\mathrm{IG}}$$
Eqn 25
P 266.6 kPa

Ρ

257.2

kPa

Part f.) The Ammonia Tables provide the best available estimate of the pressure.

We begin by determining the state of the system. In this case, it would be easiest to lookup the $V_{sat vap}$ and V_{sat} lig at the given temperature.

lf :	V > V _{sat vap}	Then :	The system contains a superheated vapor.
lf :	V < V _{sat liq}	Then :	The system contains a subcooled liquid.
lf :	V _{sat vap} > V > V _{sat liq}	Then :	The system contains an equilibrium mixture of saturated liquid and saturated vapor.

Data :	P*(kPa)	T (°C)	V _{sat liq} (m ³ /kg)	V _{sat vap} (m ³ /kg)	H _{sat liq} (kJ/kg)	H _{sat vap} (kJ/kg)
	1066.56	27	1.67E-03	0.12066	308.11	1465.42

Because $V > V_{sat vap}$, the ammonia is superheated in this system.

At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from **parts a-d**) or we can scan the superheated vapor tables to determine which two pressures bracket our known value of the specific volume. The given specific volume of **0.640 m³/kg** lies between **200 kPa** and **250 kPa** and **T = 27°C** lies between **25°C** and **50°C**. This is a tricky multiple interpolation problem !

The Superheated Ammonia Table gives us :

P*(kPa)	T (°C)	V (m³/kg)	H (kJ/kg)
200	20	0.6995	1510.1
200	30	0.7255	1532.5
250	25	0.5668	1518.2
250	50	0.6190	1574.7

Eqn 26

We can now interpolate on this data to determine values of the specific volume at $T = 27^{\circ}C$ at BOTH 200 kPa and 250 kPa. This will help us setup a second interpolation to determine the pressure that corresponds to $T = 27^{\circ}C$ and $V = 0.640 \text{ m}^3/\text{kg}$.

At 200 kPa :	T (°C)	V (m ³ /kg)
	20	0.6995
	30	0.7255

$V(27) = slope \cdot ($	(27 - 20)) + 0.6995	

slope =	0.7255 - 0.69	995			Eap 27
	30-20				Eq11 27
slope	2.600E-03	(m³/kg)/°C	V	0.71766	m ³ /kg

<u>At 300 kPa :</u>	T (°C) 25 50	V (m ³ /kg) 0.5668 0.6190				
$V(27) = slope \cdot (27 -$	- 25) + 0.56	68				Eqn 28
slope = $\frac{0.6190 - 0.5}{50 - 25}$	668					Eqn 29
slope 2.085E-03	(m³/kg)/°C	;	١	v	0.57102	m³/kg
Now, we must interpolat 0.640 m³/kg : <u>At 27°C :</u>	te one more t P (kPa) 200 250	ime to determine th V (m ³ /kg) 0.7177 0.5710	ne pressure which,	at 27°C, yield	s a spoecif	ic volume of
$\mathbf{P}(0.640) = \mathbf{slope} \cdot (0)$.640-0.71	77) + 200				Eqn 30
slope = $\frac{250 - 20}{0.5710 - 0.7}$	0 /177					Eqn 31

Verify: No assumptions to verify.

Answers : a.)	Р	278.6	kPa	d.)	Р	272.7	kPa
b.)	Р	271.9	kPa	e.)	Р	266.6	kPa
c.)	Р	274.4	kPa	f.)	Р	265.4	kPa

Ρ

kPa

265.4

2F-2	An Application	n of Equat	ions of State					6 pts
Steam is co tank using: a.) Ideal Ga b.) Virial EC c.) van der d.) Redlich- e.) Compres f.) Steam Ta	ntained in a 203 s EOS JS Waal EOS Kwong EOS ssibility Factor E ables.	L tank at C	600°C. The mass of st	t eam in the tan	k is 12.4 k	g. Determine	e the pressu	re in the
Read :	Not much to sa	ay here.						
Given:	m T	12.4 500	kg ℃	v	,	203 0.203	L m³	
Find:	Р	???	kPa					
Assumptio	ns: No	ne.						
Equations	/ Data / Solve: Begin by collec	ting all of t	he constants needed fo	r all the Equation	ons of Stat	e in this prob	olem.	
	R MW	8.314 18.016	J/mol-K g NH ₃ / mol NH ₃		•	T _c P _c	647.4 2.21E+07	K Pa
Part a.)	Ideal Gas EOS	3:	$P \tilde{V} = R T$	S Eqn 1 P	olve for ressure :	$\mathbf{P} = \frac{\mathbf{R}\mathbf{T}}{\tilde{\mathbf{V}}}$		Eqn 2
	We must deter	mine the m	olar volume before we	can use Eqn 2	to answer	the question).	
	Use the definition	ion of mola	r volume:			$\tilde{V} = \frac{V}{n}$		Eqn 3
	Where :					$n = \frac{m}{MW}$		Eqn 4
	MW	18.016	g H_2O / mol H_2O		1	n V	688.28 2.95E-04	mol H₂O m³/mol
	Now, plug value Be careful with	es back intention the units.	o Eqn 2.		-	R T P	8.314 773.15 2.18E+07	J/mol-K K Pa
						Р	21.8	MPa

$$\mathsf{P} = \frac{\mathsf{R} \mathsf{I}}{\tilde{\mathsf{V}} - \mathsf{b}} - \frac{\mathsf{a}}{\tilde{\mathsf{V}}^2}$$

We can determine the values of **a** and **b**, which are constants that depend only on the chemical species in the system, from the following equations.

$a = \frac{27 R^2 T_c^2}{64 P}$	Eqn 6			
C I C		Τ _c	647.4	K
		Pc	2.21E+07	Ра
		а	0.5530	Pa-mol ² /m ⁶
$\mathbf{b} = \frac{\mathbf{R} \mathbf{T_c}}{\mathbf{8P_c}}$	Eqn 7	b	3.04E-05	m³/mol

Now, we can plug the constants **a** and **b** into **Eqn 5** to determine the pressure.

Part c.) Redlich-Kwong EOS:
$$\mathbf{P} = \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}} - \mathbf{b}} - \frac{\mathbf{a}}{\tilde{\mathbf{V}} (\tilde{\mathbf{V}} + \mathbf{b}) \mathbf{T}^{1/2}}$$
Eqn 8

We can determine the values of **a**, **b** and α , which are constants that depend only on the chemical species in the system, from the following equations.

$$a = 0.42748 \frac{R^2 T_c^{5/2}}{P_c}$$
Eqn 9 $b = 0.08664 \frac{R T_c}{P_c}$ Eqn 10Now, plug values into Eqns 8 -10 : a 14.25855 Pa-m^6-K^{1/2}/mol^2 P 18.0 MPab2.110E-05 m^3/mol P 18.0 MPaCompressibility EOS :Given T_R and the ideal reduced molar volume, use the compressibility charts to evaluate either P_R or the compressibility, Z $Z = \frac{P \tilde{V}}{R T}$ Eqn 11 $T_R = \frac{T}{T_c}$ Eqn 12Definition of the ideal reduced molar volume : $\tilde{V}_R^{ideal} = \frac{\tilde{V}}{R T_c / P_c}$ Eqn 13Read the Generalized Compressibility Chart for $P_R = 0$ to 1 : P_R 0.88
Z0.885

Ρ

17.9

Part d.)

Eqn 5

MPa

We can use the definition of P_R to calculate P:

 $P_{R} = \frac{P}{P_{c}}$ **Eqn 14**

Or, we can use Z and its definition to determine P :

Part e.) The **Steam Tables** provide the best available estimate of the pressure in the tank.

Because T > T_c, the properties of the water in the tank must be obtained from the superheated vapor table, even though the water is actually a supercritical fluid in this system.

At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the spuerheated vapor tables to determine which two pressures bracket our known value of the specific volume.

	In either cas volume into	se, we begin b a specific volu	y converting : ume :	the molar		$\hat{\mathbf{V}} = \frac{\tilde{\mathbf{V}}}{\mathbf{M}}$, N		Eqn 17
	Using the N	IW of water fro	om part (a) yi	elds :			v v	1.637E-05 0.016371	m ³ /g m ³ /kg
	The Superh	eated Steam	<mark>Table</mark> gives u	s :					
	At P = v =	20 0.014793	MPa m³/kg		and		At P = v =	40 0.005623	MPa m ³ /kg
	We can det	ermine the pre	essure in our	tank by inter	rpolation :		Р	16.56	МРа
Verify:	No assump	tions to verify.					Р	16.6	MPa
Answers :	a.)	Р	21.8	kPa		d.)	Р	19.3	kPa
	b.)	Р	17.9	kPa		e.)	Р	16.6	kPa
	c.)	Р	18.0	kPa					

None of these Equations of State did very well because steam at high pressure behaves in a very non-ideal manner due to the high polarity of the molecules and the resulting stron electrostatic interactions.

 Ammonia at 150°C is contained in a tank with a volume of 137 L. The mass of the ammonia in the tank is 7. Determine the pressure in the tank by each of the following methods: a.) Ideal Gas EOS b.) Virial EOS c.) van der Waal EOS d.) Soave-Redlich-Kwong EOS 	4 kg.										
 Ammonia at 150°C is contained in a tank with a volume of 137 L. The mass of the ammonia in the tank is 7.4 kg. Determine the pressure in the tank by each of the following methods: a.) Ideal Gas EOS b.) Virial EOS c.) van der Waal EOS d.) Soave-Redlich-Kwong EOS e.) Compressibility Factor EOS f.) Ammonia Tables. Data: T_c = 405.55 K, P_c = 11,280 kPa, MW = 17.03 g NH₃/mol NH₃, Pitzer accentric factor = 0.256. 											
Read : Not much to say here.											
Given: m 7.4 kg V 137 L T 150 °C 0.137 m ³ 423.15 K K 0.137 m ³											
Find: P ??? kPa											
Assumptions: None.											
Equations / Data / Solve:											
Begin by collecting all of the constants needed for all the Equations of State in this problem.											
R 8.314 J/mol-K T_c 405.5 MW 17.03 g NH ₃ / mol NH ₃ P _c 1.128E	5 K +07 Pa										
ο 0.25 Part a.)	5										
Ideal Gas EOS : $P \tilde{V} = R T$ Eqn 1 Solve for pressure : $P = \frac{R T}{\tilde{V}}$	Eqn 2										
We must determine the molar volume before we can use Eqn 2 to answer the question.											
Use the definition of molar volume: $\tilde{V} = \frac{V}{n}$ Eqn 3 Where : $n = \frac{m}{MW}$	Eqn 4										
n 434.5 mol NH ₃ V 3.15E- 0.315	04 m ³ /mol 3 L/mol										
Now, plug values back into Eqn 2. Be careful with the units. P 1.12E-	-07 Pa										
P 11.2	MPa										

However, since the molar volume is <u>FAR</u> less than **20 L/mole**, the Ideal Gas EOS is not applicable. Choose any one of the following more sophisticated **EOS**'s to solve the problem. Part b.)

Truncated Virial EOS:

$$Z = \frac{P \tilde{V}}{R T} = 1 + \frac{B}{\tilde{V}}$$
 Eqn 5

$$\mathbf{B} = \frac{\mathbf{R} \mathbf{T}_{c}}{\mathbf{P}_{c}} \left(\mathbf{B}_{0} + \boldsymbol{\omega} \mathbf{B}_{1} \right)$$
 Eqn 6

$$B_{0} = 0.083 - \frac{0.422}{T_{R}^{1.6}} \qquad Eqn 7 \qquad B_{1} = 0.139 - \frac{0.172}{T_{R}^{4.2}} \qquad Eqn 8$$

$$T_{R} = \frac{T}{T_{c}}$$
 Eqn 9

We can solve Eqn 5 for P :

We can estimate B using :

11

Eqn 16

Plugging numbers into Eqns 9, 7, 8, 6, 5 and 10 (in that order) yields :

T _R	1.043	В		-9.34E-05	m³/mol
Bo	-0.3113	Z		7.04E-01	
B ₁	-0.0049		P	7.85	MPa

 $\mathbf{P} = \mathbf{Z} \frac{\mathbf{RT}}{\tilde{\mathbf{V}}}$

Part c.)

van der Waal EOS :

$$\mathbf{P} = \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}} - \mathbf{b}} - \frac{\mathbf{a}}{\tilde{\mathbf{V}}^2}$$
 Eqn

We can determine the values of **a** and **b**, which are constants that depend only on the chemical species in the system, from the following equations.

$$a = \frac{27 R^2 T_c^2}{64 P_c}$$
Eqn 12 $b = \frac{R T_c}{8 P_c}$ Eqn 13 a 0.4252 Pa-mol²/m⁶ b $3.74E-05$ m^3/mol

Now, we can plug the constants **a** and **b** into **Eqn 11** to determine the pressure.

Part d.)

Redlich-Kwong EOS:

$$\mathbf{P} = \frac{\mathbf{R} \mathbf{T}}{\tilde{\mathbf{V}} - \mathbf{b}} - \frac{\mathbf{a}}{\tilde{\mathbf{V}} (\tilde{\mathbf{V}} + \mathbf{b}) \mathbf{T}^{1/2}}$$
Eqn 14

We can determine the values of **a**, **b** and α , which are constants that depend only on the chemical species in the system, from the following equations.

a = 0.42748
$$\frac{R^2 T_c^{5/2}}{P_c}$$
 Eqn 15 b = 0.08664 $\frac{R T_c}{P_c}$

Now, plug values into Eqns 14 -16 :

Ρ 8.2 MPa Part e.) Compressibility EOS :

Given T_R and the ideal reduced molar volume, use the compressibility charts to evaluate either P_R or the compressibility, Z

Part f.) The Ammonia Tables provide the best available estimate of the pressure in the tank.

Because $T > T_c$, the properties of the ammonia in the tank must be obtained from the superheated vapor table, even though the it is actually a supercritical fluid in this system.

At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the spuerheated vapor tables to determine which two pressures bracket our known value of the specific volume.

	In either cas volume into	se, we begin b a specific volu	y converting t ume :	he molar		$\hat{\mathbf{V}} = rac{ ilde{\mathbf{V}}}{\mathbf{MW}}$	-	Eqn 22
	Using the M	W of ammonia	a from <mark>part (a</mark>) yields :		V V	1.85E-05 0.018514	m ³ /g m ³ /kg
	The Superh	eated Ammon	ia Table gives	s us :				
	At P = v =	7.5 0.020803	MPa m³/kg		and	At P = v =	10 0.013381	MPa m ³ /kg
	We can det	ermine the pre	essure in our t	ank by inter	oolation :	Р	8.3	MPa
Verify:	No assumpt	tions to verify.						
Answers :	a.)	Р	11.2	kPa	d.)	Р	8.2	kPa
	b.)	Р	7.9	kPa	e.)	Р	8.1	kPa
	c.)	Р	8.4	kPa	f.)	Р	8.3	kPa

Dr. B - LearnThermo.com

Copyright B-Cubed 2014, all rights reserved

In this chapter, you will learn about internal energy and enthalpy and how they depend on temperature and pressure, for real substances, ideal gases and incompressible substances. You will learn to obtain thermodynamic property data from the NIST Webbook. You will learn to work with tconstant volume and constant pressure heat capacities which relate changes in internal energy and enthalpy to changes in temperature. The chapter concludes with a discussion of hypothetical process paths (HPPs). HPPs allow you to determine the change in the value of a thermodynamic property using a convenient path instead of the actual path that a process follows. Phase changes are often key steps in HPPs because energy must be added or removed from a system to cause a phase change occur.

Workbook	LearnThermo.co	m Chapter 3
Internal Energy \diamond Isobaric - consider \diamond Isobaric - consider \diamond Non-nuclear end \diamond Sum of the vibility \diamond U = strong fxm \diamond U = strong fxm \diamond U = strong fxm \diamond U = fxn(T) onlity \diamond U = fxn(P)• Enthalpy \diamond H = U + P V \diamond H = strong fxm \diamond Ideal Gas: H ≠	al Energy and Enthalpy rgy stant pressure nergy stored within molecules rational, translational and rotational kinetic energies of T and a weak fxn of P T ↑ but U ↓ slightly as P ↑. ompressible Liquids, Solids y $dH = dH + d(PV)$ $\Delta H = \Delta U + \Delta(PV)$ (T) fxn(P) fxn(P)S	• Atoms are in motion in all phases, even solids • They vibrate, rotate and translate. • This behavior is a strong function of tem- perature • Internal energy is a weak function of P. U decreases slightly as P increases. • At the same Temperature, $U_{gas} > U_{liq} > U_{solid}$ • Special Cases • Ideal Gases: $U = fxn(T)$ only. $U \neq fxn(P)$ • Incompressible Liquids: $U = fxn(T)$ only. $U \neq fxn(P)$ • Solids: $U = fxn(T)$ only. $U \neq fxn(P)$ • Enthalpy • $H = U + P V$ • $\Delta H = \Delta U + \Delta(PV)$ is NOT always the same as $\Delta H = \Delta U + P\Delta V$ • Specific and Molar forms of this equation are valid. • For ideal gases, $H \neq fxn(P)$ • $\Delta H = \Delta U + \Delta(PV) = \Delta(PV) = V \Delta(P)$ because V is constant !
Thermoph Please follow the steps b 1. Please select the s Water 2. Please choose the Quantity Temperature Pressure Density Energy Velocity Viscosity Surface tension *Surface tension *Surface tension v 3. Choose the desire • Isothermal pr • Isobaric prop • Isochoric pro 4. Please select the d Default for fluid 5. Press to Continue	elow to select the data required. elow to select the data required. envires you wish to use: Image: Select the data required. Image: Select the data required. <	 Item 4 is VERY important ! We will always use the "Default for Fluid" setting, unless I ask you to do otherwise. But, what is a "Standard State Convention" ? I call it a Reference State.

Workbook

LearnThermo.com

Reference State

- We cannot determine an absolute U or H in the way we can determine an absolute T.
- We must choose a reference state and \tilde{z}
 - assign $\tilde{U} = 0$ or $\tilde{H} = 0$ at that state.
- Calculate all other values of $\,\tilde{U}\,$ and $\,\tilde{H}\,$ relative to the reference state.
- You cannot use thermodynamic data from different sources that are based on different reference states without correcting for the difference in reference state !!

- A reference state requires the specification of two intensive variables (usually T and P) and the PHASE.
- The default reference state for water in the NIST Webbook is U = 0 for saturated liquid water at the triple point, 0.01_oC or 273.16 K.
- Try the NBP convention in the NIST Webbook and see what the reference state is.
- Very important point: we cannot assign BOTH U = 0 and H = 0 at the reference state !
- $\diamond \quad \text{Because H} = \text{U} + \text{PV}$
- If BOTH U = 0 and H = 0 at the reference state, then either P or would need to be zero.
- ♦ V is never zero.
- \diamond So, P = 0
- So, technically, if you choose a reference state at P = 0, then both U and H could be zero.
- P = 0 is not a very practical reference state !

Generating a Saturated Temperature table

Saturation Properties for Water -- Temperature Increments

This option will supply data on the saturation curve over the specified temperature range. The range should not extend extend outside the minimum and maximum values given. Calculations are limited to a maxium of 201 data points; increments resulting in a larger number of points will be adjusted upward to limit the number of points computed.

TLow	(min value: 273.16 K)
T _{High}	(max value: 647.096 K)
Tincrement	\sim
Check here if you want	to use the display applet (requires Java capable browler) 🗹 🌖
Press for Data	Un-check this box
Press for Data	Un-ch
Press for Data	Un-check this box
Press for Data	Un-check this box

- So, given any T and P you can get properties without interpolating !
- But you still need to interpolate if you are given values of other intensive properties.
- Example:
 - What is the temperature water at 50 kPa that has a specific volume of 4.00 m₃/kg ?
- So, the NIST Webbook is very helpful, but it doesn't completely eliminate the need to interpolate.

LearnThermo.com

Chapter 3

Saturated Liquid Properties

Liquid Phase Data

Data on Saturation Curve

Temperature (K)	Pressure (MPa)	Density (mol/l)	Volume (l/mol)	Internal Energy (kJ/mol)	Enthalpy (kJ/mol)	Entropy (J/mol*K)	Cv (J/mol*K)	Cp (J/mol*K)	Sound Spd. (m/s)	Joule-Thomson (K/MPa)	Viscosity (uPa*s)	Therm. Cond. (W/m*K)	Surf. Tension (N/m)	Phase
300.00	0.0035368	55.315	0.018078	2.0278	2.0279	7.0816	74.412	75.320	1501.4	-0.22024	853.84	0.61028	0.071686	liquid
320.00	0.010546	54.919	0.018209	3.5339	3.5340	11.941	72.811	75.317	1538.7	-0.20804	577.02	0.63971	0.068470	liquid
340.00	0.027188	54.371	0.018392	5.0414	5.0419	16.511	71.008	75.456	1553.9	-0.19690	421.97	0.66055	0.065040	liquid
360.00	0.062194	53.698	0.018623	6.5526	6.5538	20.830	69.124	75.708	1552.0	-0.18581	326.10	0.67376	0.061406	liquid
380.00	0.12885	52.918	0.018897	8.0701	8.0725	24.932	67.247	76.098	1536.5	-0.17404	262.69	0.68100	0.057581	liquid
400.00	0.24577	52.038	0.019217	9.5966	9.6013	28.847	65.438	76.664	1509.5	-0.16092	218.60	0.68364	0.053578	liquid
420.00	0.43730	51.064	0.019583	11.136	11.144	32.602	63.731	77.447	1472.5	-0.14581	186.68	0.68253	0.049411	liquid
440.00	0.73367	49.994	0.020003	12.692	12.706	36.222	62.140	78.495	1426.5	-0.12794	162.77	0.67805	0.045098	liquid
460.00	1.1709	48.824	0.020482	14.269	14.293	39.729	60.671	79.869	1372.2	-0.10631	144.31	0.67028	0.040655	liquid
480.00	1.7905	47.545	0.021033	15.875	15.913	43.147	59.327	81.662	1309.8	-0.079585	129.64	0.65907	0.036105	liquid
500.00	2.6392	46.145	0.021671	17.515	17.573	46.498	58.109	84.013	1239.6	-0.045781	117.66	0.64405	0.031472	liquid

- Nice ! You get MANY properties and MANY digits !
 The EOS's used by the NIST Webbook are
- the best available.

	Saturated Vapor Properties													
Vapor I Data on S	hase] aturatio	Data on Curv	re											
Temperature (K)	Pressure (MPa)	Density (mol/l)	Volume (l/mol)	Internal Energy (kJ/mol)	Enthalpy (kJ/mol)	Entropy (J/mol*K)	Cv (J/mol*K)	Cp (J/mol*K)	Sound Spd. (m/s)	Joule-Thomson (K/MPa)	Viscosity (uPa*s)	Therm. Cond. (W/m*K)	Phase	
300.00	0.0035368	0.0014204	704.01	43.446	45.936	153.44	25.982	34.483	427.89	264.35	9.9195	0.018673	vapor	
320.00	0.010546	0.0039778	251.39	43.931	46.582	146.47	26.350	34.980	441.18	161.25	10.518	0.020117	vapor	
340.00	0.027188	0.0096808	103.30	44.404	47.212	140.54	26.821	35.653	453.68	108.77	11.157	0.021784	vapor	
360.00	0.062194	0.021014	47.586	44.860	47.819	135.46	27.469	36.617	465.22	79.440	11.823	0.023695	vapor	
380.00	0.12885	0.041537	24.075	45.291	48.393	131.04	28.372	38.004	475.61	61.373	12.504	0.025875	vapor	
400.00	0.24577	0.076014	13.156	45.691	48.924	127.15	29.608	39.963	484.67	49.181	13.192	0.028347	vapor	
420.00	0.43730	0.13055	7.6601	46.050	49.400	123.69	31.230	42.634	492.22	40.237	13.883	0.031128	vapor	
440.00	0.73367	0.21276	4.7002	46.359	49.807	120.54	33.234	46.114	498.12	33.259	14.573	0.034230	vapor	
460.00	1.1709	0.33209	3.0113	46.609	50.134	117.64	35.561	50.469	502.24	27.653	15.261	0.037663	vapor	
480.00	1.7905	0.50035	1.9986	46.788	50.367	114.93	38.137	55.809	504.45	23.118	15.952	0.041455	vapor	
500.00	2.6392	0.73265	1.3649	46.885	50.487	112.33	40.920	62.388	504.55	19.450	16.653	0.045666	vapor	

LearnThermo.com

Extra Info from the NIST Webbook

Auxiliary Data

Reference States, Normal Boiling Point Convention

Enthalhy	H = 0 at the normal boiling point for saturated liquid.
Entropy	S = 0 at the normal boiling point for saturated liquid.

Additional fluid data

Critical temperature (T _c)	647.096 K
Critical pressure (Pc)	22.0640 MPa
Critical density (D _c)	17.873728 mol/l
Acentric factor	0.3443
Normal boiling point	373.1243 K
Dipole moment	1.855 Debye

- Now, let's go to a computer lab and take the NIST Webbook out for a spin.
- A link to the NIST Webbook appears on the course homepage in the box near the center of the page.

Example Problems	• Problem 1 • $T_{sat} = -9.2243 \text{ oC}$ • $U = 200.25 \text{ b} U \text{ ac}$
• Determine the T_{sat} , \hat{U} and \hat{H} of saturated liquid ammonia at 300 kPa. (Default ref. state)	• $U = 300.23 \text{ kJ/kg}$ • $H = 300.71 \text{ kJ/kg}$ • Problem 2 • $V = 6.5394 \text{ ft}_3/\text{lbm}$ • $U = 251.92 \text{Btu/lbm}$ • $H = 269.71 \text{ Btu/lbm}$
 Determine Û Ĥ and Ŷ of butane at 14.696 psia and 77°F in units of Btu, lb_m and ft³. (Default ref. state) 	 Problem 3 Psat = 3.5752 KPa Usat liq = 24.660 kJ/mol , Usat vap = 52.800 kJ/mol , Ux=0.03 = 33.102 kJ/mol Hsat liq = 24.660 kJ/mol , Hsat vap = 54.731 kJ/mol, Hx=0.03 = 33.681 kJ/mol
 Determine Û Ĥ and Ŷ of a saturated mixture of R-123 at -40°C and x = 0.30. (Default ref. state, kJ, mole, m³) 	◊ V _{sat liq} = 9.4405 x 10-5 m ₃ /mol , V _{sat vap} = 0.54014 m ₃ /mol , V _{x=0.03} = 0.16211 m ₃ /mol

Workbook

•

٠

.

LearnThermo.com

Heat Capacity

- Definition Amount of energy (J, Btu) that must be added to 1 mole or lbmole of a \diamond substance to increase its temperature by 1 degree (°C , K, °F or °R). J/mole-K Btu/lbmole-°F
- \diamond Units:
- **Specific Heat** Amount of energy (J, Btu) that must be added to 1 gram, kilogram or lb_m of a substance to increase its temperature by 1 degree ($^{\circ}C$, K, $^{\circ}F$ or °R).
- kJ/kg-K Btu/lb_m-°F Units: \diamond Constant Pressure Heat Capacity / Specific Heat: \tilde{C}_{p} \hat{C}_{p}
 - $\diamond \quad \text{Definition:} \quad \tilde{\mathbf{C}}_{\mathbf{p}} = \left(\frac{\partial \tilde{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{p}}$ $\hat{\mathbf{C}}_{\mathbf{P}} = \left(\frac{\partial \hat{\mathbf{H}}}{\partial \mathbf{T}}\right)_{\mathbf{P}}$
- Constant Volume Heat Capacity / Specific Heat: \tilde{C}_{y} \hat{C}_{y}

• Definition:
$$\tilde{\mathbf{C}}_{\mathbf{v}} = \left(\frac{\partial \tilde{\mathbf{U}}}{\partial T}\right)_{\mathbf{p}}$$

• Heat Capacity Ratio : $\gamma = \frac{\tilde{\mathbf{C}}_{\mathbf{p}}}{\tilde{\mathbf{C}}_{\mathbf{v}}} = \frac{\hat{\mathbf{C}}_{\mathbf{p}}}{\hat{\mathbf{C}}_{\mathbf{v}}}$

• Some people use the terms heat capacity and specific heat interchangeably

	Why is Heat Capacity Useful ?							
•	Isobaric Processes :	$\tilde{\mathbf{H}}_2 - \tilde{\mathbf{H}}_1 = \int_{T_1}^{T_2} \tilde{\mathbf{C}}_{\mathbf{P}} \mathbf{dT}$						
•	Isochoric Processes :	$\tilde{\mathbf{U}}_2 - \tilde{\mathbf{U}}_1 = \int_{T_1}^{T_2} \tilde{\mathbf{C}}_{\mathbf{V}} \mathbf{dT}$						

•

Ideal Gases

 $\begin{array}{rcl} & \tilde{H} & \text{is a function of T} \underline{only}, \text{ not P} \\ & \tilde{U} & \text{is a function of T} \underline{only}, \text{ not P} \\ & & \\ &$

Workbook

LearnThermo.com

Gibbs Phase Rule

• • • • Freedom = C - P + 2

- ^oFree = number of intensive variables you can independently specify.
- \diamond C = number of chemical species in the system
- \diamond P = number of phases within the system.

Consider a pure substance in a single phase

- $\diamond \quad C = 1, P = 1 \dots {}^{\circ} Free = 2$
- Therefore, we must specify <u>both</u> T & P to completely determine the state of subcooled liquids and superheated vapors !

- Remember that P > 3 is possible as long as C > 1.
- For subcooled liquids and superheated vapors we cannot independently specify T, P and the molar volume !

Hypothetical Process Paths

Actual Process Path

- The series of states that a system actually passes through during a process
- Hypothetical Process Path
 - A convenient path connecting the initial and final states of a process that makes it easy to evaluate changes in state variables that occur during the process
- Goal: Construct an HPP in which just T or P changes or the phase changes in each step that makes up the path.

• Good news:

- We will use thermodynamic tables (only) for real gases in this course
- \diamond $\;$ We will use the IG heat capacity (Shomate Eqn) for ideal gases
- If a liquid is not in the thermodynamic tables in the NIST Webbook, we will consider it to be incompressible

Workbook

Phase Changes

- Latent Heat of Vaporization: $\Delta \tilde{H}_{_{vap}}$
 - Best choice is to look up the value \diamond
 - Estimate the value \diamond

• Estimate the value
• Clausius-Clapeyron Equation :
$$\operatorname{Ln} \mathbf{P}^* = \left(-\frac{\Delta \widetilde{\mathbf{H}}_{vap}}{\mathbf{R}}\right) \frac{1}{\mathbf{T}} + \mathbf{C}$$

- **Vapor Pressure**
 - Best choice is to look up the value \diamond
 - Estimate the value \diamond

• Antoine Equation :
$$\text{Log}_{10} P^* = A - \frac{B}{T+C}$$

- The Antoine Eqn often takes a slightly different form depending on where you look up the constants A, B and C
- NIST: $P^* = bar$, T = Kelvin
- Note: 1 bar = 100 kPa

3A-1 Enthalpy and Internal Energy for Ideal Gases

A rigid tank contains 90 L of xenon gas at 385°C and 2.3 MPa. The xenon gas has a total enthalpy of 1350 kJ. Assuming the xenon behaves as an ideal gas, determine its specific internal energy.

Read : Given the temperature, pressure and volume of xenon in an ideal gas state, we can calculate the mass of xenon in the system using the Ideal Gas EOS. This allows us to convert the enthalpy into specific enthalpy. We can use the definition of enthalpy or specific enthalpy to relate **U** to **H** and **PV** and then eliminate **PV** using the Ideal Gas EOS again. The units may get tricky.

Diagram:	huunuunh
	Xenon
	V = 90 L
	T = 385°C
	P = 2.3 MPa
	H = 1350 kJ

Given:	V =	90	L	P =	2.3	MPa
	Τ=	385	° °	H =	1350	kJ

Find:	U =	???	kJ/kg
			-

Assumptions:	1 - Equilibrium conditions exist inside the tank.
	2 - Xenon is an ideal gas at this T and P .

Equations / Data / Solve:

Since xenon behaves as an ideal gas, the definition of specific enthalpy can be modified as follows:

$\hat{\mathbf{H}} = \hat{\mathbf{U}} + \mathbf{P} \hat{\mathbf{V}}$	Eqn 1	$P \hat{V} = \frac{R T}{MW}$	Eqn 2	Û=I	$\hat{H} - \frac{RT}{MW}$	Eqn 3
But: $\hat{\mathbf{H}} = \frac{\mathbf{H}}{\mathbf{m}}$	Eqn 4			$\hat{\mathbf{U}} = \frac{1}{2}$	H m – RT MW	Eqn 5
For ideal gases :	PV = -	MW RT Eq	n 6	m =	= MW <mark>PV</mark> RT	Eqn 7
Molecular weight of xen	on :	(NIST WebBook)	MW	131.29	g / mol	
Universal Gas Constant values :			R	0.08205	atm L/gmol K	
			R	8.314	J/mol K or Pa m ³ /mol K	

2 pts

	Note: To c	convert °C to K,	add 273.15 t	°C .	т	658.15	К
					m RT / MW H	4.9667 41.7 271.8	′ kg kJ/kg kJ/kg
Verify:					U	230.1	kJ/kg
Answers :	U	230	kJ/kg	(F	counded to 3 significant digits.)		

3B-1 ΔU and ΔH for Isothermal Expansion of Superheated Water Vapor

2 pts

8

2

atm

atm

A piston-and-cylinder device contains superheated **steam** at **350°C** and **10 atm**. The piston is held in place by a pin. When the pin is removed, the **steam** expands isothermally until the piston hits a second pin.

At this point, the **pressure** is **5** atm. Determine the change in the molar enthalpy and molar internal energy of the steam in units of KJ/mol.

Read : Because the water vapor is superheated, it has 2 degrees of freedom. In this case both the T and P must be specified to <u>completely</u> determine the state. Because the state is completely determined, we can use the given T and P values to look up properties like U and H in the Superheated Tables in the Steam Tables.

Diagram:		Steam	T ₁ = 350°C	Stea T ₂ =	im T ₁
Given:	T₁	350	°C		P ₁
	T ₂	350	°C		P ₂
Find:	ΔU	???	kJ/mol		
	ΔH	???	kJ/mol		
Assumpti	ons:	None.			

Equations / Data / Solve:

Use the **NIST WebBook** to determine the properties of superheated water vapor at the initial and final pressures. As always, use the **ASHRAE** convention. A portion of the thermodynamic table used in this problem is provided below.

Temp. (°C)	Pressure (atm)	Internal Energy (kJ/mol)	Enthalpy (kJ/mol)	Phase
350	1	52.041	57.213	vapor
350	2	52.015	57.178	vapor
350	3	51.989	57.143	vapor
350	4	51.963	57.107	vapor
350	5	51.936	57.071	vapor
350	6	51.910	57.036	vapor
350	7	51.883	57.000	vapor
350	8	51.857	56.964	vapor

The internal energy and enthalpy at the given pressures are:

<u>P = 8 atm</u>			<u>P = 1 atm</u>		
U ₁	51.857	KJ/mol	U_2	52.015	KJ/mol
H ₁	56.964	KJ/mol	H ₂	57.178	KJ/mol

Remember that the change in any property is defined as the final state minus the initial state.

	$\Delta U = U_2 - U_1 =$		0.158	KJ/mol	$\Delta H = H_2 - H_1$	=	0.214	KJ/mol
Verify:	No assumptions to verify this time.							
Answers :	ΔU	0.158	kJ/mol]	[ΔH	0.214	kJ/mol

3B-2 Internal Energy of Superheated Water Vapor

2 pts

Superheated **ammonia** vapor is stored in two rigid tanks, as shown below. Can you determine, by observation and reasoning alone, which has the higher **molar internal energy**, **A** or **B**?

Calculate the difference in molar internal energy between the two tanks using data from the NIST WebBook.

Read : Because the water vapor is superheated, it has 2 degrees of freedom. In this case both the T and P must be specified to <u>completely</u> determine the state. Because the state is completely determined, we can use the given T and P values to look up properties like U and H in the Superheated Tables in the Steam Tables.

Diagram: Given in the problem statement.

Given:	P _A =	1.55	atm	Р _в =	1.55	atm
	T _A =	23	°C	Т _в =	4	°C
Find:	$\Delta U = U_A - U_B =$???	kJ/mol			

Assumptions: None.

Equations / Data / Solve:

The internal energy of a substance is the sum of the kinetic energies stored in the vibrational, rotational, and translational motion of the molecules. Tank A has more energy by virtue of its higher temperature. Therefore, it must have the higher intern

We must look up the isobaric properties of superheated water in the **NIST WebBook**. Use the **ASHRAE** convention. A portion of the thermodynamic table used in this problem is given below.

Т	Р	U	Phase
(°C)	(atm)	(kJ/mol)	i nase
2	1.55	22.849	vapor
3	1.55	22.878	vapor
4	1.55	22.908	vapor
5	1.55	22.937	vapor
21	1.55	23.401	vapor
22	1.55	23.430	vapor
23	1.55	23.459	vapor
24	1.55	23.487	vapor

The internal energies at the two given temperatures are:

T = 23°C			$T = 4^{\circ}C$		
U _A	23.459	KJ/mol	U _B	22.908	KJ/mol

As we predicted, the internal energy of the water vapor in **Tank A** is greater than in **Tank B**. The **U** of **Tank A** is greater by:

 $\Delta U = U_A - U_B = 0.551 \text{ KJ/mol}$

Verify: No assumptions to verify this time.

Answers :	ΔU	0.551	KJ/mol
/		0.001	1.0/11101

3C-1	Enthalpy Chan	Enthalpy Change of Ammonia Using the IG Heat Capacity								
Ammonia gas is heated from 325 K to 750 K. Using the ideal gas heat capacity given by the Shomate Equation, calculate the ΔU and ΔH in J/mole.										
Read :	Read : The Shomate Equation will yield the most accurate estimate of the enthalpy change for an ideal gas.									
Diagram:	A diagram is not needed for this problem.									
Given:	T ₁	325	к	T ₂	750	К				
Find:	ΔH ₁₋₂ =	???	J/mole	∆U ₁₋₂ =	???	J/mole				
Assumptio	ons: 1 - /	Assume a	mmonia behaves as an ideal gas.							
Equations	/ Data / Solve:									
	Let's begin by collecting the data we will need from the NIST Webbook :									

Part a.) The enthalpy change associated with a temperature change for an ideal gas can be determined from :	Part a.)	The enthalpy change associated with a temperature change for an ideal gas can be determined from :
---	----------	--

$$\Delta \tilde{\mathbf{H}}_{1-2} = \int_{T_1}^{T_2} \tilde{\mathbf{C}}_{\mathbf{P}}^{\mathbf{o}} \, \mathbf{dT}$$
 Eqn 1

19.99563

49.77119

-15.376

1.921168

0.189174

Eqn 3

A B

С

D

Е

The Shomate Equation for the ideal gas heat capacity is :

where :

and : $\widetilde{C}_{P}^{o}[=]J/mol\cdot K$

Combining Eqns 1, 2 and 3 and integrating yields :

$$\Delta \tilde{H} = A(T_2 - T_1) + \frac{B/2}{1000}(T_2^2 - T_1^2) + \frac{C/3}{1000^2}(T_2^3 - T_1^3) + \frac{D/4}{1000^3}(T_2^4 - T_1^4) - \frac{E}{1000^{-2}}(T_2^{-1} - T_1^{-1})$$
Eqn 4
Plug in values for the temperatures and the constants to get : ΔH 18358 J/mol

	We can determine ΔU using the definition of enthalpy : $\Delta \tilde{H} = \Delta \tilde{U} + \Delta (P\tilde{V})$				
	For ideal gases	, Eqn 7 be	comes :	$\Delta \tilde{\mathbf{H}}^{IG} = \Delta \tilde{\mathbf{U}}^{IG} + \Delta (\mathbf{R} \mathbf{T}) = \Delta \tilde{\mathbf{U}}^{IG} + \mathbf{R} \Delta \mathbf{T}$	Eqn 8
	We can then so	olve Eqn 8	for ∆U :	$\Delta \tilde{\mathbf{U}}^{\text{IG}} = \Delta \tilde{\mathbf{H}}^{\text{IG}} - \mathbf{R} \left(\mathbf{T}_2 - \mathbf{T}_1 \right)$	Ean 9
	R	8.314	J/mol-K	∆U 14824	J/mol
Verify:	Without knowin	g the pres	sure, it is not p	possible to verify this assumption.	
Answers :	ΔH	18400	J/mol	∆U 14800	J/mol

3C-2	Application	Application of the Gibbs Phase Rule to the Triple Point											
R-134a at i	its triple point is	s held in a rigid ves	sel. How many int	ensive variable	<mark>es</mark> can be	independently	specified?						
Read :	At the triple p This is the ur	point, all three phas nique aspect of the	es exist in equilib triple point and th	rium. is problem.									
Diagram:	A diagram is	A diagram is not necessary for this problem.											
Given:	Number of cl Number of pl	nemical species pr hases present at e	esent: quilibrium:	C P	1 3								
Find:	°Free =	???											
Assumptio	ons: N	lone.											
Equations	s / Data / Solve	:											
	Gibbs Phase	Rule :	°Free = C	- P + 2		°Free =	0						
	NO intensive	variables can be <u>i</u>	ndependently spe	cified at the trip	ole point !								
	This means t The triple poi	hat there is just or int is <u>unique</u> .	e triple point and	<u>all</u> of the prope	erties of <u>al</u>	<u>I</u> of the phases	are <u>fixed</u> !						
Verify:	No assumpti	ons were made in	the solution of this	problem.									

Answers : [°]Free 0

3C-3 Liquid Heat Capacities and Specific Heats

2 pts

The Thermophysical Properties of Fluid Systems page in the **NIST WebBook** lists the heat capacity of liquid **heptane** at various **temperatures**.

Use this resource to determine the **constant volume specific heat** of liquid **heptane** at **7°C** and **1 atm**. How many intensive properties of liquid **heptane** can be independently specified?

- Read :Looking up the heat capacity in the NIST WebBook is straightforward.Gibbs Phase Rule will tell us how many intensive variables can be independently specified.
- **Diagram:** A diagram is not necessary for this problem.

Given:	т	5	°C	Р	1	atm
Find:	Cv	???	J/kg K	°Free =	???	

Assumptions: - The mixture is at equilibrium

Equations / Data / Solve:

First, we determine the **constant volume specific heat** at of liquid heptane.

From the **NIST WebBook**, we can obtain C_p and C_v for heptane at 1 atm and 5 °C. Use the isobaric option for a range of temperatures including 5°C or use the isothermal option including a pressure of 1 atm. Selecting the correct units makes this task easier. Use temperature in degrees Celsius and pressure in atmospheres.

From the **NIST WebBook**, I obtained the following data :

Temp. (C)	Pressure (atm)	Density (kg/m³)	Volume (m³/kg)	Internal Energy (kJ/kg)	Enthalpy (kJ/kg)	Entropy (J/g*K)	Cv (J/g*K)	Cp (J/g*K)
2	1	698.87	0.0014309	-226.32	-226.18	-0.70175	1.6984	2.159
3	1	698.04	0.0014326	-224.16	-224.01	-0.69391	1.7016	2.1624
4	1	697.2	0.0014343	-222.00	-221.85	-0.68609	1.7048	2.1657
5	1	696.37	0.001436	-219.83	-219.68	-0.67828	1.7080	2.1690
6	1	695.54	0.0014377	-217.66	-217.51	-0.67049	1.7112	2.1724
7	1	694.7	0.0014395	-215.48	-215.34	-0.66272	1.7144	2.1758
8	1	693.87	0.0014412	-213.31	-213.16	-0.65496	1.7177	2.1792

C_P =

2169 J/kg K

C_v = 1708 J/kg K
	Degrees of	Freedom:		Gibbs Phase Rule is:	°Free = 2 + C - P			
	°Free =	Degrees of fre	eedom or the number of	per of intensive properties that can be independently spe				
	C = C =	Number of che	emical species within the species	e system				
	P = P =	Number of pha 1	ases liquid phase					
	°Free = 2 +	1 - 1 =	2					
	Note:							
	We only ne	ed 2 intensive	properties, such as:	T, P, Ũ, Ũ, Ĥ				
	to complete	ely determine th	ne state of the system.					
Verify:	The equilib	rium assumptic	on cannot be verified fror	n the data available in th	is problem.			
Answers :	Cv	1708	J/kg K		[°] Free 2			

3C-4	Enthalpy	Change of N	I2 Using the	IG Heat Cap	acity					5 pts
Nitrogen g a.) Integrati b.) Treating c.) Treating	as is heated ing the Shor the C _P valu the C _P valu	I from 450 K nate Equatic le as a const le as a const	to 1120 K . Do n tant, determin tant, determin	etermine ΔU ed using the ed using the	and ∆H in kJ Shomate Equ Shomate Equ	l/ kg by Jation at th Jation at ro	ne average pom tempe	e temperatur erature, 25^{oC}	e, 800	К
Read : The Shomate Equation will yield the <u>most accurate estimate</u> of the enthalpy change. Assuming a <u>constant</u> value of C_p determined at the <u>average</u> temperature should yield a <u>reasonable</u> estimate of ΔH as well. Using the C_p value at room temperature should <u>not</u> be very accurate. We can compare this result to the value we get in part (a) .										
Diagram:	A diagram	is not neces	sary for this p	oroblem.						
Given:	T ₁	600	к				T ₂	1000	к	
Find:	∆H ₁₋₂ = a.)	??? Nitrogen b	kJ/kg ehaves as an	ideal gas						
	b.)	Nitrogen b This is equ C _p (T ₂).	ehaves as an iivalent to usii	i <mark>deal gas</mark> wi ng a <u>constan</u>	th a <u>linear</u> rela <u>t</u> value of C_p t	ationship b hat is equa	etween C _p al to the <u>av</u>	, and T . <u>verage</u> of C _p	(T ₁) an	ıd
	c.)	Nitrogen b	ehaves as an	ideal gas wi	th a <u>constant</u> l	heat capa	city.			
Assumptions: The assumptions are part of the problem statement.										

Equations / Data / Solve:

Let's begin by collecting the data we will need from the **NIST Webbook** :

MW	28.01	g/mole

Temp (K)

A

В

С

D

Е

298. -

6000. 26.092

8.218801

-1.976141

0.159274

0.044434

Part a.) The enthalpy change associated with a temperature change for an ideal gas can be determined from :

$$\Delta \tilde{H}_{1-2} = \int_{T_1}^{T_2} \tilde{C}_P^o \, dT$$
 Eqn 1

The Shomate Equation for the ideal gas heat capacity is :

Eqn 3

where :

and :

$$\widetilde{C}_{P}^{o}[=]J/mol\cdot K$$
 Eqn 4

Combining Eqns 1, 2 and 3 and integrating yields :

$$\Delta \tilde{H} = A (T_2 - T_1) + \frac{B/2}{1000} (T_2^2 - T_1^2) + \frac{C/3}{1000^2} (T_2^3 - T_1^3) + \frac{D/4}{1000^3} (T_2^4 - T_1^4) - \frac{E}{1000^{-2}} (T_2^{-1} - T_1^{-1})$$

Eqn 5

Plug in values for the temperatures and the constants to get : ΔH **12615** J/mol

$$\Delta \hat{H}(kJ/kg) = \Delta H(J/mole) \frac{1000 \text{ g/kg}}{[1000 \text{ J/kJ}] [\text{MW}(\text{g/mole})]}$$
Eqn 6

$$\Delta H = 450.4 \text{ kJ/kg}$$
We can determine ΔU using the definition of enthalpy : $\Delta \tilde{H} = \Delta \tilde{U} + \Delta \left(P\tilde{V}\right)$ Eqn 7
For ideal gases, Eqn 7 becomes : $\Delta \tilde{H}^{IG} = \Delta \tilde{U}^{IG} + \Delta (RT) = \Delta \tilde{U}^{IG} + R\Delta T$ Eqn 8
We can then solve Eqn 8 for ΔU : $\Delta \tilde{U}^{IG} = \Delta \tilde{H}^{IG} - R(T_2 - T_1)$ Eqn 9
R 8.314 J/mol-K ΔU 9289 J/mol
 $\Delta \hat{U}(kJ/kg) = \Delta \tilde{H}(J/mole) \frac{1000 \text{ g/kg}}{1000 \text{ g/kg}}$ Eqn 40

$$\Delta U(kJ/kg) = \Delta H(J/mole) \frac{\Delta U}{[1090 J/kJ] [MW(g/mole)]}$$
Eqn 10

Part b.) First we need to use the Shomate Equation, Eqns 2 & 3, to evaluate $C_p(T_1)$ and $C_p(T_2)$:

t ₁ t ₂	0.6 1	C _p (T ₁) C _p (T ₂)	30.470 32.538	J/mol-K J/mol-K
Therefore, the aver	age value of C _p is :	$\mathbf{C}_{p,avg}$	31.504	J/mol-K
When the heat cap	acity is a constant, Eqn 1 simplifies to :	$\Delta \tilde{H}_{1,2} = \tilde{C}^{\circ}_{Payer} (T_2 -$	- T ,)	Egn 1

$\mathbf{H}_{1-2} = \mathbf{C}^{o}_{P,avg} \left(T_{P} \right)$	— T ₁)	Eqn 11
ΔH	12602	J/mol
ΔH	449.9	kJ/kg
ΔU	331.2	kJ/kg

This amounts to about 0.1% error relative to the result in part (a).

Part c.) We can use Eqns 2 & 3 to evaluate the heat capacity at 25°C or 298.15 K :

t ₁	0.29815	С _р (298.15К)	28.871	J/mol-K
		ΔН	11548	J/mol
		ΔH	412.3	kJ/kg
		∆U	293.6	kJ/kg
	(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,			

This amounts to almost **9%** error relative to the result in **part (a)**. That is <u>not acceptable</u>.

Verify: No assumptions were made other than the ones in the problem statement.

Answers :	a.)	ΔU	332	kJ/kg		ΔH	450	kJ/kg
	b.)	ΔU	331	kJ/kg		∆H	450	kJ/kg
	c .)	ΔU	294	kJ/kg	1	ΔH	412	kJ/kg

3D-1 Calculating and Using the Heat Capacities of Ideal Gas Mixtures

Three ideal gases, Nitric Oxide (NO), Carbon Monoxide (CO), and Oxygen (O₂), at 220 kPa and 350°C are held in a tank

Calculate the ΔU , in J/mole, of the mixture for the heating process. Assume the mixture is an ideal gas.

- **Read :** The key to this problem is that **enthalpy** does <u>not</u> depend on **pressure** for an ideal gas. So, the initial and final pressures are <u>not relevant</u>. We want to determine the change in the **internal energy**, but only the **constant pressure heat capacities** are tabulated. We can either use $C_v = C_p R$ and then integrate C_v with respect to T to get ΔU or we can integrate C_p with respect to T to get ΔH and then use the definition of enthalpy to get ΔU . The final aspect of the problem is that the system contains a mixture. We can either use the mole fractions to determine the constants of the heat capacity polynomial for the mixture and then integrate C_p with respect to T one time, or we can integrate C_p for <u>each</u> chemical component with respect to T and <u>sum</u> the resulting ΔH values to get ΔH for the mixture. Either way, once we have ΔH , we use the definition of **enthalpy** to determine ΔU .
- **Diagram:** The figure given in the problem statement is adequate. Just include the initial and final temperatures.

 $P_2 = 220 \text{ kPa}$ $T_2 = 735^{\circ}\text{C}$ $y_{\text{NH3}} = 0.30 \text{ mol NO/mol}$ $y_{\text{CH4}} = 0.5 \text{ mol CO/mol}$ $y_{\text{O2}} = 0.20 \text{ mol O}_2/\text{mol}$ 4 pts

Given:	P ₁ = T ₁ = T ₂ =	220 350 735	kPa °C °C	= =	623.15 1008.15	K K	y _{NH3} = y _{CH4} = y _{O2} =	0.30 0.50 0.20	mol NO/mol mol CO/mol mol O₂/mol
Find:	∆U =	???	J/mo	ole					
Assumpti	ions:	1 - The init 2 - There is	ial stat s no cł	te and hange	the final sta	te are <mark>equil</mark> energy or e	librium states. enthalpy due to mixing of th	e gases.	

3 - The pure components and the mixture behave as ideal gases.

Equations / Data / Solve:

The internal energy of an ideal gas does <u>not</u> depend on pressure, only on temperature. Therefore, the question becomes, what is the <u>change</u> in **internal energy** from $T_1 = 400$ °C, to $T_2 = 600$ °C.

$$\Delta \tilde{\mathbf{H}}_{1-2} = \int_{T_1}^{T_2} \tilde{\mathbf{C}}_{P}^{o} \, \mathbf{dT}$$
 Eqn 1

The Shomate Equation for the ideal gas heat capacity is :

 $\widetilde{\mathbf{C}}_{\mathbf{P}}^{o} = \mathbf{A} + \mathbf{B}\mathbf{t} + \mathbf{C}\mathbf{t}^{2} + \mathbf{D}\mathbf{t}^{3} + \mathbf{E} / \mathbf{t}^{2}$ Eqn 2

where :

and :

 $\widetilde{C}_{P}^{\circ}[=]J/mol\cdot K$ Eqn 4

Combining Eqns 1, 2 and 3 and integrating yields :

$$\Delta \tilde{H} = A(T_2 - T_1) + \frac{B/2}{1000}(T_2^2 - T_1^2) + \frac{C/3}{1000^2}(T_2^3 - T_1^3) + \frac{D/4}{1000^3}(T_2^4 - T_1^4) - \frac{E}{1000^{-2}}(T_2^{-1} - T_1^{-1})$$

Eqn 5

 $\Delta \tilde{\mathbf{U}}^{IG} = \Delta \tilde{\mathbf{H}}^{IG} - \mathbf{R} (\mathbf{T}_2 - \mathbf{T}_1)$ T in Kelvin ! Eqn 6

Heat Capacity Constants from the NIST WebBook:

R = 8.314 J/mol K

	Nitric	Carbon	
	Oxide	Monoxide	Oxygen
	298	298	
	1200.	1300.	298 6000.
Α	23.83491	25.56759	29.659
В	12.58878	6.09613	6.137261
С	-1.139011	4.054656	-1.186521
D	-1.497459	-2.671301	0.09578
E	0.214194	0.131021	-0.219663

Method #1: Calculate the constants for the heat capacity polynomial for the gas mixture and then integrate to determine ΔH for the mixture.

	Mixture			
$\mathbf{A}_{mix} = \mathbf{y}_{NO} \mathbf{A}_{NO} + \mathbf{y}_{CO} \mathbf{A}_{CO} + \mathbf{y}_{O2} \mathbf{A}_{O2} =$	25.86607			
$\mathbf{B}_{mix} = \mathbf{y}_{NO} \mathbf{B}_{NO} + \mathbf{y}_{CO} \mathbf{B}_{CO} + \mathbf{y}_{O2} \mathbf{B}_{O2} =$	8.05215			
${f C}_{_{ m mix}}={f y}_{_{ m NO}}{f C}_{_{ m NO}}+{f y}_{_{ m CO}}{f C}_{_{ m CO}}+{f y}_{_{ m O2}}{f C}_{_{ m O2}}=$	1.44832			
${f D}_{ m mix}={f y}_{ m NO}{f D}_{ m NO}+{f y}_{ m CO}{f D}_{ m CO}+{f y}_{ m O2}{f D}_{ m O2}=$	-1.765732	∆H _{mix} =	12528	J/mol
$\mathbf{E}_{mix} = \mathbf{y}_{NO} \mathbf{E}_{NO} + \mathbf{y}_{CO} \mathbf{E}_{CO} + \mathbf{y}_{O2} \mathbf{E}_{O2} =$	0.085836	∆U _{mix} =	9327	J/mol

Method #2: Calculate ΔH and then ΔU for <u>EACH</u> gas and then compute the molar average ΔU and ΔH using the following equations:

	NO	CO	O ₂	Mixture
∆H =	12633	12307	12923	12528 J/mol
∆U =	9433	9106	9722	9327 J/mol

Verify: Assumptions 1 & 2 cannot be verified from the data given in the problem. The ideal gas assumption needs to be verified.

We need to determine the specific volume and check if :

 $\widetilde{\mathbf{V}} = \frac{\mathbf{R} \, \mathbf{T}}{\mathbf{P}}$ Eqn 9

38.10

L/mol

 \widetilde{V} > 20 L/mol

 V_2

Eqn 8

V₁ 23.55 L/mol

The ideal gas assumption is valid because **V > 20 L/mole** For both the initial and final states.

Answers : $\Delta U_{mix} = 9327$ J/mol

3D-2 Heating Liquid Methanol in a Piston-and-Cylinder Device

3 pts

Liquid methanol is heated from 25°C to 100°C in the piston-and-cylinder device shown below. The initial pressure is 100 kPa and the spring causes the pressure to increase during the process to 200 kPa.

Calculate ΔU and ΔH in J/mol. Assume C_P is a constant and has a value of 83.4 J/mol-K. Assume the molar volume is also constant and has a value of 0.01848 mol/L.

Read : Construct a good **HPP** for this process. Treat the liquid methanol as an incompressible fluid and <u>verify</u> this assumption at the end. This will simplify determining ΔU and ΔH for changes in **pressure**. Use the given **heat** capacity to determine ΔU and ΔH for changes in **temperature**.

Assumptions: 1 - Liquid methanol is incompressible. The molar volume is constant throughout this process.

Equations / Data / Solve:

The reason we use a hypothetical process path is to break a complex process into a series of simpler steps. In this problem, **step 1-A** is isobaric and **step A-2** is isothermal. Because **U** and **H** are state variables, they are <u>additive</u>, as follows.

$$\Delta \tilde{H}_{12} = \Delta \tilde{H}_{1A} + \Delta \tilde{H}_{A2} \qquad \text{Eqn 1} \qquad \qquad \Delta \tilde{U}_{12} = \Delta \tilde{U}_{1A} + \Delta \tilde{U}_{A2} \qquad \qquad \text{Eqn 2}$$

ΔH for Step 1-A can be determined as follows because the heat capacity is a constant.

$$\Delta \tilde{\mathbf{H}}_{1A} = \int_{T_1}^{I_A} \tilde{\mathbf{C}}_{P} \, \mathbf{dT} = \tilde{\mathbf{C}}_{P,avg} \left(\mathbf{T}_{A} - \mathbf{T}_{1} \right)$$
 Eqn 3

Plugging values into Eqn 2 yields:

ΔH_{1A} 8340.0 J/mol

Now we can use the definition of **enthalpy** to help us determine ΔU .

$$\Delta \tilde{\mathbf{H}}_{1A} = \Delta \tilde{\mathbf{U}}_{1A} + \Delta (\mathbf{P} \, \tilde{\mathbf{V}})_{1A} = \Delta \tilde{\mathbf{U}}_{1A} + \mathbf{P} \, \Delta \tilde{\mathbf{V}}_{1A} + \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{1A} \approx \Delta \tilde{\mathbf{U}}_{1A}$$
 Eqn 4

Since $P_A = P_1$, $\Delta P = 0$.

We boldly assumed the **molar volume** of the liquid methanol was constant throught this process, $\Delta V_{1A} = 0$. The result is easy to compute! ΔU_{1A} 8340.0 J/mol

For an incompressible liquid, as we have assumed liquid **methanol** to be, **U** is not a function of **P**. Therefore : ΔU_{A2} **0** J/mol

To determine ΔH , we must return to the definition of **enthalpy**.

 $\Delta \tilde{\mathbf{H}}_{A2} = \Delta \tilde{\mathbf{U}}_{A2} + \Delta (\mathbf{P} \, \tilde{\mathbf{V}})_{A2} = \mathbf{P} \, \Delta \tilde{\mathbf{V}}_{A2} + \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{A2} \approx \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{A2}$ Eqn 5

P (MPa)

0.2

0.2

 ΔH_{A2}

V (L/mol)

0.018068

0.018797

Plugging values into Eqn 5 yields :

You can see that ΔH_{A2} is <u>very small</u> compared to ΔH_{1a} . It is often neglected unless the change in **T** is very small or the change in **P** is very large indeed.

Now, we can plug values back into Eqn 1 and Eqn 2 to complete the solution of this problem.

Verify: We cannot verify the incompressibility of liquid methanol using <u>only</u> the information given in the problem statement.

However, the **NIST Webbook** yields the following data for the molar volume of liquid methanol.

T (C)	P (MPa)	V (L/mol)	T (C)
25	0.1	0.017358	25
100	0.1	0.018479	100

The data show that the molar	volume changes by about 6% during Step 1-A and about 4% during Step A-2
This seems like a lot of error,	but it does not translate into as much error in ΔU or ΔH .

The first place this assumption matters is in determining ΔU_{1A} .

$$\Delta \tilde{H}_{1A} = \Delta \tilde{U}_{1A} + \Delta (P \tilde{V})_{1A} = \Delta \tilde{U}_{1A} + P \Delta \tilde{V}_{1A}$$
 Eqn 6
$$\Delta \tilde{U}_{1A} = \Delta \tilde{H}_{1A} - P \Delta \tilde{V}_{1A}$$
 Eqn 7 $P \Delta V_{1A}$ 0.071 J/mol

This is less than 1% of ΔH_{1A} ! This is not significant.

ΔH₁₂ 8342 J/mol

1.848

J/mol

The next place the incompressibility assumption matters is in ΔH_{A2} .

$$\Delta \tilde{\mathbf{H}}_{A2} = \Delta \tilde{\mathbf{U}}_{A2} + \Delta (\mathbf{P} \, \tilde{\mathbf{V}})_{A2} = \mathbf{P} \, \Delta \tilde{\mathbf{V}}_{A2} + \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{A2} \approx \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{A2}$$
 Eqn 5

P ΔV_{A2} 0.0636 J/mol

This is less than 4% of ΔH_{A2} but it is less than 1% of ΔH_{12} ! This is not significant either.

So for determining changes in **U** and **H** the constant **molar volume** assumption for liquid **methanol** was reasonable for these conditions.

When solving a problem for chemical that **is** in the **NIST Webbook** database, you should use the <u>best available</u> <u>information</u>.

But in the absence of extensive data about the **molar volume** of liquids, it is very common and often accurate to assume they are incompressible over **pressure** ranges of **1 MPa** or even more.

ΔH_{12}

3E-1 Hypothetical Process Paths and the Latent Heat of Vaporization

7 pts

Use the hypothetical process path (HPP) shown below to help you determine the ΔH in J/mole for propane (C₃H₈) as it changes from a subcooled liquid at P1 = 300 kPa and T1 = 250 K to a superheated vapor at P5 = 100 kPa and $T_5 = 300$ K. Calculate the molar ΔH for each step in the HPP. Assume the propane vapor behaves as an ideal gas and a constant heat capacity of 69.0 J/mole-K.

Do not use tables of thermodynamic properties, except to check your answers. Use the Antoine and Clausius-Clapeyron Equations to estimate the heat of vaporization of propane at T₁.

Note: The molar volume of saturated liquid propane at 250 K is 7.8914 x 10^{-5} m³/mole.

Step 1-2 is straightforward because we will assume that the liquid propane is incompressible. Read : We can use the Antoine Equation with the Clausius-Clapeyron Equation to estimate ΔH_{vap} for step 2-3. Step 3-4 is easy because we were instructed to assume the propane is an ideal gas and the enthalpy of an ideal gas is not a function of pressure.

Step 4-5 is straightforward because the problem instructs us to use a constant C_p value.

Diagram: The diagram in the problem statement is adequate.

Given:	P ₁	300	kPa	Find:	ΔH_{1-2}	???	J/mol	
	T ₁	250	Κ		ΔH_{2-3}	???	J/mol	
	T ₅	300	Κ		ΔH_{3-4}	???	J/mol	
	P ₅	100	kPa		ΔH_{4-5}	???	J/mol	
	V_{liq}	7.8914E-05	m ³ /mole		ΔH_{1-5}	???	J/mol	
	C°	69.0	J/mole-K					

Assumptions:

1 - Clausius-Clapeyron applies:

- The saturated vapor is an ideal gas

- The molar volume of the saturated vapor is much, much greater than the molar volume of the saturated liquid.

- The latent heat of vaporization is constant over the temperature range of interest.

2 - The superheated vapor also behaves as an ideal gas.

3 - Liquid propane is incompressible.

Equations / Data / Solve:

Step 1-2 involves a change in pressure on an incompressible liquid at <u>constant</u> temperature. Since neither the internal energy nor the molar volume of an incompressible liquid are functions of pressure :

$$\Delta \tilde{\mathbf{H}}_{12} = \Delta \tilde{\mathbf{U}}_{12} + \Delta \left(\mathbf{P} \, \tilde{\mathbf{V}} \right)_{12} = \tilde{\mathbf{V}} \, \Delta \mathbf{P}_{12}$$
 Eqn 1

We can use the Antoine Equation to determine the vapor or saturation pressure of propane at T₁.

Log	₁₀ (P*) = A - (B / (T + C))			Eqn 2
P is	in bar T is in Kelvin			
The Antoine constants from the	A = B = C =	4.53678 1149.36 24.906		
$P_2 = P^*(T_1)$	Eqn 3	P ₂	226.9	kPa

Now, we can plug numbers into **Eqn1**, but be careful with the units.

Next, we can observe that ΔH_{23} = Latent Heat of Vaporization at 250 K.

We can estimate the heat of vaporization using the Clausius -Clapeyron Equation.

$$LnP^{*} = \left(-\frac{\Delta \widetilde{H}_{vap}}{R}\right)\frac{1}{T} + C$$
 Eqn 4

 ΔH_{12}

If we <u>plot</u> Ln P* vs. 1/T(K), the slope is - $\Delta H_{vap}/R$.

We can calculate the vapor pressures at <u>two different</u> **temperatures** using the Antoine Equation. Use temperatures near the temperature of interest, **250 K**. Use the two points to estimate the <u>slope</u> over this small range of temperatures.

Slope =
$$\frac{LnP_{b}^{*} - LnP_{a}^{*}}{1/T_{b} - 1/T_{a}}$$
 Eqn 5

From the Antoine Equation:

T _a	249.9	κ	Pa	226.12	kPa
Т _b	250.1	κ	P _b	227.71	kPa

Slope = -2188.7 K

Next we use this slope with Eqn 4 to determine the latent heat of vaporization at 250 K :

R =	8.314	J/mol K	∆H _{vap} 1819 [°]	7	J/mole	
			ΔH ₂₃ 18,19	7	J/mole	٦

Next, we need to determine the **enthalpy change** from **state 3** to **4**, in which the **pressure** of the **saturated vapor** is reduced. This causes the vapor to become a superheated vapor.

Recall the assumption that the vapor behaves as an ideal gas. Because **enthalpy** is <u>only</u> a function of **T** for ideal gases, and since $T_3 = T_4$:

∆H₃₄ 0 J/mole

-5.768

J/mole

Next, let's consider the enthalpy change from state 4 to 5.

Because we assumed the vapor phase is an ideal gas with constant C_P , we can evaluate ΔH using:

$$\Delta \tilde{H}_{45} = \tilde{C}_{p} \Delta T_{15}$$
Eqn 6
into Eqn 6 yields : $\Delta H_{45} = 3.450$ J/mole

Plugging numbers into Eqn 6 yields :

Finally, put them all together:

$\Delta H_{15} = \Delta H_{12} + \Delta H_{23} + \Delta H_{34} + \Delta H_{45} =$	21,641	J/mole	
---	--------	--------	--

Notice that ΔH_{12} is very small compared to ΔH_{23} and ΔH_{45} . In fact ΔH_{12} is negligible.

This shows why it is often acceptable to approximate the **enthalpy** of a **subcooled liquid** using the **enthalpy** of the **saturated liquid** at the <u>same</u> **TEMPERATURE**. It is <u>NOT</u> accurate to approximate the **enthalpy** of a **subcooled liquid** using the **enthalpy** of the **saturated liquid** at the <u>same</u> **PRESSURE**.

Verify: 1 - We can test the validity of the ideal gas assumption for state 3 as follows.

$$\tilde{V}_3 = \frac{RT_3}{P_3} = \frac{RT_2}{P_2} = \frac{RT_1}{P^*(T_1)}$$
 V₃ 9.160 L/mol

Because $V_3 < 20$ L/mole, the Clausius-Clapeyron Equation is <u>not very accurate</u>. This issue makes the results from this analysis somewhat unreliable.

It is not as easy to test the 2nd assumption that underpins the Clausius-Clapeyron Equation. We can use the **NIST Webbook** to determine the molar volume of saturated liquid and saturated vapor at **250 K**.

V _{sat vap}	8.9258 L/mol		
V _{sat liq}	0.078977 L/mol	∨ _{sat vap} / V _{sat liq =}	113.02

Since $V_{sat vap}$ is more than **100** times greater than $V_{sat liq}$ this assumption underpinning the use of the Clausius-Clapeyron Equation is valid.

Because we considered a very narrow temperature range, just **0.2°C**, the last assumption underpinning the use of the Clausius-Clapeyron Equation is almost certainly valid.

2 - Is the superheated vapor be accurately treated as an ideal gas?

$$\tilde{V}_4 = \frac{RT_4}{P_4} = \frac{RT_1}{P_5}$$
 V₃ 20.785 L/mol

Because $V_4 > 20$ L/mole, the Clausius-Clapeyron Equation can be applied.

3 - Since ΔH_{12} is <u>negligible</u>, this assumption is <u>not very important</u>.

Nonetheless, we can use the **NIST Webbook** to determine the molar volume of liquid at $P_1 = 100 \text{ kPa}$ and at $P_2 = 226.9 \text{ kPa}$ at 250 K. and see if the molar volume changes significantly.

V₁ 0.0625 L/mol 10.887059 V₂ 0.0693 L/mol

We find that V_2 differs from V_1 by about 11%. So it is <u>not</u> very accurate to treat liquid propane as an incompressible liquid under these conditions.

This may be ok in this problem since $\sim \Delta H_{12}$ is so small that an **11%** error in its value will still not matter.

∆H ₁₋₂	-5.77	J	
∆H ₂₋₃	18,197	J]
ΔH_{3-4}	0	J]
ΔH_{4-5}	3,450	J	
∆H ₁₋₅	21,600	J	(Rounded to 3 significant digi

The assumption that the saturated vapor can be accurately treated as an ideal gas is not valid and, as a result, ΔH_{23} and ΔH_{15} are not reliable.

3E-2 Determination of the Vapor Pressure of Ammonia

Use the Clausius-Clapeyron equation to estimate the vapor pressure, in **kPa**, of **ammonia** at **-25°C**. The normal boiling point of **ammonia** is **-33.34°C** and the latent heat of vaporization at this temperature is **1370 kJ/kg**.

- **Read :** The keys here are to know that the normal boiling point is the boiling point at **1atm** and that the Clausius-Clapeyron Equation provides a relationship between the **rate** at which vapor pressure **changes** and the latent heat of vaporization. Knowing that **P*(-33.34°C) = 101.325 kPa** and the latent heat of vaporization at this temperature allows us to evaluate both the slope and the intercept in the Clausius-Clapeyron Equation and then use the result to estimate the vapor pressure at <u>any</u> other **temperature**. We should keep in mind that this estimate is only <u>reasonably accurate</u> at **temperatures** close to the one known value, **-33.34°C** in this case.
- **Diagram:** A diagram is not needed in the solution of this problem.

Given:	T ₁	-33.34	°C	T ₂	-25	°C
	P ₁ *	101.325	r. kPa	ΔH_{vap}	248.15 1370	n kJ/kg
	MW	17.03	g/mole	R	8.314	J/mole-K
Find:	P ₂ *	???	kPa			

Assumptions: 1 - Clausius-Clapeyron applies:

- The saturated vapor is an ideal gas

- The molar volume of the saturated vapor is much, much greater than the molar volume of the saturated liquid.

4 pts

- The latent heat of vaporization is constant over the temperature range of interest.

Equations / Data / Solve:

We can estimate the latent heat of vaporization using the Clausius -Clapeyron Equation.

$$LnP^{*} = \left(-\frac{\Delta \widetilde{H}_{vap}}{R}\right)\frac{1}{T} + C$$
 Eqn 1

If we plot Ln P^{*} vs. 1/T(K), the slope is - $\Delta H_{vap}/R$. Don't forget to use T in Kelvins in Eqn 1.

So, the next thing we need to do is use the given value of the latent heat to estimate this slope.

$$\Delta \tilde{H}_{vap} = \Delta \hat{H}_{vap}$$
 MW Eqn 2 ΔH_{vap} 23331 J/mole Slope -2806.242 K

Next, we can use the one known value of the vapor pressure (at -33.34°C) to evaluate the constant (C) in the Clausius-Clapeyron Equation.

$$\mathbf{C} = \mathbf{LnP} * (\mathbf{239.81} \, \mathbf{K}) + \left(-\frac{\Delta \widetilde{\mathbf{H}}_{vap}}{\mathbf{R}}\right) \frac{1}{\mathbf{T}} \qquad \text{Eqn 3} \qquad \mathbf{C} \qquad 16.320$$

Evaluating C in this manner has a catch. This value of C <u>only</u> applies as long as the <u>same units</u> of **pressure** are used in **Eqn 1**. Since we used P_1^* in **kPa**, we must always use **P** in **kPa** whenever we use this value of **C**.

Now, we can use the values of the slope and intercept that we have determined to substitute back into Eqn 1 to estimate the vapor pressure of ammonia at a temperature other than -33.34°C, in this case -25°C.

P₂* 150.1 kPa

Verify: Only the ideal gas assumption can be verified using the data in the problem statement.

Ideal Gas EOS :	$P \tilde{V} = R T$	Eqn 4
Solve for molar volume :	$\tilde{V} = \frac{RT}{P}$	Eqn 5

Plug in values based upon the results we obtained above :

V ₁	1.97E-02	m³/mol	V ₂	1.37E-02	m³/mol
	19.7	L/mol		13.7	L/mol

Because the **molar volume** of the saturated vapor at both (-33.34°C, 101.325 kPa) and (-25°C, 150.1 kPa) is less than 20 L/mole, it is <u>not</u> accurate to treat the saturated vapors as ideal gases. This is a more serious problem at -25°C and 150.1 kPa.

The 2nd and 3rd assumptions required to use the Clausius-Clapeyron Equation cannot be verified with the information provided in the problem statement. However, based on data available in the Ammonia Tables, these two assumption are valid under the conditions in this problem.

The Ammonia Tables also tell us that:

P₂* 151.5 kPa

Our answer based on the Clausius-Clapeyron Equation is accurate to within about **1%**. This is surprisingly good in light of the fact that the ideal gas assumption for the saturated vapor is <u>not</u> valid!

Answers: P₂* 150.1 kPa

3E-3 Hypothetical Process Paths and the Latent Heat of Vaporization

t of Vaporization 4 pts

Use the hypothetical process path (HPP) shown here to help you determine ΔH in Joules for 32.5 g of heptane (C₇H₁₆) as it changes from a saturated liquid at 300 K to a temperature of 370 K and a pressure of 58.7 kPa.

Calculate the **ΔH** for each step in the **HPP**. Do not use tables of thermodynamic properties, except to check your answers. Instead, use the Antoine Equation to estimate the **heat of vaporization** of **heptane** at **300 K**.

Use the average heat capacity of heptane gas over the temperature range of interest. Assume heptane gas is an ideal gas at the relevant temperatures and pressures.

Read : Step 1-2 is a bit tricky. We can use the Antoine Equation with the Clausius-Clapeyron Equation to estimate ΔH_{vap} .

Step 2-3 is straightforward because the problem <u>instructs</u> us to use an <u>average</u> C_p value. The only difficulty will be that C_p values may not be available at the temperatures of interest.

Step 3-4 is cake because we were <u>instructed</u> to assume the heptane gas is ideal. As a result, **enthalpy** is <u>not</u> a function of **pressure** and $\Delta H_{3-4} = 0$.

Diagram: The hypothetical process path diagram in the problem statement is adequate.

Given:	m	32.5	g	Find:	ΔH_{1-2}	??? J
	$T_1 = T_2$	300	K		ΔH_{2-3}	??? J
	x ₁	0	kg vap/kg (sat'd liq)		ΔH_{3-4}	??? J
	$T_3 = T_4$	370	К		ΔH_{1-4}	??? J
	P ₄	58.7	kPa			

Assumptions:

1 - Clausius-Clapeyron applies:

1a- The saturated vapor is an ideal gas

1b- The **molar volume** of the saturated vapor is **much**, **much** <u>greater</u> than the **molar volume** of the saturated liquid.

1c- The latent heat of vaporization is constant over the temperature range of interest.

2 - The superheated vapor also behaves as an ideal gas.

3 - The **heat capacity** of the superheated vapor is nearly <u>linear</u> with respect to temperature over the temperature range of interest so that using the <u>average</u> value is a reasonable approximation.

Equations / Data / Solve:

First we can observe that:

We can estimate the latent heat of vaporization using the Clausius - Clapeyron Equation.

 ΔH_{1-2} = Latent heat of vaporization at 300 K

$$LnP^{*} = \left(-\frac{\Delta \widetilde{H}_{vap}}{R}\right)\frac{1}{T} + C \qquad Eqn 1$$

If we plot Ln P* vs. 1/T(K), the slope is - $\Delta H_{vap}/R$.

We can calculate the vapor pressures at <u>two different</u> **temperatures** using the Antoine Equation. Use temperatures near the temperature of interest, **300 K**. Use the two points to estimate the <u>slope</u> over this small range of temperatures.

Slone -	$LnP_{b}^{*} - LnP_{a}^{*}$	Eap 2
	$1/T_{b} - 1/T_{a}$	Equiz

Antoine Equation	on:		Log ₁₀ (P*) = A - (B / (T	+ C))		Eqn 3
			P is in bar	T is in Kelvin		
The Antoine co	nstants fro	om the NIST WebBook a	re:	A = B = C =	4.02832 1268.636 -56.199	
From the Antoir	ne Equatio	on:				
$T_1 = T_2$ T_a	300 299.5 300.5	К К К		$P_1 = P_2 = P_3$ $P_a =$ $P_b =$	6.68 6.52 6.85	kPa kPa kPa
- 5				Slope	-4423.1	K
Next we use thi	s <mark>slope</mark> wi	th Eqn 1 to determine the	e latent heat of vaporizati	on at 300 K :		
R =	8.314	J/mol K		∆H _{vap} =	36773	J/mol
$n = \frac{m}{MW}$		Eqn 4		MW n	100.20 0.3244	g/mol mol
				$\Delta H_{(1-2)} =$	11,928	J

Next, let's consider the enthalpy change from **states 2** to **3**, saturated vapor to superheated vapor. The **enthalpy change** associated with a **temperature change** for an ideal gas can be determined from :

$$\Delta \tilde{\mathbf{H}}_{2-3} = \int_{T_2}^{T_3} \tilde{\mathbf{C}}_{\mathsf{P}}^{\mathsf{o}} \, \mathsf{dT}$$
 Eqn 5

Because we assumed a constant heat capacity, Eqn 4 simplifies to:

$$\Delta \tilde{\mathbf{H}}_{2-3} = \tilde{\mathbf{C}}_{\mathsf{P},\mathsf{avg}}^{\mathsf{o}} \left(\mathbf{T}_3 - \mathbf{T}_2 \right)$$
 Eqn 6

The **heat capacities** are tabulated in the **NIST WebBook**, under the **Name Search** option. <u>Interpolate</u> to estimate C_p at both T_1 and T_2 . Then, <u>average</u> these two values of C_p to obtain the **average heat capacity**. This is equivalent to determining a <u>linear</u> equation between T_1 and T_2 and integrating.

Gas phase he	eat capacity	<pre>/ data from the NIST WebBook:</pre>	<u>Temperat</u> 300 400 500	<u>ture (K)</u>	<u>Cp,gas (J/</u> 165.98 210.66 252.09	<u>mol*K)</u>
There are ma	any differen	t ways to estimate $C_p(T_1)$ and $C_p(T_2)$.				
$C_{p}(T_{1}) =$	166.0	J/mole-K				
$C_{p}(T_{2}) =$	197.3	J/mole-K				
C _{p, avg} =	181.6	J/mole-K		ΔH ₍₂₋₃₎ =	12,713	J/mol
	R.I.I. d.					
Now, just mu	itiply by the	number of moles, \mathbf{n} , to get $\Delta \mathbf{H}_{2-3}$:		ΔH ₍₂₋₃₎ =	4,124	J

Last, we need to determine the **enthalpy change** from **states 3** to **4**, in which the **pressure** of the **superheated vapor** is <u>increased</u>.

Recall the assumption that the vapor behaves as an ideal gas. Because **enthalpy** is <u>only</u> a function of **T** for ideal gases, and since $T_3 = T_4$:

	$\Delta H_{(3-4)} =$	0 J
Finally:	$\Delta H_{1-4} = \Delta H_{1-2} + \Delta H_{2-3} + \Delta H_{3-4} =$	16,051 J

Verify:The problem statement instructed us to make all of the assumptions that we used.Nonetheless, we will verify the assumptions as well as we can from the given information.

1a - Is the saturated vapor is an ideal gas ?	$\tilde{\mathbf{V}}_{2} = \frac{\mathbf{R} \mathbf{T}_{1}}{\mathbf{P}_{1}}$	T ₁	300	к
Use the Antoine Equation to determine \mathbf{P}_1 :		P ₁	6.68	kPa
		V.	373.4	L/mol

Since $V_1 > 21$ L/mole this ideal gas assumption is valid.

1b - Is the **molar volume** of the **saturated vapor** is **much**, **much** <u>greater</u> than the **molar volume** of the **saturated liquid**.

1c - Is the latent heat of vaporization is <u>constant</u> over the temperature range of interest.

We cannot assess the validity of assumptios **1b** and **1c** from the data given in the problem.

2 - Does the superheated vapor also behave as an ideal gas.

$T_3 = T_4$	370	Κ
P ₄	58.70	kPa

Since $V_4 > 21$ L/mole this ideal gas assumption is valid.

3 - Is the heat capacity of the superheated vapor is nearly <u>constant</u> over the temperature range of interest ?We cannot verify this assumption with the data provided in the problem statement.

We have no evidence that an	y of the assumptions are invalid.

 Answers :
 $\Delta H_{1.2}$ 11,900
 J
 (All rounded to 3 significant digits)

 $\Delta H_{2.3}$ 4,120
 J

 $\Delta H_{3.4}$ 0
 J

 $\Delta H_{1.5}$ 16,100
 J

 $\tilde{V}_4 = \frac{RT_4}{P_4}$

52.4

L/mol

V₄

We begin this chapter by introducing the concepts of work and heat. This leads to the study of multi-step processes in which a system interacts with the surroundings by exchanging heat and work.

When heat and work are exchanged with the surroundings, the P, V and T of the system can change. We can show the process path on a PV Diagram. Several special types of process paths are discussed in this chapter.

The First Law of Thermodynamics is introduced and used to analyze processes that take place in closed systems (no mass crosses the system boundary). The chapter concludes with a discussion of heat engines and their thermal efficiency and refrigeration and heat pump cycles and their coefficients of performance.

Workbook

Work

- Definition
 - ♦ A force acting through a distance
 - A <u>restraining</u> force is overcome to move an object

$$W_{12} = \int_{\text{State 2}}^{\text{State 2}} \mathbf{F} \, \mathbf{dx} \quad [=] \quad \mathbf{N} \cdot \mathbf{m} \quad [=] \quad \mathbf{J}$$

• Boundary Work or PV Work: F = P A

$$\mathbf{W}_{b} = \int_{\text{State 2}}^{\text{State 2}} \mathbf{P} \mathbf{A} \, \mathbf{dx} = \int_{\text{State 1}}^{\text{State 2}} \mathbf{P} \, \mathbf{dV}$$

• Thermodynamic Definition of Work

- Work is done by a system on its surroundings if the sole effect of a process on its surroundings <u>could</u> have been raising a weight.
- This definition allows for other forms of work, such as spring work, electrical work, gravitational work and acceleration work.

Workbook

Power & Path Variables

• **Power**: the rate at which work is done

$$\dot{\mathbf{W}} = \frac{\delta \mathbf{W}}{\mathrm{d}t} [=] \mathbf{W}, \mathrm{Btu}/\mathrm{s}, \mathrm{ft}\cdot\mathrm{lb}_{\mathrm{f}}/\mathrm{s}, \mathrm{hP}$$

- Exact Differentials
 - ♦ State variables: $U \Rightarrow dU$
 - Changes in state variables, like U, do not depend on which process path the system follows between 2 states

 $W \Rightarrow \delta W$

$$\int_{1}^{2} \mathbf{dU} = \mathbf{U}_{2} - \mathbf{U}_{1} = \Delta \mathbf{U}$$

W₁₂

- Inexact Differentials
 - $\diamond \qquad SI: L, m^3, mL = cm^3$
 - ♦ Path Variables:
 - Systems do not have work
 Work is a form of energy f

Work is a form of energy that only
exists as it moves across a system boundary.
$$\int_{1}^{2} \delta W =$$

- \diamond W₁₂ depends on the path the process follows from state 1 to state 2.
- \diamond Use δ instead of d for inexact differentials of path variables

- Consider the two processes shown here: 1-2-3 and 1-A-3
- ΔU , ΔH and ΔV are the same for each of these processes because they begin and end at the same states.
- But, is the amount of boundary work the same for both processes ?
- The easiest way to tell is to plot the process path on a PV Diagram
- Then, make use of the fact that boundary work is the integral of P dV to determine if the boundary work done by the two processes are the same.

- The shaded area is the boundary work done during the process 1-A-3.
- Is this work positive or negative under our sign convention ?
- The amount of boundary work is NOT equal for the two processes !
- This is because work depends on the process path.
- Work is a PATH variable, NOT a property or state variable like V, U and H.
- What about heat ? Is the heat transfer for the two processes the same ?
- Nope. Heat is also a PATH variable.

	Quasi-Equilibrium Processes
	Does it matter how rapidly we compress the gas in steps 1-2 and A-3 ? Yes !
	$W_{b} = \int_{\text{State 2}}^{\text{State 2}} F_{\text{resist}} dx = \int_{\text{State 2}}^{\text{State 2}} P_{\text{resist}} dV$
	When a gas is rapidly compressed
٥	The molecules cannot get out of the way of the piston rapidly enough
٥	As a result, the local pressure right in front of the piston is greater than the pressure in the bulk of the gas
0	$P_{resist} > P_{bulk}$
ò	As a result, $P_{fast} > P_{slow}$ and $-W_{fast} > -W_{slow}$
	Ouasi-Equilibrium Processes
٥	Infinitely slow
×	

• For a turbine, $W_{fast} < W_{slow}$

LearnThermo.com

W_b for Special Types of Processes

• **Isobaric:**
$$\tilde{W}_{12} = \int_{1}^{2} P d\tilde{V} = P \int_{1}^{2} d\tilde{V} = P (\tilde{V}_{2} - \tilde{V}_{1}) = P \Delta \tilde{V}$$

• Isothermal & IG:

$$\tilde{W}_{12} = \int_{1}^{2} P d\tilde{V} = \int_{1}^{2} \frac{RT}{\tilde{V}} d\tilde{V} = RT Ln\left(\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right) = RT Ln\left(\frac{P_{1}}{P_{2}}\right)$$

- Polytropic:
 - $\delta = 1 \& \text{IG: isothermal } !$

$$\delta \quad \delta \neq 1: \qquad \qquad \tilde{\mathbf{W}}_{12} = \int_{1}^{2} \mathbf{P} \, d\tilde{\mathbf{V}} = \mathbf{C} \int_{1}^{2} \frac{d\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}^{\delta}} = \frac{\mathbf{P}_{2} \, \tilde{\mathbf{V}}_{2} - \mathbf{P}_{1} \, \tilde{\mathbf{V}}_{1}}{1 - \delta}$$

• Polytropic & IG:

$$\tilde{W}_{12} = \frac{R T_2 - R T_1}{1 - \delta} = \frac{R}{1 - \delta} (T_2 - T_1) = \frac{R}{1 - \delta} \Delta T$$

- **Isobaric** is the easiest type of process when it comes to evaluating the boundary work.
- Evaluating W_b for an **isothermal** process isn't easy unless the fluid in the system is an ideal gas. Then, it isn't bad at all
- Notice that the last equality is true because $P_1V_1 = P_2V_2$ for an IG undergoing a polytropic process.

Heat: Q

• Another form of energy in transition across a system boundary, like work.

 $Q[=] J \quad \hat{Q}[=] kJ/kg \quad \tilde{Q}[=] J/mole \quad \dot{Q}[=] J/s \text{ or } W$

- Flows spontaneously from "hot" to "cold"
- Heat is the flow of thermal energy while U is the amount of thermal energy a system holds.
- Heat is comparable to electrical current while U is comparable to electrical potential or voltage.
- Sign Convention:
 - $\diamond \quad \text{Heat flow } \underline{\text{into}} \text{ a system} > 0$

Workbook

Heat : A Few Details

 Heat is a <u>path variable</u> and the differential of heat is <u>inexact</u>, so we use δ:

$$\int_{1}^{2} \delta \mathbf{Q} = \mathbf{Q}_{12}$$

- In an <u>adiabatic process</u> Q = 0
- If the heat transfer rate, $\dot{Q}\,$, is constant, then:

 $\mathbf{Q} = \dot{\mathbf{Q}} \Delta \mathbf{t}$

• Heat Flux: $\dot{q} = \frac{\dot{Q}}{A} = W/m^2$

	Co	onduction
•	Fourier's Law:	$\dot{\mathbf{q}} = -\mathbf{k} \frac{\mathbf{d} \mathbf{T}}{\mathbf{d} \mathbf{x}}$
•	k = thermal cond	luctivity [=] W/m-K
•	If k = constant:	$\frac{dT}{dx} = \frac{\Delta T}{\Delta x}$
•	Magnitude of k: Metals: Non-metals: Liquids: Gases: Insulation: 	$k \approx 100 \text{ W/m-K}$ $k \approx 1 - 10 \text{ W/m-K}$ $k \approx 0.1 - 10 \text{ W/m-K}$ $k \approx 0.01 - 0.1 \text{ W/m-K}$ $k \approx 0.01 - 0.1 \text{ W/m-K}$

Newto	n's Law o	f Cooling	
Hot surface:	$\dot{\mathbf{q}} = \mathbf{h} \left(\mathbf{T}_{\mathrm{S}} - \mathbf{T}_{\mathrm{f}} \right)$)	
Cold surface:	$\dot{\mathbf{q}} = \mathbf{h} \left(\mathbf{T}_{\mathrm{f}} - \mathbf{T}_{\mathrm{S}} \right)$)	
	_		2
h = convection h	eat transfer c	coefficient [=] V	V/m ⁻ -K
<pre>h = convection h</pre>	eat transfer c	coefficient [=] V properties	V/m⁻-K
 h = convection h ◊ Depends on flu ◊ Depends on the 	eat transfer c id and surface j e nature of the f	coefficient [=] V properties fluid velocity prof	V/m⁻-K file
 h = convection h Depends on flu Depends on the Magnitude of h: 	eat transfer c id and surface j e nature of the f	properties fluid velocity prof	йle
 h = convection h ◊ Depends on flu ◊ Depends on the Magnitude of h: ◊ Free convectio 	eat transfer c id and surface j e nature of the f n, gases:	coefficient [=] V properties fluid velocity prof $h \approx 2 - 25$	W/m ² -K
 h = convection h ◊ Depends on flu ◊ Depends on the Magnitude of h: ◊ Free convectio ◊ Free convectio 	eat transfer c id and surface j e nature of the f n, gases: n, liquids:	coefficient [=] V properties fluid velocity prof $h \approx 2 - 25$ $h \approx 50 - 1000$	V/m ⁻ -K file W/m ² -K W/m ² -K
 h = convection h ◊ Depends on flu ◊ Depends on the Magnitude of h: ◊ Free convectio ◊ Free convectio ◊ Forced convectio 	eat transfer c id and surface j e nature of the f n, gases: n, liquids: tion, gases:	properties Fluid velocity prof $h \approx 2 - 25$ $h \approx 50 - 1000$ $h \approx 25 - 250$	V/m ⁻ -K file W/m ² -K W/m ² -K W/m ² -K
 h = convection h Depends on flu Depends on the Magnitude of h: Free convectio Free convectio Forced convection Forced convection 	eat transfer c id and surface j e nature of the f n, gases: n, liquids: tion, gases: tion, liquids:	coefficient [=] V properties fluid velocity prof $h \approx 2 - 25$ $h \approx 50 - 1000$ $h \approx 25 - 250$ $h \approx 50 - 20,000$	V/m ² -K file W/m ² -K W/m ² -K W/m ² -K

• Remember that $q = heat \underline{flux} [=] W/m^2$.

Radiation Heat Transfer

• Atoms emit photons in the infrared part of the spectrum. The photons carry thermal energy to the surface that absorbs them.

$$\dot{\mathbf{Q}}_{\text{emit,max}} = \boldsymbol{\sigma} \mathbf{A} \mathbf{T}_{\text{S}}^{4}$$

 $\dot{\mathbf{Q}}_{\text{emit}} = \boldsymbol{\varepsilon} \boldsymbol{\sigma} \mathbf{A} \mathbf{T}_{\text{S}}^{4}$ $\boldsymbol{\varepsilon} = \text{emissivity}$

 $\dot{\mathbf{Q}}_{\mathbf{absorb}} = \boldsymbol{\alpha} \, \dot{\mathbf{Q}}_{\mathbf{emit}}$ We usually assume $\alpha = 1$

• Radiation exchange between a body its surroundings

$$\diamond \quad \text{If } \alpha = 1; \quad \dot{\mathbf{Q}}_{\text{net}} = \dot{\mathbf{Q}}_{\text{emit,body}} - \dot{\mathbf{Q}}_{\text{emit,surr}} = \boldsymbol{\varepsilon}_{\text{body}} \, \boldsymbol{\sigma} \, \mathbf{A} \, \mathbf{T}_{\text{body}}^4 - \boldsymbol{\varepsilon} \, \boldsymbol{\sigma}_{\text{surr}} \, \mathbf{A} \, \mathbf{T}_{\text{Surr}}^4$$

$$\circ \quad \underline{\text{Boldly}} \text{ assume } \varepsilon_{\text{body}} = \varepsilon_{\text{surr}} = \varepsilon : \quad \dot{\mathbf{Q}}_{\text{net}} = \varepsilon_{\text{body}} \, \sigma \, \mathbf{A} \left(\mathbf{T}_{\text{body}}^4 - \mathbf{T}_{\text{surr}}^4 \right)$$

- T must be expressed in Kelvins or Rankine (an absolute T-scale.
- Emissivity is a measure of the ability of a surface to emit thermal radiation
- σ = Stefan-Boltzmann Constant = 5.67 x 10⁻⁸ W/m²-K⁴.

First Law of Thermodynamics

- Definition
- \diamond Energy is neither created nor destroyed.
- General Conservation Principle

IN - OUT + GEN = ACC

• 1st Law, Integral Form

$$\mathbf{Q} - \mathbf{W} = \Delta \mathbf{E} = \Delta \left[\mathbf{U} + \mathbf{E}_{kin} + \mathbf{E}_{pot} \right]$$

• 1st Law Differential Form

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}} = \frac{\mathbf{dE}}{\mathbf{dt}} = \frac{\mathbf{d}}{\mathbf{dt}} \left[\mathbf{U} + \mathbf{E}_{kin} + \mathbf{E}_{pot} \right]$$

- This statement of the 1st Law applies to systems that do not undergo nuclear reactions.
- Many quantities are conserved.
- The integral form of the 1st Law will help you analyze a process that takes place between two given times.
- These are often BATCH processes.
- The differential form of the 1st Law will help you analyze continuous processes.
- This form is sometimes called the RATE form of the 1st Law because the terms are all rates.
- The heat transfer rate, the rate at which work is done, the rate at which the energy of the system changes.

LearnThermo.com

• In many problems changes in potential en-**Special Cases** ergy are negligible • Equipment isn't usually so LARGE that Special Case: No change in Ekin or Epot • changes in potential energy are significant $\diamond \quad \Delta E_{kin} = 0 \text{ and } \Delta E_{pot} = 0$ Changes in kinetic energy are often negligi-• ble when ... $\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U}$ Pipe diameters do not change and • No phase change occurs ٠ We need velocity data or flow rate and pipe $\frac{dE_{kin}}{dt} = 0 \quad \text{and} \quad \frac{dE_{pot}}{dt} = 0$ ٠ \diamond diameter to calculate Ekin • When we don't have this data, we usually assume changes in E_{kin} are negligible. $\dot{\mathbf{Q}} - \dot{\mathbf{W}} = \frac{\mathbf{dU}}{\mathbf{dt}}$ These two relationships will be used again ٠ and again, whenever a fluid flows through the system. $\dot{\mathbf{m}} = \frac{\dot{\mathbf{V}}}{\hat{\mathbf{V}}}$ Handy Relationships: • $\dot{\mathbf{V}} = \mathbf{v} \mathbf{A}_{\text{cross}}$

Tot • Work :	al Work and Heat $W_{total} = W_b + W_s + W_e + \dots$	 There are MANY different types of work, but only one type of heat There are three mechanisms for heat trans- fer Conduction: Fourier's Law Convection: Newton's Law of Cooling
• Heat :	$Q_{total} = Q_{cond} + C_{conv} + Q_{rad}$	 Radiation: The Radiation Equation W_{Sh} = shaft work This is very important. It is work that involves rotating machinery and is the most common form of work in continuous processes

LearnThermo.com

 Problem Solving Procedure Read Carefully Draw a Diagram List Given Information List All Assumptions Write Equations and Lookup Data Solve Equations Verify Assumptions 	 The problem solving procedure is a strategy to help organize your thoughts and your work so you can avoid mistakes and communicate effectively with other engineers and scientists. Read Get all the important info out of the problem statement and onto your paper. Draw a Diagram Draw a process schematic, include a system boundary Draw a phase diagram List All Given List All Given List all given values Assign variable names, including units List objectives (what are you trying to find) List All Assumptions State your sign convention You will add to this list as you work through the problem Write Equations and Lookup Data Count the unknown variables and the INDEPENDENT equations Work backwards from the answer you are looking for When # of equations = # of unknowns, the problem is well-posed and you can solve it ! Solve Equations This usually turns out to be the EASY part ! Work backwards from the answer you are looking for. Repeat the last two steps until you have gotten all the answers you need. Verify Assumptions In this course, the main assumption you may have to verify is that a gas is ideal. Answer Questions
Isobaric Processes• $P = constant$ • $1^{st} Law$ • closed system, integral form• Assume: $\Delta E_{pot} = 0$ and $\Delta E_{kin} = 0$ • IF boundary work is the only form of work:• IF boundary work is the only form of work:• Definition of boundary work:• Definition of boundary work:• 1^{st} Law becomes:• $Q - P \Delta V = \Delta U$ • 1^{st} Law becomes:	 This form of the 1st Law applies when the following assumptions are true. Closed system Quasi-equilibrium Only form of work is boundary work Isobaric ΔE_{pat} = 0 ΔE_{kin} = 0
$\mathbf{Q} = \Delta \mathbf{H}$	

Workbook

LearnThermo.com

 $Q - W = \Delta U$

Isochoric Processes

- V = constant
- 1^{st} Law

•

- \diamond closed system, integral form
- $\diamond \quad \text{Assume: } \Delta E_{pot} = 0 \text{ and } \Delta E_{kin} = 0$
- IF boundary work is the only form of work: $W_{total} = W_b + W_{sh} + W_e = W_b$
- Definition of boundary work: $W_b = \int_1^2 P dV = 0$
 - 1^{st} Law becomes: $Q = \Delta U$

- This form of the 1st Law applies when the following assumptions are true.
- Closed system
 - Quasi-equilibrium
 - Only form of work is boundary work
- Isochoric
- $\Delta E_{pot} = 0$
- $\Delta E_{kin} = 0$

-

C 1

1.11 (12)

 Cycle Types and Characterization Three types of cycles Power Cycles or Heat Engines Refrigeration Cycles Heat Pump Cycles 	 rower cycle and reat Engine are two names for cycles that take in a net amount of heat and produce a net amount of work. Refrigeration and heat pump cycles are really the same cycle, but they have differ- ent OBJECTIVES. Closed Cycles: home refrigerator, heat pump and air-conditioners
 How to Categorize Systems that Undergo Cycles Open vs. Closed Cycles Closed Cycles: Use a working fluid that never leaves the system Open Cycles: Take in fresh fluid and reject the used fluid when the cycle is complete. Usually the fluid is air. 	• Open Cycles: Automobile engines, jet en- gines, turbine engines (warships, some tanks like the US M1 Abrams)
 Gas vs. Vapor Cycles Vapor Cycles: Take advantage of a phase change in the fluid Gas Cycles: The fluid always remains in the gas phase. The fluid is usually air or an air-fuel mixture (as in an internal combustion engine). 	

Workbook

LearnThermo.com

Chapter 4

LearnThermo.com

4A-1 Work for a Cycle Carried Out in a Closed System

6 pts

Ten kilograms of **carbon dioxide** (**CO**₂) is held in a piston-and-cylinder device. The **CO**₂ undergoes a thermodynamic cycle consisting of three processes. The processes are :

Process 2-3: constant volume

Process 3-1: constant temperature compression

a.) Sketch the cycle path on a PV Diagram

b.) Calculate the net work done in kJ

Data: T₁ = 145°C, T₂ = 440°C, P₁ = 150 kPa

Read : Work your way around the cycle, step by step. The work for the cycle is the sum of the work for each step. Assume the CO₂ behaves as an ideal gas throughout all three process steps.
 Apply the definition of boundary work or PV work to each step in the cycle.

Diagram: See the solution to part (a).

Given:	m	10	kg	Find:	a.)	Sketch cycle on a PV Diagram.		
	T ₁	145	°C		b.)	W _{cycle} =	???	kJ
	T ₂	440	°C					
	P ₁	150	kPa					

Assumptions:

1 - The gas is held in a closed system.

2 - Boundary work is the only form of work interaction

- 3 Changes in kinetic and potential energies are negligible.
- 4 CO₂ behaves as an ideal gas. This must be verified at all three states.

Equations / Data / Solve:

Part a.)

Part b.) Since $W_{cycle} = W_{12} + W_{23} + W_{31}$, we will work our way around the cycle and calculate each work term along the way.

Step 1-2 is isobaric, therefore, the definition of boundary work becomes:

$$W_{12} = \int_{V_1}^{V_2} P \, dV = P_1 \left(V_2 - V_1 \right)$$
 Eqn 1

We can simplify Eqn 1 using the fact that $P_2 = P_1$ and the Ideal Gas EOS :

$$W_{12} = P_2 V_2 - P_1 V_1 = nR(T_2 - T_1)$$
 Eqn 3

We can determine the number of moles of CO2 in the system from the given mass of CO2 and its molecular weight.

$$n = \frac{m}{MW}$$
 Eqn 4

MW _{CO2}	44.01	g/mole	n	227.22	mole
Plug values in	to Eqn 3 :		R W ₁₂	8.314 557.29	J/mole-K kJ
Because the v	olume is co	onstant in step 2-3:	W ₂₃	0	kJ

Step 3-1 is isothermal, therefore, the definition of boundary work becomes:

$$\mathbf{W}_{31} = \int_{3}^{1} \mathbf{P} d\mathbf{V} = \mathbf{n} \mathbf{R} \, \mathbf{T}_{1} \, \mathbf{L} \mathbf{n} \left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{3}} \right) = \mathbf{n} \mathbf{R} \, \mathbf{T}_{1} \, \mathbf{L} \mathbf{n} \left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{1}} \right)$$
Eqn 5

The problem is that we don't know either P_3 or V_3 . Either one would be useful in evaluating W_{31} because we know P₁ and we can determine V₁ from the Ideal Gas EOS, Eqn 2.

We can evaluate V_3 using the fact that $V_3 = V_2$. Apply the the Ideal Gas EOS to state 2.

$$V_3 = V_2 = \frac{nRT_2}{P_2} = \frac{nRT_2}{P_1}$$
 Eqn 6

V₃

8.981

m³

	Next, we c	an apply <mark>Eqn</mark>	6 to state 1 :	V ₁	5.266	m ³
	Now, we c	an plug values	s into Eqn 4 to evaluate W_{13} :	W ₃₁	-421.71	kJ
	Sum the w	ork terms for	the three steps to get \mathbf{W}_{cycle} :	W _{cycle} =	135.6	kJ
Verify :	 Only the ideal gas assumption can be verified. We need to determine the specific volume and check if : 			f: $\widetilde{V} > 20 L/mol$		
				$\widetilde{\mathbf{V}} = \frac{\mathbf{R} \mathbf{T}}{\mathbf{P}}$		Eqn 7
	R	8.314	J/mol-K	V_1 $V_2 = V_3$	23.18 39.53	L/mol L/mol

The ideal gas assumption is valid because V > 20 L/mole in all three states.

Answers : a.)	See the sketch, above.		b.)	W _{cycle} =	135.6	kJ
Dr. B - Learn	Thermo.com	Ex 4A-1	Copyright B-	-Cubed 2014,	all rights rese	erved

Dr. B - LearnThermo.com

4A-2 Quasi-Equilibrium Expansion of a Gas

4 pts

A piston-and-cylinder device is oriented horizontally and a compressed spring exerts a force on the back of the piston, as shown below. The gas inside the cylinder is cooled slowly and, as the cooling proceeds, the spring pushes

the piston farther into the cylinder. During the cooling process, the spring exerts a force that decreases linearly with position. Initially, the gas occupies a **volume** of **8.4** L while the spring exerts a **force** of **1.2** kN on the

back of the piston. At the end of the process, the gas occupies **3.7** L and the spring exerts a **force** of **0** kN on the piston. The **area** of the piston face is **200** cm² and atmospheric **pressure** is **100** kPa.

- Assume the gas behaves as an ideal gas and friction is negligible. Determine...
- a.) The initial and final pressures inside the cylinder, in kPa
- **b.)** The boundary work, in **kJ**.
- **Read :** The key to solving this problem is to determine the slope and intercept for the linear relationship between the **force** exerted by the spring on the piston and the **volume** that the gas occupies. This relationship is linear because, for a cylinder of <u>uniform</u> diameter, gas **volume** varies linearly with respect to the position of the piston.

Dr. B - LearnThermo.com
Given:	$V_1 = V_2 = F_1 = F_2 =$	8.4 3.7 1200 0	L L N N	P _{atm} A _{piston}	100 0.020	kPa m²
Find:	P ₁ = P ₂ =	??? ???	kPa kPa	W =	???	kJ

Assumptions:

1 - The gas in the cylinder is a closed system.

2 - The process occurs slowly enough that it is a quasi-equilibrium process.

3- There is <u>no friction</u> between the piston and the cylinder wall.

4- The spring force varies linearly with position.

Equations / Data / Solve:

In the initial and final states, the piston is not accelerating. In fact, it is not moving. Therefore, there is no unbalanced force acting on it. This means that the vector sum of all the forces acting on the piston must be zero.

$$P_{1} = P_{atm} + \frac{F_{1}}{A_{piston}}$$
Initial State:
$$P_{1} = P_{atm} + \frac{F_{2}}{A_{piston}}$$
Eqn 1
Eqn 2
Final State:
$$P_{2} = P_{atm} + \frac{F_{2}}{A_{piston}}$$

For a quasi-equilibrium process, boundary or PV work is defined by:

$$\mathbf{W} = \int_{V_1}^{V_2} \mathbf{P} \, \mathbf{dV} = \int_{V_1}^{V_2} \left[\mathbf{P}_{atm} + \frac{\mathbf{F}_{spring}}{\mathbf{A}_{piston}} \right] \mathbf{dV}$$
 Eqn 3

Because F_{spring} varies linearly with the position of the piston AND volume also varies linearly with the position of the piston, we can conclude that F_{spring} must vary linearly with respect to the volume !

$$\mathbf{F}_{\text{spring}} = \mathbf{m} \, \mathbf{V} + \mathbf{b} = \mathbf{m} \, \mathbf{V} + \left(\mathbf{F}_{1} - \mathbf{m} \, \mathbf{V}_{1}\right) = \left(\frac{\mathbf{F}_{2} - \mathbf{F}_{1}}{\mathbf{V}_{2} - \mathbf{V}_{1}}\right) \mathbf{V} + \left(\mathbf{F}_{1} - \mathbf{m} \, \mathbf{V}_{1}\right)$$
Eqn 4

m

$$W = \int_{V_1}^{V_2} \left[P_{atm} + \frac{m V + b}{A_{piston}} \right] dV = \left(P_{atm} + \frac{b}{A_{piston}} \right) (V_2 - V_1) + \frac{m}{A_{piston}} \frac{\left(V_2^2 - V_1^2 \right)}{2}$$
Eqn 5

Verify:

None of the assumptions can be verified using only the information given in the problem statement.

Answers :	P ₁	160	kPa
	P ₂	100	kPa

2.5532E+05 N/m³

W

b

-944.68

-611

Ν

.1

J

4A-3 Quasi-Equilibrium Compression of R-134a

4 pts

R-134a vapor is held in a piston-and-cylinder device at 30°C and 65 kPa. The **R-134a** vapor is compressed as small weights are slowly added to the back of the piston until the **pressure** inside the cylinder reaches 400 kPa. Determine...

a.) The boundary work done by the R-134a

b.) The final temperature of the R-134a

The following measurements have been made during the process:

P(kPa), V(L) = (65,1.94), (104,1.57), (167,1.04), (218,0.79), (255,0.67), (311,0.51), (350,0.35)

Read : The key concept here is that **boundary** or **PV work** is represented by the area under the process path curve on a **PV Diagram**. So, once we plot the given data on a **PV Diagram**, all we need to do is numerically integrate to determine the area under the curve and we will know the **work** !

We can use the R-134a Tables in the **NIST Webbook** to determine the final **temperature** because we know both P_{final} and V_{final} . But we don't know the number of **moles** in the system. Fortunately, we can use the initial state P_1 , V_1 , and T_1 to determine the number of **moles** in this closed system.

Assumptions:

- 1 Each state in the data table is an equilibrium state.
- 2 The process is a quasi-equilibrium process.
- 3 The system is a closed system.

4 - The trapezoidal rule gives an acceptable estimate of the area under the process path in the PV Diagram.

Equations / Data / Solve:

Part a.) The area of each trapezoid under the process path in the PV Diagram is the product of the average pressure for that trapezoid and the change in **volume** across the trapezoid.

$$\mathbf{W}_{\text{trap}} = \left(\frac{\mathbf{P}_{\text{b}} + \mathbf{P}_{\text{a}}}{2}\right) \cdot \left(\mathbf{V}_{\text{a}} - \mathbf{V}_{\text{b}}\right)$$
Eqn 1

Where subscript **a** refers to the left side of each trapezoid and subscript **b** refers to the right side of each trapezoid in the PV Diagram.

Trapezoid	P _{avg} (kPa)	ΔV (L)	W (J)
A	85	-0.37	-31.3
В	136	-0.53	-71.8
С	193	-0.25	-48.1
D	237	-0.12	-28.4
E	283	-0.16	-45.3
F	356	-0.16	-56.9

Part b.) If we knew the **specific volume** of the R-134a in the final state, we could use the R-134a tables to determine the temperature. But, at this point, all we know is the total volume in the final state.

The trick here is that the **mass** is the same in the initial and final states.

Therefore, we need to determine the mass of R-134a in the system.

We can use the information we have for the initial state to determine the mass of R-134a in the system.

First, look up the **specific volume** of R-134a in the initial state in the isothermal thermodynamic tables:

m_{R134a}

			V ₁	0.37538	m³/kg
Then, to calculate m_{R134a}, use:	$\mathbf{m}_{R134a} = \frac{V_1}{\hat{V}_1}$	Eqn 1	m _{R134a}	0.00517	kg
Finally, calculate V_2 using:	$\hat{\mathbf{V}}_2 = \frac{\mathbf{V}_2}{\mathbf{m}}$	Eqn 2	V ₂	0.067723	m ³ /kg

Now, use the isobaric thermodynamic tables at a pressure of 400 kPa. Specify a temperature range that you are sure brackets V₂. Here is a table that I cut-and-pasted from the **NIST WebBook**.

Temperature (C)	Pressure (MPa)	Volume (m ³ /kg)	Phase
72	0.4	0.066907	vapor
73	0.4	0.067138	vapor
74	0.4	0.067369	vapor
75	0.4	0.067599	vapor
76	0.4	0.067830	vapor
77	0.4	0.068060	vapor

V₂ falls between 75°C and 76°C So, now, we must interpolate.

-281.7

J

W_{total} =

Verify: None of the assumptions can be verified from the data given in the problem statement.

Answers : a.)

_{total} = -282 J

T₂ 75.5 **b**.) °C

W.

4A-4 Expansion of a Gas in a Cylinder Against a Spring

5 pts

Read : The key to solving this problem is to determine the slope and intercept for the linear relationship between the force exerted by the spring on the piston and the pressure within the gas. This relationship is linear because the pressure within the cylinder is atmospheric pressure plus the spring force divided by the cross-sectional

Assumptions:

1 - The gas in the cylinder is a closed system.

- 2 The process occurs slowly enough that it is a quasi-equilibrium process.
- 3 There is no friction between the piston and the cylinder wall.
- 4 The spring force varies linearly with position.

Equations / Data / Solve:

piston. Assume P_{atm} = 100 kPa.

For a quasi-equilibrium process, boundary or PV work is defined by:

$$\mathbf{W} = \int_{x_1=0}^{x_2} \mathbf{F}_{\text{total}} \, \mathbf{dx} = \int_{x_1=0}^{x_2} \left(\mathbf{F}_{\text{spring}} + \mathbf{F}_{\text{atm}} \right) \mathbf{dx}$$
 Eqn 1

It is <u>critical</u> to note that the gas <u>must</u> overcome the **force** due to <u>atmospheric **pressure** AND</u> the **force** of the spring during this expansion process. Because the **force** exerted by the linear spring on the piston increases linearly as the gas expands, we can write the following equation relating the **force** exerted <u>by</u> the gas <u>on</u> the piston to the **displacement** of the piston from its <u>original</u>, <u>unstretched</u> position.

$$\mathbf{F}_{spring} = \mathbf{k} \, \mathbf{x}$$
 Eqn 2

Where \mathbf{x} is the displacement of the piston from its initial position.

Plug Eqn 2 into Eqn 1 and integrate to get :

$$W = \left(\frac{k x^{2}}{2} + F_{atm} x\right)\Big|_{0}^{x_{2}} = \frac{k}{2} x_{2}^{2} + F_{atm} x_{2}$$
 Eqn 3

Where \mathbf{x}_2 is the displacement of the spring in the final state.

So, our next objective is to determine how far the piston moved during this process.

In the initial and final states, the piston is <u>not accelerating</u>. In fact, it is <u>not</u> moving. Therefore, there is <u>no</u> unbalanced force acting on it. This means that the vector sum of all the **forces** acting on the piston must be **zero**.

Initial State:
$$P_1 = P_{atm}$$
Eqn 4 P_1 100kPaThe relationship between force and pressure is: $F_{atm} = P_{atm} A_{piston}$ Eqn 5Where : $A_{piston} = \frac{\pi}{4} D_{piston}^2$ Eqn 6 A_{piston} 2.03E-03m²Final State: $P_2 = P_{atm} + \frac{F_2}{A_{piston}}$ Eqn 7or : $F_2 = (P_2 - P_{atm}) A_{piston}$ Eqn 8Now, plug numbers into Eqn 8 : $F_2 = (P_2 - P_{atm}) A_{piston}$ Eqn 9or : $X_2 = \frac{F_2}{k}$ Eqn 9or : $X_2 = \frac{F_2}{k}$ Eqn 10 $X_2 = 0.3430$ mFinally, substitute back into Eqn 3 to evaluate the work done by the gas in the cylinder on its surroundings $W = 0.26070$ kJ $W = 260.7$ J

Verify: None of the assumptions can be verified using only the information given in the problem statement.

Answers : W 261 J

4A-5 Quasi-Equilibrium Expansion of a Gas

4 pts

A gas is compressed in a piston-and-cylinder device from 100 kPa to 700 kPa. Estimate the boundary work done by the gas during the process. The following measurements were made during the process.

P (kPa)	100	200	300	400	500	600	700
V (cm ³)	1025	900	793	651	517	375	224

Read : The key concept here is that **boundary** or **PV work** is represented by the **area** under the **process path curve** on a **PV Diagram**. So, once we plot the given data on a **PV Diagram**, all we need to do is **numerically integrate** to determine the **area** under the curve and we will have the **work** !

Diagram:

Given:

P (kPa)	V (L)
100	1.025
200	0.900
300	0.793
400	0.651
500	0.517
600	0.375
700	0 224

Assumptions:

- 1 Each state in the data table is an equilibrium state.
- 2 The process is a quasi-equilibrium process.
- **3** The system is a closed system.

4 - The trapezoidal rule gives an acceptable estimate of the area under the process path in the **PV Diagram**.

Find:

w

???

J

Equations / Data / Solve:

The area of each trapezoid under the process path in the **PV Diagram** is the <u>product</u> of the <u>average</u> **pressure** for that trapezoid and the <u>change</u> in **volume** across the trapezoid.

$$\mathbf{W}_{\text{trap}} = \left(\frac{\mathbf{P}_{\text{b}} + \mathbf{P}_{\text{a}}}{2}\right) \cdot \left(\mathbf{V}_{\text{a}} - \mathbf{V}_{\text{b}}\right)$$
Eqn 1

Where subscript **a** refers to the <u>left</u> side of each trapezoid and subscript **b** refers to the <u>right</u> side of each

Trapezoid	P _{avg} (kPa)	∆V (L)	W (J)
Α	650	-0.151	-98
В	550	-0.142	-78
С	450	-0.134	-60
D	350	-0.142	-50
E	250	-0.107	-27
F	150	-0.125	-19

W _{total}	-331.8	J

Verify: None of the assumptions can be verified from the data given in the problem statement.

Answers : W_{total} -332 J

4B-1 Radiation Heating and Convective Cooling of a Flat Plate

3 pts

The sun shines on the front of a thin plate that is insulated on the back surface, as shown below. The surface of the plate exposed to the sun has an **absorptivity** of **0.72** for solar radiation.

The total solar radiation incident on the front of the plate is 650 W/m². The front of the plate loses heat to thesurroundings which are at 20°C but radiation heat loss from the plate is negligible.

The **convection heat transfer coefficient** is **25 W/m²-K**. The plate warms up until the solar heat gained is balanced by the convection heat lost. Determine the **temperature** of the front surface of the plate at steady-state.

- **Read :** The <u>key</u> to this problem is to recognize that at <u>steady-state</u>, the <u>rate</u> at which <u>heat</u> is transferred <u>into</u> the <u>plate</u> from the <u>sun</u> by <u>radiation must be equal</u> to the <u>rate</u> at which <u>heat</u> is <u>lost</u> from the <u>plate</u> to the <u>surrounding</u> air by <u>convection</u>.
- **Diagram:** The diagram in the problem statement is adequate.

Given:	α q _{max}	0.72 650	W/m ²	T _{air} h	20 25	°C W/m²-K
Find:	T,	???	°C			

Assumptions:

- Radiation heat losses from the plate are <u>negligible</u>.
 Heat losses through the <u>edges</u> of the plate are <u>negligible</u>. The <u>back</u> of the plate is <u>perfectly</u> insulated. Thus, at steady-state, the temperature of the plate is uniform.
 The incident radiation, the convection heat transfer coefficient and the absorptivity of the
- The incident radiation, the convection heat transfer coefficient and the absorptivity of the surface are <u>all</u> uniform over the surface of the <u>plate</u>.

Equations / Data / Solve:

The <u>key</u> to this problem is to recognize that at <u>steady-state</u>, the <u>rate</u> at which <u>heat</u> is transferred <u>into</u> the <u>plate</u> from the <u>sun</u> by <u>radiation <u>must</u> <u>be</u> <u>equal</u> to the <u>rate</u> at which <u>heat</u> is <u>lost</u> from the <u>plate</u> to the <u>surrounding</u> air by <u>convection</u>.</u>

$$\mathbf{q}_{rad} = \mathbf{q}_{conv}$$
 Eqn 1

Absorptivity, α , is the <u>fraction</u> of the <u>incident</u> radiation that is absorbed by a surface. Therefore:

$$\mathbf{q}_{rad} = \alpha \ \mathbf{q}_{max}$$
 Eqn 2

Newton's Law of Cooling gives us the convection heat transfer rate at the surface of the plate.

$$q_{conv} = h(T_s - T_{air})$$
 Eqn 3

Set Eqn 1 equal to Eqn 2 and solve for T_s:

$$T_s = T_{air} + \frac{\alpha q_{max}}{h}$$
 Eqn 4

Ts

38.72

°C

Plug numbers into Eqn 3 to answer the question:

Verify: The assumptions cannot be verified from the information in the problem statement alone.

Answers : T_s 38.7 °C

4B-2 Heat Transfer Through the Wall of a House

4 pts

The walls of a well-insulated home in the U.S. are about **6** in thick and have a **thermal conductivity** of **0.03 Btu/f-ft-°R**. A comfortable indoor **temperature** is **70°F** and on a cold day the outdoor **temperature** is **-20°F**. The **convection heat transfer coefficient** on the inside surface of the wall is **1.7 Btu/h-ft²-°R** while wind makes the **convection heat transfer coefficient** on the outside of the wall **5.4 Btu/h-ft²-°R**. Calculate the **steady-state** heat transfer **rate** through the wall in **Btu/h**. Assume radiation heat losses are negligible and the **area** of the wall is **100 ft²**.

Read : The key here is to recognize that, at steady state, the convection heat transfer rate into the wall must be equal to the rate at which heat is conducted through the wall and that must be equal to the rate at which heat is removed from the wall by convection on the outside. We can write **3 eqns** in **3 unknowns**: Newton's Law of Cooling for the inside and outside surfaces and Fourier's Law of Conduction for heat transfer through the wall. The three unknowns are the inside and outside wall surface temperatures and the heat transfer rate.

Assumptions:

1 - The system operates at steady-state.

2 - Newton's Law of Cooling applies for convection heat transfer on <u>both</u> the inside and outside surfaces of the wall.

3 - The **thermal conductivity** within the wall is constant. This is a <u>weak</u> assumption, but it lets us approximate dT/dx as $\Delta T/\Delta x$.

Equations / Data / Solve:

The key here is to recognize that, at steady state, the **convection heat transfer rate** into the wall must be <u>equal</u> to the <u>rate</u> at which <u>heat</u> is <u>conducted through</u> the wall and that must be <u>equal</u> to the <u>rate</u> at which <u>heat</u> is <u>removed</u> from the wall by <u>convection</u>.

$$\dot{\mathbf{q}}_{i} = \mathbf{h}_{i} \mathbf{A} (\mathbf{T}_{i} - \mathbf{T}_{wi})$$
 Eqn 1

Outside convection:

Inside convection:

$$\dot{\mathbf{q}}_{o} = \mathbf{h}_{i} \, \mathbf{A} (\mathbf{T}_{wo} - \mathbf{T}_{o})$$
 Eqn 2

Conduction through the wall:

$$\dot{\mathbf{q}}_{wall} = -\mathbf{k} \mathbf{A} \frac{\mathbf{d} \mathbf{T}}{\mathbf{d} \mathbf{x}} \approx -\mathbf{k} \mathbf{A} \frac{(\mathbf{T}_{wo} - \mathbf{T}_{wi})}{\mathbf{L}}$$
 Eqn 3

Now, we have three equations in **3** unknowns: **q**, T_{wi} and T_{wo} . We must algebraically solve the equations simultaneously for the three unknowns.

Solve Eqn 1 for
$$T_{wi}$$
: $T_{wi} = T_i - \frac{\dot{q}}{h_i A}$ Eqn 4

Solve Eqn 2 for
$$T_{wo}$$
:

$$T_{wo} = T_{o} + \frac{q}{h_{o} A}$$
Eqn 5

Replace T_{wi} and T_{wo} in Eqn 3 using Eqn 4 and Eqn 5:

$$\dot{\mathbf{q}} = \mathbf{k} \mathbf{A} \frac{(\mathbf{T}_{wi} - \mathbf{T}_{wo})}{\mathbf{L}} = \frac{\mathbf{k} \mathbf{A}}{\mathbf{L}} \left[(\mathbf{T}_{i} - \mathbf{T}_{o}) - \frac{\mathbf{q}}{\mathbf{A}} \left(\frac{1}{\mathbf{h}_{i}} + \frac{1}{\mathbf{h}_{o}} \right) \right]$$
Eqn 6

Manipulate Eqn 6 algebraically to get:

$$\frac{\dot{\mathbf{q}}}{\mathbf{A}} \left(\frac{1}{\mathbf{h}_{i}} + \frac{\mathbf{k}}{\mathbf{L}} + \frac{1}{\mathbf{h}_{o}} \right) = \left(\mathbf{T}_{i} - \mathbf{T}_{o} \right)$$
 Eqn 7

Solve Eqn 7 for q :

$$\dot{\mathbf{q}} = \frac{\mathbf{A}(\mathbf{T}_{i} - \mathbf{T}_{o})}{\left(\frac{1}{\mathbf{h}_{i}} + \frac{\mathbf{L}}{\mathbf{k}} + \frac{1}{\mathbf{h}_{o}}\right)}$$
Eqn 8

q =

516.1

Btu/h

The positive sign of **q** indicates that heat flows in the positive x-direction, as defined in the **diagram**. We could now evaluate T_{wi} and T_{wo} , using **Eqns 4** and **5**, but it is not required.

T_{wi} 67.0 °F T_{wo} -19.0 °F

Verify: The first two assumptions cannot be verified, but we can shed some light on the last assumption. The wall temperature varies from -19°F on the outside to 67°F on the inside. This seems like a wide range of temperatures. I was <u>not</u> able to find data specific to this temperature range, but at higher temperatures, I found data that indicated the thermal conductivity of wood changed by about 20% over a range of 100°C <u>above</u> room temperature. This leads me to believe the answer below may <u>not</u> be accurate to 2 significant digits.

Answers : q = 520 Btu/h

4B-3 Surface Temperature of a Spacecraft

4 pts

The International Space Station (**ISS**) absorbs solar radiation and radiates heat into space. At steady-state, the radiation emitted is equal to the solar energy absorbed.

The surface of the **ISS** has an **emissivity** of **0.74** and an **absorptivity** of **0.25** for solar radiation. Incident solar radiation on the **ISS** is **1500** W/m^2 . Determine the surface temperature of the **ISS** at steady-state.

Read : The key to solving this problem is to recognize that solar radiation is incident on the spacecraft and the spacecraft radiates heat to deep space, which is at an average **temperature** of **3 K**.

Diagram:

Given:	Q _{sun}	1500	W/m ²	T _{space}	3	Κ
	α	0.25		σ	5.67E-08	W/m ² -K ⁴
	3	0.74				
Find:	T _{surface}	???	°C			

Assumptions:

- 1 Incident solar radiation on the spacecraft is uniform.
- 2 The spacecraft radiates thermal energy to its surroundings which are at an average temperature of 3 K.

Equations / Data / Solve:

The spacecraft <u>absorbs</u> **30%** of the incident radiation from the sun, because:

$$\mathbf{Q}_{\rm in} = \alpha \, \mathbf{Q}_{\rm sun} \qquad \qquad \mathrm{Eqn} \, \mathbf{1} \qquad \qquad \mathbf{Q}_{\rm in} \qquad \qquad \mathbf{375} \quad \mathrm{W/m^2}$$

The space craft radiates to deep space and deep space radiates to the spacecraft as well.

$$\mathbf{Q}_{\substack{ ext{out}\ ext{net}}} = \varepsilon \, \sigma ig(\mathbf{T}_{ ext{surface}}^4 - \mathbf{T}_{ ext{space}}^4 ig)$$
 Eqn 2

When the **temperature** on the surface of the spacecraft reaches a steady-state value, there will be <u>no net</u> amount of **heat transfer** to or from the surface :

$$\mathbf{Q}_{in} = \mathbf{Q}_{out}_{net}$$
 Eqn 3

Next, we can combine Eqns 2 and 3 and solve for the surface temperature of the spacecraft.

Verify: None of the assumptions can be verified from the data given in the problem statement.

Answers :	T _{surface}	34	°C

4C-1 Application of the 1st Law to a Stone Falling Into Water

5 pts

1.1

A circus performer drops a cannonball with a mass of 50 kg from a platform 12 m above a drum containing 25 kg of water. Initially, the cannonball and the water are at the same temperature, state1.

Calculate ΔU , ΔE_{kin} , ΔE_{pot} , **Q** and **W** for each of the following changes of state and for the entire process.

a.) From state 1 until the cannonball is about to enter the water, state 2.

b.) From state 2 until the instant the cannonball comes to rest on the bottom of the drum, state 3.

c.) From state 3 until heat has been transferred to the surroundings in such an amount that the cannonball and water in the drum have returned to their initial temperature, state 4, $T_4 = T_1$. Assume $g = 9.8066 \text{ m/s}^2$.

Read : Choose the combination of the stone and the water as the system.

In step 1-2, if no friction or heat transfer exist, potential energy is converted into kinetic energy.

In **step 2-3**, if the water has <u>negligible</u> depth, <u>kinetic energy</u> is converted into <u>internal energy</u> by <u>friction</u> between the stone and the water.

In **step 3-4**, heat transfer from the system to the surroundings <u>reduces</u> the internal energy of the system back to its initial value.

Given:	Т	1
--------	---	---

= **T**₄

ו ₁	12	m	
n _w	25	kg	
n _{cb}	50	kg	

Diagram:

Fina:	ΔU	" " "	KJ
	ΔE_{kin}	???	kJ
	ΔE_{pot}	???	kJ
	Q	???	kJ

Eliza el c

Assumptions:	1 -	Friction between the air and the stone is negligible.
	2 -	The air and the stone are at the same temperature.
	3 -	The depth of the water is very small, compared to h_1 .
	4 -	g 9.8066 m/s ²

Equations / Data / Solve:

The starting point for this problem is the integral form of the1st Law :

$$\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U} + \Delta \mathbf{E}_{kin} + \Delta \mathbf{E}_{pot}$$

Eqn 1

Step 1-2 As the stone falls through the air, it experiences some air friction, but we can assume that this is <u>negligible</u>. Consequently, there is <u>no change</u> in the temperature or internal energy of the stone. If we further assume that the air and stone are at the <u>same</u> temperature, then <u>no</u> heat transfer occurs during step 1-2. Finally, if we consider the <u>stone and the water</u> to be our system, then <u>no</u> work has crosses the system boundary either.

	$\Delta \mathbf{U}_{12} = 0$	Eqn 2	$Q_{12} = 0$			Eqn 3		
	$W_{12} = 0$	Eqn 4						
	This allows us to simp	lify the 1st Law to :	$\Delta \mathbf{E}_{kin} + \Delta \mathbf{E}_{pot} = 0$			Eqn 5		
	Next, we can evaluate	ΔE_{pot} from its definition.	$\Delta \mathbf{E}_{pot} = \mathbf{m} \; \frac{\mathbf{g}}{\mathbf{g}_{c}} \; \Delta \mathbf{z}$			Eqn 6		
	When we apply this ec	uation to our problem, $\Delta z = h_1 = -12$	m. So we can now plug value	s into Eqn	3.			
	g _c 1	kg-m/N-s ²	ΔE_{pot}	-5884.0	J			
	Now, we can use Eqn	2 to evaluate ΔE_{kin} :	ΔE_{kin}	5884.0	J			
Step 2-3	Apply the 1st Law, Eq system.	1 , to a process from State 2 to Sta	te 3 , again using the <u>stone an</u>	<u>d the water</u>	as ou	ır		
	Assume that the depth	of the water is <u>negligible</u> so that:	$\Delta \mathbf{E}_{pot} = 0$			Eqn 7		
	Because the water and stone are at the same temperature, no heat transfer occurs, therefore :							
			$Q_{23} = 0$			Eqn 8		
	Just as in Step 1-2, no work crosses the boundary of the system (the stone and the water) :							
			W ₂₃ = 0			Eqn 9		
	Now, use Eqns 7 - 9 to	o simplify the 1st Law, Eqn 1 to :	$\Delta \mathbf{U} + \Delta \mathbf{E}_{kin} = 0$		E	Eqn 10		
	Eqn 10 tells us that in stone and the water.	Step 2-3, <u>all</u> of the kinetic energy of t	he stone is <u>converted</u> into inte	rnal energy	/ in <u>bo</u>	<u>oth</u> the		
	Since the kinetic energ	y of the stone in state 1 is zero :	E _{kin,1}	0	J			
	We conclude from par	t (a) that:	E _{kin,2}	5884.0	J			
	After the stone hits the it has zero kinetic energy is the state of	bottom of the tank, rgy:	E _{kin.3}	0	J			
	Therefore, for Step 2-	3:	ΔE _{kin}	-5884.0	J			
	Plug this value of Δ Ε _{ki}	, into Eqn 10 to get:	ΔU	5884.0	J			
Step 3-4	Apply the 1st Law, Eq system.	1 , to a process from State 3 to Sta	te 4 , again using the <u>stone an</u>	<u>d the water</u>	as ou	ır		
	In Step 3-4 , there is <u>no</u> boundary of the system	<u>o change</u> in either the <mark>kinetic</mark> or the pont n. Therefore :	otential energy of the system.	<u>No</u> work c	rosse	s the		

$\Delta E_{kin} = 0$	Eqn 11	$\Delta E_{pot} = 0$	Eqn 12
$W_{34} = 0$	Eqn 13		

This allows us to simplify the 1st Law to :

 $\mathbf{Q}_{34} = \Delta \mathbf{U}$ Eqn 14

Because in Step 3-4 the system returns to its original temperature:

$$\Delta U_{34} = U_4 - U_3 = -(U_3 - U_1) = -(U_3 - U_2) = -\Delta U_{23}$$
 Eqn 15

-5884.0 J

ΔU Finally, we can plug this value for ΔU back into Eqn 14 to evaluate Q_{34} : Q_{34} -5884.0 J Note that the <u>negative</u> value for Q_{34} means that heat is transferred <u>from</u> the system to the surroundings.

Step 1-4 We can determine the values Q, W, ΔU , ΔE_{kin} and ΔE_{pot} for the process from state 1 to state 4 by adding the results from parts (a) through (c).

Q ₁₄	-5883.96 J	ΔE _{kin}	0.0 J
W ₁₄	0.0 J	ΔE _{kin}	-5883.96 J
∆U ₁₄	0.0 J		

Verify: The assumptions made in this problem solution cannot be verified.

Answer	5
--------	---

rs :		Q (J)	W (J)	∆U (J)	∆E _{kin} (J)	∆E _{pot} (J)
	a.) 1-2	0	0	0	5884	-5884
	b.) 2-3	0	0	5884	-5884	0
	c.) 3-4	-5884	0	-5884	0	0
	d.) 1-4	-5884	0	0	0	-5884.0

4C-2 Equilibration of a Tank and a Piston-and-Cylinder Device

Each of two vessels contains of steam at a different temperature and pressure. Vessel A is a rigid tank with a volume of **0.9** m³ and vessel **B** is a piston-and-cylinder device that holds **0.7** m³ of steam.

They are connected by a pipe with a closed valve in the line. Initially, tank A contains saturated steam at 150 kPa while cylinder B contains superheated steam at 350°C and 400 kPa.

When the valve is opened, the steam in the two vessels is allowed to come to equilibrium.

- a.) Determine the mass of steam in each vessel before the valve is opened: m_{A1} and m_{B1}.
- **b.)** If the equilibrium temperature is $T_2 = 240^{\circ}C$, calculate Q and W for the equilibration process.
- Read : The key aspect of this problem is whether ANY water remains in the cylinder, **B**, at equilibrium. If there is water left in B at the final state, it will exist at T_2 and $P_2 = P_{B1}$ because the piston would still be "floating". The other key is that this is a closed system, so the **mass** of water in the entire system remains constant. We can use the Steam Tables and the given initial volumes to answer part (a). In part (b), the work is done at constant pressure as the piston descends. So it is not difficult to compute. Finally, solve the 1st Law to determine Q. This is possible because we know the initial and final states and the work !

Diagram:

Given:

	$X_{A1} = 1$ $P_{A1} = 15$ $V_A = 0.9$ $T_{A2} = 24$	kg vap/kg 60 kPa 9 m ³ 90 °C	Tank A	Valve	Cylinder	T _{B1} = 350 °C P _{B1} = 400 kPa V _{B1} = 0.7 m ³ T _{B2} = 240 °C	
P _{A1}	150	kPa			V _{B1}	0.7	m ³
VA	0.9	m³			T _{B1}	350	°C
X _{A1}	1	kg vap/l	kg		P _{B1}	400	kPa
T₂	240	ා°					

T₂

Find:	a.)	m _{A1}	???	kg	b.)	Q	???	kJ
		m _{B1}	???	kg		W	???	kJ
Assumptions:		1 -	- The <u>initia</u>	al and <u>final</u> stat	es are equilibrium :	states.		
		2 -	- The <mark>proc</mark>	ess is a quasi	-equilibrium proces	ss.		
Equation	ns / Data /	Solve:						

Part a.) We can determine m_{A1} because we know the volume of the tank and we can look up the specific volume of the saturated vapor that it contains.

$$m_{A1} = \frac{V_A}{\hat{V}_{A1}}$$
 Eqn 1 NIST WebBook: V_{A1} 1.1593 m³/kg

We can use the same approach to determine \mathbf{m}_{B1} , but first we must determine its state.

At 350 kPa, $T_{sat} = 133.52^{\circ}C$. Since $T_{B1} > T_{sat}$, tank B <u>initially</u> contains superheated vapor.

NIST WebBook:	V _{B1}	0.71396 m ³ /kg
	m _{B1}	0.9805 kg

Part b.)In part b, there are two possibilities. At equilibrium, either B contains some water or it is completely empty.Case 1 - B is not empty: $P_{B2} = P_{B1}$ because the piston is still floating.

Case 2 - B is empty: $V_{B2} = 0$ and <u>ALL</u> of the water is in tank A.

Let's test **Case 1** first. Since $T_2 > T_{sat}$ at **500 kPa**, the water would still be superheated vapor and the **specific volume** would be:

				V	0.58314	m³/kg
There	fore the total v	olume occup	ied by this superheated vapor would be:			
.,	(\. ^			4 00 45	3

$$V_2 = (m_{A1} + m_{B1}) \hat{V}_2$$
 Eqn 2 V_2 1.0245 m³

Since this **volume**, which the total mass of water in the system occupies at P_{B1} , is greater than the **volume** of tank A, we can conclude that all of the water <u>could not fit</u> into tank A at P_{B1} . If P_2 were less than P_{B1} , the water would occupy <u>even more</u> volume and again would <u>not fit</u> into tank A. <u>Some</u> water <u>must</u> remain in the cylinder and, therefore, $P_{B2} = P_{B1}$.

$$V_{B2} = V_2 - V_{A1} = 0.1245 \text{ m}^3$$

-230.2

kJ

Calculate the PV or boundary work from:

$$\mathbf{W} = \int_{v_1}^{v_2} \mathbf{P} \mathbf{dV}$$
 Eqn 3

But, since this process is isobaric:

$$W = P (V_2 - V_1)$$
Eqn 4

W

Finally, we need to apply the 1st Law to determine **Q**. Use all of the water in both vessels as the system.

$$Q - W = \Delta U$$
 Eqn 5

Or:

$$Q = U_2 - U_1 + W = m_{tot} \hat{U}_2 - m_{A1} \hat{U}_{A1} - m_{B1} \hat{U}_{B1} + W$$
 Eqn 6

Use the **NIST WebBook** and the **ASHRAE Convention** to determine all of the **specific internal energies**.

m _{tot}	1.7568	kg	U,	41	2519.2	kJ/kg
U ₂	2651.0	kJ/kg	U	31	2884.4	kJ/kg
			Δι	J	-126.6	kJ
				Q	-356.8	kJ

Verify: None of the assumptions can be verified from the data given in the problem statement.

Answers : a.)	m _{A1}	0.776	kg	b.)	W	-230	kJ
	m _{B1}	0.980	kg		Q	-357	kJ

4C-3 Quenching a Steel Bar in Oil

4 pts

A hot **steel** bar weighing **20 kg** is submerged in an insulated bath holding **50 L** of heavy oil. The **steel** bar and the **oil** are allowed to equilibrate thermally without exchanging heat with the surroundings.

Initially, the steel bar and the oil are at 700°C and 25°C, respectively. Determine the final temperature of the steel bar and the oil.

Data: steel: $\rho = 8000 \text{ kg/m}^3$, $C_v = 0.42 \text{ kJ/kg-K}$, oil: $\rho = 890 \text{ kg/m}^3$, $C_v = 2.1 \text{ kJ/kg-K}$.

Read : The easiest way to solve this problem is to choose the <u>entire contents</u> of the tank, both the oil and the steel, as our system.

If we assume that this system is adiabatic and does not have any **work** interactions with its surroundings, then the **internal energy** of the system must remain constant as the steel bar cools and the oil becomes warmer. If we further assume that the steel and oil are incompressible, then this is a constant **volume** process. For solids and liquids it is often reasonable to assume the **heat capacity** is a constant over a fairly wide **temperature** range. The only unknown left in the **1st Law** is the <u>final</u> system **temperature** !

Diagram: The diagram in the problem statement is adequate.

Given:	m _{steel} T _{steel,1} V _{oil} T _{oil,1}	20 700 0.05 25	kg °C m ³ °C	P _{steel} C _{V,steel} P _{oil} C _{V,oil}	8000 0.42 890 2.1	kg/m ³ kJ/kg-K kg/m ³ kJ/kg-K
Find:	T ₂ =	???	°C			
Assump	tions:	1 - 2 - 3 -	 Steel and oil have consta No heat is exchanged wit Steel and the oil are <u>both</u> process. 	nt heat capacities. h the surroundings by either the ste incompressible, so this process is	eel or the oi a constant	l. volume

Equations / Data / Solve:

We begin by writing the 1st Law and we choose as our system the oil and the steel.

$$\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U} = \mathbf{m}_{\text{steel}} \left(\hat{\mathbf{U}}_{2,\text{steel}} - \hat{\mathbf{U}}_{1,\text{steel}} \right) + \mathbf{m}_{\text{oil}} \left(\hat{\mathbf{U}}_{2,\text{oil}} - \hat{\mathbf{U}}_{1,\text{oil}} \right) = \mathbf{0}$$
 Eqn 1

By cleverly selecting our system, $\mathbf{Q} = \mathbf{0}$ and $\mathbf{W} = \mathbf{0}$. This makes the solution <u>simpler</u>.

$$\mathbf{m}_{oil} =
ho_{oil} \, \mathbf{V}_{oil}$$
 Eqn 2 Therefore: \mathbf{m}_{oil} 44.5 kg

Because both oil and steel are assumed to be incompressible with constant heat capacities:

$$\Delta \hat{\mathbf{U}} \approx \hat{\mathbf{C}}_{\mathbf{V}} \, \Delta \mathbf{T}$$
 Eqn 3

$$\mathbf{m}_{\text{steel}} \, \hat{\mathbf{C}}_{\text{V,steel}} \left(\mathbf{T}_{2} - \mathbf{T}_{\text{1,steel}} \right) + \mathbf{m}_{\text{oil}} \, \hat{\mathbf{C}}_{\text{V,oil}} \left(\mathbf{T}_{2} - \mathbf{T}_{\text{1,oil}} \right) = \mathbf{0} \qquad \qquad \text{Eqn 4}$$

Now, solve for T₂:

$$= \left(m_{\text{steel}} \, \hat{C}_{\text{v,steel}} + m_{\text{oil}} \, \hat{C}_{\text{v,oil}} \right) \mathsf{T}_2 = m_{\text{steel}} \, \hat{C}_{\text{v,steel}} \, \mathsf{T}_{\text{1,Cu}} + m_{\text{oil}} \, \hat{C}_{\text{v,oil}} \, \mathsf{T}_{\text{1,oil}}$$
Eqn 5

$$T_{2} = \frac{m_{\text{steel}} \, \hat{C}_{\text{V,steel}} \, T_{\text{1,steel}} + m_{\text{oil}} \, \hat{C}_{\text{V,oil}} \, T_{\text{1,oil}}}{m_{\text{steel}} \, \hat{C}_{\text{V,steel}} + m_{\text{oil}} \, \hat{C}_{\text{V,oil}}}$$
Eqn 6

Verify: None of the assumptions can be verified from the data given in the problem statement.
 Assumptions 1 & 3 are very nearly true for solids over the temperature range covered in this problem.
 Assumption 2 could be made nearly true with sufficient insulation.

4C-4 Muzzle Velocity of a Pellet Fired From an Air Gun

6 pts

An **air**-powered pellet gun uses **1.5 mL** of compressed **air** at **1.2 MPa** and **29°C** in a small tank to propel a projectile. Assume the pellet, with a **mass** $m_p = 0.02 \text{ kg}$, seals against the walls of the cylinder and behaves like a piston.

isothermally as the pellet moves along the barrel of the gun and the **pressure** in the barrel drops all the way to **ambient pressure**, **100 kPa**, just as the bullet leaves the gun barrel. Estimate...

- a.) The mass and volume of the air in the cylinder as the pellet reaches the end of the barrel
- **b.)** The **work** done by the **air** within the cylinder on the pellet and
- the **work** done ON the ambient **air** (outside the gun) by the bullet
- c.) The velocity of the bullet when it leaves the gun barrel (muzzle velocity)

Boldly assume that the process is a quasi-equilibrium process.

Read : - We must assume that the process is a quasi-equilibrium process. This is <u>not</u> a great assumption, but it does yield a reasonable 1st <u>approximation</u> of the <u>muzzle velocity</u> of the <u>bullet</u>.

- We can use the Generalized Compressibility EOS to show that, despite the **molar volume**, the gas behind the bullet actually behaves as an ideal gas. This fact allows us to solve the problem using the Ideal Gas EOS.

- We can determine the **work** done <u>on</u> the bullet by the air behind it using the relationship for **boundary work** done by an ideal gas as it expands <u>isothermally</u>.

- The bullet does **work** on the surrounding air in a constant **pressure** process. So, we can evaluate this **work** term using the formula for isobaric compression of an ideal gas.

- Finally, we can apply the 1st Law to the bullet. There is <u>no heat exchanged</u> and <u>no</u> change in the internal energy or potential energy of the bullet. The only remaining terms are the two **work** terms we already know how to determine and the <u>change</u> in kinetic energy. The <u>initial</u> **velocity** is **zero**, so the only unknown left in the 1st Law equation is the <u>final</u> **velocity** of the bullet as it leaves the barrel of the gun !

Diagram: The diagram in the problem statement is adequate.

Given:	V ₁ P ₁	1.5E-06 1200	m ³ kPa	P ₂	100	kPa
	Τ ₁	29	°C	T _c	132.5	K
	m _B	0.02	kg	P _c	3770	kPa
Find:	V ₂	???	m ³	W _{on surr}	???	J
	W _{on bullet}	???	J	V ₂	???	m/s

Assumptions:

- For purposes of computing the **work** done on the **bullet**, you may treat the air inside the cylinder as an ideal gas. This is <u>not</u> entirely accurate because the <u>initial</u> **pressure** is so high.

- Assume that the air in the barrel is initially in an equilibrium state.
- Assume that the air in the barrel as the bullet leaves the gun is also in an equilibrium state.
- Assume the process is isothermal.

- For estimation purposes, assume that the process is a quasi-equilibrium process. This assumption will yield the <u>maximum muzzle velocity</u> that the <u>bullet could</u> attain.

- Assume that the air within the system is a closed system until the bullet leaves the gun.

Part c.)

- If the temperature of the bullet remains constant, then its internal energy does not change.

- <u>Changes</u> in the gravitational potential energy of the bullet are <u>negligible</u>, especially if the gun is fired horizontally !

- Heat transfer to or from the bullet is negligible if the process is isothermal.

Equations / Data / Solve:

Part a.) Begin by using the initial state to determine the number of moles of air inside the barrel. This remains constant until the bullet leaves the gun and that is the time interval in which we are interested.

Reduced temperature and pressure are required in order to use the compressibility charts to determine the compressibility, z :

$T_{R} = \frac{T}{T_{c}}$		Eqn 3		P	$P_{R} = \frac{P}{P_{c}}$	Eqn 4
R	8.314	J/mol-K	Z 1	1 (Be	ecause P_c is so high)	
T _{R1}	2.28					
P _{R1}	0.318		n	7.17E-04 mo	oles	
T _{R2}	T _{R1}		V ₁	2.1E-03 m ³	³/mol	
P _{R2}	0.027		Z ₂	1 (Be	ecause P_c is so high)	

Since **Z** = 1 throughout the process, it is safe to treat air as an ideal gas throughout this process.

This is a surprise since the molar volume is 2.5 L/mol and that is less than 5 L/mol.

The process is assumed to be isothermal and we discovered that the air could be treated as an ideal gas. Therefore:

Part b.) Next, we can calculate the **work** done by the air, on the **bullet** using the **work** equation derived for isothermal processes like this one:

$$\mathbf{W} = \int_{V_1}^{V_2} \mathbf{P} d\mathbf{V} = \mathbf{P}_1 \, \mathbf{V}_1 \, \mathbf{Ln} \left(\frac{\mathbf{V}_2}{\mathbf{V}_1} \right) = \mathbf{P}_1 \, \mathbf{V}_1 \, \mathbf{Ln} \left(\frac{\mathbf{P}_1}{\mathbf{P}_2} \right)$$
Eqn 8
$$\mathbf{W}_{\text{on bullet}} \qquad 4.473 \quad \mathbf{J}$$

The bullet does **work** on the surrounding air against a constant <u>restraining</u> **pressure**, **P**_{atm}. Therefore:

$$\mathbf{W}_{\text{on surr}} = \int_{V_1}^{V_2} \mathbf{P} \, \mathbf{dV} = \mathbf{P}_{\text{atm}} \left(\mathbf{V}_2 - \mathbf{V}_1 \right)$$
Eqn 9
$$\mathbf{W}_{\text{on surr}}$$
1.650 J

Part c.) In order to determine the muzzle velocity of the bullet, we must determine the <u>change</u> in the <u>kinetic energy</u> of the <u>bullet</u> as a result of the net amount of **work** done <u>on it</u>.

We can do this by applying the 1st Law, using the bullet as our system.

J

$$\mathbf{Q} - \mathbf{W}_{net} = \Delta \mathbf{U} + \Delta \mathbf{E}_{kin} + \Delta \mathbf{E}_{pot}$$
 Eqn 10

The <u>net</u> work is the <u>difference</u> between the work done <u>on</u> the surroundings and the work done by the bullet.

$$W_{net} = W_{on \ surr} + W_{on \ bullet} = -\Delta E_{kin} = -\frac{m_B}{2g_c} (v_2^2 - v_1^2) = -\frac{m_B}{2g_c} v_2^2$$
Eqn 11

W_{net} -2.823

Solving for v₂ :

$$v_2 = \sqrt{-W_{net} \frac{2g_c}{m_B}}$$
 Eqn 12

V₂

Verify: The ideal gas assumptions were shown to be <u>valid</u> using the <u>Generalized Compressibility EOS</u>. The remaining assumptions are reasonable, but cannot be verified using only the information given in the problem statement.

Answers :	V ₂	1.80E-05	m ³
	W _{on bullet}	4.47	J

W _{on surr}	1.65	J
V ₂	16.8	m/s

16.80

m/s

4E-1 Isobaric Expansion of Steam in a Closed System

Steam is contained in a piston and cylinder device with a free-floating piston. Initially, the steam occupies a volume of 0.18 m³ at a [pressure of 500 kPa.

The steam is slowly heated until the temperature is 400°C, while the pressure remains constant. If the cylinder contains 0.65 kg of steam, determine the heat transfer and the work in kJ for this process.

Read : We know the values of **two** <u>intensive</u> variables for **state 1**: **P** and **specific volume**, so we can determine the values of <u>all</u> other properties in this state.

We know the values of **two** <u>intensive</u> variables for **state 2**: **T** and **P**, so we can determine the values of <u>all</u> other properties in this state.

6 pts

1

Therefore we can calculate ΔU directly.

We can also use the definition of work for an isobaric process to evaluate W₁₂.

Once we know W_{12} and ΔU , we can use the 1st Law to evaluate Q_{12} .

Given:	V ₁	0.18	m ³	Find:	Q ₁₂	???	kJ
	m	0.65	kg		W ₁₂	???	kJ
	P ₁	500	kPa				
	P ₂	500	kPa				
	T₂	300	°C.				

Diagram:

Assumptions:

<u>Changes</u> in kinetic and potential energies are <u>negligible</u>. The process is a <u>quasi-equilibrium process</u>.

Equations / Data / Solve:

1 -2 -

Choose the water inside the cylinder as the system. Apply the <u>integral form</u> of the 1st Law to the process:

$$\mathbf{Q}_{12} - \mathbf{W}_{12} = \Delta \mathbf{U} + \Delta \mathbf{E}_{kin} + \Delta \mathbf{E}_{pot}$$
 Eqn

If we assume that <u>changes</u> in kinetic and potential energies are <u>negligible</u>, then Eqn 1 simplifies to :

$$Q_{12} - W_{12} = \Delta U = U_2 - U_1 = m(\hat{U}_2 - \hat{U}_1)$$
 Eqn 2

We can evaluate W₁₂ from the definiton of work applied to an isobaric process.

$$W_{12} = \int_{1}^{2} P dV = P \int_{1}^{2} dV = P (V_2 - V_1) = m P (\hat{V}_2 - \hat{V}_1)$$
 Eqn 3

Let's combine Eqns 2 and 3:

$$\mathbf{Q}_{12} = \mathbf{m}\left[\left(\hat{\mathbf{U}}_2 - \hat{\mathbf{U}}_1\right) + \mathbf{P}\left(\hat{\mathbf{V}}_2 - \hat{\mathbf{V}}_1\right)\right] = \mathbf{m}\left(\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1\right)$$
Eqn 4

V_{sat liq}

V_{sat vap}

0.0010925 m³/kg 0.37481

m³/kg

We still need to lookup the same amount of data in the Steam Tables, V and H, but the calculations are just a little bit simpler and faster using H than using U.

Before we can look up H, we need to determine the state of the water in the cylinder.

Calculate V₁ from :
$$\tilde{V}_1 = \frac{V_1}{m_1}$$
 V₁ 0.2769 m³/kg

At 500 kPa :

Since $V_{sat lig} < V_1 < V_{sat vap}$, we conclude that a saturated mixture exists in the cylinder at state 1. So, we must next evaluate the quality of the steam.

$$X = \frac{V - V_{satliq}}{V_{satvap} - V_{satliq}}$$
 Eqn 5 x 0.7381 kg vap/kg

Then, we can use the quality to evaluate the specific enthalpy :

$$\hat{H}_{1} = x_{1} \hat{H}_{sat vap} + (1 - x_{1}) \hat{H}_{sat liq}$$
Eqn 6
$$\begin{array}{cccc} H_{sat liq} & 640.09 & kJ/kg \\ H_{sat vap} & 2748.1 & kJ/kg & H_{1} & 2196.0 & kJ/kg \end{array}$$
Next, we need to determine the **phases** present in **State 2**. We can do this by comparing T₂ to T_{sat}(P₂).
In the saturation pressure table of the Steam Tables we find: T_{sat}(P₂) 151.8 °C
Because T₂ > T_{sat}(P₂), state 2 is a superheated vapor.
From the **NIST Webbook** or the Superheated Tables of the Steam Tables we obtain the following data:
$$V_{2} \qquad 0.52261 \quad m^{3}/kg \qquad H_{2} \qquad 3064.6 \quad kJ/kg$$
Now, we can plug values back into Eqns 3 and 4 to evaluate Q₁₂ and W₁₂:

	W ₁₂	79.8	kJ	Q ₁₂	564.6	kJ
Verify:	The assumption	ons made	in this problem solution cannot be verified.			

4F-1 Heat and Work for a Cycle Carried Out in a Closed System 6 pts A gas in a piston and cylinder device undergoes three quasi-equilibrium processes to complete a thermodynamic cycle. The following information is known about the three steps that make up the cycle. Process 1-2: constant volume, V = 37 L, ΔU₁₂ = 31.6 kJ Process 1-2: constant volume, V = 37 L, ΔU₁₂ = 31.6 kJ Process 2-3: expansion with PV = constant and ΔU₂₃ = 0 Process 3-1: constant pressure, P = 155 kPa, W₃₁ = -15.1 kJ Assume changes in kinetic and potential energies are negligible. a.) Sketch the path for the cycle on a PV Diagram b.) Calculate the total boundary work for the cycle in kJ c.) Calculate Q₂₃ in kJ d.) Calculate Q₃₁ in kJ e.) Determine whether this cycle is a power cycle or a refrigeration/heat-pump cycle and calculate the COP or thermal efficiency.

Read :Work your way around the cycle, step by step. Sum the boundary work for the three steps to determine W_{cycle} .Write and solve the 1st Law for steps 2-3 and 3-1 to determine Q_{23} and Q_{31} .Write and solve the 1st Law for steps 2-3 and 3-1 to determine Q_{12} and sum the Q's to evaluate Q_{cycle} .Check your work using $Q_{cycle} = W_{cycle}$ because $\Delta U_{cycle} = 0$.Power cycle is $W_{cycle} > 0$. Refrigeration or HP cycle of $W_{cycle} < 0$.

Given:	Step 1-2:	$V_1 = V_2$	0.037	m ³	Step 3-1:	$P_3 = P_1$	155	kPa
		U ₂ - U ₁	31.6	kJ		W ₃₁	-15.1	kJ
	Step 2-3	$P_2 V_2 = P_3 V_3$ $U_3 = U_2$						

Diagram: See the answer to **part (a)**, below.

Find:	a.)	Sketch the	cycle on a P	/ Diagram.	d.)	Q ₃₁	???	kJ
	b.)	W _{cycle}	???	kJ	e.)	Power or	Refrigeration	Cycle ?
	c .)	Q ₂₃	???	kJ				

Assumptions:

1 - The gas is a closed system

2 - Boundary work is the <u>only</u> form of work interaction

3 - <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.

Equations / Data / Solve:

Part a.)

Part b.) Since W_{cycle} = W₁₂ + W₂₃ + W₃₁, we will work our way around the cycle and calculate <u>each</u> work term along the way.

Because the volume is constant in step 1-2: W₁₂ 0 kJ

In step 2-3: P V = C , therefore, the definition of boundary work becomes:

$$W_{23} = \int_{V_2}^{V_3} P \, dV = C \, \int_{V_2}^{V_3} \frac{dV}{V} = C \, Ln \frac{V_3}{V_2}$$
Eqn 1

But, we don't know V_3 ! Perhaps we can use W_{31} to detemine V_3 . Step 3-1 is isobaric, therefore, the definition of boundary work becomes:

$$W_{31} = \int_{V_3}^{V_1} P \, dV = P_3 \, (V_1 - V_3)$$
 Eqn 2

Solve this equation for V_3 :

 $\mathbf{V}_3 = \mathbf{V}_1 - \frac{\mathbf{W}_{31}}{\mathbf{P}_3}$ Eqn 3

0.1344

m³

V₃

Now, plug V_3 and $C = P_3V_3$ into Eqn 1 to determine W_{23} :

W23
 26.9
 kJ

 Sum the work terms for the three steps to get
$$W_{cycle}$$
:
 W_{cycle}
 11.78
 kJ

 Part c.)
 Write the 1st Law for step 2-3:
 $Q_{23} - W_{23} = U_3 - U_2 = 0$
 Eqn 4

 $Q_{23} = W_{23}$
 26.88
 kJ

 Part d.)
 Write the 1st Law for step 3-1:
 $Q_{31} - W_{31} = U_1 - U_3$
 Eqn 5

 But, $U_2 = U_3$:
 $Q_{31} - W_{31} = U_1 - U_3 = U_1 - U_2 = -(U_2 - U_1)$
 Eqn 6

 Solve for Q_{31} :
 $Q_{31} = W_{31} - (U_2 - U_1)$
 Eqn 7

 Plug in the given values :
 $Q_{31} = W_{31} - (U_2 - U_1)$
 Eqn 7

Define:

$$Q_{12} - W_{12} = U_2 - U_1 = 0$$
 Eqn 8

Q₁₂

 η_{th}

31.6

kJ

$$Q_{cycle} = Q_{12} + Q_{23} + Q_{31}$$
 Eqn 10
 Q_{cycle} 11.78 kJ

Since Q_{cycle} > 0 and W_{cycle} > 0, this is a power cycle !

Notice that $\mathbf{Q}_{cycle} = \mathbf{W}_{cycle}$ because $\Delta \mathbf{U}_{cycle} = \mathbf{0}$.

Thermal Efficiency is defined by :
$$\eta_{th} = \frac{W_{cycle}}{Q_{H}} = \frac{W_{cycle}}{Q_{12} + Q_{23}} = \frac{Q_{cycle}}{Q_{12} + Q_{23}}$$
Eqn 11

d.) e.)

The assumptions made in this problem solution cannot be verified. But all of these assumptions are pretty solid. Verify:

Answers : a.)		See th	e sketch, ab	ove.
b.)	1	W _{cycle}	11.8	kJ
c.)		Q ₂₃	26.9	kJ

Q ₃₁	-46.7	kJ
This is	a Power C	ycle.
**	20.4	0/

20.14

%

4F-2 Efficiency of a Power Cycle

2 pts

A power cycle produces 2.4 x 10⁸ Btu and rejects 7.1 x 10⁸ Btu of heat to the surroundings. Calculate the thermal efficiency of the cycle.

Read : This one is a straightforward application of the definition of the the 1st Law and the efficiency of a power cycle.

Diagram:

Given:	W _{cycle}	2.4E+08	Btu	Qc	7.1E+08	Btu
Find:	η_{cycle}	???				
Assumptio	n:	1 -	The cycle only exchanges heat with the ty	vo thermal reserv	oirs.	

Equations / Data / Solve:

1st Law applied to the heat engine: $W_{cycle} = Q_H - Q_C$ Eqn 1

$$\eta = \frac{W_{\text{cycle}}}{Q_{\text{u}}}$$
 Eqn 2

Degree of freedom analysis: **2 eqns** in **2 unknowns**: Q_H and η .

Solve Eqn 1 for
$$Q_H$$
: $Q_H = W_{cycle} + Q_C$ Eqn 3

Q_H 9.5E+08 Btu

0.2526

Next, plug numbers into Eqn 2 :

Definition of thermal efficiency :

Verify assumption:The only assumption cannot be verified.Answer questions:η25.3

Dr. B - LearnThermo.com

η

4F-3 Coefficient of Performance of a Refrigeration Cycle

An industrial refrigerator rejects heat at a rate of 24,750 kJ/min to the surroundings. If the refrigeration cycle has a COP of β = 3.3, determine Q_c and W_{cycle} , each in kJ/min.

- **Read :** This one is a straightforward application of the definition of the the 1st Law and the COP of a refrigeration cycle.
- Diagram :

3 pts

Given:	$COP = \beta$	3.3		Find:	Q _c	???	kJ/min
	Q _H	24,750	kJ/min		W _{cycle}	???	kJ/min

Assumption: - The cycle <u>only</u> exchanges heat with the **two** thermal reservoirs.

Equations / Data / Solve:

1st Law applied to the refrigerator:
$$\mathbf{Q}_{\mathbf{H}} = \mathbf{W}_{cycle} + \mathbf{Q}_{c}$$
Eqn 1

Definition of **COP** for a refrigerator :
$$\beta =$$

=
$$rac{\mathbf{Q_c}}{\mathbf{W_{cycle}}}$$
 Eqn 2

Degree of freedom analysis: 2 eqns in 2 unknowns: Q_c and W_{cycle} . Solve Eqn 2 for Q_c and use the result to eliminate Q_c from Eqn 1 :

$$\mathbf{Q}_{\mathbf{C}} = \beta \ \mathbf{W}_{\mathbf{cycle}} \qquad \qquad \mathbf{Eqn} \ \mathbf{3} \qquad \qquad \mathbf{Q}_{\mathbf{H}} = \mathbf{W}_{\mathbf{cycle}} + \beta \ \mathbf{W}_{\mathbf{cycle}} \qquad \qquad \mathbf{Eqn} \ \mathbf{4}$$

Next, solve Eqn 4 for W_{cycle} in terms of the known quantities Q_H and β .

$$W_{cycle} = \frac{Q_{H}}{\beta + 1}$$
 Eqn 5

	Plug numbers into E	qn 5 :		W _{cycle}	5755.8	kJ/min
	Now, use this value	for W_{cycle} and t	given value of β in Eqn 3 to evaluate	Q _C :		
				Qc	18994.2	kJ/min
Verify:	The only assumption	n cannot be ve	d.			
Answers :	Q _c = 1900	00 kJ/mi	1	W _{cycle} =	5760	kJ/min

Dr. B - LearnThermo.com

4F-4 Heat and Work for a Cycle Executed in a Closed System Containing R-134a

8 pts

Ammonia in a piston-and-cylinder device undergoes a 3-step thermodynamic cycle made up of the following three quasiequilibrium processes.

Step 1-2: Isochoric heating from -20°C and 150 kPa up to 50°C

Step 2-3: Isothermal compression until the quality is 0.55 kg vap/kg, Q₂₃ = -91.7 kJ

Step 3-1: Adiabatic expansion

a.) Sketch the process path for this cycle on a **PV Diagram**. Put a point on the diagram for each state and label it. Be sure to include and label **all** the important features for a complete **PV Diagram** for this system

b.) Calculate Q_{cycle} and W_{cycle} in kJ/kg

c.) Determine whether this cycle is a power cycle or a refrigeration/heat-pump cycle? Explain your reasoning.

Read : We are given T_1 and P_1 , so we can determine any and all properties of the system using the Ammonia Tables. In particular, we can evaluate the **specific volume** and we know that this <u>does not change</u> in **step 1-2**. This gives us a **2nd** intensive property for **state 2** and allows us to evaluate <u>all</u> of the properties of **state 2**. We expect $T_2 > T_1$. **Step 2-3** is an isothermal compression to a **quality** of $x_3 = 0.55$. Because $T_3 = T_2$, we will be able to evaluate all of the properties of **state 3**, again using the Ammonia Tables. In each of the three steps, we know the value of either the **heat** or the **work**. $W_{12} = 0$ because the process is **isochoric**. Q_{23} is given and $Q_{31} = 0$ because the process is adiabatic. So, when we apply the 1st Law to each step, there is just one unknown and we can evaluate it. Once we know Q and W for <u>each</u> step, we can determine Q_{cycle} and W_{cycle} because they are the <u>sum</u> of the Q's and W's for the steps that make up the cycle, respectively.

Given :	T ₁	-20	°C	Find :	Q ₁₂	???	kJ/kg
	P ₁	150	kPa		W ₂₃	???	kJ/kg
	T ₂	50	°C		W ₃₁	???	kJ/kg
	T ₃	50	°C		Q _{cycle}	???	kJ/kg
	X ₃	0.55	kg vap/kg		W _{cycle}	???	kJ/kg
	Q ₂₃	-91.7	kJ/kg		Power or F	efrigeratio	n Cycle ?
	Q ₃₁	0	kJ				

Diagrams :

Assumptions :

- 1 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 2 Boundary work is the only form of work that crosses the system boundary.

Equations / Data / Solve :

Part b.) Let's begin by writing the 1st Law for each of the three steps that make up the cycle, assuming that <u>changes</u> in potential and kinetic energies are <u>negligible</u>.

Step 1-2:
$$\hat{Q}_{12} - \hat{W}_{12} = \Delta \hat{U} = \hat{U}_2 - \hat{U}_1$$
 Eqn 1

Step 2-3 :
$$\hat{Q}_{23} - \hat{W}_{23} = \Delta \hat{U} = \hat{U}_3 - \hat{U}_2$$
 Eqn 2

Step 3-1 :
$$\hat{Q}_{31} - \hat{W}_{31} = \Delta \hat{U} = \hat{U}_1 - \hat{U}_3$$
 Eqn 3

Step 1-2 is isochoric, so <u>no</u> boundary work occurs. If we <u>assume</u> that boundary work is the <u>only</u> form of work interaction in this cycle, then $W_{12} = 0$. $Q_{31} = 0$ because step 3-1 is adiabatic.

We can solve Eqns 1 - 3 to evaluate the unknowns Q_{12} , W_{23} and W_{31} .

Step 1-2 :
$$\hat{\mathbf{Q}}_{12} = \hat{\mathbf{U}}_2 - \hat{\mathbf{U}}_1$$
 Eqn 4

Step 2-3 :
$$\hat{W}_{23} = \hat{Q}_{23} + \hat{U}_2 - \hat{U}_3$$
 Eqn 5

Step 3-1 :
$$\hat{W}_{31} = \hat{U}_3 - \hat{U}_1$$
 Eqn 6

Our next step must be to determine the value of the **specific internal energy** at **states 1**, **2** and **3** because, once we know these, we can use **Eqns 4 - 6** to evaluate the unknowns Q_{12} , W_{23} and W_{31} .

Let's begin with state 1. First, we must determine the phase or phases that exist in state 1. We can accomplish this by comparing P_1 to $P_{sat}(T_1)$.

P_{sat}(T₁) 190.08 kPa

Since $P_1 < P_{sat}(T_1)$, we conclude that a superheated vapor exists in the cylinder at state 1.

We can determine U_1 from the Superheated Ammonia Tables. We can also determine V_1 because we know V_2 = V_1 and the knowledge of this **2nd** intensive variable for state 2 will allow us to evaluate U_2 .

$$V_1 = V_2 = 0.79779 \text{ m}^3/\text{kg}$$
 U_1 1303.8 kJ/kg

Next, let's work on state 2. We know the value of 2 intensive variables, T_2 and V_2 , and we know that if a superheated vapor expands at constant volume, it must still be a superheated vapor. Consequently, we can use the Superheated Ammonia Tables to determine U_2 (and any other properties at state 2 that we want).

At $T_2 = 50^{\circ}C$, it turns out that $V_2 = 0.79779 \text{ m}^3/\text{kg}$ falls between 100 kPa and 200 kPa, so we must interpolate to determine U_2 .

At T ₂ = 50°C :	V (m ³ /kg)	U (kJ/kg)	P (kPa)			
	1.56571	1425.2	100	-		
	0.79779	U2	P ₂	U_2	1421.8	kJ/kg
	0.77679	1421.7	200	P ₂	197.3	kPa

Now, let's work on state 3. We know the temperature and the quality, so we can determine U_3 using :

$$\hat{\mathbf{U}}_3 = \mathbf{X}_3 \, \hat{\mathbf{U}}_{\text{sat vap}} + (\mathbf{1} - \mathbf{X}_3) \hat{\mathbf{U}}_{\text{sat liq}}$$
 Eqn 7

We can use the Saturated Ammonia Tables to determine $U_{sat vap}$ and $U_{sat liq}$ at 50°C and then we can plug numbers into Eqn 7 to evaluate U_3 .

U _{sat liq}	171.41	kJ/kg			
U _{sat vap}	263.69	kJ/kg	U ₃	222.2	kJ/kg

Now, we can go back and plug the values of the **specific internal energies** into **Eqns 4 - 6** to evaluate the unknowns Q_{12} , W_{23} , and W_{31} .

Q ₁₂	118.04	kJ/kg	W ₂₃	1107.94	kJ/kg
			W ₃₁	-1081.60	kJ/kg

Next, we need to evaluate the **specific work** and **specific heat transfer** for the <u>entire</u> cycle.

The **specific work** for the cycle is the sum of the **specific work** for each step.

The specific heat transfer for the cycle is the sum of the specific heat transfer for each step.

Q _{cvcle}	26.34	kJ/kg	W _{cycle} 26	.34	kJ/kg
~ cycle			Cycle – -		

Verify: The assumptions cannot be verified from the information in the problem statement alone.

Answers : Part a.) See the diagram, above.

Part b.)

	Q (kJ/kg)	W (kJ/kg)
Step 1 - 2	118.0	0
Step 2 - 3	-91.7	1107.9
Step 3 - 1	0	-1081.6
Cycle	26.3	26.3

Part c.)

Because W_{cycle} > 0, this is a power cycle !

The First Law of Thermodynamics: Open Systems

Many important processes take place in open systems. Application of the First Law of Thermodynamics to an open system leads to the **rate** form of the First Law. The concept of **flow work** is introduced and this allows us to eliminate internal energy terms in favor of enthalpy terms in the First Law.

The next part of Chapter 5 shows how the First Law can be used to analyze a wide variety of steady-state processes including pumps, compressors, turbines, nozzles and heat exchangers.

Chapter 5 concludes with a discussion of transient or unsteady-state processes. We learn how to analyze transient uniform state, uniform flow processes.
Workbook

LearnThermo.com

Chapter 5

Conservation of Mass

- Mass is neither created nor destroyed
- Integral Mass Balance on an Open System

$$\Delta m_{sys} = \sum_{i=1}^{\# feeds} m_{in,i} - \sum_{j=1}^{\# effluents} m_{out,j}$$

Differential Mass Balance on an Open System

- Rate of change of mass in the system = total rate at which mass enters the system - total rate at which mass leaves the system
- A feed stream enters the system
- An effluent stream leaves the system
- These equations look complicated, but, in practice, they are pretty simple.

• 1st Law, SS, SISO system

• No tricks.

Flow Work

- It is unusual to have boundary work in an open system.
- One boundary of the system would be required to move.
- This might be accomplished by a balloon or a bladder or a piston-and-cylinder device, but would be MOST unusual.
- The flow work gets combined with the change in internal energy and becomes the change in enthalpy.
- Shaft work is the work you need to put into a system to make a process proceed or it is the useful work you get out of a process.
- Flow work is not especially useful or interesting, so we split it away from the shaft work.
- In fact, the 1st Law is so often applied to SS, SISO systems that we tabulate a function that already takes flow work into account...and we call it enthalpy.

Pout

- Flow work is always present in flow systems, but we don't pay much attention to it because we cannot recover this work in a useful form.
- The bottom line is that for SS, SISO systems, enthalpy is the key property, not internal energy.
- It just saves you time, over and over again, to look up specific H instead of looking up BOTH specific U and specific V.

Workbook

LearnThermo.com

- MIMO processes are common, but not too common in this course.
- Mixers and splitters are the only MIMO devices we will use in this course.
- We will learn more about them later in this class.
- MIMO processes are not nearly as challenging as the long equations on this page ight make you believe.

Steady-State Processes	 These are the processes we will analyze in this course. With these devices engineers have built an
• In the real world, the goal is usually to operate flow processes at steady-state.	amazing array of processes from jet air- planes to artificial hearts !
Common steady-state flow processes:	
♦ Nozzles & Diffusers	
◊ Turbines	
O Pumps and Compressors	
♦ Throttling Devices	
♦ Heat Exchangers	
Mixing Chambers	
♦ Pipes	

- Nozzles and diffusers are usually relatively small and the fluid moves through it quickly
- Therefore, little change in potential energy occurs
- There is little area or time for significant heat transfer to occur
- Still, these assumptions are not always valid, so you need to pay attention and <u>think</u> !

- The purpose of a throttling device is to drop the pressure by causing a lot of friction.
- I usually draw a valve when there is a throttling device in a system, whether the throttling device is a valve or not !
- In a home refrigerator, the throttling device is actually a long, small-diameter tube called a capillary tube. I still draw a throttling valve because they are easy to draw and it is very clear what the purpose of the valve is: to drop the pressure !
- Throttling devices are not always particularly close to adiabatic, so Q ~0 may not always be a good assumption.
- The other assumptions are pretty solid unless the throttling device is enormous (unlikely) or the pipe diameter changes (possible) or you put a turbine of some sort in a capillary tube (silly).

Workbook

LearnThermo.com

- In a process HEX, heat is transferred between two streams that are both important parts of an overall process
- In a utility HEX, heat is exchanged between a process stream and a utility stream that is not an important stream in the overall process
- Utility streams are usually steam, air or cooling water
- These assumptions are not always valid, so you need to pay attention and <u>think</u> !

- Tees in pipes are small and offer little area for heat transfer.
- The fluid spends very little time in these devices.
- So, it is generally true that $Q\sim 0$ and ΔE_{pot} $\sim 0.$
- There are no moving parts in these devices, so Ws really is zero.

• Occasionally, $\Delta E_{kin} \sim 0$, but it is not all that common. The flow rates and pipe diameters must be carefully matched to make this true.

• Still, these assumptions are not always valid, so you need to pay attention and <u>think</u> !

LearnThermo.com

- A pot of water boiling on a stove is a transient process.
 Although the T, P and other properties of the saturated liquid and saturated water
 - vapor in the pot remain constant
 - The MASS of water inside the pot changes as water vapor flows out into the kitchen.

	Transient Processes
• I •]	f <u>ANY</u> variable associated with the process changes over time, then it is a transient process. Transient processes are very complex and a computer is often required to solve the equations that describe these processes.
• \	We will only consider special transient processes in which the following assumptions are true.
• I	Jniform Flow
\$	The properties and flow rates of all inlet and outlet streams are constant or uniform over the cross-sectional area for flow and are also constant with respect to time.
• I	Jniform State
\diamond	The state of the mass within the system is uniform.
\diamond	At all times, the properties of the outlet stream are exactly the same as the properties of the system at that time.

Workbook

LearnThermo.com

Transient Mass Balances

- Differential Mass Balance: $\frac{d}{dt}m_{sys} = \dot{m}_{in} - \dot{m}_{out}$ $\circ \quad \text{Integrate} : \qquad \int_{m_1}^{m_2} dm_{sys} = \int_{t_1}^{t_2} \dot{m}_{in} dt - \int_{t_1}^{t_2} \dot{m}_{out} dt$ $\circ \quad \text{Uniform} \\ \text{Flow} : \qquad \dot{m}_{in} \neq \mathbf{fxn}(t) \qquad \dot{m}_{out} \neq \mathbf{fxn}(t)$ $m_2 - m_1 = \dot{m}_{in} (t_2 - t_1) - \dot{m}_{out} (t_2 - t_1)$ $\Delta m_{sys} = m_{in} - m_{out}$ $\circ \quad \text{MIMO} : \qquad m_2 - m_1 = (t_2 - t_1) \sum_{i=1}^{intets} \dot{m}_{in,i} - (t_2 - t_1) \sum_{j=1}^{outlets} \dot{m}_{out,j}$
- The uniform flow assumption allows us to easily evaluate the integrals on the righthand side of the mass balance equation without the help of a computer.
- The key here is that the mass flow rate must be the same over the cross-sectional area for flow.
- The results are very simple.
- The boxed equations are true even if the mass flow rate varies with respect to time.

Integrating the 1st law

• The 1st Law for Open Systems:

$$\frac{\mathbf{d}}{\mathbf{dt}}\mathbf{E}_{sys} = \dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} + \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \hat{\mathbf{E}}_{kin,in} + \hat{\mathbf{E}}_{pot,in} \right] \\ - \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \hat{\mathbf{E}}_{kin,out} + \hat{\mathbf{E}}_{pot,out} \right]$$

- \diamond W_s is work other than flow work, usually shaft work.
- Integrate from t₁ to t₂ :

$$\Delta \mathbf{E}_{sys} = \mathbf{Q} - \mathbf{W}_{s} + \int_{t_{1}}^{t_{2}} \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \hat{\mathbf{E}}_{kin,in} + \hat{\mathbf{E}}_{pot,in} \right] dt$$
$$- \int_{t_{1}}^{t_{2}} \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \hat{\mathbf{E}}_{kin,out} + \hat{\mathbf{E}}_{pot,out} \right] dt$$

- It is important to remember that flow work is included in the enthalpy terms on the right-hand side of this equation.
- When we integrate heat transfer rate in Watts, we get a total amount of heat transfer in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
- When we integrate the rate at which work is done in Watts, we get a total amount of work in Joules.
 - $\diamond~\Delta E_{sys}$ has units of energy, say J or Btu.

Uniform Flow and the 1st Law • The uniform flow assumption tells us that the properties of the inlet and outlet streams do not change with respect to time. This lets us pull them out of the integrals on ٠ the right-hand side of the 1st law equation. $\Delta \mathbf{E}_{sys} = \mathbf{Q} - \mathbf{W}_{s} + \int_{t_{1}}^{t_{2}} \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \hat{\mathbf{E}}_{kin,in} + \hat{\mathbf{E}}_{pot,in} \right] dt$ The remaining integrals of the mass flow • rate were evaluated 2 slides back. $-\int_{t}^{t_{2}} \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \hat{\mathbf{E}}_{kin,out} + \hat{\mathbf{E}}_{pot,out} \right] dt$ They are the total mass entering between t1 and t2 and the total mass leaving between t1 and t2. **Uniform Flow Assumption:** $\left[\hat{H}, \hat{E}_{kin} \text{ and } \hat{E}_{pot}\right]_{in, out} \neq fxns(t)$ $\Delta \mathbf{E}_{sys} = \mathbf{Q} - \mathbf{W}_{s} + \mathbf{m}_{in} \left[\hat{\mathbf{H}} + \hat{\mathbf{E}}_{kin} + \hat{\mathbf{E}}_{pot} \right]_{...} - \mathbf{m}_{out} \left[\hat{\mathbf{H}} + \hat{\mathbf{E}}_{kin} + \hat{\mathbf{E}}_{pot} \right]_{...}$

- The uniform state assumption allows us to evaluate the total energy of the system as just the total mass of the system times the specific energy of the system.
- Here we only consider our three favorite forms of energy: internal, kinetic and potential.
- We can substitute this result into the 1st law to get the 1st boxed equation.
- This is the 1st Law for Uniform Flow, Uniform State systems.
- If changes in kinetic and potential energies are negligible, then the much simpler equation in the last box is applicable.
- This is the equation we will use to solve most of the transient problems in this course.
- But you need to know where it came from and when it is applicable.

Transient 1st Law for MIMO Processes • SISO: $\Delta E_{sys} = Q - W_s + m_{in} \left[\hat{H} + \hat{E}_{kin} + \hat{E}_{pot} \right]_{in} - m_{out} \left[\hat{H} + \hat{E}_{kin} + \hat{E}_{pot} \right]_{out}$ • MIMO: $\Delta E_{sys} = Q - W_s + \sum_{i=1}^{inlets} m_{in,i} \left[\hat{H} + \hat{E}_{kin} + \hat{E}_{pot} \right]_{in,i} - \sum_{j=1}^{outlets} m_{out,j} \left[\hat{H} + \hat{E}_{kin} + \hat{E}_{pot} \right]_{out,j}$ • If changes in kinetic and potential energies are negligible: $m_{sys,2} \hat{U}_{sys,2} - m_{sys,1} \hat{U}_{sys,1} = Q - W_s + \sum_{i=1}^{inlets} m_{in,i} \hat{H}_{in,i} - \sum_{i=1}^{outlets} m_{out,j} \hat{H}_{out,j}$

• As before, MIMO processes are more tedious than SISO processes, but are conceptually almost identical.

5A-1 Volumetric and Mass Flow Rates

2 pts

Water is flowing through a pipe with an inside diameter of 4 inches. The volumetric flow rate is 24 GPM (gallons per minute). Determine ...

- a.) The mass flow rate in lb_m/min. Assume the density of water is 1000 kg/m³
 b.) The average velocity of the water in the pipe in ft/s.
- **Read :** This is a straightforward application of the relationships between **mass** and **volumetric flow rates**, **density** or **specific volume**, **velocity** and **cross-sectional area** for flow.

Diagram:	δ	Ĩ.			4 in	/ = 24 GPM			
Given:	V ρ		24 64.4	gal/min Ib _m /ft ³			D	4 0.333	in ft
Find:	a.)	m		???	lb _m /min	b.)	v	???	ft/s
Assumptio	ns:	1 -		The dens i	ty of the water i	s uniform and con	stant.		
Equations	/ Data / So	lve:							
Part a.)	The key re problem is	elations s :	ship for t	his part of th	e	$\dot{\mathbf{n}} = \mathbf{\rho} \cdot \dot{\mathbf{V}}$			Eqn 1
	Before we	e can u	se Eqn	1, we need to	o convert the <mark>un</mark>	its on the volume t	tric flow rate	to ft³/min .	
		nal	1 f	4 3					

$$\dot{V} = 24 \frac{\text{gal}}{\text{min}} \cdot \frac{1 \text{ ft}^3}{7.4805 \text{ gal}}$$
 Eqn 2 V 3.208 ft³/min

Now, we plug values into Eqn 1 to get :

m

206.6

lb_m/min

Part b.) The key relationship for this part of the problem is :

$$\dot{\mathbf{m}} = \rho \cdot \dot{\mathbf{V}} = \rho \, \mathbf{v} \, \mathbf{A} = \frac{\mathbf{v} \, \mathbf{A}}{\hat{\mathbf{V}}}$$
 Eqn 3

We can solve **Eqn 3** for the average water **velocity**, **v** :

$$\mathbf{v} = \frac{\dot{\mathbf{V}}}{\mathbf{A}} = \frac{\dot{\mathbf{m}}}{\rho \mathbf{A}} = \frac{\dot{\mathbf{m}} \hat{\mathbf{V}}}{\mathbf{A}}$$
 Eqn 4

$$A = \frac{\pi}{4}D^2$$

Where :

 Plugging values into Eqns 4 & 5 yields :
 A
 0.08727 ft²

 v
 0.6127 ft/s

Verify: We cannot verify the constant density assumption.

Answers : a.)	m	207	lb _m /min	b.)	v	0.613	ft/s

5B-1 Flow Work in a Steam Pipe

2 pts

Steam enters a system at 200 kPa and 350°C and leaves the system at the same mass flow rate at 180 kPa and 350°C.

Calculate the **flow work** in **kJ/kg** for this process assuming the usual sign convention in which **work** done by the system is considered to be positive.

Read : This problem reinforces the point that it takes energy to **push** fluid **into** a system and it takes energy to **push** a fluid **out** of a system into the surroundings. This energy is called **flow work** and it can be very significant.

In this problem, we apply the definition of **flow work** to evaluate the **net** amount of **flow work** in a simple flow system, perhaps a long pipe.

Equations / Data / Solve:

The **net** amount of **PV** or **flow work** in a flow process is the **flow work** done **by** the system through exiting streams **minus** the **flow work** done **on** the system through entering streams.

We know the inlet and outlet **pressures**, so now we need to determine the inlet and outlet **specific volumes**. We can get this information from the Steam Tables or the **NIST Webbook**.

V ₁ 1.4330 m³/kg	V ₂ 1.59	27 m ³ /kg
-----------------------------	---------------------	-----------------------

Now, we can plug values into Eqn 1 to evaluate the flow work.

W _{flow,exit}	286.69	kJ/kg		
W _{flow,inlet}	286.59	kJ/kg	W _{flow,net} 0.1006	kJ/kg
			100.6	J/kg

Verify: No assumptions.

Answers : W_{flow,net} 101 J/kg

5B-2 Heat Transfer Required to Keep the Energy in a Flow System Constant

4 pts

Water vapor enters a tank at a rate of 32.4 kg/min at 250°C and 140 kPa and leaves the tank at the same rate at 180°C and 110 kPa. The diameter of the inlet and outlet pipes are 6 cm and 15 cm, respectively.

No form of work enters or leaves the tank other than flow work. Calculate...

a.) The total rate at which energy is entering the tank in the feed stream

b.) The total rate at which energy is entering the tank in the effluent stream

c.) The heat transfer rate required to keep the total energy of the water inside the tank constant.

Read : The key to this problem is the enthalpy form of the 1st Law for open systems. Once you assume that gravitational potential energy is <u>negligible</u> in this problem, the solution is straightforward. Kinetic energy <u>changes</u> are <u>not negligible</u>. The relationships amoung **velocity**, **density**, **specific volume**, **volumetric flow rate** and **mass flow rate** are also important.

Diagram:		W _{sys} Q dE _{sys} /c T _{in} = 250 °C	= 0 kW = ? kW lt = 0	V	Vater	T _{ou} P _{ou} m	_t = 180 °C _t = 110 kPa = 32.4 kg/min		
Given:	m T _{in}	P _{in} = 140 kPa 32.4 0.54 250	kg/min kg/s ℃	ئ <u>ا</u>			W _{sys} T _{out} P _{out}	0 180 110	kW ℃ kPa
	P _{in} D _{in}	6 0.06	кра cm m			c.)	D _{out} dE _{sys} /dt	0.15 0	m kW
Find:	a.) b.)	E _{in} E _{out}	??? ???	kW kW		c.)	Q	???	kW

Assumptions:

Gravitational potential energy is <u>negligible</u> in computing the energy entering and leaving the system. <u>Without</u> this assumption, we would <u>add</u> the <u>same arbitrary</u> amount of energy to <u>both</u> the feed and effluent streams and <u>then assume</u> that <u>changes</u> in potential energy are <u>negligible</u>. Either way, potential energy is <u>negligible</u> in this problem.

1 -

The key equation for this problem in the enthalpy form of the 1st Law for open systems.

$$\begin{aligned} \frac{d}{dt} \mathbf{E}_{sys} &= \dot{\mathbf{Q}} - \dot{\mathbf{W}}_{sys} + \dot{\mathbf{m}}_{in} \left[\hat{\mathbf{H}}_{in} + \frac{\left\langle \mathbf{v}_{in} \right\rangle^{2}}{2 \, \mathbf{g}_{c}} + \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{z}_{in} \right] \\ &- \dot{\mathbf{m}}_{out} \left[\hat{\mathbf{H}}_{out} + \frac{\left\langle \mathbf{v}_{out} \right\rangle^{2}}{2 \, \mathbf{g}_{c}} + \frac{\mathbf{g}}{\mathbf{g}_{c}} \mathbf{z}_{out} \right] \end{aligned}$$
Eqn 1

Eqn 1 can be simplified for this problem because $W_{sys} = 0$ and we have assumed that <u>changes</u> in potential energy are negligible.

$$\frac{d}{dt}E_{sys} = Q + \dot{E}_{in} - \dot{E}_{out} = \dot{Q} + \dot{m}\left[\hat{H}_{in} + \frac{\langle v_{in} \rangle^2}{2g_c}\right] - \dot{m}\left[\hat{H}_{out} + \frac{\langle v_{out} \rangle^2}{2g_c}\right]$$
Eqn 2

Part a) & Part b)

In order to evaluate E_{in} and E_{out}, we first need to lookup the **enthalpies** of the inlet and outlet streams. The Steam Tables or the NIST Webbook provide the information we need.

H_{in} 2973.2 kJ/kg 2835.4 kJ/kg Hout

Next, we need to evaluate the specific kinetic energies at the inlet and outlet.

$$\hat{\mathsf{E}}_{kin} = \frac{\mathsf{v}^2}{2\mathsf{g}_{\mathsf{c}}}$$

We can determine the velocity from the mass flow rate as follows :

$$\mathbf{v} = \frac{\dot{\mathbf{V}}}{\mathbf{A}} = \frac{\dot{\mathbf{m}}}{\rho \mathbf{A}} = \frac{\dot{\mathbf{m}} \hat{\mathbf{V}}}{\mathbf{A}}$$
 Eqn 4 Where : $\mathbf{A} = \frac{\pi}{4} \mathbf{D}^2$ Eqn 5

We still need the specific volumes of the water at the inlet and outlet conditions to make use of Eqn 4. The Steam Tables or the NIST Webbook provide the information we need.

V _{in}	1.7163	m³/kg	V _{in}	1.8883	m³/kg
Now, we ca	an plug values	into Eqns 5, 4 & 3, in that order.			
A _{in}	0.002827	m ²	A _{out}	0.017671	m²
v _{in}	327.8	m/s	V _{out}	57.7	m/s
g _c	1	kg-m/N-s ²			
E _{kin,in}	53.72	kJ/kg	E _{kin,out}	1.66	kJ/kg

We can now use the right-hand portion of Eqn 2 to complete parts (a) and (b) of this problem.

Part c.)

Eqn 2 can be simplified because $dE_{sys}/dt = 0$. The result can be solved for Q to obtain the following equation.

$$\mathbf{Q} = \dot{\mathbf{E}}_{out} - \dot{\mathbf{E}}_{in} = \dot{\mathbf{m}} \left[\hat{\mathbf{H}}_{out} + \frac{\langle \mathbf{v}_{out} \rangle^2}{2\mathbf{g}_c} \right] - \dot{\mathbf{m}} \left[\hat{\mathbf{H}}_{in} + \frac{\langle \mathbf{v}_{in} \rangle^2}{2\mathbf{g}_c} \right]$$
Eqn 6

Plugging values into Eqn 6 yields :

Verify: The assumption made in this solution cannot be verified with the given information.

Answers : a.)	E _{in}	1630	kW	c.)	Q	-103	kW
b.)	E _{out}	1530	kW				

Dr. B - LearnThermo.com

•

-102.5

kW

Q

5C-1 Cross-Sectional Area Requirement for an Adiabatic Nozzle

6 pts

Steam at 3.5 MPa and 350°C flows steadily into an adiabatic nozzle at a mass flow rate of 3.15 kg/s. The steam leaves the nozzle at 500 kPa with a velocity of 571 m/s.

If the inlet velocity of the steam is 5 m/s, determine the exit diameter of the nozzle in cm.

cm

Read : The key here is that we know <u>both</u> the mass flow rate and velocity of the effluent stream. If we can determine the **specific volume** of the effluent, we can determine the **cross-sectional area** for flow at the effluent, **A**₂. We are given the value of **one** intensive variable for the effluent, **P**₂, but we need to know another in order to completely determine the state of the effluent. Once know the state of the effluent, we can use the Steam Tables to determine the **specific volume** and then the **cross-sectional area**. We must apply the steady-state form of 1st Law for open systems to this process. If we assume that heat transfer and <u>changes</u> in potential energy are <u>negligible</u> and that <u>no</u> **shaft work** occurs, we can solve for the **specific enthalpy** of the effluent and thereby <u>fix</u> the state of the system. This allows us to complete the problem.

Given:	P ₁	3500	kPa	P ₂	500	kPa
	T ₁	350	°C	V ₂	571	m/s
	v ₁	5	m/s	m _{dot}	3.15	kg/s

Find: D₂ ???

Diagram:

Assumptions:	1 -	The nozzle operates at steady-state.
-	2 -	Heat transfer is negligible.
	3 -	No shaft work crosses the system boundary.
	4 -	The <u>change</u> in the potential energy of the fluid from the inlet to the outlet is <u>negligible</u> .

Let's begin by writing the steady-state form of the 1st Law for open systems.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} + \Delta \hat{\mathbf{E}}_{pot} \right]$$
 Eqn 1

Based on the assumptions listed above, we can simplify Eqn 1 as follows :

$$\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1 + \frac{\mathbf{V}_2^2 - \mathbf{V}_1^2}{2\mathbf{g}_c} = \mathbf{0}$$
 Eqn 2

The only <u>unknown</u> in Eqn 2 is H_2 because we can lookup H_1 and the velocities are <u>both</u> given.

So, let's look up H_1 and solve Eqn 2 for H_2 :

$$\hat{H}_2 = \hat{H}_1 - \frac{v_2^2 - v_1^2}{2g_c}$$
 Eqn 3
H₁ 3104.8 kJ/kg
H₂ 2941.8 kJ/kg

We could use H_2 and P_2 to determine T_2 using the Steam Tables, but we are more interested in V_2 because :

$$\dot{\mathbf{m}} = \frac{\dot{\mathbf{V}}_2}{\dot{\mathbf{V}}_2} = \frac{\mathbf{v}_2 \,\mathbf{A}_2}{\dot{\mathbf{V}}_2}$$
 Eqn 4 or : $\mathbf{A}_2 = \frac{\dot{\mathbf{m}} \,\hat{\mathbf{V}}_2}{\mathbf{v}_2}$ Eqn 5

Once we know the specific volume at state 2, we can use Eqn 5 to determine the cross-sectional area of the effluent pipe.

Interpolating on the Steam Tables at 500 kPa :

°C)	H (kJ/kg)	V (m³/kg)		
200	2855.8	0.42503		
T ₂	2941.8	V ₂	T ₂ 240.9	C
250	2961.0	0.47443	V ₂ 0.46541	I
ow, plug V	into Eqn 5 :		A ₂ 2.568E-03	r

.

Determine
$$D_2$$
 from A_2 : $A_2 = \frac{\pi}{4} D_2^2$ Eqn 6Solving for D_2 yields: $D_2 = \sqrt{\frac{4}{\pi} A_2}$ Eqn 7Plug values into Eqn 7: D_2 0.05718 m
5.718 cm

Verify: None of the assumptions made in this problem solution can be verified.

5.72 cm² Answers : D_2

5C-2 Heat Losses From a Steam Turbine

5 pts

At steady-state, a **steam** turbine produces **1,050 MW** by letting the **pressure** down from **50 bar** to **1 bar**. The **steam** enters the turbine at **320°C** with a **velocity** of **8 m/s** and a **mass flow rate** of **150 kg/min**.

The steam leaves the turbine with a quality of 0.94 kg vapor/kg and a velocity of 65 m/s. Determine the rate of heat loss from the turbine to the surroundings in kW.

Read : Apply the steady-state form of the 1st Law for open systems and solve for **Q**. Assume <u>changes</u> in potential energy are <u>negligible</u>. We know the values of **two** intensive variables for state 1, so we can look up **H**₁. We know the **pressure** and **quality** for state 2, so we can also determine **H**₂. Then, just plug back into the 1st Law to get **Q** !

Given:	m	150	kg/min	v ₁	8	m/s
		2.500	kg/s	P ₂	100	kPa
	Ws	1050	kŴ	X ₂	0.94	
	P ₁	5000	kPa	V ₂	65	m/s
	T ₁	320	°C			
Find:	Q	???	kW			

Diagram:

Assumptions:	1 -	The turbine operates at steady-state.
	2 -	The <u>change</u> in the potential energy of the fluid from the inlet to the outlet is <u>negligible</u> .

Let's begin by writing the steady-state form of the 1st Law for open systems.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} + \Delta \hat{\mathbf{E}}_{pot}^{\dagger} \right]$$
 Eqn 1

Solve Eqn 1 for Q :
$$\dot{\mathbf{Q}} = \dot{\mathbf{W}}_{s} + \dot{\mathbf{m}} \left[\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1} + \frac{\mathbf{v}_{2}^{2} - \mathbf{v}_{1}^{2}}{2 \mathbf{g}_{c}} \right]$$
 Eqn 2

We must use the Steam Tables to determine H_2 and H_1 :

$$\hat{\mathbf{H}}_{2} = \mathbf{X}_{2} \hat{\mathbf{H}}_{\text{sat vap}} + (1 - \mathbf{X}_{2}) \hat{\mathbf{H}}_{\text{sat liq}}$$
 Eqn 3

H₁ 2986.2 kJ/kg

At P₂ = 100 kPa :

H _{sat liq}	417.50	kJ/kg
H _{sat vap}	2674.95	kJ/kg
H ₂	2539.5	kJ/kg
Q	-61.62	kW

Now, we can plug values into Eqn 2 to evaluate Q :

Verify: None of the assumptions made in this problem solution can be verified.

Answers : Q -61.6 kW

5C-3 Shaft Work Requirement for an Air Compressor

6 pts

A compressor, operating at steady-state, increases the **pressure** of an **air** stream from **1 bar** to **10 bar** while losing **4.2 kW** of heat to the surroundings.

At the compressor inlet, the air is at 25°C and has a velocity of 14 m/s. At the compressor outlet, the air is at 350°C and has a velocity of 2.4 m/s.

If the compressor inlet has a cross-sectional area of 500 cm² and the air behaves as an ideal gas, determine the power requirement of the compressor in kW.

Read : The keys here are the 1st Law, the Ideal Gas EOS and the Ideal Gas Property Tables. Since we know the velocity, temperature and pressure of <u>both</u> the feed and effluent, we can determine the <u>change</u> in the specific enthalpy (using the Ideal Gas Properties Table for air) and the specific kinetic energy. The problem is the mass flow rate. Use the Ideal Gas EOS to determine the specific volume. Then, use the relationship between velocity, cross-sectional area for flow, specific volume and mass flow rate to determine the mass flow rate. After that, plug all the values back into the 1st Law and solve for the shaft work.

Given:	P ₁	1	bar	P ₂	10	bar
		100	kPa		1000	kPa
	T ₁	25	۵°	T ₂	350	°C
		298.15	К		623.15	Κ
	v ₁	14	m/s	v ₂	2.4	m/s
	A ₁	500	cm ²	Q	-4.20	kW
		0.050	m²			

Find:	W _s	???	kW

Diagram:

Assumptions:	1 -	The compressor operates at steady-state.
-	2 -	The change in the potential energy of the fluid from the inlet to the outlet is negligible.
	3 -	The air behaves as an ideal gas throughout this process.

Let's begin by writing the steady-state form of the 1st Law for open systems.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} + \Delta \hat{\mathbf{E}}_{pot}^{T} \right]$$
 Eqn 1

Solve for W_s:

$$\dot{W}_{s} = \dot{Q} - \dot{m} \left[\hat{H}_{2} - \hat{H}_{1} + \frac{V_{2}^{2} - V_{1}^{2}}{2g_{c}} \right]$$
 Eqn 2

We know the inlet and outlet velocities and we can lookup the inlet and outlet specific enthalpies in the Ideal Gas Properties Table. So, the only remaining obstacle to evaluating the shaft work using Eqn 2 is the mass flow rate.

The following relationship will let us evaluate the mass flow rate :

$$\dot{\mathbf{m}} = \frac{\dot{\mathbf{V}}_1}{\dot{\mathbf{V}}_1} = \frac{\mathbf{v}_1 \mathbf{A}_1}{\dot{\mathbf{V}}_1}$$
 Eqn 3

Next, we must use the Ideal Gas Equation of State to determine the specific volume of the air feed.

$$P \tilde{V}_1 = R T_1$$
 Eqn 4

$$\tilde{\mathbf{V}}_{1} = \frac{\mathbf{R} \, \mathbf{T}_{1}}{\mathbf{P}_{1}}$$
 Eqn 5

• •

Convert molar volume to specific volume :

$$\hat{\mathbf{V}}_{1} = \frac{\tilde{\mathbf{V}}_{1}}{\mathbf{M}\mathbf{W}_{air}}$$
 Eqn 6

Plugging values into Eqns 5 & 6 yields :

			V ₁	0.02479	m°/mole
R	8.314	J/mol-K	V ₁	0.85565	m³/kg
MW _{air}	28.97	g/mole	m _{dot}	0.8181	kg/s

Next we need to look up the **specific enthalpy** of air at the inlet and outlet **temperature** in the Ideal Gas Properties Table for air. Remember that the **enthalpy** of an ideal gas does <u>NOT</u> depend on the **pressure** !

At 25°C or 298.15 K, no interpolation is required : H°₁ 85.565 kJ/kg

At 200°C or 473.15 K, interpolation is required :

T (K)	H° (kJ/kg)
620	418.55
623.15	H ^o ₂
630	420.25

Finally, we can plug values back into Eqn 2 to evaluate the shaft work : W_s -279.29 kW

Verify: Only the ideal gas assumption can be verified. Use Eqn 5 for both state 1 and state 2.

V₁ 24.79 L/mole V₂ 5.181 L/mole

Because air is made up of diatomic gases, the test for the applicability of the Ideal Gas EOS is whether the molar volume > 5 L/mole.

This considition is satisfied at <u>both</u> the inlet and <u>outlet</u> conditions, so using the Ideal Gas EOS and the Ideal Gas Properties Tables will yield results accurate to at least **2** significant figures.

Answers :	Ws	-279	kW
-----------	----	------	----

5C-4 **Expansion of Steam Through a Throttling Valve**

5 pts

A throttling valve is used to reduce the pressure in a steam line from 10 MPa to 300 kPa. If the steam enters the throttling valve at 500°C, determine...

- a.) The steam temperature at the outlet of the throttling valve
- b.) The area ratio, A₂/A₁, required to make the kinetic energy the same at the inlet and the outlet.
- Read : We know the values of two intensive variables for the inlet steam, so we can determine the values of all of its other properties, including the specific enthalpy, from the Steam Tables. If changes in kinetic and potential energy are <u>negligible</u> and the throttling device is adiabatic, then the throttling device is isenthalpic. In this case, we then know the **specific enthalpy** of the **outlet** stream. The **pressure** of the **outlet** stream is **given**, so we now know the values of **two** intensive properties of the outlet stream and we can determine the values of any other property using the Steam Tables. Part (b) is an application of the 1st Law. The area must be greater at the outlet in order to keep the velocity the same because the steam expands as the pressure drops across the throttling device.

Diagram:	$P_1 = 10$ $T_1 = 50$	(1) 000 kPa 0°C W	(2) P ₂ = 300 kP ater	a			
Given: P ₁ T ₁ P ₂	10000 500 300	kPa ⁰C kPa	Find:	T ₁ A ₂ / A ₁	??? ???	°C	
Assumptions:	1 - 2 - 3 -	The throttling <u>Changes</u> in p <u>Changes</u> in k in the feed au at the inlet ar	g device is adiabatic. potential energy are <u>ne</u> kinetic energy are <u>neg</u> nd effluent lines have nd the outlet.	<u>egligible</u> . <u>ligible</u> because been chosen t	e the cross to make the	-sectional area for f fluid velocity the <u>sa</u>	ow

Begin by looking up the specific enthalpy of the feed in the steam tables.

At a pressure of 10,000 kPa, the saturation temperature is : T_{sat} 311.00 °C

Because $T_1 > T_{sat}$, we conclude that the feed is superheated steam and we must consult the Superheated Steam Tables. Because **10,000 kPa** is listed in the table, interpolation is not required.

V_1 0.032811 m³/kg

The 1st Law for a throttling device that is adiabatic and causes <u>negligible changes</u> in kinetic and potential energies is :

$$\hat{H}_2 = \hat{H}_1$$
 Eqn 1

H₁

3375.1

kJ/kg

Because the **pressure** drops in the throttling device and the feed is a superheated vapor, the effluent must also be a superheated vapor. So, to answer **part (a)**, we must use the Superheated Steam Tables to determine the **temperature** of **300 kPa** steam that has a **specific enthalpy** equal to H_2 .

Part b.) We need to use the definition of kinetic energy to determine how much the area of the outlet pipe must be greater than the area of the inlet pipe in order to keep the kinetic energy (and therefore the velocity) constant.

$$E_{kin} = \frac{\dot{m}v^2}{2g_c}$$
 Eqn 2 $E_{kin,1} = \frac{\dot{m}v_1^2}{2g_c} = \frac{mv_2^2}{2g_c} = E_{kin,2}$ Eqn 3

Because the **mass flow rate** at the inlet and outlet is the <u>same</u>, **Eqn 3** simplifies to :

$$\mathbf{V}_2 = \mathbf{V}_1$$
 Eqn 4

Next, we need to consider the relationship between velocity, specific volume and cross-sectional area.

$$\mathbf{v} = \frac{\dot{\mathbf{m}} \cdot \hat{\mathbf{V}}}{\mathbf{A}} [=] \frac{(\mathbf{kg/s})(\mathbf{m}^3/\mathbf{kg})}{\mathbf{m}^2} [=] \frac{\mathbf{m}}{\mathbf{s}}$$
 Eqn 5

Now, substitute Eqn 5 into Eqn 4 to get :
$$\frac{\mathbf{m} \cdot \mathbf{V}_2}{\mathbf{A}_2} = \frac{\mathbf{m} \cdot \mathbf{V}_1}{\mathbf{A}_1}$$
 Eqn 6

Solve for the area ratio,
$$A_2 / A_1$$
:

$$\frac{A_2}{A_1} = \frac{\dot{V}_2}{\dot{V}_1}$$
Eqn 7

Plugging values into Eqn 7 yields :

A₂ / A₁ 33.672

Verify: None of the assumptions made in this problem solution can be verified.

|--|

5C-5 Open Feedwater Heater

6 pts

Steam at 350°C and 650 kPa is mixed with subcooled water at 30°C and 650 kPa in an open feedwater heater (FWH) as a way to produce saturated liquid water at the same pressure.

Assuming the open **FWH** is adiabatic, determine the mass flow rate of steam required per kilogram of subcooled liquid water fed to the open **FWH**.

Read : The feedwater heater is just a fancy mixer. When we write the MIMO form of the 1st Law at steady-state, there are **three** unknowns: the **three mass flow rates**. The states of all three streams are <u>fixed</u>, so we can determine the **specific enthalpy** of each of them. Mass conservation tells us that $m_3 = m_1 + m_2$. We can use this to eliminate m_3 from the 1st Law. Then we

Mass conservation tells us that $m_3 = m_1 + m_2$. We can use this to eliminate m_3 from the 1st Law. Then we can solve the 1st Law for m_1 / m_2 !

Given:	T ₁	30	°C	P ₃	650	kPa
	P ₁	650	kPa	Х ₃	0	kg vap/kg
	T ₂	350	°C	Q	0	
	P ₂	650	kPa			

 m_{dot1} / $m_{dot,2}$ = ???

Diagram:

$$P_{1} = 650 \text{ kPa}$$

$$T_{1} = 30 \text{ °C}$$

$$P_{3} = 650 \text{ kPa}$$

$$T_{3} = ??? \text{ °C}$$

$$x_{3} = 0$$

$$P_{2} = 650 \text{ kPa}$$

$$T_{2} = 350 \text{ °C}$$

Assumptions:	1 -	The feedwater heater operates at steady-state.
-	2 -	Changes in potential and kinetic energies are negligible.
	3 -	Heat transfer is <u>negligible</u> .
	4 -	No shaft work crosses the system boundary in this process.

An open feedwater heater is essentially a mixer in which superheated vapor is used to raise the **temperature** of a subcooled liquid. We can begin our analysis with the steady-state form of the 1st Law.

$$\dot{\mathbf{M}} - \dot{\mathbf{M}} = \sum_{j=1}^{\text{# outlets}} \dot{\mathbf{m}}_{\text{out},j} \left[\hat{\mathbf{H}}_{\text{out}} + \hat{\mathbf{E}}_{\text{Kin,out}} + \hat{\mathbf{E}}_{\text{pot,out}} \right]_{j} - \sum_{i=1}^{\text{# inlets}} \dot{\mathbf{m}}_{\text{in,i}} \left[\hat{\mathbf{H}}_{\text{in}} + \hat{\mathbf{E}}_{\text{Kin,in}} + \hat{\mathbf{E}}_{\text{pot,in}} \right]_{i}$$
Eqn 1

The assumptions in the list above allow us to simplify the 1st Law considerably:

Conservation of mass on the feedwater heater operating at steady-state tells us that :

$$\dot{\mathbf{m}}_1 + \dot{\mathbf{m}}_2 = \dot{\mathbf{m}}_3$$
 Eqn 3

We can solve Eqn 3 for $m_{dot,3}$ and use the result to eliminate $m_{dot,3}$ from Eqn 2. The result is:

The easiest way to determine $m_{dot,1} / m_{dot,2}$ is to divide Eqn 4 by $m_{dot,2}$.

$$\left(\frac{\dot{\mathbf{m}}_1}{\dot{\mathbf{m}}_2}\right)\hat{\mathbf{H}}_1 + \hat{\mathbf{H}}_2 = \left(\frac{\dot{\mathbf{m}}_1}{\dot{\mathbf{m}}_2} + 1\right)\hat{\mathbf{H}}_3$$
 Eqn 5

Now, we can solve Eqn 5 for
$$\mathbf{m}_{dot,1} / \mathbf{m}_{dot,2}$$
:
$$\frac{\dot{\mathbf{m}}_1}{\dot{\mathbf{m}}_2} = \frac{\dot{\mathbf{H}}_2 - \dot{\mathbf{H}}_3}{\dot{\mathbf{H}}_3 - \dot{\mathbf{H}}_1}$$
Eqn 6

Now, all we need to do is to determine the **specific enthalpy** of all **three** streams and plug these values into **Eqn 6** to complete the problem.

First we must determine the phase(s) present in each			T _{sat} (650kPa) =	161.98	°C
Therefore:		Stream 1 is a subcooled liquid because $T_1 <$: T _{sat}		
		Stream 2 is a superheated vapor because T	₂ > T _{sat}		
		$T_3 = T_{sat}$ because it is a saturated liquid.			
Data from the	Steam Ta	bles of the NIST Webbook (using the default	reference state) :		
H₁	126.32	kJ/kg	H₂	3165.1	kJ/kg
			H ₃	684.1	kJ/kg
Now, plug the	se values	into Eqn 6 to obtain :	m_{dot1} / $m_{dot,2}$ =	4.448	

Verify: None of the assumptions made in this problem solution can be verified.

Answers : $m_{dot1} / m_{dot,2} = 4.45$

5C-6 Analysis of a Steam Power Cycle

The **steam** power plant, shown below, operates at steady-state with negligible heat losses to the surroundings and negligible **pressure** drops due to friction in the boiler and condenser.

 $0.95 \text{ kg vap/kg}, T_{cw.in} = 20^{\circ}\text{C}, T_{cw.out} = 45^{\circ}\text{C}$

Read : Cycle problems of this type usually require you to work your way around the cycle, process by process until you have determined the values of all of the unknowns. This is a good approach here because the problem statement asks us to determine the values of unknowns in every process in the cycle. The only decision is where to begin. We can begin with the turbine because that is the 1st question and also because we have enough information to answer part (a). We know T₃ and P₃, so we can determine H₃. Stream 4 is saturated mixture with known P₄ and x₄, so we can also determine H₄. With the usual assumtions about kinetic and potential energy, we can determine W_{turb}. In fact, because we know the T and P of streams 1 and 2 as well, we can analyze the processes in this cycle in any convenient order. So, we will let the questions posed in the problem determine the order in which we analyze the processes. We will apply the 1st Law to the pump, the boiler and the condenser, in that order. Use the Steam Tables in the NIST Webbook.

8 pts

Diagram:

Given:	m	11.3	kg/s		P ₃	10000	kPa
	P ₁	120	kPa		T ₃	700	°C
	T₁	55	°C		P ₄	120	kPa
	P ₂	10000	kPa		X 4	0.95	kg vap/kg
	T ₂	55	°C		T _{cw,in}	20	°C
	D_2	0.05	m		T _{cw,out}	45	°C
Find:	W _{turb}	???	MW	Q _{boil}	???	MW	
	W _{pump}	???	kW	Q _{cond}	???	MW	
	V ₂	???	m/s	m _{cw}	???	kg/s	
				η_{th}	???		

Assumptions:

1 -

2 -

3 -

Changes in kinetic and potential energy are negligible in all the processes in the cycle.

The pump and turbine are adiabatic.

<u>All</u> of the heat that <u>leaves</u> the working fluid in the condenser is transferred to the cooling water. <u>No heat is lost</u> to the surroundings.

Part a.)Begin by writing the 1st Law for the turbine, assuming that changes in kinetic and potential energy are negligible.This makes sense because we have no elevation, velocity or pipe diameter information to use.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s,turb} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$$
 Eqn 1

If we assume that the turbine is adiabatic, we can solve Eqn 1 for the shaft work of the turbine :

$$\dot{W}_{s,turb} = \dot{m} \left(\hat{H}_3 - \hat{H}_4 \right)$$
 Eqn 2

 H_3

3870.0 kJ/kg

Now, we must use the Steam Tables to determine H_3 and H_4 . Let's begin with stream 3.

At a pressure of 10,000 kPa, the saturation temperature is : T_{sat} 311.00 °C Because $T_3 > T_{sat}$, we conclude that stream 3 is superheated steam and we must consult the Superheated Steam Tables. Fortunately, there is an entry in the table for 10,000 kPa and 700°C, so no interpolation is necessary.

Stream 4 is a saturated mixture at **120 kPa**, so we need to use the properties of saturated liquid and saturated vapor at **120 kPa** in the following equation to determine H_4 :

At 120 kPa :

$$\hat{H}_4 = X_4 \hat{H}_{sat vap} + (1 - X_4) \hat{H}_{sat liq}$$
 Eqn 3

 $H_{sat liq}$
 439.36 kJ/kg
 H_{a}
 2570.9 kJ/kg

 $H_{sat vap}$
 2683.1 kJ/kg
 H_4
 2570.9 kJ/kg

 Now, we can plug H_3 and H_4 back into Eqn 2 to answer part (a) :
 W_{turb}
 14.680 MW

Part b.) Write the 1st Law for the pump, assuming that <u>changes</u> in <u>kinetic</u> and <u>potential energy</u> are <u>negligible</u>. This makes sense because we have no **elevation** or **velocity** data and we are given only the <u>outlet</u> pipe **diameter**. Also, assume the pump is adiabatic, Q_{pump} = 0.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s,pump} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$$
 Eqn 4 $\dot{\mathbf{W}}_{s,pump} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_2 \right)$ Eqn 5

Now, we must determine H_1 and H_2 . We know the T and P for both of these streams, so we should have no difficulty determining the H values.

T _{sat} (P ₁)	104.78	°C	T ₁ < T _{sat} , therefore we must consult the Subcooled Water Tables.
T _{sat} (P ₂)	311.00	°C	$T_2 < T_{sat}$, therefore we must consult the Subcooled Water Tables.

The **NIST Webbook** provides these **enthalpy** values <u>without</u> interpolation.

H₁	230.34	kJ/kg	H ₂	238.74	kJ/kg

Now, we can plug H_1 and H_2 back into Eqn 5 to answer part (b): W_{pump} -94.857 kW

Part c.) Here, we need to consider the relationship between velocity, specific volume and cross-sectional area.

 $\mathbf{A}_2 = \frac{\pi}{4} \, \mathbf{D}_2^2$

$$\mathbf{v}_{2} = \frac{\dot{\mathbf{m}} \cdot \hat{\mathbf{V}}_{2}}{\mathbf{A}_{2}} [=] \frac{(\mathbf{kg/s})(\mathbf{m}^{3}/\mathbf{kg})}{\mathbf{m}^{2}} [=] \frac{\mathbf{m}}{\mathbf{s}}$$
 Eqn 6

1

Q_{boil}

where :

From the NIST Webbook :	A ₂ V ₂	0.0019635 m ² 0.0010101 m ³ /kg
Now, we can plug values into Eqn 6 to answer part (c) :	V ₂	5.813 m/s

Part d.) Write the 1st Law for the boiler, assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. There is no shaft work in a boiler.

$$\dot{\mathbf{Q}}_{\text{boil}} - \dot{\mathbf{W}}_{\text{s,boil}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$$
 Eqn 8 $\dot{\mathbf{Q}}_{\text{boil}} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_2 \right)$ Eqn 9

We determined H₂ in part (b) and H₃ in part (a), so all we need to do is plug numbers into Eqn 9.

Part e.) Write the 1st Law for the condenser assuming that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. Use the working fluid as the system so that Q_{cond} is the amount of heat transferred to the cooling water. There is no shaft work in a condenser.

$$\dot{\mathbf{Q}}_{cond} - \dot{\mathbf{W}}_{s,cond} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$$
 Eqn 10 $\dot{\mathbf{Q}}_{cond} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_4 \right)$ Eqn 11

We determined H_1 in part (b) and H_4 in part (a), so all we need to do is plug numbers into Eqn 11.

Q_{cond} -26.448 MW

41.033

MW

Egn 7

Part f.) In order to determine the mass flow rate of the cooling water, we must write the 1st Law using the cooling water as our system. For this system, Q_{cw} = - Q_{cond} because heat leaving the working fluid for the cycle enters the cooling water.

> \mathbf{Q}_{cw} Assume that changes in kinetic and potential energy are negligible. This makes sense because we have no elevation, velocity or pipe diameter data. There is no shaft work for the cooling water system.

$$\dot{Q}_{cw} - \dot{W}_{s,cw} = \dot{m} \Delta \hat{H}$$
 Eqn 12

26.448

MW

We cannot use the Steam Tables to determine the **enthalpy** of the cooling water because we do not know the pressure in either stream. The next best thing we can do is to use the specific heat of the cooling water to determine ΔH_{cw} using:

$$\Delta \hat{H}_{cw} = \int_{T_{cw,in}}^{T_{cw,out}} \hat{C}_{P} dT$$
 Eqn 13

If we further assume that the specific heat of liquid water is constant over the temperature range 20°C - 45°C, than Eqn 13 simplifies to:

$$\Delta \hat{\mathbf{H}}_{cw} = \hat{\mathbf{C}}_{\mathsf{P}} \left(\mathbf{T}_{cw,out} - \mathbf{T}_{cw,in} \right)$$
 Eqn 14

We can then combine Eqn 14 with Eqn 12 to obtain :

$$\dot{\mathbf{Q}}_{cw} = \dot{\mathbf{m}}_{cw} \ \hat{\mathbf{C}}_{P} \left(\mathbf{T}_{cw,out} - \mathbf{T}_{cw,in} \right)$$
 Eqn 15

Finally, we can solve **Eqn 15** for **m**_{cw} :

$$\dot{m}_{cw} = \frac{\dot{Q}_{cw}}{\hat{C}_{P} \left(T_{cw,out} - T_{cw,in} \right)}$$
 Eqn 16

All we need to do is look up the average heat capacity of water between 20°C and 45°C.

NIST Webbook :	С _{Р,сw} (50°С) С _{Р,сw} (20°С)	4.1813 4.1841	kJ/kg-K kJ/kg-K	C _{P,cw}	4.1827	kJ/kg-K
Let's use :	C _{P,cw}	4.182	kJ/kg-K			
Then :	m _{cw}	252.97	kg/s			

Verify:	None of the assum	ptions made in this	problem solution	can be verified
•••••			problem solution	our be vermeu.

Answers :	a.)	W _{turb}	14.68	MW	e.)	Q _{cond}	-26.4	MW
	b.)	W _{pump}	-94.9	kW	f.)	m _{cw}	253	kg/s
	c.)	v ₂	5.81	m/s	g.)	η_{th}	35.5	%
	d.)	Q _{boil}	41.0	MW				

5C-7 Heat Losses From a Steam Compressor

6 pts

A 25 kW compressor is used to increase the pressure of saturated steam at 140°C to 1.2 MPa. The compressor effluent is at 280°C. If the steam flow rate is 3.7 kg/min...

a.) Calculate the rate of heat loss from the compressor

???

kW

b.) Assume the **steam** behaves as an ideal gas and calculate the % **error** in the **heat loss** that results from the ideal gas assumption.

Read : This is a straightforward application of the steady-state form of the 1st Law.
 In part (a), we can lookup properties in the Steam Tables.
 In part (b), we must use the Ideal Gas Heat Capacity from the NIST Webbook to evaluate ΔH.

Given:	m	3.7	kg/min	P ₂	1200	kPa
		0.0617	kg/s	T ₂	280	°C
	x ₁	1.00	kg vap/kg total	W	-25	kW
	T ₁	140	°C			

Diagram:

Q

Find:

Assumptions: 1 - Changes in kinetic and potential energy are negligible.

Equations / Data / Solve:

Part a.) Begin by writing the steady-state form of the 1st Law for open systems in which <u>changes</u> in kinetic and potential energy are <u>negligible</u>.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$$

$$\dot{\mathbf{Q}} = \dot{\mathbf{W}}_{s} + \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1} \right)$$
Eqn 2

We can solve Eqn 1 for Q :

For state 2, we must first determine the phase.

$P_{sat}(T_2)$	6416.6	kPa	$P_2 < P_{sat}$, therefore we must consult	the Superheate	ed Steam 7	Tables.
From the NIST	r Webboo	k , we can ol	otain :		H ₂	3002.6	kJ/kg
Now, we can p	olug values	s into Eqn 2	:		Q	-8.404	kW

Part b.) Eqn 2 still applies if the steam is treated as an ideal gas.
 The difference from part (a) lies in how we evaluate the <u>change</u> in the specific enthalpy of the steam.
 In part (b) we evaluate the <u>change</u> in the enthalpy using :

$$\Delta \tilde{H}_{1-2} = \int_{T_1}^{T_2} \tilde{C}_P^o \ dT$$
 Eqn 3

H₁

The Shomate Equation for the ideal gas heat capacity is :

NIST Webbook :

Temp (K)	500 1700.
Α	30.092
В	6.832514
С	6.793435
D	-2.53448
E	0.082139

$\widetilde{C}_{P}^{o} = A + Bt + Ct^{2} + Dt^{3} + E/t^{2}$	Eqn 4
--	-------

where :
$$t = T(K)/1000$$
 Eqn 5

and :
$$\widetilde{\mathbf{C}}_{\mathsf{P}}^{\mathsf{o}}[=] \mathsf{J/mol} \cdot \mathsf{K}$$
 Eqn 6

Let's use these Shomate constants even though 50°C is <u>outside</u> of the <u>recommended</u> temperature range. These are the <u>best</u> values <u>available</u> to us.

Combining Eqns 1, 2 and 3 and integrating yields :

$$\Delta \widetilde{H} = A(T_2 - T_1) + \frac{B/2}{1000}(T_2^2 - T_1^2) + \frac{C/3}{1000^2}(T_2^3 - T_1^3)...$$

+
$$\frac{D/4}{1000^3}(T_2^4 - T_1^4) - \frac{E}{1000^{-2}}(T_2^{-1} - T_1^{-1})$$
 Eqn 7

Plug in values for the temperatures and the constants to get :		ΔH	4908	J/mol	
MW _{H2O}	18.016	g/mole	ΔH	272.4	kJ/kg
Now, plug this value into Eqn 2 to evaluate Q _{IG} :		Q _{IG}	-8.200	kW	

We can calculate the %error due to assuming that the steam is an ideal gas using :

$$\% error = \frac{\mathbf{Q} - \mathbf{Q}_{IG}}{\mathbf{Q}} \times 100\%$$
 Eqn 8

%error 2.42%

Verify:

The assumption made in this problem solution cannot be verified.

Answers :	Q	-8.40	kW
	Q _{IG}	-8.20	kW
	%error	2.4%	

Note that the <u>negative</u> sign indicates that heat transfer is <u>from</u> the compressor to the surroundings.

5C-8 Pump Horsepower Requirment

6 pts

The pump shown below increases the **pressure** in liquid **water** from **100 kPa** to **6000 kPa**. What is the **minimum horsepower** motor required to drive the pump for a flow rate of **25 L/s** ?

Assume the liquid water is incompressible and that its specific volume is equal to that of saturated liquid at 25°C.

Read : The <u>minimum</u> horsepower that a motor must supply to this pump is the value of W_s that we can determine by applying the 1st Law. We can assume that heat transfer and <u>changes</u> in potential energy are <u>negligible</u>. We still have a problem because without any **temperature** data, we <u>cannot</u> look up the properties of the water in the Steam Tables. However, if we assume that the liquid water is **incompressible**, the problem gets <u>much</u> simpler. For starters, the **volumetric flow rate** in and <u>out</u> of the pump must be <u>equal</u> at steady-state. If we also assume that the **temperature** of the water does <u>not change</u> significantly in the process, then $\Delta U = 0$ because **U** of an **incompressible** liquid is a function of **temperature** <u>only</u>. These assumptions and the relationship between **mass flow rate**, **volumetric flow rate** and **specific volume** will dramatically <u>simplify</u> the 1st Law and allow us to evaluate W_s . Unfortunately, we will still need to assume a value for the **specific volume**.

Given:	P ₁ P ₂	100 6000 25	kPa kPa	D ₁	4 0.040	cm m
	V dot	0.025	m ³ /s	D ₂	0.060	m
Find:	Ws	???	hP			
Assumptions: 1 - 2 - 3-		1 - 2 - 3-	The pump operates adiabatically a <u>Changes</u> in potential energy are <u>ne</u> Water behaves as an incompressi	and <u>nearly</u> isothermally. egligible. i <mark>ble fluid</mark> in this process.		

Diagram: The diagram in the problem statement is adequate.

Equations / Data / Solve:

Write the 1st Law for the pump, assuming that changes in potential energy are negligible. This makes sense because we have no elevation data. Also, assume the pump is adiabatic, $Q_{pump} = 0$.

$$\dot{\mathbf{Q}}' - \dot{\mathbf{W}}_{s,pump} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} \right]$$
Eqn 1
$$\dot{\mathbf{W}}_{s,pump} = - \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} \right]$$
Eqn 2

The problem is that we cannot lookup the **specific enthalpy** and we do <u>not</u> know the **mass flow rate**. We can use the <u>definition</u> of **enthalpy** to work around this :

$$\Delta \hat{\mathbf{H}} = \Delta \hat{\mathbf{U}} + \Delta \left(\mathbf{P} \, \hat{\mathbf{V}} \right)$$
 Eqn 3

For an incompressible liquid, U = fxn(T) only. Since we assumed $T_1 = T_2$, $\Delta U = 0$. Also, **specific volume** is a constant for an incompressible liquid at constant **temperature**, so V pops out of the Δ brackets in the last term of Egn 3.

$$\Delta \hat{\mathbf{H}} = \hat{\mathbf{V}} \Delta \mathbf{P}$$
 Eqn 4

 $\hat{\mathsf{E}}_{kin} = \frac{\mathsf{v}^2}{2\mathfrak{q}_2}$

Eqn 5

Eqn 4 is a pretty simple result, but we still <u>cannot</u> evaluate the **specific volume**.

Now, let's consider the kinetic energy term :

Velocity is related to the volumetric flow rate and the cross-sectional area for flow by :

$v = \frac{V}{A}$	Eqn 6	where :	$A = \frac{\pi}{4}$	- D ² Eqn	7
We can evalu	ate ${f A_1}$ and ${f A_2}$:		A ₁	0.0012566 m ²	
			A ₂	0.0028274 m ²	

Now, we can use **Eqn 6** and then **Eqn 5** to determine the **velocities** and the <u>change</u> in the **specific kinetic energy** :

v ₁	19.89	m/s			
V ₂	8.84	m/s	ΔE_{kin}	-158.803	J/kg

Now, we need to think about the relationship between **mass flow rate**, **volumetric flow rate** and the **specific volume**.

$$\dot{\mathbf{V}} = \dot{\mathbf{m}}\,\hat{\mathbf{V}}$$
 Eqn 8 or: $\dot{\mathbf{m}} = \frac{\mathbf{V}}{\hat{\mathbf{v}}}$ Eqn 9

So, for an isothermal, adiabatic pump working on an incompressible fluid, with <u>negligible changes</u> in potential energy, the 1st Law simplifies from Eqn 2 to :

$$\dot{\mathbf{W}}_{s,pump} = -\dot{\mathbf{V}} \, \Delta \mathbf{P} - \dot{\mathbf{m}} \, \Delta \hat{\mathbf{E}}_{kin}$$
 Eqn 10

Unfortunately, in the end we still need to <u>assume</u> a value for the **specific volume**. We will use the value of **specific volume** of **saturated liquid** water at $25^{\circ}C$:

	V	0.001003	m³/kg
The, we can use Eqn 9 to determine m _{dot} :	m _{dot}	24.93	kg/s
Finally, we can plug numbers into ${\sf Eqn} \ {\sf 10}$ to evaluate ${\sf W}_{\sf s}$:	Ws	-143.54	kW
Now, all we need to to do is convert to units of horsepower, hP :	1 hp =	745.7	W
Therefore :	Ws	-192.49	hP

Verify: None of the assumptions made in this problem solution can be verified.

Dr. B - LearnThermo.com

5C-9 Outlet Temperature From a Steam Diffuser

A diffuser is used to reduce the velocity of steam from 525 ft/s to 64 ft/s. The inlet steam is saturated vapor at 285°F and the effluent pressure is 60 psia. Calculate the temperature of the effluent.

Read : If we can determine the **enthalpy** of the **effluent**, we can use the **Steam Tables** and the known value of the **pressure** to determine the **temperature**.

We can <u>simplify</u> the 1st Law if we <u>assume</u> the process is <u>adiabatic</u> with <u>no</u> **shaft work**. <u>Changes</u> in <u>potential</u> <u>energy</u> are <u>negligible</u>.

We can evaluate ΔE_{kin} because we know <u>both</u> the inlet and outlet velocities.

We can evaluate H_1 from the Saturated Temperature Table of the Steam Tables.

This leaves only **one** unknown in the 1st Law, H_2 . Once we evaluate H_2 , by solving the 1st Law, we can use H_2 and P_2 and the Steam Tables to determine T_2 .

Diagram:

Given:	X 1	1	kg vap/kg	P ₂	60	psia
	T ₁	285	°F	V ₂	64	ft/s
	v ₁	525	ft/s			
Find:	T ₂	???	°F			
Assumptions:		1 -	The fluid passes <u>quickly</u> throu surroundings is <u>negligible</u> .	igh the <mark>diffuser</mark> so that <mark>heat ex</mark> o	change with	the
		2 -	Assume <u>changes</u> in potential and oriented vertically, this is	energy are <u>negligible</u> . <u>Unless</u> a pretty good assumption.	the diffuser i	s <u>very long</u>
		3-	No shaft work occurs in this	process.		

Equations / Data / Solve:

We could use the Steam Tables to determine T_2 if we knew the value of <u>one more</u> intensive variable in state 2. The most likely choice is to find H_2 . This is the <u>right</u> choice because H_2 appears in the 1st Law.

Begin by writing the 1st Law for an open system :

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} + \Delta \hat{\mathbf{E}}_{pot} \right]$$
 Eqn 1

5 pts
Assume that the diffuser is adiabatic, there is <u>no</u> **shaft work** and that <u>changes</u> in <u>potential energy</u> are <u>negligible</u>. This allows us to simplify **Eqn 1** to :

$$\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} = \mathbf{0}$$
 Eqn 2

We can lookup H_1 because we know the water is a saturated vapor at $285^{\circ}F$.

P ₁	53.266	psia	H ₁	1176.3	Btu/lb _m
----------------	--------	------	----------------	--------	---------------------

The **specific kinetic energy** is defined as :

$$\hat{\mathsf{E}}_{kin} = \frac{\mathsf{v}^2}{2 \mathsf{g}_c}$$
 Eqn 3

Since we know <u>both</u> velocities, we can evaluate <u>both</u> the inlet and outlet **specific kinetic energies** and the <u>change</u> as well :

g _c	32.174	ft-lb _m / lb _f -s ²			1 Btu =	778.170	ft-lb _f
E _{kin,1}	4283.3	ft-lb _f / lb _m			E _{kin,1}	5.504	Btu/lb _m
E _{kin,2}	63.7	ft-Ib _f / Ib _m			E _{kin,2}	0.082	Btu/lb _m
ΔE_{kin}	-4219.7	ft-lb _f / lb _m			ΔE _{kin}	-5.423	Btu/lb _m
Now, we can	solve Eqn	2 for H ₂ :			$\hat{H}_2 = \hat{H}_1 - \Delta \hat{E}_{kin}$		Eqn 4
Now, we can	plug numb	ers into Eqn 4	and evalua	ate H₂ :	H ₂	1181.7	Btu/lb _m
Next, we nee	d to determ	nine the state of	of the water	r in state 2.			
At 60 psia :		H _{sat liq}	262.38	Btu/lb _m	H _{sat vap}	1178.6	Btu/lb _m

Since $H_2 > H_{sat vap}$, we conclude that stream 2 is a superheated vapor. Therefore, we must use the Superheated Steam Tables to determine the **temperature** of steam at **60 psia** that has a **specific enthalpy** of **1181.7 Btu/lb**_m.

From the NIST Webbook at 60 psia:	T (°F)	H (Btu/lb _m)		
	292.7	1178.6		
	T ₂	1181.7		
	300	1182.7		
	350	1209.2		
Interpolating between $T_{sat} = 292.7^{\circ}F$ and $300^{\circ}F$ yields T_2 :		T ₂	298.25	°F

Verify: None of the assumptions made in this problem solution can be verified.

Answers : T₁ 298 °F

5C-10 Thermal Equilibration of a Copper Block with an Iron Block

5 pts

When a block of cold **carbon steel** touches a hot **aluminum** block in an insulated chamber, both blocks eventually reach thermal equilibrium at a **temperature** between their initial **temperatures**.

Determine the equilibrium temperature if the aluminum block has a mass of 10 kg and an initial temperature of 380°C and the carbon steel block has a mass of 25 kg and an initial temperature of 10°C.

- Read : The mass and initial temperature of <u>each</u> block are given. We know that the equilibrium temperature of the blocks must lie <u>between</u> the two initial temperatures. We will need to lookup the heat capacity or specific heat of both steel and aluminum. Then, we can apply the 1st Law to a system made up of the <u>two</u> blocks. No work or heat transfer crosses the boundary of this system during the approach to equilibrium, so the only unknown in the equation is the final, equilibrium temperature. So, we can solve for it and evaluate it.
- **Diagram:** A diagram is optional here. The system and process are fairly simple.

Given:	m _{steel} T _{steel,1}	25 10	kg °C	m _{Al} T _{Al,1}	10 380	kg °C
Find:	T ₂	???	°C			
Assumptions:		1 - 2 - 3 -	Steel and aluminum have constar No heat is exchanged with the sur Steel and aluminum are <u>both</u> inco process.	nt heat capacities . Froundings by <u>either</u> the ste mpressible, so this process	eel or the alu s is a <mark>consta</mark>	minum. nt volume

Equations / Data / Solve:

We begin by writing the 1st Law and we choose as our system the steel and the aluminum.

$$\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U} = \mathbf{m}_{\mathsf{St}} \left(\hat{\mathbf{U}}_{2,\mathsf{St}} - \hat{\mathbf{U}}_{1,\mathsf{St}} \right) + \mathbf{m}_{\mathsf{AI}} \left(\hat{\mathbf{U}}_{2,\mathsf{AI}} - \hat{\mathbf{U}}_{1,\mathsf{AI}} \right) = \mathbf{0}$$
 Eqn 1

By cleverly selecting our system, $\mathbf{Q} = \mathbf{0}$ and $\mathbf{W} = \mathbf{0}$. This makes the solution simpler.

Because <u>both</u> steel and aluminum are <u>assumed</u> to be incompressible with constant heat capacities: $\Delta \hat{U} \approx \hat{C}_V \Delta T$ Eqn 2

Substitute Eqn 2 into Eqn 1 twice, once for steel and once for aluminum to get :

$$m_{st} \, \hat{C}_{v,st} \left(T_2 - T_{1,st} \right) + m_{AI} \, \hat{C}_{v,AI} \left(T_2 - T_{1,AI} \right) = 0$$
 Eqn 3

Notice that there is only one T_2 because in the final, equilibrium state, the steel and the aluminum are <u>both</u> at the <u>same</u> temperature !

Now, solve Eqn 3 for T₂:

$$\left(m_{Cu}\,\hat{C}_{V,Cu}+m_{oil}\,\hat{C}_{V,oil}\right)T_2 = m_{Cu}\,\hat{C}_{V,Cu}\,T_{1,Cu}+m_{oil}\,\hat{C}_{V,oil}\,T_{1,oil} \qquad \qquad \text{Eqn 4}$$

Now, solve Eqn 4 for T2.

$$T_{2} = \frac{m_{Cu} \, \hat{C}_{V,Cu} \, T_{1,Cu} + m_{oil} \, \hat{C}_{V,oil} \, T_{1,oil}}{m_{Cu} \, \hat{C}_{V,Cu} + m_{oil} \, \hat{C}_{V,oil}}$$
Eqn 5

Before we can evaluate T_2 , we must lookup the **specific heat** of steel and of aluminum.

For carbon steel, I found :	C _{P,st}	0.49	kJ/kg-K
For incompressible solids, $C_V = C_P$, so :	C _{V,st}	0.49	kJ/kg-K
For aluminum, I found :	C _{P,AI}	0.91	kJ/kg-K
	$C_{V,AI}$	0.91	kJ/kg-K
Now, we can finally plug numbers into Eqn 5 and evaluate ${\sf T_2}$:	T ₂	167.7	°C

Verify: None of the assumptions can be verified.

Anowara	т	160	00
Allowers.	2	100	

5D-1 Charging a Water Tank

Water flows into a tank from two different pipes, A and B, and leaves the tank through pipe C. The volumetric flow rates in the pipes are 7.4, 3.9 and 8.1 L/min, respectively.

If the tank is initially empty, how much time is required for 1500 kg of water to accumulate in the tank? Assume the density of water is 985 kg/m³.

3 pts

Equations / Data / Solve:

The <u>key</u> equation in the solution of this problem is the Differential or Rate Mass Balance Equation., with constant inlet and outlet mass flow rates.

$$\Delta m_{sys} = m_{sys}(t_2) - m_{sys}(t_1) = (t_2 - t_1) \sum_{i}^{in} \dot{m}_i - (t_2 - t_1) \sum_{j}^{out} \dot{m}_{out}$$
 Eqn 1

Applying Eqn 1 to this problem yields :

$$\Delta \mathbf{m}_{sys} = \left(\dot{\mathbf{m}}_{A} + \dot{\mathbf{m}}_{B} - \dot{\mathbf{m}}_{C} \right) \cdot \Delta t \qquad \text{Eqn 2}$$

Eqn 2 is useful because we can determine the **time** required to accumulate **mass**, **m**, in the tank using the following equation.

$$\Delta \mathbf{t} = \frac{\Delta \mathbf{m}_{sys}}{\dot{\mathbf{m}}_{A} + \dot{\mathbf{m}}_{B} - \dot{\mathbf{m}}_{C}}$$
 Eqn 3

Next, we need to determine the mass flow rates from the volumetric flow rates of the three streams.

$$\dot{\mathbf{m}} = \mathbf{\rho} \cdot \dot{\mathbf{V}}$$
 Eqn 4

Now we can plug numbers into Eqns 4, 2 and 3, in that order to solve the problem.

m _A	7.289	Δm _{sys}	3.152	kg/min
m _в	3.8415			
m _c	7.9785	Δt	475.9	min
			7.931	hr

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers : Δt 7.93 hr

5E-1 Charging an Evacuated Vessel From a Steam Line

6 pts

kJ kJ

An evacuated tank will be filled with steam that flows into the tank from a steam supply line where the pressure is 2.8 MPa and the temperature is 350°C.

The **steam** from the supply line passes through a valve before it enters the tank. When the valve is opened, the tank fills with **steam** and the **pressure** increases until it reaches **2.8 MPa**.

At this point, **steam** flow stops and the valve is closed. If the process is adiabatic and changes in **kinetic** and **potential energies** are negligible, determine the final **temperature** of the **steam** in the tank.

Read : Use the contents of the tank as the system. Most of the key assumptions for this problem are given in the problem statement. One additional assumption is that <u>no</u> shaft work crosses the boundary of the system during the process. Another <u>crucial</u> assumption is that this is a uniform flow, uniform state process. These assumptions allow us to simplify the 1st Law <u>dramatically</u>. We can use a transient mass balance to show that the **mass** in the tank in the final state is <u>equal</u> to the **mass** that was <u>added</u> to the tank. This probably seems obvious since the tank was <u>initially</u> empty. We can determine the **specific enthalpy** of the steam entering the tank from the Steam Tables because we know <u>both</u> T_{in} and P_{in} . We will be able to determine the **internal energy** of the steam in the tank in the final state from the 1st Law. Then, we can use the Steam Tables to determine the value of T_2 using U_2 and the **given** value of P_2 .

Given:	P _{in}	1800	kPa	Q	0
	T _{in}	350	°C	Ws	0
	P ₂	1800	kPa		
Find:	T ₂	???	°C		

Diagram: Initial :

Final :

Assumptions: 1 - Although this is a transient process, it can be analyzed as a uniform flow, uniform state problem because the properties of the steam entering the tank are constant.

- 2 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- **3** <u>No</u> **shaft work** crosses the **boundary** of the **system**, which consists of the contents of the tank.
- 4 The process is adiabatic.

Equations / Data / Solve:

The integral form of the transient energy balance equation for a single-input, single-output system in which kinetic and potential energies are <u>negligible</u> is :

In our process, <u>no</u> **shaft work** occurs, <u>no</u> heat transfer occurs, there is <u>no</u> **mass** <u>leaving</u> the system and there is <u>no</u> **mass** <u>inside</u> the system <u>initially</u>, so **Eqn 1** can be <u>simplified</u> a great deal.

$$m_2 \hat{U}_2 = m_{in} \hat{H}_{in}$$
 Eqn 2

The integral form of the transient mass balance on the tank is :

$$\Delta m_{sys} = m_{in} - m_{out} = m_2 - m_1$$
 Eqn 3

Eqn 3 can be simplified because there is <u>no</u> mass <u>leaving</u> the sytstem and there is <u>no</u> mass <u>initially inside</u> the system.

$$m_{in} = m_2$$
 Eqn 4

We can use Eqn 4 to further simplify Eqn 2 :

$$\hat{\mathbf{U}}_2 = \hat{\mathbf{H}}_{in}$$
 Eqn 5

Next, we need to determine H_{in} . First, we need to determine the state of the system.

In the NIST Webbook , we can find the P _{sat} (T _{in}) for steam:	P _{sat} (T _{in})	16.529	MPa
--	-------------------------------------	--------	-----

Because P_{in} < P_{sat}(T_{in}), we must consult the Superheated Steam Tables to evaluate H_{in}.

From the NIST Webbook , we can obtain :	H _{in}	3141.8	kJ/kg	
Plugging values into Eqn 5 gives us :	U ₂	3141.8	kJ/kg	

Now, we know the values of **two** intensive properties at state 2: **pressure** and **specific internal energy**. The state is <u>completely determined</u> and we can use the Steam Tables to evaluate <u>any other</u> intensive property, such as T_2 . To do so, we must first detemine <u>which</u> phase or phases are present in state 2.

At P = 1.4 MPa, the NIST Webbook tells us that :

U _{sat liq}	882.37	kJ/kg	U _{sat vap}	2597.2	kJ/kg
----------------------	--------	-------	----------------------	--------	-------

Because $U_2 > U_{sat vap}(P_2)$, we must consult the Superheated Steam Tables to evaluate T_2 .

At P = 1.8 MPa, the NIST Webbook tells us that :

T (°C) 510	U (kJ/kg) 3135.7			
T ₂	3141.8			
520	3152.9	Interpolation yields :	T ₂	513.56 °C

Verify: None of the assumptions made in this problem solution can be verified.

Answers : T ₂ 513.6 °C

The **temperature** of the steam in the tank in the final state is <u>greater</u> than the **temperature** of the steam in the feed line because the surroundings did <u>flow work</u> on the system as it filled with steam. This flow work caused the **internal energy** of the steam in the tank to <u>exceed</u> the **internal energy** of the steam in the feed line. Consequently, the **temperature** of the steam in the tank in the final state must be <u>greater</u> than the **temperature** of feed.

5E-2 Charging a Tank With R-134a

A rigid tank contains **ammonia** at **-20°C** with a **quality** of **0.50 kg vap/kg**. Superheated **ammonia** vapor at **800 kPa** and **80°C** slowly and steadily enters the tank from a supply line through a pipe with a valve.

When the **pressure** in the tank reaches 600 kPa, the valve is closed. At this point, the last drop of liquid **ammonia** in the tank vaporizes and the tank contains only saturated **ammonia** vapor.

The total volume of the tank is 350 L. Determine...

- a.) The final temperature of the ammonia in the tank
- b.) The mass of ammonia that has entered the tank

c.) The heat transfer between the tank and the surroundings that has taken place during this process

Read : Part (a) is straightforward because the vapor in the system is saturated at 800 kPa. We can then determine the initial and final mass of ammonia in the tank. A mass balance between the initial and final states of the system (the tank) tells us that the mass added to the tank is just the final mass minus the initial mass. This process is a transient process because the mass of ammonia inside the system (the tank) changes with time. We will need to use the integral form of the transient 1st Law Equation to answer part (c).

Given:	V	350	L	P _{in}	800	kPa
		0.35	m ³	T _{in}	40	°C
	T ₁	-20	°C	P ₂	600	kPa
	x ₁	0.50	kg vap/kg total	x ₂	1.00	kg vap/kg total
Find:	T ₂	???	°C	Q	???	kJ
	m _{in}	???	kg			

Diagram: The diagram in the problem statement is adequate.

7 pts

Assumption	ns: 1 -	Although this is a transient process, it can be analyzed as a uniform flow problem because the properties of the R-134a entering the tank are constant.
	2 - 3 -	Kinetic and potential energies are negligible. No shaft work crosses the boundary of the system, which consists of the content of the tank.
Equations /	/ Data / Solve:	
Part a.)	The vapor inside the tank ammonia at a pressure of	in the <u>final</u> state is <u>saturated</u> . Therefore, it is at the <u>saturation</u> temperature of f 600 kPa . We can obtain this temperature from the NIST Webbook .
		T ₂ 9.285 °C
Part b.)	The integral form of the tr	ansient

Part b.)	The integral form of the transient mass balance on the tank is :	$\Delta m_{sys} = m_{in} - m_{out} = m_2 - m_1$	Eqn 1

Our next step is to determine the intial and final spe	ecific volume of the am	monia.		
In the <u>initial state</u> :	At -20°C :	P ₁	190.08	kPa

$\hat{\mathbf{V}}_{1} = \mathbf{X}_{1} \hat{\mathbf{V}}_{satvap} \! + \! \left(1 \! - \! \mathbf{X}_{1} \right) \hat{\mathbf{V}}_{satliq}$	Eqn 3
---	-------

V _{sat liq} V _{sat vap}	0.0015035 0.62373	m ³ /kg m ³ /kg	V ₁	0.31262	m³/kg
The final stat	e is simpler t	because	the ammonia in the tank is a saturated vapor.		

At 600 kPa : $V_{sat vap}$ 0.21035 m³/kg V_2 0.21035 m³/kg

Now, we can use **Eqn 2** to to determine the <u>initial</u> and <u>final</u> **mass** of ammonia in the tank.

m 1	1.12	kg	m ₂	1.66	kg
------------	------	----	-----------------------	------	----

Plug these values back into Eqn 1 to determine the mass of ammonia that was <u>added</u> to the tank during this process.

m_{in} 0.544 kg

part c.) The integral form of the transient energy balance equation for a single-input, single-output system in which kinetic and potential energies are <u>negligible</u> is :

In our process, <u>no</u> **shaft work** occurs and there is <u>no</u> **mass** <u>leaving</u> the <u>system</u>, so **Eqn 4** can be <u>simplified</u> and solved for **Q** :

We can determine U_2 and U_1 much as we determined V_2 and V_1 in part (b).

The NIST Webbook, using the default reference state, tells that in the initial state :

$$\hat{\mathbf{U}}_{1} = \mathbf{X}_{1} \hat{\mathbf{U}}_{\text{sat vap}} + (\mathbf{1} - \mathbf{X}_{1}) \hat{\mathbf{U}}_{\text{sat liq}}$$
 Eqn 6

U₁

694.52 kJ/kg

kJ

The final state is simpler because the ammonia in the tank is a saturated vapor.

Next, we need to determine H_{in} . First, we need to determine the state of the system.

 $T_{sat}(P_{in})$ 17.848 °C $T_{in} > T_{sat}$, therefore we must consult the Superheated Ammonia Tables.

From the NIST Webbook, we can obtain : H_{in} 1521.3 kJ/kg

Now, we can plug values back into Eqn 5 to evaluate Q : Q 600.83

Verify: None of the assumptions made in this problem solution can be verified.

Q	Q 601
Q	Q 601
	601

5E-3 Expansion of an Ideal Gas to Fill an Evacuated Chamber

The diagram in the problem statement is adequate.

The tank, shown below, has two chambers of equal **volume**. The left side holds **10 kg** of **air** at **500 kPa** and **60°C**. The right side is completely evacuated.

When the wall that separates the two chambers within the tank is removed, the **air** expands to fill the right side of the tank. Calculate the final **temperature** and **pressure** in the tank.

Assume **air** behaves as an ideal gas and the process is adiabatic because the tank is well-insulated.

Read : The most important thing to recognize in this problem is that <u>removing the partition</u> is <u>equivalent</u> to <u>allowing the</u> <u>partition to move the to the left</u> (in our diagram) until the ideal gas <u>fills</u> the entire tank. The <u>resisting</u> force in this expansion process is <u>zero</u> because there is a vacuum in the <u>left chamber</u> of the tank. Since the <u>resisting</u> force is zero, the work done by the expanding gas is also <u>zero</u>. If we take the ideal gas to be our system, there is <u>no</u> heat transfer during the expansion either, because the tank is insulated. The 1st Law tells us that $\Delta U = 0$ when <u>no</u> work or heat transfer occur during a process on a closed system. Also, because **U** is a function of **T** <u>only</u> for an ideal gas, **T**₂ = **T**₁. Then, all we need to do is apply the IG EOS to determine **P**₂.

Given:	m P₁ T₁	10 500 60	kg kPa °C	Find:	P ₂	???	kPa
Assumptio	ons:	1 - 2 - 3 -	The gas beha <u>Changes</u> in k i The <mark>tank</mark> is <u>p</u> a	aves as an ideal gas. inetic and potential er erfectly insulated, so	<mark>nergy</mark> are <u>r</u> the proces	<u>negligible</u> . s is <mark>adiabatic</mark> : Q	= 0.

Equations / Data / Solve:

Diagram:

The ideal gas is the system that we will analyze. This is a closed system because <u>no</u> **mass** crosses the boundary during the expansion process.

The 1st Law for a closed system is:

$$\mathbf{A} - \mathbf{W}_{b} = \Delta \mathbf{U} + \mathbf{A} \mathbf{E}_{pot} + \mathbf{A} \mathbf{E}_{kin}$$
 Eqn 1

4 pts

Since the <u>restraining</u> force overcome during the expansion is zero, the boundary work for the expansion is also zero. Combining this fact with the 2nd and 3rd assumptions listed above, allows us to simplify Eqn 1 to Eqn 2 :

$$\Delta \mathbf{U} = \mathbf{0}$$
 or: $\mathbf{U}_2 = \mathbf{U}_1$ Eqn 2

Dr. B - LearnThermo.com

For an ideal gas, internal energy depends <u>only</u> on the temperature of the gas. If the internal energy is the <u>same</u> in state 2 as in state 1, then the temperature in state 2 <u>must also</u> be the <u>same</u> as the temperature in state 1 !

$$T_2 = T_1$$
 Eqn 3

Now that we know T_2 , we can apply the Ideal Gas EOS to <u>both</u> states 1 and 2 to determine P_2 .

$$P_1 V_1 = n_1 R T_1$$
Eqn 4 $P_2 V_2 = n_2 R T_2$ Eqn 5Divide Eqn 5 by Eqn 4 and cancel like terms : $\frac{P_2 V_2}{P_1 V_1} = \frac{n_2 R T_2}{n_1 R T_1}$ Eqn 6

But, we know that $T_1 = T_2$ and because the system is closed, $n_1 = n_2$. Also, because the <u>left</u> and <u>right</u> chambers of the tank are <u>equal</u> in <u>size</u>, $V_2 = 2 V_1$. Therefore, **Eqn 6** can be simplified as follows:

$$P_2 V_2 = P_1 V_1$$
Eqn 7 $P_2 (2 \bigvee_1) = P_1 \bigvee_1$ Eqn 8or:P_2 (2 \bigvee_1) = $P_1 \bigvee_1$ Eqn 8Solving Eqn 8 for P_2 yields : $P_2 = \frac{P_1}{2}$ Eqn 9Putting values into Eqn 9 gives us the answer : $P_2 = \frac{P_2}{2}$ 250.0kPa

Verify: None of the assumptions can be verified.

Answers : P₂ 250 kPa

5E-4 Discharging a Tank Containing Water and Steam

6 pts

Read : The key to this problem is that the process is an isothermal process. As a result, the properties of the liquid inside this system and leaving the system are always the properties of saturated liquid at 200°C. As a result, this is a uniform state process. We can also assume it is a uniform flow process. If we further assume that changes in kinetic and potential energies are negligible and that no shaft work occurs, we can use the 1st Law to determine Q. Parts (a) and (b) require use of the Steam Tables or NIST Webbook and a working knowledge of the relationship between mass, volume and specific volume, but should not be difficult.

Diagram:		(Q > <u>0 kJ</u>	m _{vap} = m _{liq} =	kg vap kg liq V _{tank} =	W _s = 0 kJ m ³		
				Ŧ	m _{out} =	kg liq		
Given:	$\mathbf{V}_{1,\mathrm{liq}}$	20 0.020	L m ³			$T_1 = T_2 =$	200 473.15	°C K
	$V_{1,vap}$	45 0.045	L m ³					
	V	0.065	m³		b.)	f	0.2	kg final/kg init

Find:	a.)	m _{1,vap}	??? kg
		m _{1,liq}	??? kg
		m ₁	??? kg
	b.)	x ₂	??? kg vap/kg total
		when:	$m_2 = \frac{m_1}{2}$
	c.)	Q ₁₂	??? kJ
Assumpt	tions:	1 -	Only saturated liquid water leaves the tank.
Ē		2 -	The process is isothermal.
		3 -	Only flow work (no shaft work) crosses the system boundary.
		4 -	Changes in kinetic and potential energies are negligible.
		5 -	Uniform Flow: The properties and flow rate of the <u>outlet</u> stream are constant over the cross-sectional area of the pipe and with respect to time.
		6 -	Uniform State: At <u>all</u> times, the properties of the <u>outlet</u> stream are the <u>same</u> as the properties of the contents of the system <u>at that point</u> in time.

Equations / Data / Solve:

Part b.)

Because the water liquid and vapor are in equilibrium with each other at all times throughout the process, they Part a.) are always saturated. Therfore, we can determine the mass of liquid and vapor initially in the tank by looking up their specific volumes in the Saturated Steam Tables or the NIST Webbook.

$\mathbf{m}_{1, ext{liq}} = rac{\mathbf{V}_{1, ext{liq}}}{\hat{\mathbf{V}}_{ ext{sat liq}}}$	Eqn 1			$\mathbf{m}_{1.vap} = rac{\mathbf{V}_{1,vap}}{\hat{\mathbf{V}}_{satvap}}$			Eqn 2
At 200°C :	V _{sat vap} V _{sat liq}	0.12721 0.0011565	m ³ /kg m ³ /kg	m _{1,vap} m _{1,liq}	0.3537 17.29	kg kg	
We can determine the <u>tor</u> system initially from:	tal mass of w	ater in the		$\mathbf{m_1} = \mathbf{m_{1,vap}} + \mathbf{m_{1,liq}}$			Eqn 3
				m ₁	17.65	kg	
We know that:	$m_2 = \frac{m}{2}$	<u>1</u>	Eqn 4	m ₂	3.53	kg	

The key here is that we know both the volume and the total mass in the tank, so we can calculate the specific volume and use it to determine the quality from :

^

$$\mathbf{x}_{2} = \frac{\hat{\mathbf{V}}_{2} - \hat{\mathbf{V}}_{\text{sat liq}}}{\hat{\mathbf{V}}_{\text{sat vap}} - \hat{\mathbf{V}}_{\text{sat liq}}}$$
Eqn 5

The real <u>key</u> to this problem is that the process is isothermal. As a result, the properties of the saturated vapor in the tank remain constant and the properties of the saturated liquid inside the tank and <u>flowing out</u> of the tank also <u>remain constant</u>.

We determine the overall specific volume at state 2 from:		Eqn 6	
Now, we can plug values into Eqns 6 & 5 :	V ₂	0.018417 m ³	/kg
	x ₂	0.1369 kg	vap/kg tot

Part c.)To determine Q, we need to apply the 1st Law for transient processes and open systems.Here, we assume that $W_s = 0$, $\Delta E_{kin} = \Delta E_{pot} = 0$. The appropriate form of the 1st Law under these conditions is:

Solving Eqn 7 for Q yields:	$\mathbf{Q} = \mathbf{m}_2 \hat{\mathbf{U}}_2 - \mathbf{m}_1 \hat{\mathbf{U}}_1 + \mathbf{m}_{out} \hat{\mathbf{H}}_{out}$				
The specific enthalpy of the water <u>lear</u> enthalpy of saturated liquid water at 20	<u>/ing</u> the <mark>system</mark> is the 0°C :	Hout	852.27	kJ/ka	
	• • •	••out	002.27	Noring	

A mass balance allows us to determine \mathbf{m}_{out} :	$\mathbf{m}_{\mathrm{out}}=\mathbf{m}_{\mathrm{1}}-\mathbf{m}_{\mathrm{2}}$	Eqn 9
--	---	-------

m_{out} 14.12 kg

Next, we can determine U_1 and U_2 : $\hat{U}_1 = X_1 \hat{U}_{sat vap} + (1 - X_1) \hat{U}_{sat liq}$ Eqn 10

$$\hat{\mathbf{U}}_{2} = \mathbf{X}_{2} \, \hat{\mathbf{U}}_{\text{sat vap}} + \left(\mathbf{1} - \mathbf{X}_{2}\right) \, \hat{\mathbf{U}}_{\text{sat liq}} \qquad \qquad \text{Eqn 11}$$

where:
$$\mathbf{x}_1 = \frac{\mathbf{m}_{1,vap}}{\mathbf{m}_1}$$
 Eqn 12

Plugging values into Eqn	is 10 - 12 yield	ls:		x ₁	0.02005	kg vap/kg
At 200°C :	U _{sat vap}	2594.20	kJ/kg	U_1	885.43	kJ/kg
	U _{sat liq}	850.47	kJ/kg	U_2	1089.24	kJ/kg

We are finally ready to put numbers into Eqn 8 to complete this problem.

Q =	m ₂ U ₂ 3844	-	m₁ U₁ 15625	+	m _{out} H _{out} 12032	kJ		
					Q		251.2	kJ

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers : a.)	m _{1,vap}	0.354	kg	b.)	X 2	0.137	g vap/kg tota	al
	m _{1,liq}	17.3	kg					
	m₁	17.6	kg	c.)	Q ₁₂	251	kJ	

In this chapter, we begin with the concept of a thermal reservoir and show how they can be used in heat engines, refrigerators and heat pumps.Next, we introduce a simple, intuitive statement of the Second Law of Thermodynamics. In this chapter and the next one, we develop progressively more useful statements of the Second Law. These help us understand and analyze the feasibility and performance of processes and cycles.

Next, we discuss the concept of reversibility and sources of irreversibility. The Carnot Cycle is a reversible cycle that leads to two new and important implications of the Second Law called the Carnot Principles. The Carnot Principles are used with the Kelvin Relationship to establish the fact that the Kelvin temperature scale is a thermodynamic temperature scale. This establishes a relationship between the thermal efficiency of a power cycle and the temperatures of the thermal reservoirs with which it interacts. This leads to the key idea that the usefulness or value of 1 kJ of energy depends on the temperature of the reservoir from which you take it.

LearnThermo.com[™]

1st Law and Spontaneity

1st Law: Energy is neither created nor destroyed

- Places no restriction on the direction that energy flows spontaneously
 - Imagine a cup of water rejecting 100 kJ to the surrounding air and freezing solid.
 - Imagine a cup of water absorbing 100 kJ from the surrounding air and boiling.
- We need another law to help us understand why these things do not happen spontaneously.

Spontaneity

- Unbalanced forces tend to drive the state of a system towards an equilibrium state
- We can harness these unbalanced driving forces to do work for us.
 - The greater the unbalanced driving force, the greater the <u>potential</u> to do work.

- A cup of water left out on a table at room temperature does not spontaneously freeze unless room temperature drops below 0°C.
- A cup of water left out on a table at room temperature does not spontaneously boil unless room temperature climbs above 100_oC.
- But if these things did happen, it would NOT VIOLATE the 1st Law !
- As long as 100 kJ leaves the water and 100 kJ enters the surroundings, the 1st Law is satisfied.
- And yet this NEVER happens.
- So, the 1st Law is completely inadequate to explain WHY these things never happen.
- We can take advantage of things that happen spontaneously.
- Don't think of things that are not in equilibrium as being bad or negative.
- We would not be alive if we were in equilibrium with our surroundings !

LearnThermo.com

Chapter 6

Power Cycles Produce Work

 1^{st} Law: IN = OUT • $Q_{\rm H} = Q_{\rm C} + W_{\rm HE}$

 $\eta = \frac{\text{Desired Result}}{\text{Required Input}} = \frac{W_{\text{HE}}}{Q_{\text{H}}}$

 $\eta = \frac{Q_{\rm H} - Q_{\rm C}}{Q_{\rm H}}$

 $\eta = 1 -$

Q_c

Q_H HE **Thermal Efficiency of a Power Cycle** W_{HE} **O**_C **Cold Reservoir**

Hot Reservoir

- Sign Convention Issues
- Do not forget that, in tie-fighter diagrams, all work and heat flows are positive in the directions that the arrows indicate in the diagrams !
- In the 1st Law, I have assumed that the heat engine is operating at steady-state.
- We can calculate the thermal efficiency of • any Heat Engine if we know Q_c and Q_H using this simple equation.

- A vapor power cycle is the type of power cycle used to generate electrical power in coal, oil, natural gas and nuclear power plants.
- This cycle accounts for the vast majority of electrical power production worldwide.
- The sign convention issue pops up again.
- The best way to keep this straight is to al-• ways double check the signs of **Q** and **W** to make certain that they make sense.
- Turbines produce work and pumps require ٠ work to operate.
- Heat must be added to make the working • fluid boil.
- Heat must be removed to make the working • fluid condense.

LearnThermo.com

Refrigeration Cycles

- 1st Law: IN = OUT $Q_{H} = Q_{C} + W_{Ref}$
- Coefficient of Performance of a Refrigeration Cycle

$$\beta_{\text{Ref}} = \text{COP}_{\text{R}} = \frac{\text{Desired Result}}{\text{Required Input}} = \frac{Q_{\text{C}}}{W_{\text{Ref}}}$$

$$\beta_{\rm Ref} = \rm{COP}_{\rm R} = \frac{Q_{\rm C}}{Q_{\rm H} - Q_{\rm C}}$$

$$\beta_{\text{Ref}} = \text{COP}_{\text{R}} = \frac{1}{\frac{Q_{\text{H}}}{Q_{\text{R}}} - 1}$$

- In the 1_{st} Law, I have assumed that the heat engine is operating at steady-state.
- Not much new here.
- The value of COPR is usually greater than 1. $\diamond~$ In this case, that means that $Qc > W_{ref}$
- \diamond In this case, that means that Qc > Wref A That is what is so "cool" about refrige
- o That is what is so "cool" about refrigerators !

- This is the type of refrigeration cycle used in home refrigerators and in most air conditioners.
- The working fluid flows through four processes in series, but never leaves the system.
- A refrigerator can include a turbine where I have drawn an expansion valve.
 - The problem is that turbines are relatively expensive, require maintenance and, in this type of refrigeration system, produce a small amount of work.
 - Expansion valves are cheap and require little or no maintenance.
 - So, it is hard to find a vapor refrigeration cycle that includes a turbine.

LearnThermo.com

Heat Pump Cycles

- 1st Law: IN = OUT $Q_{H} = Q_{C} + W_{HP}$
- Coefficient of Performance of a Refrigeration Cycle

$$\beta_{\rm HP} = {\rm COP}_{\rm HP} = \frac{{\rm Desired \ Result}}{{\rm Re \, quired \ Input}} = \frac{Q_{\rm H}}{W_{\rm HP}}$$

 $\beta_{\rm HP} = {\rm COP}_{\rm HP} = \frac{{\rm Desired \ Re \, sult}}{{\rm Re \, quired \ Input}} = \frac{{\rm Q}_{\rm H}}{{\rm W}_{\rm HP}}$

$$\beta_{\rm HP} = \rm{COP}_{\rm HP} = \frac{Q_{\rm H}}{Q_{\rm H} - Q_{\rm C}}$$

- Very similar to refrigerators.
- The main difference is that the desired result is to add heat to the hot reservoir instead of removing heat from the cold reservoir.

- The schematic diagram for a HP is also very similar to the schematic for a refrigerator.
- The working fluid is still called a refrigerant.

The 2nd Law of Thermodynamics

- Colloquial Statement of the 2nd Law
 - Heat flows spontaneously from hot objects to cold objects.
- The Clausius Statement of the 2nd law
 - A thermodynamic cycle cannot transfer heat from a cooler body to a hotter body and produce no other effect on the universe.
 - The "other effect on the universe" means refrigerators and heat pumps require a work input !

- The colloquial statement of the 2nd Law is concrete and tangible. You should feel very confident about it. All of the experience of your life supports it.
- Over the next few weeks, we will develop several other expressions of the 2nd Law.
- For each new expression of the 2nd Law, we will show that it is equivalent to the one before it.
- In this way, we will develop some very useful and abstract expressions of the 2nd Law.
- The goal is to connect these forms of the 2nd Law in a step-by-step manner back to the colloquial statement of the 2nd Law.
- This should give you the same level of certainty about the validity of these abstract forms of the 2nd Law.
- The simple Clausius Statement has AS-TOUNDING implications !
- Let's look at an application of the Clausius Statement of the 2nd Law

- This slide shows that a cycle which violates the Clausius Statement of the 2_{nd} Law could be combined with an ordinary HE (one that does not violate the 1_{st} or 2_{nd} Laws) to make a new system (inside the dashed line) that completely converts heat into work !
- When is it OK to include a reservoir inside the system boundary ?
- ONLY when the reservoir has ZERO NET heat exchanged.
- So, the key here is that the HP absorbs the same amount of heat from the cold reservoir that the HE rejects back into it.

Kelvin-Planck Statement of the 2nd Law

- A thermodynamic cycle cannot produce a net amount of work while exchanging heat with just one thermal reservoir.
- This means that heat engines cannot completely convert heat into work. $\eta < 100\%$
- We showed, on the previous slide, that a cycle which violates the Clauisus Statement also vio-lates the K-P Statement.
- If we can show that the converse is also true (that a cycle which violates the K-P Statement must also violate the Clausius Statement) then we can conclude that the two statements of the 2nd Law are equivalent.

- Here is out first new statement of the 2nd Law.
- It is not obvious how it is related to the Clausius Statement.
- We can show that the K-P and Clausius Statements are equivalent by taking 2 steps.
 - ◊ 1 We must show that any cycle which violates the Clausius Statement must also violate the K-P Statement.
 - We already did this on the previous slide !
 - 2 We must show that any cycle which violates the K-P Statement must also violate the Clausius Statement.
 - This is our mission on the next slide

A Heat Engine That Violates KP Violates Clausius

• Does a HE that completely converts heat into work violate the Clausius Statement of the 2nd Law ?

• The combined system transfers heat from the cold reservoir to the hot reservoir without any work interaction.

- This slide shows that a HE that violates the K-P Statement leads to a combined cycle, a HE plus a HP, that also violates the Clausius Statement.
- Any cycle that violates Clausius must also violate K-P
- Any cycle that violates K-P must also violate Clausius.
- Conclusion: Clausius & K-P are EQUIVA-LENT statements of the 2nd Law !
- This is a very, very important concept to recognize and accept as fully as you know that heat flows spontaneously from hot things to cold things.
- It is important because ...
 - The K-P Statement of the 2nd Law is much more useful in the analysis of cycles.
 - The K-P Statement will be the jump-off point for deriving even MORE USEFUL expressions of the 2nd Law.

the 2nd Law.

LearnThermo.com

Chapter 6

- It is fun to try to identify PMM's and determine which kind they are.
- Let's look at a few example problems of this nature.

Reversible and Irreversible Processes	 A reversible process is the most efficient process. No real process is truly reversible. In real, irreversible processes, either the
 Reversible Processes Processes in which the system and the surroundings can both simultaneously return to their initial states after the 	system or the surroundings can be returned to its original state, but not BOTH at the same time !
process is completed.Irreversible Processes	 Some are hearly reversible. Let's see what makes a process irreversible so we will know how to make a real process or a close to reversible on we are a process.
 Processes in which the system and the surroundings cannot both simultaneously return to their initial states after the process is completed. 	means that we will know how to make the efficiency of the process as high as possi- ble !

Sources of Irreversibility

- Heat Transfer through a finite temperature difference
- Friction
- Unrestrained, or fast, expansion or compression
- Mixing of two different substances
- Spontaneous chemical reactions
- Electric current flowing through a finite resistance
- Inelastic deformation of solids

- The top 3 sources of irreversibility are the key ones for this course.
- The others are very important, but not so much for the kinds of problems we will consider.
- Now, let's take a closer look at the first 3 sources of irreversibility.
- Minimizing these 3 is the key to designing an efficient process.

Heat Transfer

- Heat transfer from the system to the surroundings occurs spontaneously because $T_1 > T_{surr}$.
- But the system cannot spontaneously return to the initial state because heat cannot spontaneously flow from $T_{surr} = 25^{\circ}C$ to $T_{svs} = 30^{\circ}C$.
- We could use a heat pump to transfer heat from the surroundings into the system to return the system to state 1.
- But the HP would require work from the surroundings to run and this would leave the surroundings in a different state than they started in !

 $\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{1}}$

 $V_A < V_1$

 $T_A = 30^{\circ}C$

- To minimize the irreversibility of a process (and maximize its efficiency) we must keep all the driving forces for heat transfer (ΔT's)as small as practical.
- Think about Newton's law of cooling: $\mathbf{Q} = \mathbf{h} \mathbf{A} \Delta \mathbf{T}$
 - If you need to transfer a lot of heat and you need to keep ΔT small, then you must maximize h and A.
 - The trouble is that you can only make **h** SO big.
 - A is the area for heat transfer. You can always build BIGGER heat exchangers, that is no problem.
 - The problem is that BIGGER heat exchangers cost more money, weigh more and take up more space. These can all be big problems.
 - So, the trade-off becomes efficiency versus HEX size/cost.
 - The breakeven point usually turns out to be in the neighborhood of $\Delta T \sim 10^{\circ}C$.
 - This yields reasonable efficiency and moderately large HEX's.
 - This is just a rule of thumb. Circumstances can totally change this. Sometimes expense is not a problem (think military, medical or space applications).

LearnThermo.com

Friction

• Friction converts kinetic energy into internal energy when two bodies in contact with each other are in motion relative to each other.

Consider what happens when the block spontaneously slides down the inclined plane.

- The bodies can be solids, liquids or gasses.
- Before we even start, we realize that processes with less friction will be more efficient.
- Why is that ?What is the connection with reversibility and irreversibility ?

Friction

- The block never spontaneously slides back up the inclined plane !
- Work must be input to increase $E_{\text{pot}}\,\underline{\text{and}}$ to overcome friction.
- Friction again converts the work input into another increase in T and U of the system and surroundings.
- To return both the block and the surroundings to their original states, we must take heat out of the block and the surroundings and completely convert it to work and return this work to the surroundings.
- A device that completely converts heat into work violates the K-P Statement of the 2nd Law and is impossible !
- We conclude that any process that includes friction is irreversible !

- Any process that violates the 2nd Law is impossible.
- An impossible process would be required to return the system and the surroundings to their original states after the process.
- Therefore, the process is irreversible because the "reverse" process is impossible.

Expansion and Compression Even without friction, fast expansion and compression are irreversible. (1)(2)(1) $P_2 > P_1$ Expand $V_2 < V_1$ Compress Very Assume: $T_2 > T_1$ Slowly Rapidly P_1, V_1, T_1 P_1, V_1, T_1 $\mathbf{O} = \mathbf{0}$ $\Delta E_{pot} = 0$ $\Delta E_{kin} = 0$

- Force that must be overcome during the fast compression is greater than $P_1 A_{piston}$.
- Force that is overcome during the slow expansion is <u>equal to</u> P₁ A_{piston}.
- We put more work in during the fast compression than we got back out during the slow expansion !

- Recall from our discussion of quasiequilibrium processes that...
 - As the compression proceeds rapidly, the molecules don't have time to get out of the way of the advancing piston.
 - So, the local pressure just inside the face of the piston is GREATER THAN the pressure in the bulk of the fluid inside the piston.
- As a result, the force that must be overcome to compress the gas is always greater than P₁ time A_{piston}.
- We must put in extra work in order to make the process go rapidly.
- We can let the gas expand infinitely slowly back to the original pressure.
- In this case, the force which is overcome is exactly equal to the bulk pressure inside the cylinder because the forces acting on the piston are always balanced...the system is always in an equilibrium state.
- The result is that we put more work into the system during the compression than we got out during the expansion.

LearnThermo.com

Chapter 6

Expansion and Compression

• If we put in more work than we got out, then U_{sys} and T_{sys} must have increased !

- To return both the system and the surroundings to their original states, we must take heat out of the system and completely convert it to work and return this work to the surroundings.
- A device that completely converts heat into work violates the K-P Statement of the 2nd Law and is impossible !
- We conclude that compression or expansion at a finite rate are irreversible !

- Because the process is adiabatic and changes in E_{kin} and E_{pot} are negligible, this excess work input becomes internal energy.
- This means the temperature of the system increases.
- We must transfer heat out of the system in order to return it to its original temperature.
- We must also return the work to the surroundings in order to return them to their original state.
- The problem is that a device that takes heat from our system and completely converts it into work which can be returned to the surroundings violates the K-P Statement of the 2nd Law and is therefore impossible !
- Since it is impossible to simultaneously return the system and surroundings to their original states, we conclude that compression at a finite rate is irreversible.
- A similar analysis would show that expansion at a finite rate is also irreversible.

0

Internally Reversible Processes No irreversibilities within the boundary of the system No friction inside the system No rapid expansion or compression inside the system No mixing of two different substances inside the system No spontaneous chemical reactions inside the system No electric current flowing through a finite resistance inside the system No inelastic deformation of solids inside the system Trreversibilities can exist outside the system This usually means that heat can be exchanged between the system and surroundings through a finite temperature difference.

•

Externally Reversible Processes

• Irreversibilites do not exist in the surroundings

This usually means that heat can only be exchanged between the system and surroundings through an infinitely small or infinitessimal temperature difference.

• Irreversibilites can exist inside the system

Reversible Processes

- No irreversibilities exist within the system or in the surroundings
- No real process is reversible
- Some real processes are very nearly reversible
- ♦ They have very little friction
- ♦ They involve only very slow compression or expansion
- Heat transfer only takes place between bodies at very similar temperatures.
- Why bother studying reversible processes if they do not exist ?
 - ♦ Reversible processes are easier to analyze
 - Reversible processes provide a best-case to which we can compare the performance of any real process.

LearnThermo.com

Chapter 6

- The Carnot Power Cycle can also be executed with continuous flow equipment as shown here.
- The compression steps take place in <u>com-</u> <u>pressors</u> and the expansion steps take place in <u>turbines</u>.
- Notice that the inlet to a turbine is at the narrow end of the trapezoid. I remember this because the gas expands in a turbine, so the trapezoid gets wider as the gas flows across it.
- The inlet to a compressor is at the thick end of the trapezoid. I remember this because the gas is compressed to a smaller specific volume in a compressor, so the trapezoid gets narrower as the gas flows across it.
- This is not a very practical cycle because it is difficult to build isothermal turbines and compressors.
- It just isn't practical to submerge rotating equipment in constant temperature baths !
 Still, in principle, this could be done.
- Of course, real processes are NOT reversible, or adiabatic for that matter !

- There are some problems with the Carnot Vapor Power Cycle as well.
- High-efficiency pumps don't work very well with vapor-liquid mixtures.
 - Pumps are designed to work best on liquids !
- Turbines don't work well if the quality drops below about 90% or even 95%.
 - Liquid droplets collide with the turbine blades at very high velocity and erode them !
- Again, in principle, the Carnot Vapor Power Cycle could be built.
- Of course, real processes are NOT reversible, or adiabatic for that matter !

LearnThermo.com

- There are also some problems with the Carnot Vapor HP / Ref Cycle.
- Compressors don't work very well will vapor-liquid mixtures.
 - Compressors are designed to work best on gases !
- I already removed the turbine in this refrigeration cycle because it just isn't cost effective.
- In principle, the Carnot Vapor HP / Ref Cycle could be built.
- Once again, real processes are NOT reversible, or adiabatic for that matter !
- In order to be a Carnot Cycle, the cycle must include a turbine, not an expansion valve because expansion valves are inherently irreversible !
- In most cases, a turbine in a refrigerator is just not practical.

- A reversible HE can be reversed !
- When it is reversed, it becomes a heat pump or a refrigerator.
- When it is reversed, the directions of all the heat and work interactions are also reversed, but they do not change in magnitude.
- So, the HP and the HE in the diagram at right exchange ZERO net heat with the hot reservoir !
- As a result, we can include the reservoir in the system enclosed by the dashed line.
- This system absorbs a net amount of heat from the cold reservoir because **Q**_{C,**R**} > **Q**_{C,**I**}.
- It completely converts this heat into a net amount of work equal to $W_I W_R$.
- This violates the K-P Statement of the 2nd Law !
- Therefore, it is not possible for an irreversible HE to have a higher efficiency than a reversible HE.
- This confirms what you already knew... reversible heat engines have the maximum efficiency.

LearnThermo.com

Chapter 6

2nd Carnot Principle

• All reversible power cycles operating between the same two thermal reservoirs have the <u>same</u> efficiency

- System in the dashed line violates the K-P Statement o the 2nd Law !
- $\diamond \quad \text{Conclusion:} \quad \frac{\eta_1 = \eta_2}{\eta_1 = \eta_2}$

- In this diagram, I have already reversed the 1st reversible HE and made it into a HP.
- The Q_H , Q_C and W have the same magnitude and opposite direction as they did when it was a HE.
- Now, the heat pump rejects the same amount of heat to the hot reservoir as the HE takes in.
- So, once again, we can combine the two cycles AND the hot reservoir because there is no NET heat exchange with the hot reservoir.
- The new system, enclosed by the dashed line absorbs a net amount of heat from the cold reservoir equal to $Q_{C,1} Q_{C,2}$
- The new system completely converts this heat into work equal to $W_2 W_1$.
- This violates the K-P Statement of the 2nd Law !
- Therefore, it is not possible for one reversible HE to have a higher efficiency than any other reversible HE when they operate between the same two thermal reservoirs.
- All reversible heat engines operating between the same two thermal reservoirs have the <u>same</u> efficiency.

Thermodynamic Temperature ScalesFrom Ch 5: $\eta = 1 - \frac{Q_C}{Q_H}$ 2nd Carnot Principle : $\eta = fxn(T_C, T_H)$ \diamond Therefore : $\frac{Q_C}{Q_H} = fxn(T_C, T_H)$

- Thermodynamic Temperature Scales
 - Operate a HE between two thermal reservoirs
 - \diamond Measure $\mathbf{Q}_{\mathbf{C}}, \mathbf{Q}_{\mathbf{H}}$ and \mathbf{W}
 - \diamond Calculate η
 - \diamond Arbitrarily assign a value to either T_C or T_H
 - $\diamond \quad \text{If we know the function:} \quad \eta = fxn(T_{c}, T_{H})$
 - we can calculate the other, unknown **T**.
 - ♦ This is a Thermodynamic Temperature Scale

- In Ch 5 we learned that thermal efficiency depends only on the ratio of Q_C to Q_H .
- From the 2^{nd} Carnot Principle, we learned that thermal efficiency depends only on T_C and T_H .
- We can conclude that Q_C/Q_H depends only on $T_C\,$ and $T_H\,.$
- Our goal is to determine this functional relationship !
- This will be a very important result. Why?
- For starters, it will allow us to define thermodynamic temperature scales.
- Thermodynamic temperature scales are not dependent on the properties of any material !

- This is a wonderful result. So, if we know the temperatures of two reservoirs in Kelvin, we can immediately and easily compute the thermal efficiency of a reversible HE operating between those reservoirs.
- What is the thermal efficiency of a reversible HE operating between a human body and the ambient air in the classroom ?
- What is the thermal efficiency of a reversible HE operating between a nuclear reactor at 2000 K and the cooling water at 300 K?
- This is why we want to have a very hot reservoir to generate electrical power.

- There is only one way for all of the T_1 terms to drop out.
- This leads to such a nice, simple result. It makes life much easier than all those other functions.
- We will use the Kelvin Relationships in most of the problems in the rest of this course !
- Choices other than the one made by Kelvin are possible.
 - **Fxn2** must be a function that increases monotonically, so $fxn2(T) = e^{T}$
 - This is called a logarithmic temperature scale
 - Temperature on this scale goes from -∞ to +∞ as opposed to 0 to +∞ on the Kelvin scale.
- Now, back to temperature scales...
- Use water at its triple point as one reservoir for a HE and assign its temperature a numerical value of **273.16**.
- Run a reversible HE between this reservoir and another reservoir at an unknown temperature.
- Measure Q_{triple} and Q_{unk} .
- $T_{unk} = 273.16 * (Q_{unk}/Q_{triple})$
- This IS the Kelvin Temperature Scale !
- •The Kelvin Temperature Scale <u>IS</u> a THERMODYNAMIC TEMPERATURE SCALE !

The Second Law of Thermodynamics

The Ideal Gas Temperature Scale

• Apply the 1st Law to Steps 1-2 and 3-4 carried out in a closed system to determine Q_H and Q_C.

$$\tilde{\mathbf{Q}} - \tilde{\mathbf{W}} = \Delta \tilde{\mathbf{U}}$$

- Use the definition of boundary work and $C_{\rm V}$ for ideal gases.

$$\tilde{Q} = \int \tilde{C}_{V}^{\circ} dT + \int \frac{RT}{\tilde{V}} d\tilde{V}$$

• Results :

$$\tilde{\mathbf{Q}}_{\mathrm{H}} = \mathbf{R} \, \mathbf{T}_{\mathrm{H}} \, \mathbf{L} \mathbf{n} \left[\frac{\tilde{\mathbf{V}}_2}{\tilde{\mathbf{V}}_1} \right]$$

 $\tilde{\mathbf{Q}}_{\mathrm{C}} = -\mathbf{R} \mathbf{T}_{\mathrm{C}} \mathbf{L} \mathbf{n} \left| \frac{\tilde{\mathbf{V}}_{4}}{\tilde{\mathbf{v}}} \right|$

$$\begin{array}{c} 1 & Q_H \\ \hline & & 2 \\ 4 & Q_C \\ \hline & & T_C \end{array}$$

- As usual, assume changes in kinetic and potential energies are negligible.
- The only tricky part here is converting from the 1st Law...which uses our sign convention... to $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{Q}_{\mathbf{H}}$ which are both positive and DO NOT use the sign convention.
- Here is the key:

$$\mathbf{Q}_{\mathrm{H}} = \mathbf{Q}_{12}$$

- $\diamond \quad \mathbf{Q}_{\mathbf{C}} = -\mathbf{Q}_{\mathbf{34}}$
- The results come naturally when you realize that Steps 1-2 and 3-4 are both isothermal.

- The only tricky part here involves T.
- In order to understand why this technique is valid, we must write the 1st Law in differential form.

 $\circ \quad -\mathbf{dW} = \mathbf{dU}$

- Then, because we assume only boundary work occurs : - $P dV \sim = dU = C_V^0 dT$
- Ideal Gas EOS : (**RT/V~**) **dV** = **dU** = **CoV dT**
- We cannot integrate the left-hand side of this equation at this point because T is NOT a constant ! We must get the T into the right-hand side of the equation where we will integrate with respect to T and take into account the fact that T changes during the adiabatic process.
- Divide by \mathbf{T} : $\mathbf{R} (\mathbf{dV} \sim / \mathbf{V} \sim) = (\mathbf{C}_{\mathbf{V}}^{\circ} / \mathbf{T}) \mathbf{dT}$
- Now, we can integrate !

Ideal Gas & Kelvin Temperature Scales

- Most of the algebra here is straightforward.
- The only trick is that Ln[A] = Ln[1/A].
- The result is very cool.
- It shows in a much clearer way than I could back in Ch 1 why the Ideal Gas and the Kelvin Temperature Scales are identical.
- They are both thermodynamic temperature scales.
- These results enable us to analyze a wide new area of thermodynamic cycle problems.

Carnot Efficiency and COP							
Power Cycles	Refrigeration Cycles	Heat Pump Cycles					
$\eta = 1 - \frac{Q_{\rm C}}{Q_{\rm H}}$	$COP_{R} = \frac{1}{\frac{Q_{H}}{Q_{C}} - 1}$	$COP_{HP} = \frac{1}{1 - \frac{Q_C}{Q_H}}$					
$\eta_{Rev} = 1 - \frac{T_C}{T_H}$	$\text{COP}_{\text{R,rev}} = \frac{1}{\frac{T_{\text{H}}}{T_{\text{C}}} - 1}$	$\text{COP}_{\text{HP,rev}} = \frac{1}{1 - \frac{T_{\text{C}}}{T_{\text{H}}}}$					
$\eta_{\rm Irrev} < 1 - \frac{T_{\rm C}}{T_{\rm H}}$	$\text{COP}_{\text{R,irrev}} < \frac{1}{\frac{\text{T}_{\text{H}}}{\text{T}_{\text{C}}} - 1}$	$\text{COP}_{\text{HP,irrev}} < \frac{1}{1 - \frac{T_{\text{C}}}{T_{\text{H}}}}$					
Performance vs. Reservoir Temperature

• All cycles shown here are <u>reversible</u>.

• Power Cycle: $T_C = 300 \text{ K}$

- $\diamond~$ Efficiency $\rightarrow 100$ % as $T_H \rightarrow \infty$
- $\diamond~$ Efficiency $\rightarrow 0$ % as $T_H \rightarrow T_C$
- Refrigeration Cycles: T_C = 265 K
 COP → ∞ as T_H → T_C
 - $\circ \text{ COP} \rightarrow 0 \text{ as } T_H \rightarrow T_H$
- Heat Pump Cycles: $T_H = 265 \text{ K}$
 - $\circ \quad COP \rightarrow \infty \text{ as } T_C \rightarrow T_H$
 - **COP** \rightarrow **1** as **T**_C \rightarrow 0 K

- Heat energy available at a higher T is more valuable or has a higher quality.
- You can always completely convert work into heat at ANY temperature using friction.
- We can conclude that work is a more valuable form of energy than heat !

- The idea that energy has a certain quality depending on the temperature at which it is available leads to the concept of entropy that we will study in the next chapter !
- No matter what the temperature, if you do some work, the resulting friction yields heat.
- So, work can be completely converted to heat at ANY temperature.
- Heat can NEVER be completely converted into work (K-P statement of the 2nd Law).
- Work is therefore more valuable than heat, regardless of the temperature at which the heat is available.

6B-1 Home Heat Pump COP

6 pts

1

A well-insulated house requires 138 MJ/h to keep the indoor temperature comfortable on a cold day. Under this load, the heat pump compressor uses 7.7 kW of electrical power.

a.) Determine the COP of the heat pump

b.) If the heat pump operates **125 hours** in a winter month, what will the homeowner spend on electric heat that month? Residential electricity costs **\$0.11/kW-h**.

c.) How much would the homeowner spend that month if she had electrical resistance heating instead of a heat pump?

Read : This is a straightforward application of the definition of the **COP** of a heat pump.

Given:	Q _H	138	MJ/h	Find:	COP _{HP}	???
	W _{HP} =	7.7	kW			
	Price	0.11	\$/kW-h			
	OpTime	125	h/month			

Diagram:

Assumptions:	1 -	The heat pump operates at steady-state.
	2 -	There is no loss of efficiency when the heat pump is started up or shut down by the
		thermostatic control system.

Equations / Data / Solve:

Begin by writing the definition for the **COP** of a heat pump :

$$COP_{HP} = \frac{Q_{H}}{W_{HP}}$$
 Eqn

We can use Eqn 1 to evaluate the COP_{HP} . Watch the units !

First let's see how much it would \underline{cost} to deliver $\mathbf{Q}_{\mathbf{H}}$ to the home using an electrical resistance heater.

An electrical resistance heater, at best, converts <u>all</u> of the electrical work supplied, W, into heat released into the home, Q_{H} . Therefore, in order to get **38.33 kW** into your home, you must buy **38.33 kW** of electrical power.

vv _{resist} 30.33 Kvv	W _{resist}	38.33	kW
--------------------------------	---------------------	-------	----

Now, we can determine how much it would <u>cost</u> to operate the resistance heater for **125 hr/month**.

$Cost(\$/month) = Price(\$/kW \cdot t) \times W(kW) \times time(t/month)$ Eqn 2

	Cost _{resist}	527.08	\$/month
Now, we can apply Eqn 2 to determine the cost of operating the heat pump	for a month.		
	Cost _{HP}	105.88	\$/month
The difference between these two costs is the monthly savings:	Savings	421.21	\$/month

Verify: We cannot verify the steady-state assumption or the assumption about the thermostatic control system based on the information given in the problem statement.

|--|

Electrical resistance heaters are not very popular, especially in cold climates.

The thermal efficiency of a heat pump drops significantly as the outside temperature falls.

When the outside temperature drops far enough that the COP_{HP} ~ 1, it becomes more practical to use the resistance heater !

6B-2 Coefficient of Performance of a Heat Pump and a Refrigerator

4 pts

A geothermal heat pump absorbs 15 Btu/s of heat from the Earth 50 ft below a house. This heat pump uses a 10 hP compressor.

a.) Calculate the **COP** of the heat pump.

b.) In the summer, the cycle is reversed to cool the house. Calculate the **COP** of the cycle when it is operated as an airconditioner assuming the working fluid rejects **15 Btu/s** to the Earth.

Read : Here we must apply the definition of **COP** for <u>both</u> refrigerators and heat pumps.

Assumptions: 1 - The heat pump and the refrigerator operate at steady-state.

Equations / Data / Solve:

Part a.) If the purpose is to <u>cool</u> the groundwater, then the device is a refrigerator.

So, let's begin with the definition of the **coefficient of performance** for a refrigerator.

$$COP_{R} = \frac{Q_{C}}{W_{Ref}}$$
 Eqn 1

We are given the values of both Q_c and W, so all we need to do is make the <u>units consistent</u> and then plug values into Eqn 1.

Conversion Factors :	1 hP =	2545	Btu/h	W	25450	Btu/h
				Qc	54000	Btu/h
				COP _R	2.122	

Part b.)If the purpose is to heat a building, then the device is a heat pump.So, let's begin with the definition of the coefficient of performance for a heat pump.

$$COP_{HP} = \frac{Q_{H}}{W_{HP}}$$
 Eqn 2

Next, we apply the 1st Law to the heat pump cycle, keeping in mind that we traditionally do <u>not</u> use our sign convention when tie-fighter diagrams are used. The <u>arrows</u> on the <u>diagrams</u> indicate the <u>direction</u> that **heat** and **work** are moving.

$$\mathbf{Q}_{\mathsf{H}} = \mathbf{Q}_{\mathsf{C}} + \mathbf{W}_{\mathsf{HP}}$$
 Eqn 3

Use Eqn 3 to eliminate Q_H from Eqn 2 to get :

$$COP_{HP} = \frac{Q_{c} + W_{HP}}{W_{HP}}$$
Eqn 4

Now, we can plug in the numbers in consistent units that we used in part (a).

Notice that :

$$COP_{HP} = COP_{R} + 1$$
 Eqn 5

COPHP

This is <u>always</u> true for Carnot Cycles.

Verify: No assumptions to verify that were not given in the problem statement.

Answers : COP_R 2.12

COP_{HP} 3.12

3.122

6C-1 Is This a Perpetual Motion Machine ?

2 pts

In a day, an electrical resistance heater uses 8.4 kW-h of electricity. In the same day, the heater delivers 9.7 kW-h of heat to the house in which it is located. Is this possible or is this a perpetual motion machine?

If so, what kind? Explain your reasoning.

Equations / Data / Solve:

Apply the 1st Law to the inventor's process :

$$W_s = Q_H$$

Eqn 1

But 8.4 kW-h ≠ 9.7 kW-h !

Therefore, if the device operates on a <u>true</u> thermodynamic cycle (no <u>change</u> in state after a <u>complete</u> cycle), then it <u>violates</u> the <u>1st Law</u>.

Verify: No assumptions to verify !

Answers : It is a PMM of the 1st Kind !

6C-2 Is This a Perpetual Motion Machine ?

3 pts

Eqn 2

Air is compressed by a compressor that is driven by an electric motor. The effluent **air** is warmer than the **air** at the inlet of the compressor. An entrepreneur plans to use this system to heat his home.

He claims that this system is **10%** more efficient than an eletrical resistance heater. Is this possible or is this another perpetual motion machine? If so, what kind? Explain your reasoning.

Read : Short and sweet.

Equations / Data / Solve:

Efficiency for a heating system is really the coefficient of performance and it is defined by :

$$COP = \frac{Q_{H}}{W_{s}}$$
 Eqn 1

The **COP** for the resistance heater is **1** because it converts <u>all</u> of the <u>electrical energy</u> input into <u>heat</u> rejected into the <u>hot reservoir</u>...your home.

If the COP of the compressor/heater device is 10% greater, then : COP = 1.1

And:

$$Q_{H} = 1.1 \cdot W_{s}$$

But if you consider a system in which the air is <u>recycled</u> as the working fluid, then the 1st Law for the compressor/heater system is:

$$W_s = Q_H$$
 Eqn 3

Eqns 2 and 3 cannot both be true.

Therefore, the inventor's device violates the 1st Law !

Verify: No assumptions to verify !

Answers : It is a PMM of the 1st Kind !

6D-1 Determine Whether Water Condensing is a Reversible Process

2 pts

A piston-and-cylinder device with a free-floating piston contains saturated water vapor at 225°C. Heat is lost from the water to the surroundings which are at 25°C.

Eventually, all of the **water** has condensed and the cylinder contains saturated liquid **water** at **225°C**. Is this process internally reversible? Reversible? Irreversible? Explain your answer.

Read : What can be said about this case of heat transfer process for (a) isothermal cooling of the water and (b) contact between 225°C and 25°C surroundings?

Diagram:

 Assumptions:
 1 The system is the water in the piston-and-cylinder assembly.

 2 The system undergoes a constant-temperature process from saturated vapor to saturated liquid.

Equations / Data / Solve:

No equations are needed to resolve this problem.

There are no equations to solve.

Verify: None of the assumptions made can be verified with the given information.

Answers : Since the temperature is <u>constant</u> during the process, the **pressure** also remains <u>constant</u>. As shown by the **T-V Diagram**, the process is a <u>sequence</u> of <u>equilibrium states</u>, and thus is <u>internally reversible</u>.

The process is <u>not</u> reversible because there is a significant irreversibility in the surroundings. The spontaneous heat transfer taking place between the water at **225°C** and the surroundings at **25°C** is irreversible.

6E-1 Heat, Work and Efficiency of a Water Vapor Power Cycle

8 pts

A piston-and-cylinder device containing 12 kg of water carries out a Carnot power cycle. The maximum pressure is 2.0 MPa and the minimum pressure is 110 kPa.

During the isothermal expansion, the **water** is heated from a **quality** of **14%** until it is a saturated vapor. The cycle produces **500 kJkg** of work during the adiabatic expansion.

- a.) Sketch the process path for the cycle on a PV Diagram
- b.) Calculate Q and W, in kJ, for each process in the cycle
- c.) Calculate the thermal efficiency of the cycle.

Read :Apply the 1st Law (for a closed system) to get Q and W.Use the 1st Law applied to step 2-3 to determine U3 and x3.The trick is to get Q34. Use Tc, TH, Q12 and the Carnot Efficiency of this reversible cycle to determine Q34.

Given:	P ₁	2	MPa	$P_3 = P_4$	110	kPa
	X 1	0.14		$Q_{23} = Q_{41}$	0	kJ/kg
	P ₂	2	MPa	W ₂₃	500	kJ/kg
	X ₂	1		m	12	kg
Find:	Part (a)	PV Diagram				
	Part (b)	Q ₁₂ ,Q ₂₃ ,Q ₃₄ ,Q ₄₁	ı ?	kJ		
		W ₁₂ ,W ₂₃ ,W ₃₄ ,W	41 ?	kJ		
	Part (c)	η	?			

Diagram:

Part a.)

Assumptions:	1 -	The system undergoes a Carnot Cycle.
		- Steps 1-2 and 3-4 are isothermal.
		- Steps 2-3 and 4-1 are adiabatic.
		- <u>All steps are reversible</u> .
	2 -	The water inside the cylinder is the system and it is a closed system.
	3 -	Changes in kinetic and potential energies are negligible.
	4	Development is the only form of your lister estion during the system

4 - Boundary work is the <u>only</u> form of **work** interaction during the cycle.

Equations / Data / Solve:

Ра

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}$$
 Eqn 1

Step 1 - 2

Apply the 1st Law, Eqn 1, to step 1-2 :
$$\Delta U_1$$

 $V_{12} = Q_{12} - W_{12}$ Eqn 2

Boundary work at for a constant pressure process, like step 1-2, can be determined from :

$$\mathbf{W}_{12} = \int_{1}^{2} \mathbf{P} \, \mathbf{dV} = \mathbf{P} \, \Delta \mathbf{V} = \mathbf{m} \, \mathbf{P} \left(\hat{\mathbf{V}}_{2} - \hat{\mathbf{V}}_{1} \right)$$
Eqn 3

 $\Delta \mathbf{U}_{12} = \mathbf{Q}_{12} - \mathbf{P} \Delta \mathbf{V}_{12}$ Now, we can substitute **Eqn 3** into **Eqn 1** to get : Eqn 4 $\Delta H = \Delta U + \Delta (PV)$ The definition of **enthalpy** is: Eqn 5 $\Delta H = \Delta U + P \Delta V$ For isobaric processes, Eqn 5 becomes : Eqn 6

 $\mathbf{Q}_{_{12}}=\Delta \mathbf{H}_{_{12}}=m\,\Delta\,\hat{\mathbf{H}}_{_{12}}$ Now, combine Eqns 4 and 6 to get : Eqn 7

We know the pressure and the quality of states 1 and 2, so we can use the Saturation Table in the Steam Tables to evaluate V and H for states 1 and 2 so we can use Eqns 3 and 7 to evaluate Q₁₂ and W₁₂.

Properties are determined from **NIST WebBook**:

$$\hat{\mathbf{V}} = \hat{\mathbf{V}}_{satliq} + \mathbf{X} (\hat{\mathbf{V}}_{satvap} - \hat{\mathbf{V}}_{satliq})$$
 Eqn 8

At P_1 and x_1 : 0.0011767 m³/kg V_{sat lig. 1} 0.099585 m³/kg V₁ 0.014954 m³/kg V_{sat vap, 1}

$$\hat{\mathbf{U}} = \hat{\mathbf{U}}_{sat liq} + \mathbf{x} \ (\hat{\mathbf{U}}_{sat vap} - \hat{\mathbf{U}}_{sat liq})$$
Eqn 9
$$\mathbf{U}_{sat liq, 1} \qquad 906.14 \quad kJ/kg$$

$$U_{sat vap, 1}$$
 2599.1 kJ/kg U_1 1143.2 kJ/kg

$$\hat{H} = \hat{H}_{sat \, liq} + X (\hat{H}_{sat \, vap} - \hat{H}_{sat \, liq})$$

$$H_{sat \, liq, 1} \qquad 908.50 \qquad kJ/kg$$

$$H_{sat \, vap, 1} \qquad 2798.3 \qquad kJ/kg \qquad H_1 \qquad 1173.1 \qquad kJ/kg$$
Saturated vapor at P₂: V₂
$$0.099585 \quad m^3/kg$$

$$U_2 \qquad 2599.1 \quad kJ/kg \qquad W_{12} \qquad 2031.147 \quad kJ$$

$$H_2 \qquad 2798.3 \quad kJ/kg \qquad Q_{12} \qquad 19502.68 \quad kJ$$

Step 2 - 3

Apply the 1st Law, Eqn 1, to step 2-3 :
$$\Delta U_{23} = Q_{23} - W_{23}$$
 Eqn 10

The specific heat transferred and specific work for step 2-3 are given in the problem statement.

Q ₂₃	0	kJ	W ₂₃	6000	kJ
We can plug these	e values	into Eqn 8 to determine ΔU_{23} :	ΔU_{23}	-6000	kJ
We already deterr	mined U_2	, so we can now determine ${\sf U_3}$:	$\hat{U}_3=\frac{\Delta\hat{U}_{23}}{m}+\hat{U}_2$		Eqn 11

2099.1 kJ/kg

We can use this value of U_3 to determine the unknown quality, x_3 , using : $x_3 = -\hat{U}_3 - U_3$

 $\mathbf{x}_{3} = \frac{\hat{\mathbf{U}}_{3} - \hat{\mathbf{U}}_{\text{sat liq},3}}{\hat{\mathbf{U}}_{\text{sat vap},3} - \hat{\mathbf{U}}_{\text{sat liq},3}} \qquad \text{Eqn 12}$

U₃

Properties are determined from **NIST WebBook**:

428.72 At P₃: kJ/kg U_{sat lig, 3} Usat vap, 3 2508.7 kJ/kg 0.8031 X₃ kg vap/kg $\hat{\mathbf{V}} = \hat{\mathbf{V}}_{\text{sat liq}} + \mathbf{X} (\hat{\mathbf{V}}_{\text{sat vap}} - \hat{\mathbf{V}}_{\text{sat liq}})$ **Eqn 13** At P_3 and x_3 : V_{sat liq, 3} 0.0010453 m³/kg 1.54946 m³/ka V_{sat vap. 3} V₃ 1.2445 m³/kg $\hat{\mathbf{H}} = \hat{\mathbf{H}}_{\text{satliq}} + \mathbf{X} (\hat{\mathbf{H}}_{\text{sat vap}} - \hat{\mathbf{H}}_{\text{satliq}})$ Eqn 14

Step 3 - 4

Apply the 1st Law, Eqn 1, to step 3-4 : $\Delta U_{34} = Q_{34} - W_{34}$ Eqn 15

Because **step 3-4** is isobaric, just like **step 1-2**, **Eqn 7** is the <u>simplified form</u> of the <u>1st Law</u> :

 $\mathbf{Q}_{_{34}} = \Delta \mathbf{H}_{_{34}} = \mathbf{m} \ \Delta \hat{\mathbf{H}}_{_{34}}$ Eqn 16

Eqn 18

To determine the properties at state 4, we make us of the relationship between the absolute Kelvin temperature scale and heat transferred in a Carnot Cycle.

 $\frac{\left|\mathbf{Q}_{34}\right|}{\left|\mathbf{Q}_{12}\right|} = \frac{\mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{H}}}$ Eqn 17

Solve Eqn 13 for \mathbf{Q}_{34} : $|\mathbf{Q}_{34}| = \left(\frac{\mathbf{T}_{c}}{\mathbf{T}_{4}}\right) |\mathbf{Q}_{12}|$

$T_{H} = T_{sat}(P_{1}):$	т _н	485.53	К	Q ₃₄	-15080.8	kJ
$T_{C} = T_{sat}(P_{3}) :$	т _с	375.44	κ	Q ₃₄	-1256.7	kJ/kg

Now, we can use Q_{34} and Eqn 12 to determine H_4 as follows:

$$Q_{34} = m\left(\hat{H}_4 - \hat{H}_3\right)$$
 Eqn 19 or : $\hat{H}_4 = \hat{H}_3 + \frac{Q_{34}}{m}$ Eqn 20
H₄ 979.29 kJ/kg

Now that we know the values of <u>two</u> intensive properties at state 4, T_4 and H_4 , we can evaluate <u>all</u> the other properties using the Saturation Tables in the Steam Tables.

Properties are determined from **NIST WebBook**:

$$\mathbf{x}_{4} = \frac{\hat{\mathbf{H}}_{4} - \hat{\mathbf{H}}_{\text{sat liq},4}}{\hat{\mathbf{H}}_{\text{sat vap},4} - \hat{\mathbf{H}}_{\text{sat liq},4}}$$
Eqn 21

$$\hat{\mathbf{V}} = \hat{\mathbf{V}}_{\text{satliq}} + \mathbf{X} (\hat{\mathbf{V}}_{\text{sat vap}} - \hat{\mathbf{V}}_{\text{satliq}})$$
 Eqn 22

At
$$P_4$$
 and x_4 :
 $V_{sat liq, 4}$ 0.0010453 m³/kg
 $V_{sat vap, 4}$ 1.54946 m³/kg V_4 0.37980 m³/kg

$$\hat{\mathbf{U}} = \hat{\mathbf{U}}_{\mathsf{sat liq}} + \mathbf{X} \, \left(\hat{\mathbf{U}}_{\mathsf{sat vap}} - \hat{\mathbf{U}}_{\mathsf{sat liq}} \right)$$
Eqn 23

At last we have U_4 and we can plug it into Eqn 11 to evaluate W_{34} :

$$\mathbf{W}_{34} = \mathbf{Q}_{34} - \mathbf{m} \left(\hat{\mathbf{U}}_4 - \hat{\mathbf{U}}_3 \right)$$
Eqn 24

W₃₄ -1141.45 kJ/kg

Step 4 - 1

The heat transferred for step 4-1 is given in the problem statement.

Apply the 1st Law, Eqn 1, to step 4-1 :
$$\Delta U_{41} = Q_{41} - W_{41}$$
 Eqn 25

Solve Eqn 25 for
$$W_{41}$$
: $W_{41} = Q_{41} - \Delta U_{41} = Q_{41} - m\left(\hat{U}_1 - \hat{U}_4\right)$ Eqn 26

Part c)	The efficience	v of a Carnot C	vcle is defined by:
i ait 6.j		y of a Gamor G	yole is defined by.

$$\eta = rac{\mathbf{W}_{\mathsf{cycle}}}{\mathbf{Q}_{\mathsf{in}}}$$
Eqn 27

 $\mathbf{W}_{\text{cycle}} = \mathbf{W}_{\text{12}} + \mathbf{W}_{\text{23}} + \mathbf{W}_{\text{34}} + \mathbf{W}_{\text{41}}$ Where : Eqn 28 $\mathbf{Q}_{in} = \mathbf{Q}_{12}$ And : Eqn 29 Q_{in} 19502.7 kJ $\mathbf{W}_{\text{cycle}}$ 4421.9 kJ 0.2267 η Or the efficiency can be determined in $\eta = 1 - \frac{T_c}{T_{\mu}}$ terms of reservoir temperatures: Eqn 30 0.2267 η

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers :	Process	Q	W
	1-2	19502.7	2031.1
	2-3	0	6000.0
	3-4	-15080.8	-1141.5
	4-1	0.0	-2467.8
	Cycle	4421.9	4421.9

The thermal efficiency of the process is : 22.7%

6E-2 Performance of Reversible and Irreversible Power Cycles

4 pts

Two power cycles are available for your use and analysis. One is reversible (**R**) and one is irreversible (**I**). You also have two thermal reservoirs at your disposal. You connect both cycles to both reservoirs, as shown below.

a.) If each cycle receives the same amount of heat from the hot reservoir, show that the irreversible cycle rejects more heat to the cold reservoir than the reversible cycle does.

b.) If each cycle produces the same net amount of work, show that the irreversible cycle must absorb more heat from the hot reservoir than the reversible cycle does.

Read :Between reversible and irreversible cycles, the Carnot Corollaries indicate that $\eta_{Rev} > \eta_{IRR}$.Use the 1st Law and the Carnot Corollaries to demonstrate these two points.

Given: A reversible power cycle **R** and an irreversible power cycle **I** operate between the <u>same</u> two thermal reservoirs.

Part (a)	for Q_H = Q'_H	$Q'_{C} > Q_{C}$
Part (b)	for Q _R = W _I	Q' _H > Q _H

Diagram:

Assumptions:

The system **R** undergoes a reversible power cycle while system **I** undergoes an irreversible power cycle.

1 -

Equations / Data / Solve:

No equations are needed to answer this problem. This problem is a proof. Therefore, the equations needed will be determined in the answer questions section.

Verify: The assumptions in this problem cannot be verified with the given information.

Answers :

- Part (a)By the first Carnot Corollary, $\eta_{Rev} > \eta_{IRR}$.Since both cycles receive the same amount of energy, Q_H , it follows that:
 - $W_R > W_I$ Eqn 1
 - An energy balance on cycle R is: $M_R = Q_H \dot{Q}_C$ Eqn 2

An energy balance on cycle I is: $W_{I} = Q_{H} - Q_{C}'$ Eqn 3

- Combining Eqns 1, 2 and 3 yields : $\mathbf{Q}_{H} \mathbf{Q}_{C} > \mathbf{Q}_{H} \mathbf{Q}_{C}'$ Eqn 4
- The $\mathbf{Q}_{\mathbf{H}}$ terms in Eqn 4 cancel out and we obtain: $\mathbf{Q}_{\mathbf{c}}^{'} > \mathbf{Q}_{\mathbf{c}}$ Eqn 5

Thus, not only do <u>actual cycles</u> develop <u>less</u> **work** they <u>also discharge</u> <u>more</u> <u>energy</u> by <u>heat transfer</u> to their <u>surroundings</u>, thereby <u>increasing</u> the effect of thermal polution.

Part (b) By the first Carnot Corollary, $\eta_{Rev} > \eta_{IRR}$ and from the problem statement we know:

 $W_R = W_I = W$ Eqn 6

- Efficiency is defined by: $\eta = \frac{W}{Q_{H}}$ Eqn 7
- Therefore, because $\eta_{Rev} > \eta_{IRR}$: $\frac{W}{Q_{H}} > \frac{W}{Q_{H}}$ Eqn 8

The work terms cancel because both cycles produce the same amount of work. Therefore, Eqn 8 becomes :

$\mathbf{Q}_{\mathrm{H}}^{'} > \mathbf{Q}_{\mathrm{H}}$	Eqn 9	

Egn 10

Notice that:

If the hot reservoir were <u>maintained</u> by, say, energy from the combustion of a fossil fuel, the irreversible cycle would have the <u>greater</u> fuel requirement. Also, note the irreversible cycle would also have the <u>greater</u> energy <u>discharge</u> to the cold reservoir, increasing the magnitude of thermal polution.

 $\mathbf{Q}_{\mathbf{c}}^{\prime} > \mathbf{Q}_{\mathbf{c}}$

6E-3 Determining Whether a Power Cycle is Reversible, Irreversible or Impossible

Consider the power cycle described by the diagram, below. Consider each of the following cases and determine whether the power cycle in each case is reversible, irreversible or impossible.

Read :What is the relationship between Q_c/Q_H and T_c/T_H for a reversible cycle?Read about the Kelvin temperature scale. How does this allow you to determine the maximum theoretical efficiency of a thermodynamic cycle from T_c and T_H?Note that the maximum efficiency by definition is associated with a reversible cycle.

Any real cycle <u>always</u> possesses some losses or friction and these irreversibilities reduce η below η_{max} .

Diagram: The diagram in the problem statement is adequate.

	0.)	Q _C	207	kJ	u.,		1	7470	
Find:	Reversible	?	Irreversib	le ?	Impossible ?				
Find:	Reversible	?	Irreversib	le ?	Impossible ?				
Assumpt	tions:	1 -	The syster	n shown	undergoes a power cycle	e.			

4 pts

Equations / Data / Solve:

To determine if each case is reversible, irreversible, or impossible we need to <u>compare</u> the actual efficiency of the case to the maximum efficiency. There are **3** possibilities :

If the efficiency of the process <u>equals</u> the maximum efficiency, then the process is **reversible**. If the efficiency of the process is <u>less than</u> the maximum efficiency, then the process is **irreversible**. If the efficiency of the process is <u>greater than</u> the maximum efficiency, then the process is **impossible**.

Since the maximum efficiency, by definition, is associated with a 'reversible' cycle, the maximum thermal efficiency for any power cycle operating between thermal resevoirs T_H and T_C is:

or :

$$\eta_{max} = 1 - \frac{T_c}{T_H}$$
 Eqn 1

The efficiency for each case is determined by:

Only in **part (a)** do we know **W**_{cycle} and **Q**_H but realizing:

 $\eta = \frac{W_{cycle}}{Q_{H}}$ Eqn 2

$$\mathbf{W}_{\mathsf{cycle}} = \mathbf{Q}_{\mathsf{H}} - \mathbf{Q}_{\mathsf{C}}$$
 Eqn 3

$$\mathbf{Q}_{\mathbf{H}} = \mathbf{W}_{\mathsf{cycle}} + \mathbf{Q}_{\mathsf{C}}$$
 Ean 4

Combining Eqns 2 and 4 gives an equation we can use to resolve parts (b) and (c) :

m —	W _{cycle}	$-1-\frac{Q_c}{Q_c}$	
ч —	$\overline{\mathbf{W}_{cycle} + \mathbf{Q}_{C}}$	$-1 - \overline{Q_{H}}$	

Eqn 5

Plug value	s into Eqn 1 to determine the maximum thermal efficiency :	η_{max}	0.816
a.)	Plug values into Eqn 2 to determine η :	η	0.859
b.)	Plug values into Eqn 5 to determine η :	η	0.816
c.)	Plug values into Eqn 5 to determine η :	η	0.769
d.)	Given :	η	0.740

Verify: The assumptions made in this problem cannot be verified with the given information.

Answers : Part (a) The process is **impossible** because the efficiency of the process is <u>greater than</u> the <u>maximum</u> efficiency for <u>any</u> power cycle operating between thermal resevoirs at T_H and T_c.

Part (b) The process is reversible because the efficiency of the process equals the maximum efficiency for any power cycle operating between thermal resevoirs at T_H and T_c.

Part (c) The process is **irreversible** because the efficiency of the process is <u>less than</u> the <u>maximum</u> efficiency for <u>any power cycle</u> operating between thermal resevoirs at T_H and T_c.

Part (d) The process is **irreversible** because the efficiency of the process is <u>less than</u> the <u>maximum</u> efficiency for <u>any</u> power cycle operating between thermal resevoirs at T_H and T_C.

6E-4 Pressure, Work and COP for a Carnot Gas Refrigeration Cycle

8 pts

The **PV Diagram**, below, shows the process path for a Carnot refrigeration cycle carried out in a piston-and-cylinder device with **8.4 Ib**_m of **air** as the working fluid.

The maximum temperature in the cycle is 80°F and the minimum temperature is -10°F. The isothermal expansion requires 126 Btu of heat transfer and the volume of air in the cylinder at the end of the

isothermal compression is **1.74** ft³. Assume **air** behaves as an ideal gas with a constant **heat capacity ratio** of γ = **1.4**. The following relationship is valid for the adiabatic steps in the Carnot cycle:

$$\mathbf{T}\mathbf{P}^{1-\gamma/\gamma}=\mathbf{C}$$

Calculate...

a.) The pressure at states 1 to 4

b.) The work for each of the four processes

c.) The COP for the refrigeration cycle.

Read : Part (a)

Note the direction (**CW** or **CCW**) of the cycle. It will be the <u>opposite</u> direction to that of a <u>power cycle</u>. With the <u>final</u> **volume**, **V**₄ given, use the ideal gas EOS to determine **P**₄. Use the equation given in the problem statement to determine **P**₁. You can then calaculate **V**₁ from the ideal gas EOS. Use an <u>energy balance</u> to determine **V**₂ and then the ideal gas EOS to find **P**₂. Finally, use the equation in the problem statement again to determine **P**₃.

Part (b)

Notice that $(U_2 - U_1) = 0$ for an ideal gas undergoing an isothermal process because U is a function of T only. Carefully apply an energy balance to step 2-3 (watch the sign of each term). Here $dU = C_V dT = R/(\gamma-1) dT$ for the case of constant γ . Note that $MW_{air} = 28.97 \text{ Ib}_m/\text{Ibmol}$.

Given:

m	8.4	lb _m	γ	1.4	
Tc	-10	°F	Т _н	80	°F
	449.67	°R	т _н	539.67	°R
Q ₁₂	126	Btu	V ₄	1.74	ft ³

Find:	a.)	P ₁ , P ₂ , P ₃ , P ₄	???	lb _f /in ²
	b.)	$W_{12}, W_{23}, W_{34}, W_{41}$???	Btu
	c.)	COP _R	???	

Diagram:

Assumptions:

- 1 -The system consists of air modeled as an ideal gas with $\gamma = 1.4$.
- 2 -Boundary work is the only form of work interaction.
- 3 -Changes in kinetic and potential energies are negligible.
- Because the cycle is a Carnot Cycle, the cycle is reversible and therefore each step in 4 the cycle is a reversible process.
- 5 -The heat capacities of the ideal gas are constant.

Equations / Data / Solve:

R	1545.35	(ft * lbf)/(lbmol * ^o R)	Conversion Factors:	$1 \text{ft}^2 =$	144	in²
R	1.986	Btu/Ibmol- [°] R		1 Btu =	778	ft-lb _f
MW _{air}	29	lb _m /lbmol		1 L =	0.0353	ft ³
T _{ref}	459.67	°R				

Since air is modeled as an ideal gas, we can determine the Part a.) pressure at state 4 from the ideal gas EOS:

$$\mathbf{P}_{4} = \frac{\mathbf{m}}{\mathbf{MW}} \frac{\mathbf{RT}_{4}}{\mathbf{V}_{4}}$$
 Eqn 1

 P_4

P₁

Now, let's apply the equation given in the problem statement to step 1-4 :

$$T_1 P_1^{1-\gamma/\gamma} = T_4 P_4^{1-\gamma/\gamma}$$

Eqn 3 P₁

509.1 lb_f/in²

964

lb_f/in²

Eqn 2

P₂ can also be determined from the ideal gas EOS:

 $\mathbf{P}_{1} = \mathbf{P}_{4} \left(\frac{\mathbf{T}_{4}}{\mathbf{T}_{1}} \right)^{\gamma \, \prime (1 - \gamma)}$

 $\mathbf{P}_2 = \frac{\mathbf{m}}{\mathbf{MW}} \frac{\mathbf{RT}_2}{\mathbf{V}_2}$ Eqn 4

The problem is that we don't know V_2 . We could determine V_2 if we knew the value of W_{12} because :

$$W_{12} = \int_{1}^{2} P \, dV$$
 Eqn 5

We can then use the IG EOS for isothermal step 1-2 :

$$\mathbf{P} = \frac{\mathbf{nRI}_{1}}{\mathbf{V}}$$
 Eqn 6

The work is:

Solving

for \mathbf{P}_1 :

$$W_{12} = \int_{1}^{2} \frac{nRT_{1}}{V} dV \qquad \text{Eqn 7}$$

Solving for Eqn 8 for V₂:

Eqn 8

 $V_2 = exp \left[\frac{W_{12}}{nR T_c} \right] V_1$ Eqn 9

Now, the issue is that we still don't know W_{12} . Let's write the 1st Law for step 1-2, assuming <u>changes</u> in kinetic and potential energies are <u>negligible</u>.

$$\Delta \mathbf{U}_{12} = \mathbf{Q}_{12} - \mathbf{W}_{12}$$
 Eqn 10

 $W_{12} = nRT_{c}Ln(V_{2}/V_{1})$

Since the internal energy of an ideal gas depends on temperature <u>only</u> and the temperature is <u>constant</u> along **Process 1-2**, $U_2 = U_1$ and Eqn 10 reduces to:

$$Q_{12} = W_{12}$$
Eqn 11We can determine the number of
moles in the system from : $N = \frac{m}{MW}$ Eqn 12n0.28966Ibmoles

Then, we can evaluate \boldsymbol{V}_1 from the Ideal Gas EOS :	$\mathbf{V}_1 = \frac{\mathbf{\Pi}\mathbf{K} \mathbf{I}_1}{\mathbf{P}_1}$		Eqn 13
	V ₁	2.7456	ft ³
Now, we can substitute W_{12} and V_1 into $\mbox{Eqn 9}$ to evaluate V_2	: V ₂	4.4683	ft ³
At last we can use V_2 in Eqn 4 to evaluate P_2 :	P ₂	312.8	lb _f /in ²

That leaves us P_3 yet to be determined for part (a).

 P_3 can be determined by applying Eqn 3 to step 2-3 : $P_3 = P_2 \left(\frac{T_2}{T_3}\right)^{\gamma/(1-\gamma)}$ Eqn 14

592.4 P_3 lb/in² Verify : The ideal gas assumption needs to be verified. We need to determine the specific volume at each state and check if : $\tilde{V} > 80$ ft³ / lbmol Egn 15 $\tilde{V} = \frac{RT}{R}$ From the Ideal Gas EOS, we obtain : **Eqn 16** V₁ 11.38 ft³/lbmol V₃ 9.78 ft³/lbmol

It is **NOT** accurate to treat the air in this process as an ideal gas !

ft³/lbmol

18.51

We were <u>instructed</u> to do so and we did, but we need to keep in mind that the results may not be accurate to 2 significant figures.

 V_2

۷₄

6.01

ft³/lbmol

P ₁	509 lb _f /in ²	P ₃	592	lb _f /in ²
P ₂	313 Ib _f /in ²	P ₄	964	lb _f /in ²

Part b.) Let's begin by writing the 1st Law, open systems, steady-state with <u>changes</u> in kinetic and potentail energies <u>negligible</u> :

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}$$
 Eqn 16

Apply Eqn 16 to each step in the cycle :

- $A_{12} = Q_{12} W_{12}$ or: $Q_{12} = W_{12}$ Eqn 17
- $\Delta U_{23} = Q_{23} W_{23}$ or : $W_{23} = -\Delta U_{23}$ Eqn 18
- $AV_{34} = Q_{34} W_{34}$ or: $Q_{34} = W_{34}$ Eqn 19
- $\Delta U_{41} = Q_{41} W_{41}$ or: $W_{41} = -\Delta U_{41}$ Eqn 20

 $\Delta U_{12} = \Delta U_{34} = 0$ because these steps are isothermal processes and the system contains an ideal gas. $Q_{23} = Q_{41} = 0$ because these steps are adiabatic.

T Eqn 21

For an ideal gas with constant heat capacities, Eqn 21 becomes : $\Delta U_{AB} = n \tilde{C}_{V}^{o} (T_{B} - T_{A})$ Eqn 22

The heat capacities of ideal gases are related by the following equations : $\tilde{C}_{P}^{o} = \tilde{C}_{V}^{o} + R$ Eqn 23

Now, we can combine Eqn 22 with			
Eqns 18 & 20 for steps 2-3 and 4-1:	W ₂₃	-129.432	Btu
	W ₄₁	129.432	Btu
We already know, from part (a), that :	W ₁₂	126	Btu

So, now we need to evaluate W_{34} . Because step 3-4 is adiabatic (like step 1-2) we can apply Eqn 8 to step 3-4 as follows :

$$W_{34} = nRT_{H}Ln(V_{4}/V_{3})$$
 Eqn 26 W_{34} -151.195 Btu

The assumptions made in this part of the problem cannot be verified with the given information.

Cv

5.0

Btu/Ibmole-°R

W ₁₂	126 Btu	W ₃₄	-151.19 Btu
W ₂₃	-129.43 Btu	W ₄₁	129.43 Btu

Part c.) The coefficient of performance of a Carnot Cycle is:

$$COP_{R,max} = \frac{T_{C}}{T_{H} - T_{C}} Eqn 27$$

$$COP_{R} 5.0$$

Verify: The assumptions made in this part of the problem cannot be verified with the given information.

Answers :	a.)	P ₁ P ₂	510 310	lb _f /in ² lb _f /in ²
	b.)	W ₁₂ W ₂₃	126 -129	Btu Btu
	c.)	COP _R	5.0	

P ₃	590.0	lb _f /in ²
P ₄	960.0	lb _f /in ²
W ₃₄	-151	Btu
W ₄₁	129	Btu

6F-1 Relationship Between Carnot Cycle Efficiencies

Three Carnot heat engines operate between three thermal reservoirs, as shown in the diagram, below.

Derive an **equation** for the thermal efficiency of HE_c (η_c), in terms of the thermal efficiency of HE_A (η_A) and the thermal efficiency of HE_B (η_B).

- **Read :** The key to this problem is the fact that <u>all</u> **three** heat engines are Carnot Engines and their efficiencies are <u>completely</u> determined by the **temperatures** of the **three** reservoirs. Our goal is to <u>algebraically manipulate</u> the **three** equations for the **three** efficiencies in order to <u>eliminate</u> all **three temperatures**.
- **Given:** HE_1 <u>absorbs</u> heat from a reservoir at T_1 and <u>rejects</u> heat to a reservoir at T_2 . HE_2 <u>absorbs</u> heat from a reservoir at T_2 and <u>rejects</u> heat to a reservoir at T_3 . HE_3 <u>absorbs</u> heat from a reservoir at T_1 and <u>rejects</u> heat to a reservoir at T_3 .
- Find: $\eta_3 = fnx(\eta_1, \eta_2)$
- **Diagram:** The diagram in the problem statement is adequate.

Assumptions: 1 - All three heat engines are Carnot Heat Engines.

Equations / Data / Solve:

Begin by applying the equation relating the **thermal efficiency** of a **Carnot Engine** to the **temperatures** of the reservoirs to <u>all **three** heat engines</u>.

$$\eta_{A} = 1 - \frac{T_{2}}{T_{1}}$$
 Eqn 1 $\eta_{B} = 1 - \frac{T_{3}}{T_{2}}$ Eqn 2

$$\eta_{c} = 1 - \frac{T_{3}}{T_{1}} \qquad \qquad \text{Eqn } 3$$

Rearrange Eqns 1 & 2 as follows :

$$\frac{T_2}{T_1} = 1 - \eta_A$$
 Eqn 4 $\frac{T_3}{T_2} = 1 - \eta_B$ Eqn 5

Multiply Eqn 4 by Eqn 5 to get :

$$\frac{T_{2}}{T_{1}}\frac{T_{3}}{T_{2}} = \frac{T_{3}}{T_{1}} = (1 - \eta_{B})(1 - \eta_{A})$$
 Eqn 6

 $\eta_{c}=1\!-\!\left(1\!-\!\eta_{B}\right)\left(1\!-\!\eta_{A}\right)$

Now, substitute Eqn 6 back into Eqn 3 :

$$\eta_{\text{C}} = \cancel{1} - \left(\cancel{1} - \eta_{\text{B}} - \eta_{\text{A}} + \eta_{\text{A}} \eta_{\text{B}}\right) \qquad \qquad \text{Eqn 8}$$

Eqn 7

Finally :

$$\eta_{\text{C}} = \eta_{\text{B}} + \eta_{\text{A}} - \eta_{\text{A}} \eta_{\text{B}} \qquad \qquad \text{Eqn 9}$$

Verify: We cannot verify that the heat engines are **Carnot Engines**, but the problem statement <u>instructed</u> us to make this assumption.

Answers : $\eta_{c} = \eta_{B} + \eta_{A} - \eta_{A} \eta_{B}$

6G-1	Efficiency and Coefficient of Performance of Carnot Cycles	4 pts
A Carnot (Cycle operates between thermal reservoirs at 55°C and 560°C. Calculate	
a.) The th	ermal efficiency, η, if it is a power cycle	
b.) The C	OP if it is a refrigerator	
c.) The Co	OP if it is a heat pump	

Read : This is a straightforward application of the <u>definitions</u> of **efficiency** and **coefficient of performance**.

Given:	т _н т _н	560 833.15	°C K			T _c T _c	55 328.15	°C K
Find:	η	???		COP _R	???	COP _{HP}	???	

- Diagram: Not necessary for this problem.
- Assumptions: None.

Equations / Data / Solve:

Part a.) The **thermal efficiency** of a **Carnot Cycle** depends <u>only</u> on the **temperatures** of the **thermal reservoirs** with which it interacts. The equation that defines this relationship is :

$$\eta = 1 - \frac{T_c}{T_H}$$
 Eqn 1

Just be sure to use absolute temperature in Eqn 1 ! In this case, convert to Kelvin. Temperatures in Rankine will work also.

η 60.6%

0.6498

Part b.) The **coefficient of performance** of a **Carnot Refrigeration Cycle** also depends <u>only</u> on the **temperatures** of the thermal reservoirs with which it interacts. The equation that defines this relationship is :

$$COP_{R} = \frac{1}{\frac{T_{H}}{T_{c}} - 1} = \frac{T_{c}}{T_{H} - T_{c}}$$
Eqn 2

Using T in Kelvin yields :

This is an exceptionally <u>BAD</u> **COP**_R because it is <u>less than</u> **1**. This isn't terribly surprising when you consider that the <u>refrigerator</u> must reject heat to a thermal reservoir at **560°C** !!

Part c.) The coefficient of performance of a Carnot Heat Pump Cycle also depends <u>only</u> on the temperatures of the thermal reservoirs with which it interacts. The equation that defines this relationship is :

$$COP_{HP} = \frac{1}{1 - \frac{T_c}{T_H}} = \frac{T_H}{T_H - T_c}$$
Eqn 3

Using T in Kelvin yields :

COP_{HP} 1.6498

This is a <u>BAD</u> **COP**_{HP} because it is just barely greater than **1**. This isn't terribly surprising when you consider that the heat pump must put out heat to a reservoir at **560°C** !!

Notice also that :

$$COP_{HP} = COP_{R} + 1$$
 Eqn 4

This is always true for **Carnot Cycles**.

Verify: No assumptions to verify that were not given in the problem statement.

	-				
Answers :	η 60.6%	COP _R	0.650	COP _{HP}	1.65

In this chapter, we use the Kelvin Relationship and the Carnot Pricniples to show that the Clausius Inequality is true. This leads to the definition of entropy. The TS Diagram will be used frequently in the remainder of this course because it provides a great deal of insight into the performance of processes and cycles. The Principle of Increasing Entropy leads to the concept of entropy generation.

The 1st and 2nd Gibbs Equations are introduced to facilitate the evaluation of changes in entropy associated with processes. We apply the Gibbs equations to incompressible liquids and ideal gases. This analysis leads to the Ideal Gas Entropy Function and to relative properties. These are tabulated in the Appendix.

The chapter concludes with a discussion of polytropic, isentropic and other special processes and their representation on PV and TS Diagrams.

LearnThermo.com ⁵

Hot Reservoir

HER

Cold Reservoir

Q_H

Q_{C,rev}

The Clausius Inequality

- Cyclic Integrals

 Integrate through all the steps in
- a cycle and return to the initial state.
- Inexact Differentials: δQ & δW ◊ Used for path variables, Q and W

$$\oint \delta \mathbf{Q} = \int_{1}^{2} \delta \mathbf{Q} + \int_{3}^{4} \delta \mathbf{Q} = \mathbf{Q}_{12} + \mathbf{Q}_{34} = \mathbf{Q}_{H} - \mathbf{Q}_{C} > \mathbf{0}$$

♦ Example 2: Carnot HE

$$\oint \frac{\delta Q}{T} = \int_{1}^{2} \frac{\delta Q}{T} + \int_{3}^{4} \frac{\delta Q}{T} = \frac{\int_{1}^{2} \delta Q}{T_{H}} + \frac{\int_{3}^{4} \delta Q}{T_{C}} = \frac{Q_{12}}{T_{H}} + \frac{Q_{34}}{T_{C}} = \frac{Q_{H}}{T_{H}} - \frac{Q_{C,rev}}{T_{C}}$$

- Example 2
- Because the Carnot Cycle is completely reversible, all heat transfer must occur through an infinitessimal temperature difference.
- Therefore, the temperature of the hot reservoir must be equal to the temperature of the working fluid in the system to which it transfers heat.
- And the temperature of the cold reservoir must be equal to the temperature of the working fluid in the system from which it receives heat.
- Since the reservoir temperatures are constant, the temperatures within the system where the heat exchange occurs must also be constant.

Clausius: Int. Rev. and Irrev. Cycles Reversible Cycle, such as Carnot: $\oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_{C,rev}}{T_C}$ Hot Reservoir $\diamond \text{ Kelvin:} \qquad \frac{\mathbf{Q}_{C,rev}}{\mathbf{Q}_{H}} = \frac{\mathbf{T}_{C}}{\mathbf{T}_{H}} \quad \text{or:} \quad \frac{\mathbf{Q}_{C,rev}}{\mathbf{T}_{C}} = \frac{\mathbf{Q}_{H}}{\mathbf{T}_{H}}$ $\oint \frac{\delta Q}{T} = 0$ HE_{Ir} ♦ Therefore: Wirr Q_{C.irr} Irreversible Cycles: $\eta_{\rm rev} > \eta_{\rm irr}$ ♦ Definition of efficiency : $W_{rev} > W_{irr}$ ♦ 1st Law : $Q_H - Q_{C,rev} > Q_H - Q_{C,irr}$ **Cold Reservoir** $Q_{C.rev} < Q_{C,irr}$ $\oint \frac{\delta Q_{irr}}{T} = \frac{Q_{H}}{T_{H}} - \frac{Q_{C,irr}}{T_{C}} = \frac{Q_{C,rev}}{T_{C}} - \frac{Q_{C,irr}}{T_{C}} < 0$ $\oint \frac{\delta Q}{T} \le 0$ All Cycles : •

- Conclusions
- ♦ The Clausius Inequality is TRUE ! The equality applies for int. rev. cycles and the "less than" part applies for irreversible cycles.
- Why relax the rule from reversible to just internally reversible? If the temperatures inside the system are NOT equal to the temperatures of the hot and cold reservoirs, then the heat exchange is NOT reversible.
- But, the Kelvin Relationship applies if the cycle is internally reversible.
- As long as the cycle is internally reversible, the equality in the Clausius Inequality applies.
 The temperature within the system at which heat exchange occurs does not need to be constant for the equality part of Clausius to hold true. It just makes it a WHOLE LOT easier to evaluate the cyclic integral.

- Cyclic integrals are new, but they are not scary or terribly difficult when applied to thermodynamic cycles.
- All you need to do is integrate through all the steps of the cycle, so that you begin and end in the same state.
- The funky "δ" is a common way of indicating that the differential is not an exact differential, "δ", nor is it a partial differential, "∂".
- It is absolutely crucial that you understand these two examples of how to evaluate a cyclic integral.
- Example 1
- ◊ In the cyclic integral, our sign convention applies, but in the tie-fighter diagram, both Q_H and Q_C are positive quantities.
- When we evaluate the cyclic integral, we get something like $Q_{12} + Q_{23} + Q_{34} + Q_{41}$ for a Carnot cycle.
- $\diamond~$ In a Carnot Cycle, Steps 2-3 and 4-1 are adiabatic, so $Q_{23}=Q_{41}=0.$
- $\diamond~$ So, the cyclic integral is just Q_{12} + Q_{34} .
- ♦ Because of the sign convention conflict, $QH = Q_{12}$ and $Q_C = -Q_{34}$.
- $\diamond~$ Therefore, the cyclic integral is Q_H-Q_C .
- The 1st Law tells us that $Q_H = Q_C + W_{HE}$
- ♦ Since $W_{HE} > 0$, $Q_H > Q_C$ and finally $Q_H Q_C > 0$
- Reversible Cycles
 - Kelvin Relationship applies to reversible cycles like Carnot
 - Depends on the fact that the temperature scale we use, the Kelvin Scale, is a thermodynamic temperature scale
- Irreversible Cycles:
 - $\label{eq:consider} \diamond \quad Consider an irreversible HE that operates between the same hot and cold thermal reservoirs and receives the same amount of heat from the hot reservoir, <math display="inline">Q_{H}.$
 - Ist Carnot Principle : the reversible HE is more efficient than the irreversible HE
 - > Thermal efficiency is defined as the ratio of the work output to Q_{H} .
 - Since Q_H is the same for both HE's and the efficiency of the reversible HE is greater, we conclude that the work output of the irreversible HE must be less than the work output of the reversible HE.
 - ♦ The 1st Law allows us to replace the work output with $Q_H Q_C$ for each HE.
 - The Q_Hterm on each side of the inequality cancels leaving us with the fact that the irreversible HE must reject more heat to the cold reservoir than the reversible HE does.
 - ◊ The Cyclic Integral
 - We can now apply the cyclic integral of **dQ/T** to the irreversible process.
 - The key here is that we can use the Kelvin Relationship (applied to the reversible HE, not this irreversible one) to replace Q_H / T_H with $Q_{C,rev} / T_C$.
 - We just showed that Q_{C,rev} < Q_{C,irr}, so we conclude that the cyclic integral <u>must</u> be negative for all irreversible cycles !

LearnThermo.com

Entropy

LearnThermo.com

Carnot Cycle

• We use the definition of entropy to evaluate changes in entropy for each step in the Carnot Cycle.

Steps 2-3 and 4-1 are both adiabatic and reversible. Therefore there is NO CHANGE in the entropy of the system during these steps.
 Steps 2-3 and 4-1 are ISENTROPIC !

- Steps 1-2 and 3-4 occur at constant temperature.
- So, the definition of entropy simplifies (just as it did for a reservoir).
- $\diamond \Delta S$ is just Q / T.
- So, what about work ?

Heat, Work and TS Diagrams $\hat{Q}_{H} = T_{H} (\hat{S}_{2} - \hat{S}_{1})$ $\hat{Q}_{C} = T_{C} (\hat{S}_{3} - \hat{S}_{4})$ $1^{st} Law Cycle$ $\hat{Q}_{H} = \hat{W} + \hat{Q}_{C}$ $\hat{W} = \hat{Q}_{H} - \hat{Q}_{C}$ $Q_{H} = area under path for step 1-2$

- Q_C = positive area under path for step 3-4
- W = area enclosed by the cycle !

- Areas under process paths on TS Diagrams represent heat transferred in reversible processes.
- Application of the 1st Law lets us also associate work with the area enclosed by the cycle.
- This simple, tangible interpretation of area makes it much easier to understand and compare the performance of complex cycles that we will study later.
- For example, if we decrease **P**_{LO}, does the efficiency of this power cycle increase or decrease ?

ŝ

LearnThermo.com

Principle of Increasing Entropy Clausius: $\oint \frac{\delta Q}{T} \le 0$

- Apply to Cycle 1-A-2-B
 - $\oint \frac{\delta Q}{T} = \int_{1}^{2} \left(\frac{\delta Q}{T} \right)_{A} + \int_{2}^{1} \left(\frac{\delta Q}{T} \right)_{B} < 0$
- Introduce Entropy: $S_1 - S_2 = \int_2^1 \left(\frac{\delta Q}{T}\right)_1^2$
- Substitute into Clausius:
- Rearrange:
- Differential Form:

- The entropy sneaks into the equation because path B is reversible.
- The result is that the entropy change from 1 to 2 is GREATER THAN (or equal to if process A were reversible) the integral of **dQ** / **T** from state 1 to state 2.

 - crease !
 All you need to do to decrease the entropy of a system is to transfer some heat out of it !
- So, what does this principle tell us ?

Entropy Generation		
 Newest Statement of the 2nd Law : Make Clausius into an equality: 	$dS \ge \frac{\delta Q}{T}$ $dS = \frac{\delta Q}{T} + dS_{gen}$	 One be to proc sible This Prince
Entropy Generation, S _{gen}		
• Internally reversible processes:	$S_{gen} = 0$	
 Irreversible processes: 	S _{gen} > 0	
 Impossible processes: 	S _{gen} < 0	

 $dS \ge \frac{\delta Q}{T}$

- We define entropy generation by making the Clausius Inequality into an equality !
- One of the uses for entropy generation will be to allow us to quickly determine if a process is reversible, irreversible or impossible !
 - This is the important implication of the Principle of Increasing Entropy.

- Any 2 states can be connected by both reversible and irreversible process paths.
- Reversible and irreversible paths result in different values for S_{gen} .
- So, S_{gen} depends on the process path.
- S_{gen} is a path variable and therefore requires an <u>inexact</u> differential.

- The universe is an isolated system
 - ♦ No mass enters or leaves
 - There is nothing else with which to exchange heat !
 - Any change in the entropy of the universe can only be attributed to entropy generation !
 - ◊ Since the total S_{gen}≥0 for any process, the entropy of the universe can only increase !
 - Keep in mind that universe is just the combination of the system and all of its surroundings (including any reservoirs).

LearnThermo.com

The Gibbs Equations

- **Definition of entropy:** $\delta Q_{Int Rev} = T dS$
- 1^{st} Law, closed system, W_b only: $\delta Q - \delta W = dU$
- Boundary work for an internally reversible process: δW_{IntRev} = P dV

 $d\mathbf{U} = \mathbf{T}\,\mathbf{dS} - \mathbf{P}\,\mathbf{dV}$

- Definition of enthalpy:
- Substitute in the 1st Gibbs Eqn:

• 1st Gibbs Equation:

• 2nd Gibbs Eqn:

dH = dU + d(PV)= dU + P dV + V dP

dH = T dS - P dV + P dV + V dP

 $\mathbf{dH} = \mathbf{T}\,\mathbf{dS} + \mathbf{V}\,\mathbf{dP}$

• BIG result !

- $\label{eq:rescaled} \begin{array}{l} \diamond \quad \mbox{If we can determine } P, V, T \mbox{ and } U \mbox{ or } H, \mbox{ the } \\ \mbox{ Gibbs Eqns can be used to calculate } \Delta S \ ! \end{array}$
- As a result, we can look up specific entropy in the NIST Webbook or in any thermodynamic table.
- We must still choose a reference state (**T**, **P** and phase) at which **S** = **0**.
- So, HOW do we use the Gibbs Eqns to evaluate changes in entropy ?
 - \diamond We need an EOS to do this.
 - Incompressible Liquids are the simplest, so we will consider them first.
 - Ideal Gas EOS is the simplest EOS, so we will consider that next.
 - More accurate, sophisticated EOS's are tougher to use to evaluate ΔS .
 - Good news. This is beyond the scope of this course !
 - If it is not an incompressible liquid or an ideal gas, we will always use the thermody-namic tables.

Incompressible Liquids			• The molar volume of an incompressible liquid is constant.		
•	Assumptions: $\tilde{V} \approx 0$	$d\tilde{V} = 0 \qquad \tilde{C}_{P} = \tilde{C}_{V} = \tilde{C}$	• If we further assume that the molar volume is very, very small, The Gibbs Equations simplify even further.		
•	Gibbs Equations:	$d\tilde{U} = T d\tilde{S} - P d\tilde{V}$	• Remember that for a perfectly incompressible liquid, $C_P = C_V$.		
•	Enthalpy, internal energy and heat capacity:	$d\tilde{H} = T d\tilde{S} + \tilde{X} dP$ $d\tilde{U} = \tilde{C}_{V} dT = \tilde{C} dT$ $d\tilde{H} = \tilde{C}_{P} dT = \tilde{C} dT$ $d\tilde{S} = \frac{dH}{T} = \frac{dU}{T} = \frac{\tilde{C}}{T} dT$	 As a result, ΔH = ΔU. The result is that both Gibbs Equations reduce to the same equationthe one in the box. This makes it easy to evaluate changes in entropy of an incompressible liquid. It also means that the molar entropy of a subcooled liquid is the same as the molar entropy of a saturated liquid at the same temperature. 		
•	Result:	$d\tilde{S} = \frac{\tilde{C}}{T} dT$	 The best part is that our best estimate of the heat capacity of a liquid is often just a constant. In which case, ΔS = C Ln(T2/T1) 		

• It doesn't get much better than that !

Ideal Gases

- Gibbs Equations: $d\tilde{U} = T d\tilde{S} - P d\tilde{V} \qquad \Delta \tilde{S} = \int_{1}^{2} d\tilde{S} = \int_{1}^{2} \frac{d\tilde{U}}{T} + \int_{1}^{2} \frac{P}{T} d\tilde{V}$ $d\tilde{H} = T d\tilde{S} + \tilde{V} dP \qquad \Delta \tilde{S} = \int_{1}^{2} d\tilde{S} = \int_{1}^{2} \frac{d\tilde{H}}{T} - \int_{1}^{2} \frac{\tilde{V}}{T} dP$ • Ideal Gas Heat Capacities and EOS: $\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{V}}{T} dT + \int_{1}^{2} \frac{P}{T} d\tilde{V} = \int_{1}^{2} \frac{\tilde{C}_{V}}{T} dT + \int_{1}^{2} \frac{R}{\tilde{V}} d\tilde{V}$ $\Delta \tilde{S} = \int_{1}^{2} \frac{d\tilde{H}}{T} - \int_{1}^{2} \frac{\tilde{V}}{T} dP = \int_{1}^{2} \frac{\tilde{C}_{P}}{T} dT - \int_{1}^{2} \frac{R}{P} dP$ • Integration yields: $\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{V}}{T} dT + R \ln \left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right]$
- There are three ways to evaluate ΔS using these ideal gas forms of the Gibbs Equations.
 - Use the Shomate Equation from the NIST Webbook.
 - Use the Ideal Gas Property Tables in Thermo-CD.
 - Do not mix and match data from different sources without verifying that they use the <u>same reference state</u> !
 - Use relative Pressure, also provided in the Ideal Gas Property Tables in Thermo-CD.
 - We will cover this in the next class

Using the Shomate Equation • This method is accurate for ideal gases, but it is tedious. $\int_{1}^{2} \frac{\tilde{C}_{p}^{o}}{T} dT = \int_{T_{1}}^{T_{2}} \frac{1}{T} \left[A + \frac{B}{1000} T + \frac{C}{1000^{2}} T^{2} + \frac{D}{1000^{3}} T^{3} + 1000^{2} \frac{E}{T^{2}} \right] dT$ $= A \ln \frac{T_{2}}{T_{1}} + \frac{B}{1000} (T_{2} - T_{1}) + \frac{C/2}{1000^{2}} (T_{2}^{2} - T_{1}^{2}) + ...$ $+ \frac{D/3}{1000^{3}} (T_{2}^{3} - T_{1}^{3}) - 1000^{2} \frac{E}{2} \left(\frac{1}{T_{2}^{2}} - \frac{1}{T_{1}^{2}} \right)$ $\int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{V}^{o}}{T} dT = \int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{P}^{o} - R}{T} dT = \int_{T_{1}}^{T_{2}} \frac{\tilde{C}_{P}^{o}}{T} dT - R \ln \left[\frac{T_{2}}{T_{1}} \right]$

- Using the Shomate Equation is a tiny bit different than when we used it before because we are evaluating the integral of C_P over T with respect to T and <u>NOT</u> just the integral of $C_P dT$.
- Don't make this silly mistake !
- The calculations here are not hard, they are just tedious.
- We can use the fact that, for an ideal gas, $C_P = C_V + R$ to help us evaluate the integral of $C_V dT$ using the Shomate Equation, as shown here.
- The good news is that the Ideal Gas Properties Table essentially eliminates our reliance on the Shomate Equation for some common gases.
LearnThermo.com

+RLn

Ideal Gas Entropy Function

 $\int_{T}^{T_2} \frac{\tilde{C}_P^o}{T} dT = \tilde{S}_{T_2}^o - \tilde{S}_{T_1}^o$

- **Definition:** $\tilde{S}_{T}^{o} = \int_{T_{ref}}^{T} \frac{\tilde{C}_{P}^{o}}{T} dT$ Where T_{ref} is the reference temperature and: $\tilde{S}_{Tref}^{o} = 0$
- Relationship with Shomate Eqn :
- 1st Gibbs Eqns for ideal gases :

$$\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{V}^{o}}{T} dT + R Ln \left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right]$$
$$= \int_{1}^{2} \frac{\tilde{C}_{P}^{o}}{T} dT - R Ln \left[\frac{T_{2}}{T_{1}}\right] + R Ln \left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right]$$

• Substitute the Ideal Gas Entropy Function : $\Delta \tilde{S} = \tilde{S}_{T_2}^{\circ} - \tilde{S}_{T_1}^{\circ} - R \ln \left[\frac{T_2}{T_1} \right]$

- The ideal gas entropy function, S^o is tabulated for some gases in Thermo-CD.
- The table contains the results of many, many integrals of the Shomate Equation.
- Instead of integrating Shomate, you can simply interpolate to determine values of S^o.
- Then, we can re-write the ideal gas form of the 1st Gibbs Equation in terms of the ideal gas entropy function.
- The resulting equation in the box allows you to calculate ΔS for an ideal gas as long as you know the initial and final T and molar volume.
- What if you only know **T** and **P**?
 - You could solve for V using the ideal gas EOS, or you could use the 2nd Gibbs Equation.
 - See the next slide.

Ideal Gas Entropy Function				
• Definition: $\tilde{S}_{T}^{o} = \int_{T_{ref}}^{T}$	$\frac{\tilde{C}_{P}^{\circ}}{T} dT \text{Where } T_{ref} \text{ is the refe} \tilde{\theta}_{0}^{\circ} n \in \mathcal{E} 0$ temperature and:			
• Relationship with Shomate Eqn :	$\int_{T_1}^{T_2} \frac{\tilde{C}_P^o}{T} dT = \tilde{S}_{T_2}^o - \tilde{S}_{T_1}^o$			
• 1 st Gibbs Eqns for ideal gases :	$\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{P}^{o}}{T} dT - R \ln \left[\frac{P_{2}}{P_{1}}\right]$			
• Substitute the Ideal G	as			
Entropy Function :	$\Delta \tilde{\mathbf{S}} = \tilde{\mathbf{S}}_{\mathbf{T}_2}^{\circ} - \tilde{\mathbf{S}}_{\mathbf{T}_1}^{\circ} - \mathbf{R} \mathbf{Ln} \left[\frac{\mathbf{P}_2}{\mathbf{P}_1} \right]$			

- We can also write Gibbs 2nd Equation in terms of the Ideal Gas Entropy Function, \mathbf{S}^{o} .
- This gives us nice, neat, algebraic equation (no integrals) that allows us to compute ΔS for an ideal gas if we know the initial and final pressures.
- The combination of this result and the result on the previous page give us a complete toolkit of equations for calculating ΔS for ideal gases !
- The OTHER columns in the Ideal Gas Property Tables are pretty useful as well.
- $\diamond \quad H^{\bullet} \text{ is the integral from } T_{ref} \text{ to } T \text{ of } C^{\bullet}_{P}.$
- $\diamond \quad U^o \text{ is the integral from } T_{ref} \text{ to } T \text{ of } C^o{}_V.$
- There is no longer any reason to integrate the Shomate Equation for gases that appear in the Ideal Gas Property Tables !!
- Real gases require more sophisticated EOS's like the ones used to generated the steam tables and other thermodynamic tables.
 - These complicated EOS's are used with the Gibbs Equations to generated the values of specific entropy that we find in the thermodynamic tables.
 - The computations are beyond the scope of this course.
 - We will just trust NIST and use the data that they provide for specific entropy.

Relative Thermodynamic Properties

• Gibbs Equations for ideal gases:

$$\Delta \tilde{S} = \tilde{S}_{T_2}^{\circ} - \tilde{S}_{T_1}^{\circ} - R Ln \left[\frac{T_2}{T_1} \right] + R Ln \left[\frac{\tilde{V}_2}{\tilde{V}_1} \right] \qquad \Delta \tilde{S} = \tilde{S}_{T_2}^{\circ} - \tilde{S}_{T_1}^{\circ} - R Ln \left[\frac{P_2}{P_1} \right]$$

Consider an isentropic process from a reference state (T_{ref}, P_{ref}, V_{ref}) to any other state (T, P, V).
 ∧ Note, Š^o_{Tref} = 0. Gibbs Eqns become:

 $Ln\left[\frac{\tilde{V}}{\tilde{V}_{ref}}\right] = Ln\left[\frac{T}{T_{ref}}\right] - \frac{\tilde{S}_{T}^{\circ}}{R}$

$$\frac{\tilde{S}_{T}^{o}}{R} = Ln \left[\frac{P}{P_{ref}} \right]$$

Р

- Define Relative Properties:
 (IG Properties Tables, functions of T <u>only</u>)
- Advantage of using Relative Properties: $\frac{\tilde{V}_1}{\tilde{V}_2} = \frac{V_R(T_1)}{V_R(T_2)}$ $\frac{P_1}{P_2} = \frac{P_R(T_1)}{P_R(T_2)}$

- Relative Thermodynamic Properties provide another way to analyze isentropic processes on ideal gases that lets us avoid the tedium of integrating the Shomate Equation.
- Limitations:
 - Ideal Gases only
 Isentropic processes only
- Tables are only available for seven common gases: air, N₂, O₂, CO₂, CO, H₂, H₂O.
- For any other ideal gases, we must resort to integrating the Shomate Equation.

Using Relative properties							
Advantage of u Relative Proper	sing rties:	$V_{R} = rac{\tilde{V}}{\tilde{V}_{ref}}$	$\mathbf{P}_{\mathbf{R}} = \frac{\mathbf{P}}{\mathbf{P}_{\mathrm{ref}}}$				
		$\frac{\tilde{\mathbf{V}}_1}{\tilde{\mathbf{V}}_2} = \frac{\mathbf{V}_{\mathbf{R}}(\mathbf{T}_1)}{\mathbf{V}_{\mathbf{R}}(\mathbf{T}_2)}$	$\frac{P_1}{P_2} = \frac{P_R(T_1)}{P_R(T_2)}$				
• Example:	Air expand MPa to the is an ideal what is the	ls in a turbine surrounding gas and the tu temperature	e from 1000 K and 1 s at 100 kPa. If the air arbine is isentropic, of the turbine exhaust ?				
$P_{R}(T_{2}) = P_{R}(T_{1}) \frac{P_{2}}{P_{1}} = 86.792 \frac{100 \text{ kPa}}{1000 \text{ kPa}} = 8.6792$							
	T (K)	P _R					
	540	8.3101	By interpolation :				
	T ₂	8.6792	$T_2 = 546.4 \text{ K}$				
	550	8.8893					

- The advantage of using them is most evident in the last two equations in this slide.
 - In any isentropic process from ideal gas state 1 to ideal gas state 2, there are 6 variables of interest: P, V and T for each state.
 - We can also write the IG EOS for each state.
 - \diamond Given P_1 , T_1 and P_2 we can determine PR_2 and get T_2 by interpolation on the IG Property Tables.
 - A similar analysis can be used if volumes are known.
 - This method is pretty quick and straightforward.

Isentropic Processes

•	Assumptions:	Ideal Gas with constant $ \tilde{C}^{o}_{P} $ and $ \tilde{C}^{o}_{V} $
•	Key equations:	$\tilde{C}_{P}^{o} = \tilde{C}_{V}^{o} + R$ and: $\gamma = \frac{\tilde{C}_{P}^{o}}{\tilde{C}_{V}^{o}} > 1$
•	Results:	$T_1 \tilde{V}_1^{\gamma-1} = T_2 \tilde{V}_2^{\gamma-1} = constant$
		$T_1 P_1^{\frac{1-\gamma}{\gamma}} = T_2 P_2^{\frac{1-\gamma}{\gamma}} = \text{constant}$
		$P_1 \tilde{V}_1^{\gamma} = P_2 \tilde{V}_2^{\gamma} = constant$

• The derivation of the equations presented here is given in Thermo-CD.

Polytropic	• All of the equations on the previous slide also apply to any polytropic process.	
• Definition:	$\mathbf{P}_1 \tilde{\mathbf{V}}_1^{\delta} = \mathbf{P}_2 \tilde{\mathbf{V}}_2^{\delta} = \text{constant}$	 All we need to do is replace γ with δ. Isentropic processes for <u>ideal gases with</u> <u>constant heat capacities</u> are a special case or
• Other relationships:	$T_1 \tilde{V}_1^{\delta-1} = T_2 \tilde{V}_2^{\delta-1} = constant$ $\frac{1-\delta}{\delta} = \frac{1-\delta}{\delta}$	subset of the more general polytropic process.It also turns out that isobaric processes on
• An isentropic process is a polytropic process where:	$T_1 P_1^{\overline{\delta}} = T_2 P_2^{\overline{\delta}} = \text{constant}$ $\delta = \gamma \qquad P_1 \tilde{V}_1^{\gamma} = P_2 \tilde{V}_2^{\gamma}$	 <u>ideal gases</u> are just polytropic processes in which δ = 0. Isothermal processes on <u>ideal gases</u> are just polytropic processes in which δ = 1.
• Isobaric process:	$\delta = 0 \qquad P_1 = P_2$	• Isochoric processes on <u>ideal gases</u> are just polytropic processes in which $\delta = \infty$.
Isothermal process:	$\delta = 1 \qquad P_1 \tilde{V}_1 = P_2 \tilde{V}_2$	
Isochoric process:	$\delta = \infty$ $\tilde{V}_1 = \tilde{V}_2$	

LearnThermo.com

Be sure to use the rollover $\widetilde{\mathbf{V}}$

to see the TS Diagram !

Polytropic Process Paths: PV Diagram PV Diagram SLOPE Isochoric: PV TS slope = infinitv $1 / \widetilde{C}_{p}^{0}$ $\delta = 0$ (Isobaric) 0 $\delta = 1$ 0 (Isothermal) -1 $\delta = \gamma$ (Isentropic) 00 -γ Isobaric: $\delta = \infty$ (Isochoric) 00 $1/\widetilde{C}_{v}^{o}$ slope = 0**Notice** - The TS Diagram is a semi-log Isothermal: slope = -1 plot, the x-axis is logarithmic. - The PV Diagram is a log-log slope = -γ plot. Both axes are logarithmic.

7E: 13 of 23

- It is critical that you notice that this is a semi-logarithmic plot.
- Both the P axis and the V axis are logarithmic.
- The logarithmic axis has the same effect on the shape of the data plotted as taking the logarithm of your P data, but has the BIG advantage of not messing up the numbers.
 - You should always consider using a logarithmic axis instead of plotting the log of your data on an ordinary, linear axis.
 - BUT areas on these logarithmic coordinates are not equal to WORK !
 - Don't get caught in this trap.
- The cool part is that polytropic processes for ideal gases with constant heat capacities are straight lines on this plot.
 - $\diamond \quad \text{The slope} = -\delta$
 - Note, a line with a slope of ∞ is the same as a line with a slope of -∞.

- This plot is different. It is a semilogarithmic plot.
 - The T axis is logarithmic and the S axis is an ordinary, linear axis.
- This plot also produces straight lines for all polytropic processes !
- But the slopes are different.
- On the next slide, we will see why these paths are linear and how to determine their slopes.

ΔŜ

Polytropic Process Paths: TS Diagram

• Gibbs Eqns, IG, Constant Heat Capacities:

$$\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{V}^{\circ}}{T} dT + R \ln\left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right] = \tilde{C}_{V}^{\circ} \ln\left[\frac{T_{2}}{T_{1}}\right] + R \ln\left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}}\right]$$
$$\Delta \tilde{S} = \int_{1}^{2} \frac{\tilde{C}_{P}^{\circ}}{T} dT - R \ln\left[\frac{P_{2}}{P_{1}}\right] = \tilde{C}_{P}^{\circ} \ln\left[\frac{T_{2}}{T_{1}}\right] - R \ln\left[\frac{P_{2}}{P_{1}}\right]$$
$$Slope = \frac{\ln\left[\frac{T_{2}}{T_{1}}\right]}{\tilde{C}_{P}^{\circ}}$$

- Slope = $\pm \infty$ **Isentropic process:** $\delta = \gamma$
- Slope = $\frac{1}{\tilde{C}^{\circ}_{n}}$ **Isobaric process:** $\delta = 0$
- **Isothermal process:** Slope = 0 $\delta = 1$
- Slope = $\frac{1}{\tilde{C}_{\cdot}^{0}}$ **Isochoric process:** $\delta = \infty$

- The key here is that our TS Diagram is semi-logarithmic.
- ♦ The T axis is logarithmic.
- This is equivalent to plotting Ln[T] vs. S. ٥
- The slope of a line on such a plot would be: ٥ $\{Ln[T_2]-Ln[T_1]\} / \{S_2-S_1\}$
- Or, by using properties of logarithms... slope = { $Ln[T_2/T_1]$ } / { S_2 - S_1 }
- Now, let's use the two Gibbs Eqns to determine the slope of each of the special types of polytropic processes on a semilogarithmic TS Diagram.
 - Isentropic: $\Delta S = 0$ and ΔS is in the denominator of the slope, so the slope is ∞ (or - ∞)
 - Isobaric: $P_2 = P_1$, so the **R** Ln[P₂/P₁] term in the 2nd Gibbs Eqn is zero.
 - When we then solve the 2nd Gibbs Eqn for the slope, we get $1 / C^{o}_{P}$.
 - \diamond Isothermal: $\mathbf{T}_2 = \mathbf{T}_1$, so the numerator of the slope is zero and the slope is therefore zero as well.
 - Isochoric: $V_2 = V_1$, so the **R** Ln(V_2/V_1) term in the 1st Gibbs Eqn is zero.
 - When we then solve the 1st Gibbs Eqn for the slope, we get $1 / C^{o}_{V}$.

Boundary Work in Polytropic Processes • Internally **Reversible Processes:** $\delta = 1$

- ◊ If also an IG then Isothermal:
- δ ≠1 :
- $\delta = \gamma$: Isentropic:

$$\tilde{\mathbf{W}}_{\mathbf{b}} = \int_{1}^{2} \mathbf{P} \ \mathbf{d}\tilde{\mathbf{V}} = \int_{1}^{2} \frac{\mathbf{C}}{\tilde{\mathbf{V}}^{\delta}} \ \mathbf{d}\tilde{\mathbf{V}} = \mathbf{P}_{1} \ \tilde{\mathbf{V}}_{1}^{\delta} \ \int_{1}^{\delta} \frac{\mathbf{d}\tilde{\mathbf{V}}}{\tilde{\mathbf{V}}^{\delta}}$$

$$\tilde{W}_{b} = P_{1} \tilde{V}_{1} \int_{1}^{2} \frac{d\tilde{V}}{\tilde{V}} = P_{1} \tilde{V}_{1} Ln \left[\frac{\tilde{V}_{2}}{\tilde{V}_{1}} \right]$$

$$\begin{split} \tilde{\mathbf{W}}_{\mathrm{b,IG}} &= \mathbf{R} \, \mathbf{T} \, \mathbf{Ln} \left[\frac{\tilde{\mathbf{V}}_2}{\tilde{\mathbf{V}}_1} \right] \\ \tilde{\mathbf{W}}_{\mathrm{b}} &= \mathbf{P}_1 \, \tilde{\mathbf{V}}_1^{\delta} \left[\frac{\tilde{\mathbf{V}}^{(-\delta+1)}}{-\delta+1} \right] \Big|_1^2 = \frac{\mathbf{P}_2 \, \tilde{\mathbf{V}}_2 - \mathbf{P}_1 \, \tilde{\mathbf{V}}_1}{1 - \delta} \\ \tilde{\mathbf{W}}_{\mathrm{b,IG}} &= \frac{\mathbf{R}}{1 - \delta} \left(\mathbf{T}_2 - \mathbf{T}_1 \right) \end{split}$$

$$\mathbf{v}_{\mathbf{b}} = \mathbf{1}_{1} \mathbf{v}_{1} \left[-\delta + 1 \right]_{1}^{-1} = 1$$

 $\tilde{W}_{b,IG} = \frac{R}{1-\gamma} (T_2 - T_1)$

$$\tilde{W}_{b,IG} = \frac{1 - \delta}{1 - \delta} \left(\frac{1 - \delta}{V_{L}} - \frac{1}{V_{L}} \right)$$
$$\tilde{W}_{b} = -\Delta \tilde{U} = -\tilde{C}_{V}^{o} \left(T_{2} - T_{1} \right)$$

- It is pretty straightforward to integrate **P** dV to obtain an equation for boundary work in an internally reversible, isothermal process.
- It is a bit more messy for polytropic processes that are not isothermal.
- Fortunately, the result is fairly simple.
- A process that is both internally reversible AND isentropic, must be ADIABATIC.
 - So, we can use the 1st Law to evaluate the boundary work.

Chapter 7

Heat & Work in Int. Rev. Polytropic Processes

- Working from right to left, each of these process paths requires more work to raise the pressure from **200 kPa** to **400 kPa**.
 - The 1st path is isochoric ($\delta = \infty$). The pressure rises because heat is transferred into the system.
 - The 2^{nd} path is polytropic with $\delta = 2$. The boundary work for the process increased, but the heat transfer requirement decreased.
 - ◊ The 3rd path from the right is polytropic with δ = γ = 1.3985. The boundary work for the process increased, but the heat transfer requirement is ZERO. This is the first process path that is genuinely a pure compression process. We are not using heat to raise the pressure.
 - $\label{eq:states} \begin{array}{l} \delta < \gamma \ , \ including \ an isothermal path with \ \delta = 1. \\ These \ paths \ can \ be \ considered \ to \ be \ pure \ compressions. They all require \ more \ work \ than \ the \ isentropic \ path \ and \ they \ must \ reject \ some \ heat. \end{array}$
 - ◊ We conclude that the isentropic path requires the least work of all of the "pure" compression processes.
 - This represents an opportunity for us to define some sort of efficiency.
 - \diamond We will do that in the next chapter !

This is a straightforward application of the Clausius Inequality to a thermodynamic cycle interacting with two Read : thermal reservoirs.

Diagram: See the problem statement.

.

Given:
$$\int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{A} = -24.7 \text{ kJ/K}$$
 $\int_{2}^{1} \left(\frac{\delta Q}{T}\right)_{B} = 41.3 \text{ kJ/K}$

Find: Is this cycle reversible, irreversible or impossible?

Assumptions: None. . .

Equations / Data / Solve:

The Clausius Inequality is:

$$\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} \leq \mathbf{0}$$

If the cyclic integral is ...

... positive, the cycle is impossible ... negative, the cycle is irreversible

∮

 \ldots zero, the cycle is reversible

Since the cycle is made up of two steps, A & B, we can expand Eqn 1 as follows:

$$\frac{\delta \mathbf{Q}}{\mathbf{T}} = \int_{1}^{2} \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)_{\mathbf{A}} + \int_{2}^{1} \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)_{\mathbf{B}}$$
 Eqn 2

Eqn 1

Now, we can plug in values from the problem statement.

$$\oint \frac{\delta \mathbf{Q}}{\mathbf{T}} = 16.6 \text{ kJ/K}$$

Because the cyclic integral is greater than zero, the cycle is impossible.

Verify: None.

Answers : Because the cyclic integral is greater than zero, the cycle is impossible.

Dr. B - LearnThermo.com

7A-2 Properties of Cyclic Integrals

3 pts

Consider the heat engine shown below. The cyclic integral of δQ is greater than zero. Does this violate the Clausius Inequality? Explain.

Read : This problem is designed to make you think very <u>carefully</u> about how to use a cyclic integral. The key is that the **temperature** is <u>not</u> the <u>same</u> for <u>both</u> of the heat transfer interactions in this cycle.

Diagram: See the problem statement.

Given:	т _н	400	K	Q _H	450	kJ
	т _с	300	Κ	Q _c	-350	kJ
				W	-100	kJ

Find: Does the cycle violate the Clausius Inequality?

Assumptions: None.

Equations / Data / Solve:

Because the cycle only exchanges heat with the hot and cold thermal reservoirs, the integrals can be simplified:

 $\oint \delta \mathbf{Q} = \mathbf{Q}_{H} + \mathbf{Q}_{C} \qquad \text{Eqn 2} \qquad \oint \frac{\delta \mathbf{Q}}{\mathbf{T}} = \frac{\mathbf{Q}_{H}}{\mathbf{T}_{H}} + \frac{\mathbf{Q}_{C}}{\mathbf{T}_{C}} \qquad \text{Eqn 3}$

$$\oint \delta \mathbf{Q} = 100 \quad \text{kJ} \qquad \qquad \oint \frac{\delta \mathbf{Q}}{\mathbf{T}} = -0.04167 \quad \text{kJ/K}$$

This cycle is irreversible because the cyclic integral in the Clausius Inequality is less than zero. It is true that the cyclic integral of $\delta Q > 0$. But the Clausius Inequality is still satisfied. Confusion about the cyclic integrals sometimes arises if you mistakenly pull T out of the cyclic integral.

You could <u>only pull **T** out</u> of the cyclic integral if <u>ALL</u> of the **heat** exchange across the system boundary went <u>to</u> or <u>from</u> reservoirs that were <u>ALL</u> at the <u>SAME</u> temperature.

That is <u>almost never</u> going to happen. It is definitely <u>not</u> the case in this problem as the <u>hot</u> and <u>cold reservoirs</u> are at **400 K** and **300 K**, respectively.

Verify: None.

Answers : Yes, the cycle does indeed satisfy the Clausius Inequality.

7B-1 Reversible Adiabatic Compression of R-134a

5 pts

Saturated **ammonia** vapor at **-10°C** is compressed in an **insulated** piston-and-cylinder device until the **pressure** reaches **750 kPa**. Assuming the process is internally reversible, calculate the **work** for this process in kJ/kg.

Read : The key to solving this problem is to recognize that any process that is <u>both</u> adiabatic and reversible is **ISENTROPIC**. This means that $S_2 = S_1$ and this allows you to <u>fix</u> state 2 and evaluate U_2 . Use U_2 in the 1st Law to evaluate W.

Diagram:

Assumptions:	1 -	Process is internally reversible.
	2 -	Changes in kinetic and potential energies are negligible.
	3 -	Boundary work is the only form of work that crosses the system boundary.

Equations / Data / Solve:

Begin by applying the 1st Law to the process, assuming <u>changes</u> in kinetic and potential energies are <u>negligible</u>:

$$\hat{\mathbf{Q}} - \hat{\mathbf{W}} = \Delta \hat{\mathbf{U}}$$
 Eqn 1

The process is adiabatic so Eqn 1 can be simplified to :

$$\hat{\mathbf{W}} = -\Delta \hat{\mathbf{U}} = \hat{\mathbf{U}}_1 - \hat{\mathbf{U}}_2$$
 Eqn 2

Use the NIST Webbook to obtain properties for state 1, saturated vapor at -10°C :

P ₁	290.71	kPa	U₁	1309.9	kJ/kg
			S ₁	5.4701	kJ/kg-K
Because the p	process is <u>b</u>	oth reversible and adiabatic, it is isentropic.			
Therefore :			S ₂	5.4701	kJ/kg-K

At this point we know values of <u>two</u> intensive variables for state 2, so we can use the **NIST Webbook** to determine the value of <u>any other</u> property. In this case, we need U_2 . First we need to determine the phases that exist at state 2.

At P ₂ :	T _{sat}	54.05	°C	S _{sat vap}	4.7209	kJ/kg-K
				S _{sat liq}	1.5744	kJ/kg-K

Because $S_2 > S_{sat vap}$ at P_2 , we can conclude that state 2 is a superheated vapor. We could have reached the same conclusion after careful consideration of a **TS Diagram**.

We can get the following data from the superheated Ammonia Tables or from the NIST Webbook :

At 750 kPa :	T (°C)	S (kJ/kg-K)	U (kJ/kg)	_		
	50	5.4388	1401.6	1		
	T ₂	5.4701	U2			
	75	5.6233	1449.4			
Interpolation yields :				T ₂	54.25	°C
				U ₂	1409.73	kJ/kg
Now, we can plug values b	ack into Ec	in 2 :		W	-99.80	kJ/kg

Verify: None of the assumptions made in this problem solution can be verified.

Answers : W -99.8 kJ/kg

7B-2 Work Output of an Adiabatic, Reversible Turbine

5 pts

An adiabatic turbine lets **10 Mpa steam** down to **2.1 Mpa**. Determine the maximum **work** output if the inlet **temperature** is **500°C** and changes in kinetic and potential energies are negligible.

Read : The key to solving this problem is to recognize that any process that is <u>both</u> adiabatic and reversible is **ISENTROPIC**. This means that $S_2 = S_1$ and this allows you to fix state 2 and evaluate H_2 . Use H_2 in the 1st Law to evaluate W_s .

Assumptions:	1 -	The turbine is both adiabatic and reversible.
-	2 -	Changes in kinetic and potential energies are negligible.
	3 -	Shaft work is the only form of work that crosses the system boundary.

Equations / Data / Solve:

Begin by applying the 1st Law to the process, assuming changes in kinetic and potential energies are negligible:

$$\hat{\mathbf{Q}} - \hat{\mathbf{W}}_{s} = \Delta \hat{\mathbf{H}}$$
 Eqn 1

The process is adiabatic so Eqn 1 can be simplified to :

$$\hat{W}_{s} = -\Delta \hat{H} = \hat{H}_{1} - \hat{H}_{2}$$
 Eqn 2

Use the **NIST Webbook** to obtain properties for state 1. First we have to determine the phases present.

At P₁: T_{sat} 311.00 °C

Since $T_1 > T_{sat}$, state 1 is a superheated vapor.

The superheated Steam Tables and the NIST Webbook yield :

H ₁	3375.1	kJ/kg	S ₁ 6.5995	kJ/kg-K
----------------	--------	-------	-----------------------	---------

Because the process is <u>both</u> reversible and adiabatic, it is isentropic.

 Therefore, $S_2 = S_1$:
 S_2 6.5995
 kJ/kg-K

At this point we know values of <u>two</u> intensive variables for state 2, so we can use the **NIST Webbook** to determine the value of <u>any</u> other property. In this case, we need H_2 . First, we need to determine the phases that exist at state 2.

At P ₂ :	T _{sat}	214.86	°C	S _{sat vap}	6.3210	kJ/kg-K
				S _{sat liq}	2.4699	kJ/kg-K

Because $S_2 > S_{sat vap}$ at P_2 , we can conclude that state 2 is a superheated vapor. We could have reached the same conclusion after careful consideration of a **TS Diagram**.

We can get the following data from the superheated Steam Tables or from the NIST Webbook :

At 2.1	MPa :	T (°C)	S (kJ/kg-K)	H (kJ/kg)				
		265	6.5903	2937.1	I			
		T ₂	6.5995	H ₂				
		270	6.6133	2949.4				
Interp	olation yields :				т	2	266.99	°C
					ŀ	l ₂	2941.99	kJ/kg
Now,	we can plug values b	ack into Ec	in 2 :		v	Vs	433.13	kJ/kg
	6 (1)							

Verify: None of the assumptions made in this problem solution can be verified.

Answers : W 433 kJ/kg	
-----------------------	--

7B-3 **Entropy Change of an Isobaric Process**

6 pts

A piston-and-cylinder device with a free-floating piston contains 2.6 kg of saturated water vapor at 150°C. The water loses heat to the surroundings until the cylinder contains saturated liquid water.

The surroundings are at 20°C. Calculate... a.) ΔS_{water}, b.) ΔS_{surroundings}, c.) ΔS_{universe}

Read : Calculating ΔS for the water in the cylinder is straightforward. The key to calculating ΔS_{surr} is the fact that the surroundings behave as a thermal reservoir. The temperature of the surroundings does not change and there are <u>no irreversibilities</u> in the surroundings that are associated with the process. The key to calculating ΔS_{univ} is the fact that the universe is made up of the combination of the system and the surroundings. Consequently, $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}.$

Given:	m	2.60	kg	Find:	∆S _{svs}	???	kJ/K
	T ₁	150	°C		∆S _{surr}	???	kJ/K
	X 1	1	kg vap/kg		ΔS_{univ}	???	kJ/K
	T _{surr}	20	°C				
	$P_{1} = P_{2}$						
	X ₂	0	kg vap/kg				

Diagram:

Assumptions:	1 -	Changes in kinetic and potential energies are negligible.
	2 -	Boundary work is the only form of work that crosses the system boundary.
	3 -	The surroundings behave as a thermal reservoir.

Equations / Data / Solve:

Because both states are saturated we can obtain the specific entropies directly from the Steam Tables or the Part a.) NIST Webbook

At T ₁ = 150°C :		S ₁ S ₂	6.8371 1.8418	kJ/kg-K kJ/kg-K
Therefore :	$\Delta \mathbf{S}_{sys} = \mathbf{S}_2 - \mathbf{S}_1$			Eqn 1

 ΔS_{sys} -4.9953 kJ/kg-K -12.988 kJ/K

Part b.) The surroundings behave as a thermal reservoir.

We can calculate ΔS_{surr} from:

$$\Delta \hat{S}_{surr} = \int_{1}^{2} \left(\frac{\delta \hat{Q}}{T} \right)_{rev} = \frac{1}{T} \int_{1}^{2} \delta \hat{Q}_{rev} = \frac{\hat{Q}_{surr}}{T_{surr}} = -\frac{\hat{Q}_{sys}}{T_{surr}}$$
Eqn 2

We can determine \mathbf{Q}_{sys} by applying the 1st Law using the water within the cylinder as the system.

$$\hat{\mathbf{Q}}_{sys} - \hat{\mathbf{W}} = \Delta \hat{\mathbf{U}}$$
 Eqn 3

$$\hat{\mathbf{Q}}_{sys} - \hat{\mathbf{W}}_{b} + \hat{\mathbf{W}}_{s} = \Delta \hat{\mathbf{U}}$$
 Eqn 4

Because the process is isobaric, the boundary work is :

$$\hat{\mathbf{W}}_{\mathbf{b}} = \mathbf{P} \Delta \hat{\mathbf{V}}$$
 Eqn 5

Now, substitute Eqn 5 into Eqn 4 to get :

$$\hat{\mathbf{Q}}_{sys} = \mathbf{P} \Delta \hat{\mathbf{V}} + \Delta \hat{\mathbf{U}} = \Delta \hat{\mathbf{H}}$$
 Eqn 6

We can look up enthalpy values for states 1 & 2 in the Saturated St	eam Table or in t	he NIST Webb	ook.
At T ₁ = 150°C :	H₁	2745.9	kJ/kg
	H ₂	632.18	kJ/kg

Next plug H_1 and H_2 into Eqn 6. Q_{surr} is <u>equal</u> in <u>magnitude</u>, but <u>opposite</u> in sign to Q_{sys} because the **heat** <u>leaving</u> the system <u>enters</u> the surroundings.

Q_{sys}	-2113.7	kJ/kg	Q _{surr}	2113.7	kJ/kg
Now, we d	can plug numbe	ers into Eqn 2 to calculate ΔS_{surr} .	ΔS_{surr}	7.2105	kJ/kg-K
				18.747	kJ/K

Part c.) The universe is made up of the <u>combination</u> of the system and the surroundings. Therefore :

$$\Delta \mathbf{S}_{univ} = \Delta \mathbf{S}_{sys} + \Delta \mathbf{S}_{surr}$$
 Eqn 7

 ΔS_{univ}

So, all we need to do is plug values into Eqn 7 that we determined in parts (a) and (b).

5.7595 kJ/K

 $\Delta S_{univ} > 0$ because the **heat transfer** to the surroundings was <u>not</u> reversible.

Verify: None of the assumptions made in this problem solution can be verified.

Answers :	∆S _{sys}	-12.988	kJ/K
	∆S _{surr}	18.747	kJ/K
	∆S _{univ}	5.7595	kJ/K

7C-1 Entropy Change of the Universe for a Cycle

Calculate $\Delta S_{universe}$ for the power cycle shown below. Is this cycle reversible, irreversible or impossible?

Read : The key to this problem is that the sign of ΔS_{univ} determines whether a process is impossible, reversible or irreversible. Use the <u>definition</u> of **entropy** to evaluate ΔS for <u>each</u> reservoir <u>and</u> for the cycle and <u>add them</u> up to get ΔS_{univ} .

Diagram: See the problem statement.

				Q _H	700	kJ
Given:	Т _н	450	κ	Q _c	-350	kJ
	Ta	280	κ			

Find: Is this cycle reversible, irreversible or impossible?

Assumptions: 1 - The cycle <u>only</u> exchanges **heat** with the hot and cold reservoirs shown.

Equations / Data / Solve:

In this problem, the universe consists of the cycle, the hot reservoir and the cold reservoir. We can calculate ΔS_{univ} from:

$$\Delta S_{univ} = \Delta S_{cycle} + \Delta S_{hot} + \Delta S_{cold}$$
 Eqn 1

Because the cycle begins and ends in the same state, $S_{init} = S_{final}$ and $\Delta S_{cycle} = 0$.

By definition, the **temperatures** of the thermal reservoirs remain <u>constant</u> and there are <u>no</u> irreversibilities <u>within</u> the reservoirs because <u>no</u> process takes place in <u>either</u> reservoir. As a result, it is relatively simple to calculate ΔS_{hot} and ΔS_{cold} using the following <u>simplifications</u> of the <u>definition</u> of **entropy**.

$\Delta \mathbf{S}_{hot} = \oint \frac{\delta}{\delta}$	$\frac{\partial \mathbf{Q}_{H}}{\mathbf{T}_{H}} = \frac{-\mathbf{Q}}{\mathbf{T}_{H}}$	<u>H</u>	Eqn 2	$\Delta \mathbf{S}_{cold} = \oint \frac{\partial}{\partial \mathbf{s}}$	$\frac{\delta \mathbf{Q}_{c}}{\mathbf{T}_{c}} = \frac{-1}{2}$	-Q _c T _c	Eqn 3
∆S _{hot}	-1.556	kJ/K		ΔS_{cold}	1.250	kJ/K	
Now, we can	plug values	back into Eqr	1 to complete this prob	olem.			
				ΔS _{univ}	-0.306	kJ/K	
If the ΔS_{univ} is	S		negative, the cycle is	impossible			
			zero, the cycle is rev	rsible			
			positive, the cycle is	irreversible			

This cycle is impossible because $\Delta S_{univ} < 0$.

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : This cycle is <u>impossible</u> because $\Delta S_{univ} < 0$.

7D-1 ΔS of H2 in a Compression Process

6 pts

In a piston-and-cylinder device, carbon dioxide (CO₂) gas is compressed from 110 kPa and 300K to 1.4 MPa and 640K. Determine the change in the specific entropy of the CO₂ assuming it behaves as an ideal gas. Use...

- a.) The Shomate Heat Capacity Equation
- **b.)** The Ideal Gas Entropy Function
- c.) The NIST Webbook

d.) Compare your answers from parts (a) and (b) to your answer in part (c).

???

Read : This problem is an application of the 2nd Gibbs Equation. In part (a) we must evaluate the integal of C_P / T dT ourselves using the Shomate Equation. The results we obtain should very closely match the results we get in part (b) when we use the the Ideal Gas Entropy Function (values obtained form the Ideal Gas Property Tables). Finally, in part (c) we can determine how much error was introduced by our ideal gas assumption using the NIST Webbook to evaluate the specific entropy change.

Given:	T ₁	300	К	T ₂	640	κ
	P ₁	110	kPa	P ₂	1400	kPa

Find: ∆S

Diagram:

Assumptions: 1 - The carbon dioxide behaves as an ideal gas.

kJ/kg-K

Equations / Data / Solve:

Part a.) The 2nd Gibbs Equation is the one <u>best suited</u> to this problem because we know the <u>inlet</u> and <u>outlet</u> **pressures**. The 2nd Gibbs Equation for ideal gases is:

$$\Delta \hat{\mathbf{S}} = \frac{1}{\mathbf{MW}} \left[\int_{1}^{2} \widetilde{\mathbf{C}}_{\mathbf{P}} \frac{\mathbf{dT}}{\mathbf{T}} - \mathbf{R} \, \mathbf{Ln} \left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right) \right]$$
 Eqn 1

The **heat capacity** is determined from the **Shomate Equation**.

$$\widetilde{\boldsymbol{C}}_{\boldsymbol{P}}^{o} = \boldsymbol{A} + \boldsymbol{B}\boldsymbol{T} + \boldsymbol{C}\boldsymbol{T}^{2} + \boldsymbol{D}\boldsymbol{T}^{3} + \boldsymbol{E}\,/\,\boldsymbol{T}^{2}$$

The values of the constants in the Shomate Equation for carbon dioxide are obtained from the **NIST WebBook**:

Т (К)	298 1200.
Α	24.99735
В	55.18696
С	-33.69137
D	7.948387
E	-0.136638

Eqn 2

Substituting the Eqn 2 into Eqn 1 and integrating yields:

$$\Delta \widetilde{S} = \mathbf{A} \cdot \mathbf{Ln} \frac{\mathbf{T}_2}{\mathbf{T}_1} + \left(\frac{\mathbf{B}}{1000}\right) (\mathbf{T}_2 - \mathbf{T}_1) + \left(\frac{(1/2)\mathbf{C}}{1000^2}\right) (\mathbf{T}_2^2 - \mathbf{T}_1^2) + \left(\frac{(1/3)\mathbf{D}}{1000^3}\right) (\mathbf{T}_2^3 - \mathbf{T}_1^3) - \left(\frac{(1/2)\mathbf{E}}{1000^{-2}}\right) (\mathbf{T}_2^{-2} - \mathbf{T}_2^{-2}) - \mathbf{R} \cdot \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$
Eqn 3

We will need the value of the **Universal Gas Constant** and the **molecular weight** to determine the change in the **specific entropy**.

R 8.314 J/mole-K MW 44.010 g/mol

Now, we can substitute values into Eqn 3 to complete part (a) :

	$\int_{T_1}^{T_2} \widetilde{\mathbf{C}}_{P}^{o} \frac{dT}{T} =$	32.351	J/mole-K
	$RLn\frac{P_2}{P_1} =$	21.149	J/mole-K
Now, we can plug values into Eqn 3 :	∆S ∆S	11.202 0.2545	J/mole-K kJ/kg-K

Part b.) In this part of the problem, we use the 2nd Gibbs Equation in terms of the Ideal Gas Entropy Function:

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 = \hat{\mathbf{S}}_{T2}^\circ - \hat{\mathbf{S}}_{T1}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \cdot \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$
 Eqn 4

Properties are determined from Ideal Gas Property Tables:

	At T ₁:	S° _{T1}	0.0052249 kJ/kg-K
	At T ₂ :	S° _{T2}	0.74030 kJ/kg-K
Now, we can plug values into Eqn 4 :		∆S	0.2545 kJ/kg-K

Part c.) The NIST Webbook yields the following values for the specific entropy of carbon dioxide:

	S ₁	2.7264	kJ/kg-K
	S ₂	2.9796	kJ/kg-K
Therefore :	ΔS	0.2532	kJ/kg-K

Verify: The ideal gas assumption needs to be verified. We need to determine the **specific** volume at <u>each</u> state and check if :

 $\widetilde{V} > 20 \text{ L/mol}$ $\widetilde{V} = \frac{RT}{P}$ $V_1 \qquad 22.7 \qquad \text{L/mol}$ $V_2 \qquad 3.80 \qquad \text{L/mol}$

Solving the Ideal Gas EOS for molar volume yields :

0.255

0.255

0.253

Plugging in values gives us :

∆S

∆S

∆S

The specific volume at state 2 is much less than 20 L/mol, so the ideal gas assumption is questionable at

Answers : a.)

b .)
~.,

c.)

Comparison	
The results in parts (a) and (b) are identical.	This is not a surprise, assuming we
The error in ∆S associated with the ideal gas assumption in this problem is:	0.53%
We expected the <u>error</u> to be <u>greater</u> than 1% <u>than</u> 20 L/mole.	since the molar volume is much <u>less</u>

kJ/kg-K

kJ/kg-K

kJ/kg-K

7D-2 Calculating ΔS from Ideal Gas Tables and from Ideal Gas Heat Capacities

5 pts

Hydrogen (H_2) gas is compressed from 4.8 bar and 320K to 15.4 bar and 1300K. Determine the change in the **specific** entropy of the H_2 , in kJ/kg, assuming the H_2 behaves as an ideal gas. Use...

a.) The Shomate Heat Capacity Equation

$$\Delta \widetilde{\mathbf{S}} = \widetilde{\mathbf{S}}_2 - \widetilde{\mathbf{S}}_1 = \int_{\mathsf{T}_1}^{\mathsf{T}_2} \widetilde{\mathbf{C}}_{\mathsf{P}}^{\circ} \frac{\mathsf{d}\mathsf{T}}{\mathsf{T}} - \mathsf{R} \,\mathsf{Ln} \frac{\mathsf{P}_2}{\mathsf{P}_1}$$

b.) The Ideal Gas Entropy Function

$$\Delta \widetilde{\mathbf{S}} = \widetilde{\mathbf{S}}_2 - \widetilde{\mathbf{S}}_1 = \widetilde{\mathbf{S}}_{\mathsf{T}2}^{\circ} - \widetilde{\mathbf{S}}_{\mathsf{T}1}^{\circ} - \mathsf{RLn} \frac{\mathsf{P}_2}{\mathsf{P}_1}$$

c.) with constant Heat Capacity, CP, determined at 810K and 10.1 bar.

$$\Delta \widetilde{\mathbf{S}} = \widetilde{\mathbf{S}}_2 - \widetilde{\mathbf{S}}_1 = \int_{T_1}^{T_2} \widetilde{\mathbf{C}}_P^o \frac{\mathrm{d}\mathbf{T}}{\mathbf{T}} - \mathbf{R} \operatorname{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$

Read : All equations given are for the <u>molar change</u> in **entropy**. Make sure and <u>divide</u> your final answer by the **molecular weight** of hydrogen to obtain a final answer as the <u>change</u> in **specific entropy**, in **kJ/kg-K**.

Given:		m	1	kg	Hydrogen	
		T ₁	320	ĸ	T ₂ 1300	κ
		P ₁	4.8	bar	P ₂ 15.4	bar
	c .)	Тc	810	К	P _c 10.1	bar

 Find:
 Part (a) - (c)
 ∆S
 ???
 kJ/(kg K)

Diagram:

Assumptions:

The system consists of **one kg** of hydrogen, which behaves as an ideal gas.

1 -

Equations / Data / Solve:

Part a.) Here, we use the equation given in the problem statement:

$$\Delta \widetilde{S} = \widetilde{S}_2 - \widetilde{S}_1 = \int_{T_1}^{T_2} \widetilde{C}_P^o \frac{dT}{T} - R Ln \frac{P_2}{P_1}$$
 Eqn 1

The heat capacity is determined from the Shomate Equation.

$$\widetilde{\mathbf{C}}_{\mathbf{P}}^{o} = \mathbf{A} + \mathbf{B}\mathbf{T} + \mathbf{C}\mathbf{T}^{2} + \mathbf{D}\mathbf{T}^{3} + \mathbf{E}/\mathbf{T}^{2} \qquad \qquad \mathbf{E}\mathbf{q}\mathbf{n}$$

The values of the constants in the Shomate Equation for hydrogen are obtained from the **NIST WebBook**:

т (К)	298 - 1500
Α	33.1078
В	-11.508
С	11.6093
D	-2.8444
E	-0.15967

2

Substituting Eqn 2 into Eqn 1 and integrating yields:

$$\begin{split} \Delta \widetilde{S} &= \mathbf{A} \cdot \mathbf{Ln} \frac{\mathbf{T}_2}{\mathbf{T}_1} + \left(\frac{\mathbf{B}}{1000}\right) (\mathbf{T}_2 - \mathbf{T}_1) + \left(\frac{(1/2)\mathbf{C}}{1000^2}\right) (\mathbf{T}_2^2 - \mathbf{T}_1^2) \\ &+ \left(\frac{(1/3)\mathbf{D}}{1000^3}\right) (\mathbf{T}_2^3 - \mathbf{T}_1^3) - \left(\frac{(1/2)\mathbf{E}}{1000^{-2}}\right) (\mathbf{T}_2^{-2} - \mathbf{T}_2^{-2}) - \mathbf{R} \cdot \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1} \end{split}$$
 Eqn 3

We will need the value of the **Universal Gas Constant** and the **molecular weight** to determine the change in the **specific entropy**.

R	8.314	J/mole-K	MW	2.016	g/mol
Now, we can s	substitute va	alues into Eqn 3 to complete part (a) :			
			$\int_{T_1}^{T_2} \widetilde{C}_P^o rac{dT}{T} =$	41.564	J/mole-K

	$\mathbf{R} \cdot \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1} =$	9.6921	J/mole-K
Now, we can plug values into Eqn 3 :	∆S	31.872	J/mole-K
	∆S	15.810	kJ/kg-K

Part b.) In this part of the problem, we use the equation given in the problem statement:

$$\Delta \widetilde{S} = \widetilde{S}_2 - \widetilde{S}_1 = \widetilde{S}_{T2}^\circ - \widetilde{S}_{T1}^\circ - \mathsf{RLn}\frac{\mathsf{P}_2}{\mathsf{P}_1}$$
 Eqn 4

Properties are determined from Ideal Gas Entropy Tables:	At T ₁:	S° _{T1}	1.0139	kJ/kg-K
	At T ₂ :	S° _{T2}	21.631	kJ/kg-K
Now, we can plug values into Eqn 4 :		∆S	15.809	kJ/kg-K

Part c.) Once again, we will use the equation given in the problem statement:

$\Delta \widetilde{S} = \widetilde{S}_2 -$	$\widetilde{\mathbf{S}}_{1} = \widetilde{\mathbf{C}}_{P}^{o} \operatorname{Ln} \frac{\mathbf{T}_{2}}{\mathbf{T}_{1}} -$	$-RLn\frac{P_2}{P_1}$	Eqn 5

Heat capacity is determined from NIST WebBook:	At 810 K :	C° _P	29.679	J/(mol K)
	$\int_{T_1}^{T_2} \widetilde{\mathbf{C}}_P^o \frac{\mathbf{dT}}{\mathbf{T}} = \widetilde{\mathbf{C}}_P^o \cdot \mathbf{I}$	$Ln\left(\frac{T_2}{T_1}\right) =$	41.604	J/mole-K
Now, we can plug values into Eqn 5 :		∆S ∆S	31.912 15.830	J/mole-K kJ/kg-K
The ideal gas assumption needs to be verified.				
We need to determine the specific volume at <u>each</u> s	tate and check if :	$\widetilde{V} > 5L/m_{e}$	ol	
		(hydrogen is a	diatomic g	as).
Solving the Ideal Gas EOS for molar volume yields :		$\widetilde{V} = \frac{RT}{P}$		
Conversion Factors:		1 L =	0.001	m ³
		1 bar = 1 J =	100000 1	N/m² N-m
Plugging in values gives us :	Γ	V ₁	5.54	L/mol
	l	V ₂	7.02	L/mol

The **specific volume** at <u>each</u> **state** is <u>greater</u> than **5** L/mol and therefore the ideal gas assumption is <u>reasonable</u>.

Answers :

Verify:

: a.)	ΔS	15.81	kJ/kg-K
b.)	∆S	15.81	kJ/kg-K
c.)	∆S	15.83	kJ/kg-K

Comparison:

The results in parts (a) and (b) are identical. This is not a surprise, assuming we integrated the Shomate Equation correctly !

The error in ΔS associated with the ideal gas assumption in this problem is: 0.13% We expected the <u>error</u> to be <u>less</u> than 1% since the molar volumes are <u>greater</u> than 5 L/mole.

7D-3	Work, Efficiency and the T-S Diagram for an Ideal Gas Power Cycle	8 pts
Air cont	tained in a piston-and-cylinder device undergoes a power cycle made up of three internally reversible processes.	
Step 1-	2: Adiabatic compression from 20 psia and 570°R to 125 psia	
Step 2-	3: Isothermal expansion to 20 psia	
Step 3-	1: Isobaric compression	
a.) Sket	tch the process path for this power cycle on both PV and TS diagrams	
b.) Calc	culate T ₃ in ^o F	
c.) Calc	culate the boundary work in Btu/Ib _m	
<mark>d.)</mark> Calc	culate the thermal efficiency of the power cycle	

For part (a) sketch the cycle first to get a better understanding of the processes.
 For part (b) recall that the Process 2-3 is isothermal and therefore T₃ = T₂. Determine S^o(T₂) and look it up in the Ideal Gas Entropy Table for air to determine T₂.
 For part (c) determine the net work by determining the work for each process and then adding them together.
 For part (d) determine the thermal efficiency as the ratio of the net work to the heat going into the system.

Given:	Τ ₁ Ρ ₁	570 20	°R psia			P ₂ P ₃	125 20	psia psia
Find:	Part (a) Part (b)	Sketch P T $_3$	V and TS d ?	liagrams °R	Part (c) Part (d)	W _{cycle} η	? ?	Btu/lb _m

Diagram:

Assumptions:

- **1** The system is the air inside the cylinder.
- **2** The air is modeled as an ideal gas.
- **3** <u>Each process is internally reversible.</u>
- 4 Boundary work is the <u>only</u> form of work that crosses the system boundary.
- 5 There is <u>no change</u> in kinetic or potential energy for <u>either</u> of the two processes.

Equations / Data / Solve:

Part b.) Since Process 2-3 is isothermal:	$T_3 = T_2$	Eqn 1
---	-------------	-------

So we should work on determining T₂.

Let's apply the 2nd Gibbs Equation for ideal gases to **Process 1-2** :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 = \hat{\mathbf{S}}_{T2}^\circ - \hat{\mathbf{S}}_{T1}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \cdot \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$
 Eqn 2

We can determine
$$T_2$$
 and thus T_3 from: $\hat{S}^{\circ}(T_2) = \hat{S}^{\circ}(T_2)$

$$\hat{\mathbf{S}}^{\circ}(\mathbf{T}_{2}) = \hat{\mathbf{S}}^{\circ}(\mathbf{T}_{1}) + \frac{\mathbf{R}}{\mathbf{MW}} \cdot \mathbf{Ln} \left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)$$
 Eqn 3

Lookup S^o(T₁) in the Ideal Gas Entropy Tables:			S°(T ₁)	0.014381	Btu/lb _m -°R
Now, plug	values into	Eqn 3 to determine S°(T ₂):			
R MW	1.987 28.97	Btu/Ibmol-°R	S°(T ₂)	0.14007	Btu/Ib _m -°R
	20.37				

Now that we know the value of S^{o} at T_{2} , we can <u>interpolate</u> on the air Ideal Gas Property Table to determine T_{2} .

T (°R)	S° (Btu/lb _m -°R)				
950	0.13939				
T ₂	0.14007	Interpolation yields :	$T_2 = T_3 =$	952.60 [°]	°R
960	0.14202			492.93 [°]	°F

Part c.) The <u>net work</u> is the <u>sum</u> of the work done during <u>each process</u>:

$$\hat{\mathbf{W}}_{cycle} = \hat{\mathbf{W}}_{12} + \hat{\mathbf{W}}_{23} + \hat{\mathbf{W}}_{31}$$
 Eqn 4

We need to determine the **work** involved in <u>each</u> process. Begin with **Process 1-2**. Since **Process 1-2** is <u>adiabatic</u>, and <u>changes</u> in internal and <u>kinetic energies</u> are <u>negligible</u>, the appropriate form of the <u>1st Law</u> is :

$$\hat{\boldsymbol{\mathcal{Q}}}_{12} - \hat{\boldsymbol{\mathcal{W}}}_{12} = \Delta \hat{\boldsymbol{\mathcal{U}}} + \Delta \hat{\boldsymbol{\mathcal{E}}}_{kin} + \Delta \hat{\boldsymbol{\mathcal{E}}}_{pot} \quad \text{Eqn 5} \quad \hat{\boldsymbol{\mathcal{W}}}_{12} = -\left(\hat{\boldsymbol{\mathcal{U}}}_2 - \hat{\boldsymbol{\mathcal{U}}}_1\right) \quad \text{Eqn 6}$$

Because we know <u>both</u> T_1 and T_2 , we can look up the **U**'s in the Ideal Gas Property Table:

At T₁ = 570 °R, no interpolation is required:

U₁ 5.6705 Btu/lb_m

`

T (°R) 950	U° (Btu/lb _m) 72.806				
952.60	U ₂	Interpolation yields :	U ₂	73.281	Btu/lb _m
960	74.631				

Now, we can plug values back into Eqn 6 to determine W_{12} : W_{12} -67.610 Btu / Ib_m

Boundary work done by the system during Process 2-3 can be calculated from the definition of boundary work :

$$\hat{W}_{23} = \int_2^3 \mathsf{P} \mathsf{d} \mathsf{V}$$
 Eqn 7

D

W₂₃

For an ideal gas substitute P = nRT/V into Eqn 7 : $\hat{W}_{23} = \int_2^3 \frac{R}{MW} \frac{T}{V} dV$

Integrate Eqn 2 (the process is isothermal, $T_2 = T_3$): $\hat{W}_{23} = \frac{R}{MW}T_2Ln\frac{V_3}{V_2}$ Eqn 9

Since
$$P_2V_2 = nRT_2$$
 and $P_3V_3 = nRT_3$ and
 $T_2 = T_3$, we conclude that $P_2V_2 = P_3V_3$, or :

$$\frac{V_3}{V_2} = \frac{P_2}{P_3}$$
Eqn 10

Combining Eqn 10 and Eqn 9 yields :
$$\hat{W}_{23} = \frac{\kappa}{MW} T_2 Ln \frac{F_2}{P_3}$$
 Eqn 11

We can plug numbers into Eqn 11 to evaluate W_{23} :

Boundary work done by the system during Process 3-1 can be calculated from the definition of boundary work :

$$\hat{\mathbf{W}}_{31} = \int_{2}^{3} \mathbf{P} \, \mathbf{d} \, \hat{\mathbf{V}}$$
 Eqn 12

D

119.74

Btu / Ib_m

Eqn 8

$$\hat{\mathbf{W}}_{31} = \mathbf{P}\left(\hat{\mathbf{V}}_1 - \hat{\mathbf{V}}_3\right) \qquad \qquad \text{Eqn 13}$$

Since :

Eqn 14

$$P_{3} \hat{V}_{3} = \frac{R T_{3}}{MW}$$
 Eqn 15

And since
$$P_1 = P_3$$
, Eqns 13, 14 & 15 can be combined to obtain :

 $P_1 \hat{V}_1 = \frac{R T_1}{MW}$

Since Process 3-1 is isobaric (P=constant), Eqn 12 simplifies to :

$$\hat{\mathbf{W}}_{31} = \frac{\mathbf{K}}{\mathbf{MW}} (\mathbf{T}_1 - \mathbf{T}_3) \qquad \qquad \text{Eqn 16}$$

Now, we can plug values into Eqn 16 to evaluate W_{31} : W_{31} -26.24 Btu / Ib_m Now, we can calculate W_{cycle} from the sum of the work terms for each step, using Eqn 4 : W_{cycle} 25.88 Btu / Ib_m

Dr. B - LearnThermo.com

The thermal efficiency of the cycle is defined by : Part d.)

$$\eta = \frac{\hat{W}_{cycle}}{\hat{Q}_{in}}$$
Eqn 17

We know W_{cycle} , so we need to determine Q_{in} . We also know that $Q_{12} = 0$ (adiabatic process) and from the TS **Diagram** it can be concluded that $Q_{23} > 0$ and $Q_{31} < 0$. Therefore, $Q_{in} = Q_{23}$.

$$\eta = \frac{\hat{W}_{cycle}}{\hat{Q}_{23}}$$
Eqn 18

Now we need to determine the heat transferred into the cycle during Process 2-3. Start from the definition of entropy :

$$\delta \hat{\mathbf{Q}}_{intrev} = \mathbf{T} \mathbf{d} \hat{\mathbf{S}}$$
 Eqn 19

Egn 20

Because Process 2-3 is internally reversible, we can integrate Eqn 19 to get:

Now, because Process 2-3 is isothermal, the T pops out of the integral and Eqn 20 is easy to integrate:

$$\hat{Q}_{23} = T(\hat{S}_3 - \hat{S}_2)$$
 Eqn 21

Now, we can again apply the 2nd Gibbs Equation for ideal gases to Process 2-3 to evaluate ΔS :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_3 - \hat{\mathbf{S}}_2 = \hat{\mathbf{S}}_{T3}^\circ - \hat{\mathbf{S}}_{T2}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \cdot \mathbf{Ln} \frac{\mathbf{P}_3}{\mathbf{P}_2}$$
 Eqn 22

Q₂₃

η

Ρ

 $\hat{\mathbf{Q}}_{23} = \int_2^3 \mathbf{T} \, \mathbf{d} \, \hat{\mathbf{S}}$

Since the process is isothermal:
$$S^{\circ}(T_2) = S^{\circ}(T_3)$$

and Eqn 22 simplifies to:
$$\Delta \hat{S}_{23} = -\frac{R}{MW} \cdot Ln \frac{P_3}{P_2}$$
Eqn 23

Ô

When we substitute Eqn 23 into Eqn 21 we get :

0.12569 Btu/lb_m-°R

 ΔS_{23}

$$_{23} = \mathsf{T_2}\left(-\frac{\mathsf{R}}{\mathsf{MW}} \cdot \mathsf{Ln}\frac{\mathsf{P_3}}{\mathsf{P_2}}\right) \qquad \qquad \mathsf{Eqn} \ 24$$

119.74

21.62%

Btu / Ib_m

Finally, we plug values back into Eqn 18 to evaluate the thermal efficiency of the cycle :

Verify:The ideal gas assumption needs to be verified.
We need to determine the specific volume
at each state and check if:
Air can be considered a diatomic gas.
$$\widetilde{V} > 80 \, \text{ft}^3 / \text{Ibmol}$$
 $\widetilde{V} = \mathbb{R}$ $\widetilde{V} = \mathbb{R}$

Solving the Ideal Gas EOS for molar volume yields :

Use : R 10.7316 psia-ft³ / lbmol-°R

$$V_1$$
 305.85 ft³/lbmol
 V_2 81.78 ft³/lbmol V_3 511.15 ft³/lbmol

The specific volume is greater than 80 ft³/lbmol for all states so the ideal gas assumption is valid.

7D-4 ΔS and the T-S Diagram for Ideal Gas Processes8 ptsAn ideal gas is contained in a piston-and-cylinder device in which the system moves from state 1 to state 2.a.) If T2 is greater than T1, show that the ΔS_{12} is greater if the process is isobaric than if it is isochoric. Sketch the isobaric and isochoric process paths on PV and TS diagrams.b.) Use your TS Diagram from part (a) to show that an isochoric path passing through a state has a greater slope than an isobaric path passing through the same state.c.) If P2 is greater than P1, show that the ratio of ΔS_{12} for an isothermal process to ΔS_{12} for an isochoric process is (1 - γ). Sketch the isothermal and isochoric process paths on PV and TS diagrams.

- Read :Sketch the process in parts (a), (b) and (c) first to get a better understanding of the processes.For part (a) use equations relating entropy to C_p and C_V .For part (b) recall that the slope on a TS Diagram is (dT/dS).For part (c) determine ΔS for each process and determine the ratio.
- Given: A closed system consisting of an ideal gas with <u>constant</u> specific heat ratio γ.
 - Part (a) For the process where the T increases from T₁ to T₂: show that ΔS is greater if the change in state occurs at constant P than if it occurs at constant V. Sketch PV and TS Diagrams for the process.
 - Part (b) Show on a TS Diagram that a line of <u>constant</u> specific volume passing through a state has a <u>greater</u> slope than a line of <u>constant</u> P.
 - **Part (c)** For the process where the P <u>increases</u> from P₁ to P₂: show that the <u>ratio</u> of Δ S for an <u>isothermal</u> process to Δ S for a <u>constant</u> specific volume process is (1 γ). Sketch PV and TS Diagrams for the process.

Find:

Assumptions: 1 - The system consists of an ideal gas with <u>constant</u> specific heats.

Equations / Data / Solve:

Part a.) There are two key equations for calculating the **entropy change** of an ideal gas.

$$\Delta \widetilde{S} = \int \widetilde{C}_{v}^{o} \frac{dT}{T} + R \ln \left(\frac{\widetilde{V}_{2}}{\widetilde{V}_{1}} \right) \qquad \text{Eqn 1} \qquad \Delta \widetilde{S} = \int \widetilde{C}_{P}^{o} \frac{dT}{T} - R \ln \left(\frac{P_{2}}{P_{1}} \right) \qquad \text{Eqn 2}$$

For **Process 1-A**, **specific volume** is **constant**. For **Process 1-B**, **pressure** is <u>constant</u>. We can apply **Eqn 1** to **Process 1-A** and **Eqn 2** to **Process 1-B**.

$$\Delta \widetilde{S} = \int_{T_1}^{T_A} \widetilde{C}_V^o \frac{dT}{T} \qquad \text{Eqn 3} \qquad \Delta \widetilde{S} = \int_{T_1}^{T_B} \widetilde{C}_P^o \frac{dT}{T} \qquad \text{Eqn 4}$$

Because the specific heats are constant, Eqns 3 & 4 can be integrated to obtain :

$$S_A - S_1 = \widetilde{C}_V^o Ln \frac{T_2}{T_1}$$
 Eqn 5 $S_B - S_1 = \widetilde{C}_P^o Ln \frac{T_2}{T_1}$ Eqn 6

Notice that <u>both</u> the <u>initial</u> and <u>final</u> **temperatures** are the <u>same</u>: $T_A = T_B = T_2$.

Next, we can take the <u>ratio</u> of Eqn 2 to Eqn 1 : $\frac{\mathbf{S}_{B} - \mathbf{S}_{1}}{\mathbf{S}_{A} - \mathbf{S}_{1}} = \frac{\widetilde{\mathbf{C}}_{P}^{\circ} \operatorname{Ln}(\mathbf{T}_{1} / \mathbf{T}_{1})}{\widetilde{\mathbf{C}}_{V}^{\circ} \operatorname{Ln}(\mathbf{T}_{2} / \mathbf{T}_{1})}$ Eqn 7

<u>Cancelling</u> terms leaves us with : $\frac{\mathbf{S}_{B} - \mathbf{S}_{1}}{\mathbf{S}_{A} - \mathbf{S}_{1}} = \frac{\widetilde{\mathbf{C}}_{P}^{o}}{\widetilde{\mathbf{C}}_{V}^{o}}$ Eqn 8

For ideal gases :

$$\widetilde{\mathbf{C}}_{\mathbf{P}}^{\circ} = \widetilde{\mathbf{C}}_{\mathbf{V}}^{\circ} + \mathbf{R}$$
 Eqn 9

D

Use Eqn 9 to eliminate C_P from Eqn 8 :
$$\frac{S_B - S_1}{S_A - S_1} = \frac{CV + K}{\widetilde{C}_V^\circ} = 1 + \frac{K}{\widetilde{C}_V^\circ}$$
Eqn 10

Because **R** and
$$C_V$$
 are both positive
numbers, we can conclude that : $(S_B - S_1) > (S_A - S_1)$ Eqn 11

Part b.) Here, we compare, at state 1 (dT/dS)_V to (dT/dS)_P.

Since (dT/dS) at fixed V (or fixed P) is :

$$\frac{dT}{dS} = \lim_{\Delta S \to 0} \frac{\Delta T}{\Delta S}$$
 Eqn 12

In part (a), we showed that, for the same ΔT , ΔS at constant P is greater than ΔS at constant V.

Consequently :

$$\left(\frac{\partial T}{\partial S}\right)_{V} > \left(\frac{\partial T}{\partial S}\right)_{P}$$
 Eqn 13

On a **TS Diagram**, a <u>constant</u> **specific volume** line passing through **State 1** has a <u>greater</u> slope than a <u>constant</u> **pressure** line passing through the same **state**.

Part c.) For Process 1-A, temperature is <u>constant</u>. For Process 1-B, volume is <u>constant</u>. Apply Eqn 2 to Process 1-A and Eqn 1 to Process 1-B.

$$\widetilde{\mathbf{S}}_{\mathbf{A}} - \widetilde{\mathbf{S}}_{1} = -\mathbf{R} \ln \left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right)$$
 Eqn 14

$$\widetilde{\mathbf{S}}_{\mathsf{B}} - \widetilde{\mathbf{S}}_{\mathsf{I}} = \int_{\mathsf{T}_{\mathsf{I}}}^{\mathsf{T}_{\mathsf{B}}} \widetilde{\mathbf{C}}_{\mathsf{V}}^{\circ} \frac{\mathsf{d}\mathsf{T}}{\mathsf{T}} = \widetilde{\mathbf{C}}_{\mathsf{V}}^{\circ} \mathsf{Ln} \left[\frac{\mathsf{T}_{\mathsf{B}}}{\mathsf{T}_{\mathsf{I}}} \right]$$
Eqn 15

We need to consider the <u>ratio</u> of **Eqn 14** to Eqn 15 and <u>compare</u> its <u>value</u> to **1** to determine which is <u>greater</u>, ΔS_{1-A} or ΔS_{1-B} .

,

$$\frac{\widetilde{S}_{A} - \widetilde{S}_{1}}{\widetilde{S}_{B} - \widetilde{S}_{1}} = \frac{-R Ln \left(\frac{P_{2}}{P_{1}}\right)}{\widetilde{C}_{V}^{o} Ln \left(\frac{T_{B}}{T_{1}}\right)}$$
Eqn 16

But, for ideal gases undergoing a constant volume such as Process 1-B :

$$P_1 V = nRT_1$$
Eqn 17and : $P_2 V = nRT_B$ Eqn 18Therefore : $\frac{P_2}{P_2} = \frac{T_B}{T_1}$ Eqn 19

Now, we can use **Eqns 9 & 19** to simplify **Eqn 16** :

$$\frac{\widetilde{S}_{A} - \widetilde{S}_{1}}{\widetilde{S}_{B} - \widetilde{S}_{1}} = \frac{-\left(\widetilde{C}_{P}^{\circ} - \widetilde{C}_{V}^{\circ}\right)}{\widetilde{C}_{V}^{\circ}} = 1 - \frac{\widetilde{C}_{V}^{\circ}}{\widetilde{C}_{V}^{\circ}} = 1 - \gamma \qquad \text{Eqn 20}$$

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers : Part a.)
$$(S_{B} - S_{1}) > (S_{A} - S_{1})$$
Part b.)
$$\left[\frac{\partial T}{\partial S}\right]_{V} > \left(\frac{\partial T}{\partial S}\right]_{P}$$
Part c.)
$$\frac{\widetilde{S}_{A} - \widetilde{S}_{1}}{\widetilde{S}_{B} - \widetilde{S}_{1}} = 1 - 1$$

7D-5 Compressed-Air-Driven Turbine

8 pts

A small cylinder of compressed **air** stores energy, just like a battery. When you want to recover the energy from the compressed **air**, release the air through a turbine and vent the **air** to the surroundings.

Use the shaft work to generate electricity.

Consider a cylinder that contains air at 400 psia and 1000°F. When the air in the cylinder flows out through the turbine, it produces 250 Btu of shaft work by the time the pressure

in the cylinder reaches **75 psia**. The turbine exhausts to ambient pressure, **14.7 psia**. Determine the **volume** of the cylinder in **ft**³.

Assume the **air** behaves as an ideal gas, the turbine and the cylinder are internally reversible, the entire process is adiabatic and changes in kinetic and potential energies are negligible.

Read : The key to this process is that it is entirely isentropic. This will let us determine the <u>initial</u> and <u>final</u> properties of the air in the tank, as well as the properties of the turbine exhaust. The best part is that the properties of the turbine exhaust <u>do not change</u> during the process.

Given:	P ₁	400	psia	P ₂	75	psia
	T ₁	1000	°F	Pout	14.7	psia
	Ws	250	Btu			

Find: V ? ft^3

Diagram:

Assumptions:

- **1** The system is shown in the diagram.
- 2 For the system, heat exchange with the surroundings is negligible.
- 3 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 4 The process is reversible.
- 5 The air behaves as an ideal gas. This is a very questionable assumption at these **pressures**, but the problem statement instructed us to make it !

Equations / Data / Solve:

We want to evaluate the **volume** of the tank in the absence of irreversibilities. We can begin by applying the 1st Law to this system.

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}_{s} + \mathbf{p}_{in} \, \tilde{\mathbf{H}}_{in} - \mathbf{n}_{out} \, \tilde{\mathbf{H}}_{out}$$
 Eqn 1

We can simplify Eqn 1 because the process is adiabatic and we have assumed that changes in kinetic and potential energies are negligible and because there is no mass flow into the system.

$$\Delta \mathbf{U} = -\mathbf{W}_{s} - \mathbf{n}_{out} \mathbf{H}_{out}$$
 Eqn 2

The mass conservation equation for this process is :

$$-\Delta \mathbf{n} = \mathbf{n}_1 - \mathbf{n}_2 = \mathbf{n}_{\text{out}} \qquad \text{Eqn 3}$$

Ean 2

Eqn 9

Combining Eqns 1 & 2 yields :

$$\mathbf{W}_{s} = -\Delta \mathbf{U} - \Delta \mathbf{n} \cdot \tilde{\mathbf{H}}_{out}$$
 Eqn 4

Because the entire process is reversible and adiabatic, the process is isentropic. Therefore, Sout can be determined and does not change during the process. Because two intensive properties, Sout and Pout, are constant, we can conclude that the state of the turbine exhaust is constant and, therefore, T_{out} and H_{out} are constant as well. Therefore, Eqn 4 becomes :

$$\mathbf{W}_{\mathrm{s}} = ilde{\mathbf{U}}_{1} \, \mathbf{n}_{1} - ilde{\mathbf{U}}_{2} \, \mathbf{n}_{2} + ilde{\mathbf{H}}_{\mathrm{out}} \, (\mathbf{n}_{2} - \mathbf{n}_{1})$$
 Eqn 5

The initial and final **moles** of **air** in the tank can be determined from the ideal gas EOS:

$$PV = nRT$$
 Eqn 6 $n = \frac{PV}{RT}$ Eqn 7

Apply Eqn 7 to both the initial and final states of the tank contents and combine these with Eqn 5 to get:

$$\mathbf{W}_{s} = \tilde{\mathbf{U}}_{1} \left(\frac{\mathbf{P}_{1} \mathbf{V}}{\mathbf{R} \mathbf{T}_{1}} \right) - \tilde{\mathbf{U}}_{2} \left(\frac{\mathbf{P}_{2} \mathbf{V}}{\mathbf{R} \mathbf{T}_{2}} \right) + \tilde{\mathbf{H}}_{out} \left[\left(\frac{\mathbf{P}_{2} \mathbf{V}}{\mathbf{R} \mathbf{T}_{2}} \right) - \left(\frac{\mathbf{P}_{1} \mathbf{V}}{\mathbf{R} \mathbf{T}_{1}} \right) \right]$$
Eqn 8

Now, we can solve **Eqn 8** for the unknown volume of the tank :

$$= \frac{\mathbf{W}_{s} \mathbf{R}}{\left[\tilde{\mathbf{U}}_{1} \frac{\mathbf{P}_{1}}{\mathbf{T}_{1}} - \tilde{\mathbf{U}}_{2} \frac{\mathbf{P}_{2}}{\mathbf{T}_{2}} + \tilde{\mathbf{H}}_{out} \left[\frac{\mathbf{P}_{2}}{\mathbf{T}_{2}} - \frac{\mathbf{P}_{1}}{\mathbf{T}_{1}}\right]\right]}$$

 $(\square (\square (\square a) a))$

An alternate way to express Eqn 9:

$$\mathbf{V}_{tank} = \frac{\mathbf{W}_{s} (\mathbf{R} / \mathbf{M} \mathbf{V})}{\frac{\mathbf{P}_{1}}{\mathbf{T}_{1}} \left(\hat{\mathbf{U}}_{1} - \hat{\mathbf{H}}_{out} \right) - \frac{\mathbf{P}_{2}}{\mathbf{T}_{2}} \left(\hat{\mathbf{U}}_{2} - \hat{\mathbf{H}}_{out} \right)}$$
Eqn 9a

The air remaining in the tank undergoes an isentropic expansion from P_1 , T_1 to P_2 , T_2 .

V

At this point, we can solve this problem by either of two methods. We can apply the 2nd Gibbs Equation for ideal gases and the Ideal Gas Entropy Function or we can use the Ideal Gas Relative Pressure, Pr.

Method 1: Use the Ideal Gas Entropy Function.

The 2nd Gibbs Equation for ideal gases in terms of the Ideal Gas Entropy Function is :

$$\Delta \hat{S} = \hat{S}_{2} - \hat{S}_{1} = \hat{S}_{T2}^{\circ} - \hat{S}_{T1}^{\circ} - \frac{R}{MW} Ln \frac{P_{2}}{P_{1}} = 0$$
 Eqn 10

We can apply **Eqn 10** to the process that the air inside the tank undergoes <u>AND</u> to the process that the air undergoes as it passes through the turbine:

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{out} - \hat{\mathbf{S}}_{1} = \hat{\mathbf{S}}_{Tout}^{\circ} - \hat{\mathbf{S}}_{T1}^{\circ} - \frac{\mathbf{R}}{\mathbf{MW}} \mathbf{Ln} \frac{\mathbf{P}_{out}}{\mathbf{P}_{1}} = \mathbf{0}$$
Eqn 11

We can solve Eqns 10 & 11 for the unknowns S^{o}_{T2} and S^{o}_{Tout} :

$$\hat{\mathbf{S}}_{\mathsf{T2}}^{\circ} = \hat{\mathbf{S}}_{\mathsf{T1}}^{\circ} + \frac{\mathsf{R}}{\mathsf{MW}} \mathsf{Ln} \frac{\mathsf{P}_2}{\mathsf{P}_1}$$
 Eqn 12

$$\hat{\mathbf{S}}_{\text{Tout}}^{\circ} = \hat{\mathbf{S}}_{\text{T}1}^{\circ} + \frac{R}{MW} \ln \frac{P_{\text{out}}}{P_{1}}$$
Eqn 13

We can look up \mathbf{S}^{o}_{T1} in the Ideal Gas Property Tables and use it with the known pressures in Eqn 13 to determine \mathbf{S}^{o}_{T2} and \mathbf{S}^{o}_{Tout} :

T ₁	1459.67 [°] R	R MW	1.987 28.97	Btu/Ibmol- ^o R Ib _m /Ibmol	
T (°R)	S° (Btu/lb _m -°R)				
1450	0.24808				
1459.67	S° _{T1}	Interpolation yields :	S° _{T1}	0.24981	Btu/lb _m -°R
1500	0.25705		S° _{T2}	0.13500	Btu/lb _m -°R
			S ^o _{Tout}	0.02323	Btu/lb _m -°R

Now, we can use S^{o}_{T2} and S^{o}_{Tout} and the Ideal Gas Property Tables to determine both T_{2} and T_{out} and then U_{1} , U_{2} and U_{out} by interpolation :

T (°R)	U° (Btu/lb _m)					
1450	167.28					
1459.67	U° ₁		Interpolation yields :	U° ₁	169.17	Btu/lb _m
1500	177.07					
T (°R)	U° (Btu/lb _m)	S° (Btu/lb _m -°R)				
930	69.166	0.13406				
T ₂	U°2	0.13500	Interpolation yields :	T ₂	933.51	°R
940	70.985	0.13674		U°2	69.804	Btu/lb _m
And at the	turbine outlet :					
T (°R)	H [°] (Btu/lb _m)	S° (Btu/Ib _m -°R)				
590	49.533	0.022643				
T _{out}	Η ^ο _{out}	0.02323		T _{out}	591.44	°R
600	51.934	0.026678		H° _{out}	49.880	Btu/lb _m

We can plug all of the given and determined values back into Eqns 3, 7, 8 & 9 to evaluate n_1 , n_2 , Δn , and finally, V :

R	10.7316	psia-ft ³ / Ibmol-°R	V	2.979	ft ³
n ₁ =	0.07606	Ibmol	m ₁ =	2.204	lb _m
n ₂ =	0.02230	Ibmol	m ₂ =	0.646	lb _m
∆n =	-0.05376	Ibmol	Δm =	-1.558	lb _m

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :
$$\frac{P_r(I_2)}{P_r(T_1)} = \frac{P_2}{P_1}$$
 Eqn 14

Where P_r is the Ideal Gas Relative Pressure, which is a function of T <u>only</u> and we can look up in the Ideal Gas Property Table for air.

We can solve Eqn 14 For $P_r(T_2)$, as follows : $P_r(T_2) = \frac{P_2}{P_1}P_r(T_1)$ Eqn 15

Look-up $P_r(T_1)$ and use it in Eqn 15 To determine $P_r(T_2)$:

T (°R)	P _r		
1450	37.310		
1459.67	P _r (T ₁)	P _r (T ₁)	38.318
1500	42.521	P _r (T ₂)	7.185

Once we know $P_r(T_2)$ we can determine T_2 by <u>interpolation</u> on the the Ideal Gas Property Table. We can then use T_1 and T_2 to determin U_1 and U_2 from the Ideal Gas Property Tables.

T (°R)	U [°] (Btu/lb _m)	T ([°] R)	P _r	U° (Btu/lb _m)
1450	167.28	930	7.0696	69.166
1459.67	U° ₁	T ₂	7.185	U°2
1500	177.07	940	7.3513	70.985
Interpolatio	<u>n</u> yields :	<u>Interpolatio</u>	<u>n</u> yields :	
U°1	169.17 Btu/Ib _m	T ₂	934.08	°R
		U°2	69.909	Btu/lb _m

Because the turbine is also an isentropic process, we can determine the **relative pressure** of the turbine <u>effluent</u>:

$$\frac{P_r(T_{out})}{P_r(T_1)} = \frac{P_{out}}{P_1} \qquad \text{Eqn 16} \qquad \text{Rearranging: } P_r(T_{out}) = \frac{P_{out}}{P_1}P_r(T_1) \qquad \text{Eqn 17}$$

P_r(T_{out}) 1.4082

Now, we can use $P_r(T_{out})$ to determine T_2 and then H_{out} using the Ideal Gas Property Tables :

T (°R)	Pr	H [°] (Btu/lb _m)				
590	1.3914	49.533				
T _{out}	1.4082	H ^o out	Interpolation yields :	T _{out}	591.99	°R
600	1.4758	51.934		H ^o out	50.010	Btu/lb _m

We can plug all of the given and determined values back into Eqns 3, 7, 8 & 9 to evaluate n_1 , n_2 , Δn , and finally, V :

	R	10.7316	psia-ft ³ / II	bmol-°R	V	2.982	ft ³
	n ₁ =	0.07614	Ibmol		m ₁ =	2.206	lb _m
	n ₂ =	0.02231	lbmol		m ₂ =	0.646	lb _m
	∆n =	-0.05383	Ibmol		Δm =	-1.560	lb _m
Verify:	The idea	l gas assumpti	on needs to l	be verified.			
	We need at <u>each</u> s	We need to determine the specific volume at <u>each</u> state and check if :			\widetilde{V} $>$ 80 ft ³ /lbmol		
	Air can b	e considered a	diatomic ga	S.			
	Solving th	he Ideal Gas E	<mark>OS</mark> for mola	r volume yields :	$\widetilde{\mathbf{V}} = \frac{\mathbf{RT}}{\mathbf{P}}$	-	
	Use :	R	10.7316	psia-ft ³ / Ibmol- ^o R			
		V ₁	39.16	ft ³ /lbmol			
		V ₂	133.57	ft ³ /lbmol	V ₃	431.78	ft ³ /lbmol

The **specific volume** at **state 2** and at the turbine effluent is greater than **80** ft³/lbmol. Air can be considered to be a diatomic gas, so the ideal gas assumption is <u>valid</u> here. The ideal gas assumption is <u>not valid</u> in **state 1** and this makes the solution somewhat <u>questionable</u>, but we were <u>instructed</u> to make the ideal gas assumption in the problem statement.

An	S	w	е	rs	÷.
	-		-		

		Method 1	Method 2	
The volume of the tank is:	V	2.979	2.982	ft ³

The <u>difference</u> between the **two** methods is caused by the following issues (ranked from most important to least important).

1 - Errors associated with linearly interpolating between values of a functions that are <u>not</u> really linear.

3 - Round-off error in the Ideal Gas Property Tables.

7E-1 Minimum Work for Compression of R-134a

4 pts

R-134a vapor enters an adiabatic compressor at -20°C and leaves at 700 kPa. If the R-134a is saturated when it enters the compressor, determine the minimum shaft work required by the compressor in kJ/kg.

Read : We must apply the 1st Law to the compressor. We can get H_1 from the R-134a tables or the **NIST Webbook**, but we do not know H_2 . The key to solving this problem is that a process that requires the minimum shaft work is an isentropic process. Knowing that $S_2 = S_1$ gives us the value of a <u>2nd</u> intensive variable for state 2. This allows us to use the R-134a tables or **NIST Webbook** to determine H_2 . We can then plug H_2 into the 1st Law to determine the **work** requirement per kg of R-134a.

Given:	T ₁	-20	°C	Find:	Ws	???	kJ/kg
	x ₁	1	kg vap/kg				
	P ₂	700	kPa				

Diagram:

1 -

The compressor is isentropic.

- 2 The compressor operates at steady-state.
- 3 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 4 Shaft work and flow work are the <u>only</u> types of work that cross the system boundary.

Equations / Data / Solve:

Apply the 1st Law to the compressor to determine the shaft work requirement.

For a steady-state, single-inlet, single outlet system with <u>no</u> heat transfer and <u>negligible</u> kinetic and potential energy <u>changes</u>, the 1st Law is:

$$\hat{W}_{s} = \frac{\dot{W}_{s}}{\dot{m}} = \left(\hat{H}_{1} - \hat{H}_{2}\right)$$
 Eqn 1

H₁

386.6

kJ/kg

We can get **H**₁ from the **R-134a** tables or the **NIST Webbook** because we know the **temperature** and we know it is a saturated vapor:

The compressor is isentropic, so $S_2 = S_1$ and we can get S_1 from the R-134a tables or the **NIST Webbook**.

Now, we know the values of <u>two</u> intensive properties at **state 2**, so we can use the R-134a tables or the **NIST Webbook** to evaluate <u>any other properties</u> by <u>interpolation</u>. Here, we are interested in H_2 .

At **P = 700 kPa**:

T (°C)	H (kJ/kg)	S° (kJ/kg-K)
30	416.60	1.7269
T ₂	H ₂	1.7413
40	426.72	1.7598
Now, we c	an plug values	back into Eqn

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : W_s -34.5 kJ/kg

7E-2 PVT Relationships for Isentropic, IG Processes

Consider the Carnot Power Cycle shown in the **PV Diagram**, below. The working fluid is **air** and the specific heat ratio, γ , is constant.

Show that... **a.**) $V_2/V_1 = V_3/V_4$ **b.**) $(T_2 / T_3)^{\gamma} = (P_2 / P_3)^{(\gamma-1)}$ **c.**) $T_2 / T_3 = (V_3 / V_2)^{(\gamma-1)}$

Read : (a) Note that $\eta = W_{cycle}/Q_{in} = (W_{12} + W_{34})/Q_{12}$ because Q_{23} and Q_{41} are <u>equal</u> and have <u>opposite</u> signs. Determine W_{12} in terms of V_1 , V_2 , and T_H (temperature of high temp reservoir) and also W_{34} in terms of V_3 , V_4 , and T_c . Note the relationship between Q_{12} and W_{12} determined from an energy balance during step 1-2. Compare η obtained this way with the Carnot cycle efficicency and you will arrive at the desired conclusion.

(c) Easier to do part (c) before (b). Apply the 1st Law to step 2-3. Note that $dU = m C_V dT$, $C_V = (R/MW)/(\gamma-1)$, PV = nRT and dW = P dV. You will arrive at the form (1/T) dT and (1/V) dV on <u>both</u> sides. <u>Integrate</u> to obtain the desired result.

(b) Just use the result from part (c) along with the ideal gas EOS to convert V to P.

Given:	Q ₂₃	0	kJ	Carnot Cycle	$T_1 = T_2 = T_H$
	Q ₄₁	0	kJ		$T_3=T_4=T_C$
	Step:	1-2	Isothermal Expansion	sion	
		2-3	Adiabatic Exapans	sion	
		3-4	Isothermal Compr	ression	
		4-1	Adiabatic Compre	ession	
Find:	Show that: (a	a) $V_4V_2 = V_1V_2$	/ ₃ (b) T	$_{2}/T_{3} = (P_{2}/P_{3})^{((\gamma-1)/\gamma}$	(c) $T_2/T_3 = (V_3/V_2)^{\gamma-1}$

Diagram: Given in the problem statement.

8 pts

Assumptions:

- The system consists of an ideal gas.
- 2 The specific heat ratio is <u>constant</u> (required in part (b) <u>only</u>).
- The cycle is executed in a closed system (<u>not required</u>, but it makes the solution <u>simpler</u>).
- 4 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 5 Boundary work is the <u>only</u> type of work that crosses the system boundary.
- 6 The system undergoes a Carnot cycle (reversible).

Equations / Data / Solve:

1 -

Part a.)

a.) It may be hard to determine where to start with the proof but following the provided <u>hints</u> will help you.
 Starting with the **thermal efficency**:

$$\eta = \frac{W_{\text{cycle}}}{Q_{\text{in}}} = \frac{W_{12} + W_{34}}{Q_{12}}$$
Eqn 1

Now we need to determine W_{12} in terms of V_1 , V_2 , and T_H and also W_{34} in terms of V_3 , V_4 , and T_C .

PV work done by the system during the isothermal expansion and compression processes can be evaluated as follows:

$$\mathbf{W}_{12} = \int_{1}^{2} \mathbf{P} \, \mathbf{dV}$$
 Eqn 2

Assuming the system consists of an ideal gas substitute **P** = **nRT/V**:

$$W_{12} = \int_{1}^{2} \frac{nRT_{H}}{V} dV \qquad \text{Eqn 3} \qquad W_{34} = \int_{3}^{4} \frac{nRT_{C}}{V} dV \qquad \text{Eqn 5}$$

Integrating:

$$W_{12} = nRT_{H}Ln(V_{2}/V_{1}) \qquad Eqn 4 \qquad W_{34} = nRT_{C}Ln(V_{4}/V_{3}) \qquad Eqn 6$$

Apply the 1st Law for a closed system with negligible changes in kinetic and potential energies to get Q12:

$$\Delta \mathbf{U}_{12} = \mathbf{Q}_{12} - \mathbf{W}_{12}$$
 Eqn 7

Since the internal energy of an ideal gas depends on temperature <u>only</u> and the temperature is <u>constant</u> along **Process 1-2**, $U_2 = U_1$ and the energy balance reduces to:

$$\mathbf{Q}_{12} = \mathbf{W}_{12}$$
 Eqn 8

We already determined W_{12} in Eqn 4.

Substituting expressions for W_{12} , W_{23} and $Q_{12} = W_{12}$ into the **thermal efficiency** equation, Eqn 1, yields:

$$\eta = \frac{W_{12} + W_{34}}{Q_{12}} = \frac{W_{12} + W_{34}}{W_{12}}$$

$$= 1 + \frac{W_{34}}{W_{12}} = 1 + \frac{nRT_{c} Ln(V_{4} / V_{3})}{nRT_{H} Ln(V_{2} / V_{1})} = 1 + \left(\frac{Ln(V_{4} / V_{3})}{Ln(V_{2} / V_{1})}\right) \frac{T_{c}}{T_{H}}$$
Eqn 9

Recall that the thermal efficiency of a Carnot Cycle is:

$$\eta = 1 - \frac{T_c}{T_H}$$
 Eqn 10

Substituting Eqn 10 into Eqn 9 yields:

A little algebra finishes the job:

$$1 - \frac{T_{c}}{T_{H}} = 1 - \left(\frac{\ln(V_{4} / V_{3})}{\ln(V_{2} / V_{1})}\right) \frac{T_{c}}{T_{H}}$$
 Eqn 11

Eqn 11 simplifies to:
$$\frac{\text{Ln}(V_4 / V_3)}{\text{Ln}(V_2 / V_1)} = -1$$
 Eqn 12

$$Ln(V_4 / V_3) = Ln(V_1 / V_2)$$
 Eqn 13

$$V_4 / V_3 = V_1 / V_2$$
 Eqn 14

$$\mathbf{V}_4 \ \mathbf{V}_2 = \mathbf{V}_3 \ \mathbf{V}_1$$
 Eqn 15

Part c.) First we will apply the 1st Law to adiabatic process 2-3 with <u>no changes</u> in kinetic or potential energy.

$$\Delta \mathbf{U}_{23} = -\mathbf{W}_{23}$$
 Eqn 16

Put Eqn 16 into differential form:
$$dU_{23} = -\delta W_{23}$$
 Eqn 17

~

 $P = \frac{nRT}{V}$

Substitute the <u>definitions</u> of **boundary work** and **heat capacity**:

$$dU_{23} = n\tilde{C}_{v}^{o} dT$$
 Eqn 18

$$\delta W_{23} = P dV$$
 Eqn 19

$$\tilde{\mathbf{C}}_{\mathbf{v}}^{\mathbf{o}} = \frac{\mathbf{R}}{\gamma - 1}$$
 Eqn 20

Eqn 21

And the ideal gas EOS tells us that:

But, for an ideal gas:

$$n \frac{R}{\gamma - 1} dT = -\frac{nRT}{V} dV$$
 Eqn 22

$$\left(\frac{1}{\gamma-1}\right)\frac{1}{T}dT = -\frac{1}{V}dV$$
 Eqn 23

Integrate Eqn 23 from state 2 to state 3 :

$$\left(\frac{1}{\gamma-1}\right) Ln(T_3 / T_2) = -Ln(V_3 / V_2)$$
 Eqn 24

$$Ln(T_3 / T_2) = Ln(V_2 / V_3)^{\gamma-1}$$
 Eqn 25

$$\frac{\mathbf{T}_3}{\mathbf{T}_2} = \left(\frac{\mathbf{V}_2}{\mathbf{V}_3}\right)^{\gamma-1}$$
 Eqn 26

Simplify algebraically :

Rearrange Eqn 22 to get :

$$V = \frac{nRT}{P}$$
 Eqn 27

Eqn 29

Eqn 31

into the result from part (c), Eqn 26 to get:

 $\frac{\mathbf{T}_{3}}{\mathbf{T}_{2}} = \left(\frac{\mathbf{h}\mathbf{R}\mathbf{T}_{2}/\mathbf{P}_{2}}{\mathbf{h}\mathbf{R}\mathbf{T}_{3}/\mathbf{P}_{3}}\right)^{\gamma-1}$ **Eqn 28** $\frac{\mathbf{T}_3}{\mathbf{T}_2} = \left(\frac{\mathbf{T}_2}{\mathbf{T}_3}\frac{\mathbf{P}_3}{\mathbf{P}_2}\right)^{\gamma-1}$

Cancelling terms in Eqn 28 yields:

Multiply through by $(T_3 / T_2)^{1-\gamma}$ to get :

A little more algebra yields :

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers :

Part c.)

 $\frac{\mathsf{T}_3}{\mathsf{T}_2}$

 P_3

7E-3 Work and ΔS for IGs Undergoing Isothermal, Polytropic and Adiabatic Processes

8 pts

Argon gas is compressed in a piston and cylinder device from **20 psia** and **55°F** to **120 psia**. The compression is internally reversible and the **helium** behaves as an ideal gas with a constant **heat capacity** of $C_P = (5/2) R$.

Determine the **work** in **Btu/lb**_m and Δ S in **Btu/lb**_m- $^{\circ}$ R and sketch the process path on both PV and TS Diagrams assuming the compression is...

a.) Polytropic with $\delta = 1.5$

b.) Adiabatic

c.) Isothermal

Read : For part (a) start with the equation for PV work for internally reversible, polytropic processes for ideal gases. When determining ΔS assume the **heat capacity** is <u>constant</u>. Since argon is <u>monatomic</u> use $C_p = (5/2) R$.

For part (b) determine work by applying an energy balance (where Q = 0). Assume <u>constant</u> heat capacity $\Delta U = C_V \Delta T$ where $C_V = C_P - R$ and $C_p = (5/2) R$. Determine T_2 from an entropy balance. Recall that internally reversible, adiabatic processes are also isentropic.

For **part (c)** start with the <u>definition</u> of **PV work**, substitute in the <u>ideal gas EOS</u> for **pressure** and <u>integrate</u>. Remember the process is <u>isothermal</u> (this simplifies the analysis of both the **work** and <u>change</u> in **entropy**).

Given:	P ₁ T ₁	20 55 514.67	lb _f / in ² °F °R			Part (a)	P ₂ m δ	120 8.4 1.5	lb _f /in ² lb _m
Find:	Part (a) - (c) :		w	?	Btu		∆S	?	Btu/⁰R

Diagram:

Assumptions:	Ass	um	ptic	ons:
--------------	-----	----	------	------

- **1** As shown in the diagram, the system is the gas.
- 2 The gas is modeled as an ideal gas.
- **3** The compression is internally reversible.
- 4 Boundary work is the <u>only</u> form of work that crosses the system boundary.
- 5 <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 6 Argon has a <u>constant</u> heat capacity of $C_P = (5/2) R$.

R	1.986	Btu/Ibmol-°R		
MW	39.948	lb _m /lbmol		

Equations / Data / Solve:

Part a.) In part (a) we must determine the work and the <u>change</u> in entropy for a polytropic process.

For polytopic, internally reversible processes with ideal gases:

$$W_{12} = \frac{m}{MW} \frac{R}{1-\delta} (T_2 - T_1)$$
 Eqn 1

The problem at this point is that we do not know T₂. But, we do know that the process is polytropic !

$$\mathbf{T}_{1} \mathbf{P}_{1}^{(1-\delta)/\delta} = \mathbf{T}_{2} \mathbf{P}_{2}^{(1-\delta)/\delta}$$
 Eqn 2

Substitute Eqn 3 for T_2 into Eqn 1 and rearrange the result to get :

$$\mathbf{W}_{12} = \frac{\mathbf{m}}{\mathbf{MW}} \frac{\mathbf{RT}_{1}}{1 - \delta} \left(\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right)^{(\delta - 1)/\delta} - 1 \right)$$
 Eqn 4

Now, we can plug values into Eqns 12 & 10 or Eqn 13 :

n	0.2103	lb _m
T₂	935.22	°R
T ₂	475.55	°F
W ₁₂	-351.2	Btu

Eqn 3

ΔS can be determined by applying	$\mathbf{m} \sim \mathbf{dT} \mathbf{m} (\mathbf{P})$	
the 2nd Gibbs Equation for	$\Delta \mathbf{S} = \frac{1}{2} \left[\sum_{\mathbf{P}} \frac{\mathbf{m}}{\mathbf{m}} - \frac{1}{2} \mathbf{R} \mathbf{Ln} \right]^{\frac{1}{2}}$	Ean 5
ideal gases:	MW^{J_1} T $MW^{C-1}(P_1)$	-q., v

 $\mathbf{T}_2 = \mathbf{T}_1 \left(\frac{\mathbf{P}_2}{\mathbf{P}_1}\right)^{(6-1)/6}$

If we assume the heat capacity is constant:
$$\Delta S = \frac{m}{MW} \begin{bmatrix} \widetilde{C}_{P} Ln \frac{T_{2}}{T_{1}} - RLn \frac{P_{2}}{P_{1}} \end{bmatrix} \qquad \text{Eqn 6}$$
Since argon is a montomic gas we can assume :
$$\widetilde{C}_{P}^{\circ} = (5/2)R \qquad \text{Eqn 7}$$
Subtituting C_{P} and other values into Eqn 6 yields :
$$\Delta S = \frac{4.965}{0.12471} \frac{Btu/Bmol^{-9}R}{Btu/Bmol^{-9}R}$$
b.) Here we must determine the work and the change in entropy for an adiabatic process.
The 1st Law for an adiabatic process with negligible changes in kinetic and potential energies is :
$$W_{12} = -m\Delta\hat{U}_{12} \qquad \text{Eqn 8}$$
We can evaluate the change in the internal energy using C_{v} and :
$$\Delta \hat{U}_{12} = \hat{C}_{v}^{\circ} (T_{2} - T_{1}) = \frac{\widetilde{C}_{v}^{\circ}}{MW} (T_{2} - T_{1}) \qquad \text{Eqn 10}$$
The following relationship applies to ideal gases :
$$\widetilde{C}_{P}^{\circ} = (3/2)R \qquad \text{Eqn 11}$$
We can combine this with Eqn 7 to get :
$$\widetilde{C}_{P}^{\circ} = (3/2)R \qquad \text{Eqn 12}$$
 $C_{v} \qquad 2.979 \qquad \text{Btu/Ibmol^{-9}R}$
At this point, the only obstacle to using Eqns 18 & 16 to evaluate We to not know T_v.

At this point, the only obstacle to using Eqns 18 & 16 to evaluate W_{12} is that we do not know T_2 . We need to make use of the fact that the process is adiabatic and internally reversible to determine T_2 .

An adiabatic process that is <u>also</u> internally reversible is isentropic :

We can use this fact with the 2nd Gibbs Equation for ideal gases with constant heat capacities to determine T_2 as follows :

$$\Delta S = \frac{m}{MW} \left[\widetilde{C}_{P} Ln \frac{T_{2}}{T_{1}} - R Ln \frac{P_{2}}{P_{1}} \right]$$
Eqn 13

ΔS

0

Btu/°R

$$\mathbf{0} = \frac{\mathbf{m}}{\mathbf{MW}} \left[\widetilde{\mathbf{C}}_{\mathbf{P}} \, \mathbf{Ln} \frac{\mathbf{T}_{2}}{\mathbf{T}_{1}} - \mathbf{R} \, \mathbf{Ln} \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right]$$
 Eqn 14

$$\widetilde{C}_{P} Ln \frac{T_{2}}{T_{1}} = R Ln \frac{P_{2}}{P_{1}}$$
 Eqn 15

$$Ln\frac{T_2}{T_1} = Ln\left(\frac{P_2}{P_1}\right)^{R/\widetilde{C}_P} = Ln\left(\frac{P_2}{P_1}\right)^{(\widetilde{C}_P - \widetilde{C}_V)/\widetilde{C}_P}$$
Eqn 16

s!
$$\mathbf{T_2} = \mathbf{T_1} \left(\frac{\mathbf{P_2}}{\mathbf{P_1}}\right)^{(\gamma-1)/\gamma}$$
 Eqn 17

Hey, we already KNEW this !

Solve Eqn 13 for T_2 using $\Delta S = 0$:

Part

Where :

\tilde{C}_{P}^{o}	_	(5/2)R	_ 5
$\gamma = \overline{\tilde{C}_v^o}$	_	(5/2)R	3

Eqn 18

Egn 24

Eqn 25

Btu

	γ	1.667	
	T ₂	1053.88	°R
Now, we can plug T_2 into Eqn 10 and ΔU_{12} into Eqn 8 :	ΔU_{12}	40.21	Btu/lb _m
	W ₁₂	-337.76	Btu

Part c.)Determine the work from the definition
of boundary work : $W_{12} = \int_{1}^{2} P \, dV$ Eqn 19

For an ideal gas substitute **P** = **nRT/V** into **Eqn 19** :

$$W_{12} = \int_{1}^{2} \frac{m}{MW} \frac{RT}{V} dV \qquad \text{Eqn 20}$$

Integrate Eqn 2 (the process is isothermal, $T_1 = T_2 = T$): $W_{12} = \frac{m}{MW} R T Ln \frac{V_2}{V_1}$ Eqn 21

We <u>don't know</u> V_1 or V_2 but we can determine the values from the Ideal Gas EOS ($T_1 = T_2 = T$):

 $V_1 = \frac{m}{MW} \frac{RT}{P_1}$ Eqn 22 $V_2 = \frac{m}{MW} \frac{RT}{P_2}$ Eqn 23

Dividing Eqn 22 by Eqn 23 we obtain :

Now, substitute Eqn 24 back into Eqn 21 to get :

Plug values into Eqn 25 :

 ΔS can be determined by applying the 2nd Gibbs Equation for ideal gases:

$$\Delta S = \frac{m}{MW} \int_{1}^{2} \widetilde{C}_{P} \frac{dT}{T} - \frac{m}{MW} R Ln \left(\frac{P_{2}}{P_{1}}\right)$$
 Eqn 26

 $V_{2} / V_{1} = P_{1} / P_{2}$

 $W_{12} = \frac{m}{MW} RT Ln \frac{P_1}{P_2}$

W₁₂

-385.10

94.25

ft³/lbmol

For an isothermal process Eqn 26 reduces to:
$$\Delta S = -\frac{m}{MW} R Ln \begin{pmatrix} P_2 \\ P_1 \end{pmatrix}$$
Eqn 27Now, we can plug values into Eqn 27 : ΔS -0.74824 $Btu/^{\circ}R$ Verify:The ideal gas assumption needs to be verified.
We need to determine the specific volume at each state and check if
(Argon is a noble gas).
Solving the Ideal Gas EOS for molar volume yields : $\widetilde{V} > 80 \text{ ft}^3 / \text{Ibmol}$ Use :R10.7316 psia-ft^3 / lbmol-°R $V_1 = V_{2c}$
 V_{2A} 276.16 ft^3/lbmol
 V_{2A}

 V_{2B}

The **specific volume** at <u>each</u> state is greater than **80 ft³/lbmol**, therefore the ideal gas assumption is <u>reasonable</u>.

Answers :	a.)	W ₁₂ ∆S	-351 -0.125	Btu Btu/ ^º R
	b.)	W ₁₂ ∆S	-338 0	Btu Btu/ ^o R
	c.)	W ₁₂ ∆S	-385 -0.748	Btu Btu/ ^o R

The isentropic process requires the least work !

The isothermal process requires the most work !

How can ΔS be negative in **parts (a)** and (c) ?

Heat transfer from the system to the surroundings occurs. So, although $\Delta S_{system} < 0$, $\Delta S_{surr} > 0$ by an even larger amount so that $\Delta S_{universe} > 0$ and the 2nd Law is <u>not violated</u>.

7E-4 Performance of an Ideal Gas Cycle 10 pt
An ideal gas contained in a piston-and-cylinder device undergoes a thermodynamic cycle made up of three quasi-equilibrium
processes.
Step 1-2: Adiabatic compression from 20°C and 110 kPa to 400 kPa
Step 2-3: Isobaric cooling
Step 3-1: Isothermal expansion
a.) Carefully draw this process in a traditional piston-and-cylinder schematic
b.) Sketch the process path for this cycle on a PV Diagram.
Put a point on the diagram for each state and label it. Be sure to include and label all the important features for a complete
PV Δiagram for this system
c.) Calculate Q , W , ΔU and ΔH , in J/mole ,
for each step in the process and for the entire cycle. Assume that $C_P = (5/2) R$.
d.) Is this cycle a power cycle or a refrigeration cycle? Explain. Calculate the thermal efficiency or COP of the cycle,
whichever is appropriate.

Read : Sketch carefully. Understanding what is going on in the problem is half the battle. Apply the 1st Law, the definitions of boundary work, C_P and C_V to a cycle on an ideal gas with constant heat capacities. Take advantage of the fact that step 1-2 is <u>both</u> adiabatic and reversible, so it is isentropic. Power cycles produce a <u>net</u> amount of work and proceed in a <u>clock-wise</u> direction on a PV Diagram.

Given:	T ₁	20	°C	P ₁	110	kPa
		293.15	κ	P ₂	400	kPa
	T ₃	20	°C	P ₃	400	kPa
		293.15	κ	R	8.314	J/mole-K
	Q ₁₂	0	J/mole	CP	20.785	J/mole-K
Find:	For <u>each</u>	of the three ste	ps and for the <u>entire</u> cycle:	ΔU	???	J/mole
				ΔH	???	J/mole
				Q	???	J/mole
				W	???	J/mole

Assumptions:

- Step 1-2 is adaibatic, Step 2-3 is isobaric, Step 3-1 is isothermal.
- 2 The <u>entire</u> cycle and <u>all</u> of the **steps** in the cycle are internally reversible.
- **3** <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.
- 4 Boundary work is the <u>only</u> form of work interaction during the cycle.
- **5** The **PVT** behavior of the system is accurately described by the ideal gas EOS.

1 -

Equations / Data / Solve:

Part c.) Let's begin by analyzing **step 1-2**, the adiabatic compression.

> Begin by applying the 1st Law for closed systems to each step in the Carnot Cycle. Assume that changes in kinetic and potential energies are negligible.

$$\widetilde{\mathbf{W}}_{12} = -\Delta \widetilde{\mathbf{U}} = \widetilde{\mathbf{U}}_1 - \widetilde{\mathbf{U}}_2$$
 Eqn 1

Because internal energy is not a function of **pressure** for an ideal gas, we can determine ΔU by integrating the equation which defines the constant volume heat capacity. The integration is simplified by the fact that the heat capacity for the gas in this problem has a constant value.

Combining Eqns 1 & 3 yields:

``

$$\mathbf{\widetilde{W}}_{12} = \mathbf{\widetilde{C}}_{V}^{o} \left(\mathbf{T}_{1} - \mathbf{T}_{2} \right)$$
 Eqn 4

The problem is that we do not know T_2 . So, our next task is to determine T_2 . Since the entire cycle is reversible and this step is also adiabatic, this step is is isentropic. The fastest way to determine T₂ is to use one of the **PVT** relationships for isentropic processes.

$$\mathbf{T_1} \mathbf{P_1}^{\frac{1-\gamma}{\gamma}} = \mathbf{T_2} \mathbf{P_2}^{\frac{1-\gamma}{\gamma}}$$
 Eqn 5

Solve Eqn 5 for T₂:
$$T_2 = T_1 \left(\frac{P_1}{P_2}\right)^{\frac{1-\gamma}{\gamma}}$$
 Eqn 6

Now, we need to evaluate
$$\gamma$$
: $\gamma = \frac{\mathbf{\tilde{C}_{P}^{o}}}{\mathbf{\tilde{C}_{v}^{o}}}$ Eqn 7

But for ideal gases :	$\mathbf{\tilde{C}}_{P}^{o} = \mathbf{\tilde{C}}_{V}^{o} + \mathbf{R}$	Eqn 8
Solving Eqn 8 for C_v yields :	$\mathbf{\tilde{C}}_{V}^{o}=\mathbf{\tilde{C}}_{P}^{o}\mathbf{-R}$	Eqn 9

Plugging values into Eqn 9 and then Eqn 7 yields :	Cv	12.471 J/mole-K
	γ	1.667

Now, plug values into $\mbox{Eqn 5}$ to get \mbox{T}_2 and plug that	12∶ T2 ₩12	491.31 -2471.3	K J/mole	
Plugging values into Eqn 1 yields :		ΔU_{12}	2471.3	J/mole
Now, we can get ΔH from its definition :	$\Delta \widetilde{H} = \Delta \widetilde{U} + \Delta$	$\Delta \left(\mathbf{P} \widetilde{\mathbf{V}} \right)$		Eqn 10
But, the gas is an ideal gas:	P			Eqn 11
Combining Eqns 10 & 11 gives us :	$\Delta \widetilde{H} = \Delta \widetilde{U} + R$	$(\mathbf{T_2} - \mathbf{T_1})$		Eqn 12
Now, we can plug values into Eqn 12 :		ΔH_{12}	4118.8	J/mole
Next, let's analyze step 2-3, isobaric cooling.		D	400	kDa
T ₂ 491.51 K T ₃ 293.15 K		P ₂ P ₃	400	kPa
The appropriate form of the 1st Law is:	$\tilde{Q}_{23} - \tilde{W}_{23} = 4$	$\Delta \tilde{U}_{23}$		Eqn 13
Because we assumed that boundary work is the <u>c</u> determine work from its definition.	only form of work that	at crosses the <mark>syste</mark>	em bounda	ry, we can
$\mathbf{\widetilde{W}}_{23} = \int_{2}^{3} \mathbf{P} \mathbf{d} \mathbf{\widetilde{V}}$ Eqn 14	Isobaric process: \widetilde{W}_{23}	$= \mathbf{P}\!\left(\mathbf{\widetilde{V}}_3 \!-\! \mathbf{\widetilde{V}}_2\right)$		Eqn 15
Because the system contains and ideal gas:	$\mathbf{\widetilde{W}}_{23}$	$= \mathbf{R} (\mathbf{T}_3 - \mathbf{T}_2)$		Eqn 16
		W ₂₃	-1647.5	J/mole
Next we can calculate ΔU by applying Eqn 3 to ste	$\tilde{U}_3 - \tilde{U}_3 -$	${\widetilde {f U}}_2={\widetilde {f C}}_{f V}^{ m o}\left({f T}_3- ight.$	T ₂)	Eqn 17
		ΔU_{23}	-2471.3	J/mole
Now, solve Eqn 13 to determine \mathbf{Q}_{23} :	Q ₂₃ =	$= \widetilde{\mathbf{W}}_{23} + \Delta \widetilde{\mathbf{U}}_{23}$		Eqn 18
Now, we apply Eqn 12 to step 2-3 to determine ΔH	l:	Q ₂₃	-4118.8	J/mole
$\Delta \tilde{H} = \Delta \tilde{U} + R(T, t)$	$(-\mathbf{T}_{\mathbf{a}}) = \Delta \widetilde{\mathbf{U}} + \mathbf{V}$	$\mathbf{\widetilde{W}}_{23}=\mathbf{\widetilde{Q}}_{23}$		Eqn 19
	2) — - 1	ΔH ₂₃	-4118.8	J/mole
Next, we analyze step 3-1, isothermal expansion.		20		
For ideal gases, U and H are functions of T <u>only</u> . T	herefore :	ΔU ₃₁ ΔH ₃₁	0.0 0.0	J/mole J/mole

The appropriate form of the 1st Law is:

$$\mathbf{\widetilde{Q}}_{31} - \mathbf{\widetilde{W}}_{31} = \Delta \mathbf{\widetilde{U}}_{31}$$
 Eqn 20

But since $\Delta U_{31} = 0$, Eqn 20 becomes :

Integrating Eqn 25 yields :

Again, because we assumed that **boundary work** is the <u>only</u> form of **work** that crosses the **system boundary**, we can determine **work** from its definition.

$$\tilde{\mathbf{W}}_{31} = \int_{3}^{1} \mathbf{P} \, \mathbf{d} \, \tilde{\mathbf{V}}$$
 Eqn 22 Ideal Gas EOS : $\mathbf{P} \, \tilde{\mathbf{V}} = \mathbf{R} \, \mathbf{T}$ Eqn 23

Solve Eqn 23 for P and substitute the result into Eqn 22 to get :

$$\mathbf{\widetilde{W}}_{31} = \mathbf{R} \, \mathbf{T}_1 \, \mathbf{Ln} \left| \frac{\mathbf{\widetilde{V}}_1}{\mathbf{\widetilde{V}}_3} \right|$$
 Eqn 26

J/mole

We can use the Ideal Gas EOS to avoid calculating V_1 and V_3 as follows:

	$\mathbf{P}_{1}\mathbf{V}_{1}=\mathbf{R}\mathbf{T}_{1}$	
Apply Eqn 23 to both states 3 and 1 :	$\overline{P_{_3}\widetilde{V}_{_3}=RT_{_3}}$	Eqn 27

Cancelling terms and rearranging leaves :
$$\frac{V_1}{\tilde{V}_3} = \frac{P_3}{P_1}$$
 Eqn 28

Use Eqn 27 to eliminate the V's from Eqn 25 :
$$\tilde{W}_{31} = R T_1 Ln \left[\frac{P_3}{P_1} \right]$$
 Eqn 29
Now, plug values into Eqn 28 and then Eqn 20 : W_{31} 3146.5 J/mole

 Now, plug values into Eqn 28 and then Eqn 20 :
 W_{31} 3146.5

 Q_{31} 3146.5

Finally, we can calculate $\mathbf{Q}_{\text{cycle}}$ and $\mathbf{W}_{\text{cycle}}$ from :

$$\begin{split} \widetilde{\mathbf{W}}_{cycle} &= \widetilde{\mathbf{W}}_{12} + \widetilde{\mathbf{W}}_{23} + \widetilde{\mathbf{W}}_{31} \\ \mbox{Plugging values into Eqns 29 \& 30 yields :} \\ \end{split} \qquad \begin{array}{l} \widetilde{\mathbf{Q}}_{cycle} &= \widetilde{\mathbf{Q}}_{12} + \widetilde{\mathbf{Q}}_{23} + \widetilde{\mathbf{Q}}_{31} \\ \mbox{W}_{cycle} &= -972.3 & \mbox{J/mole} \\ \mbox{Q}_{cycle} &= -972.3 & \mbox{J/mole} \\ \end{array}$$

This result confirms what an application of the 1st Law to the entire cycle tells us: Qcycle = Wcycle

Part d.) The cycle is a refrigeration cycle because both W_{cycle} and Q_{cycle} are <u>negative</u>.

The coefficient of performance of a refrigeration cycle is defined as :

$$COP_{R} = rac{\widetilde{Q}_{c}}{\widetilde{W}}$$
 Eqn 32

	Q_c is the heat <u>absorbed</u> by the system during the cycle. In this case, $Q_c = W$ is the <u>net</u> work <u>input</u> to the system during the cycle. In this case, $W = -$	= Q ₃₁ . · W _{cycle} .		
	Therefore :	Q _c W	3146.5 972.3	J/mole J/mole
	Plug values into Eqn 31 to get :	COP _R	3.236	
Verify:	The ideal gas assumption needs to be verified.	$\widetilde{\mathbf{V}} = \frac{\mathbf{RT}}{\mathbf{P}}$		Eqn 33
	We need to determine the specific volume at <u>each</u> state and check if :	$ ilde{V} >$ 5 L	/mol	Eqn 34

V ₁	22.16	L/mol
V ₂	10.21	L/mol
V ₃	6.09	L/mol

The **specific volume** at <u>each</u> **state** is greater than **5** L/mol for <u>all</u> **states** and the working fluid is a diatomic gas, so the ideal gas assumption is <u>valid</u>.

Answers :	a.)	See diagra	igram above.		b.)	See diag	ram above.
	c.)	Step	ΔU	ΔΗ	Q	W	1
		1 - 2	2471	4119	0	-2471	All values in
		2 - 3	-2471	-4119	-4119	-1648	this table
		3 - 1	0	0	3146	3146	are in
		Cycle	0	0	-972	-972	J/mole.
	d.)	Refrigeration	<mark>n or Heat Pu</mark>	mp Cycle.			
		COP _R	3.2		COP _{HP}	4.2	

7E-5 Power Input for an Internally Reversible, Polytropic Compressor

6 pts

Consider the internally reversible **ammonia** compressor shown below. The compression process is polytropic with $\delta = 1.27$.

Read : The path equation given in the problem statement tells you that the compression process follows a polytropic path with $\delta = 1.27$. All the properties of **state 1** can be determined using the Ammonia Tables or the **NIST Webbook**. The polytropic path equation allows us to determine the **specific volume** at **state 2**. This is the <u>2nd</u> known intensive property at **state 2**, so we can evaluate the other properties using the Ammonia Tables or the **NIST Webbook**. Determine the **shaft work** based on the polytropic path and then apply the 1st Law to evaluate **Q**.

Given:	Ρ ₁ V _{1,dot} x ₁ Ρ ₂ δ	140 25 1 750 1.27	kPa L/s kg vap/kg kPa]	Diagram:	See the	e problem stat	ement.	
Find:	a.)	(W _s) _{int rev}	???	kW		b.)	Q	???	kW
Assumpt	ions:	1 -							
	1 -	The compre	essor operate	s at <mark>steady</mark> -	-state.				
	2 -	<u>Changes</u> in	kinetic and p	otential ene	e <mark>rgies</mark> are <u>neglig</u>	<u>ible</u> .			
	•		anion in inter		ible				

- 3 The compression is internally reversible.
- 4 The compression process follows a polytropic process path with δ = 1.08.
- 5 **Shaft work** and **flow work** are the <u>only</u> forms of **work** that cross the system boundary.

Equations / Data / Solve:

Part a.) Work for an internally reversible, polytropic process is given by :

$$(\dot{\mathbf{W}}_{s})_{int rev} = -\dot{\mathbf{m}} \frac{\delta}{\delta - 1} \left[\mathbf{P}_{2} \, \hat{\mathbf{V}}_{2} - \mathbf{P}_{1} \, \hat{\mathbf{V}}_{1} \right]$$
 Eqn 1

We can determine the **mass flow rate** from the **volumetric flow rate** using:

 $\dot{\mathbf{m}} = \frac{\dot{\mathbf{V}}_1}{\dot{\mathbf{V}}_1}$

We can use the Ammonia Tables or the **NIST Webbook** to evaluate V_1 because it is a saturated vapor at a known pressure of **140 kPa**.

Next, plug values back into Eqn 2 :

Now, we need to determine V_2 . We can make use of the fact that the compression process follows a polytropic process path with $\delta = 1.08$.

H₁

m_{dot}

Solve Eqn 3 for V₂ :

Now, we can plug numbers into Eqn 4 and then Eqn 1 to complete this part of the problem.

 $\hat{\mathbf{V}}_2 = \left(\frac{\mathbf{P}_1}{\mathbf{P}_2}\right)^{1/6} \hat{\mathbf{V}}_1$

V ₂	0.22156	m³/kg	(W _s) _{int rev}	-7.059	kW

Part b.) To determine the heat transfer rate for the compressor, we must apply the 1st Law for steady-state, SISO processes. For this compressor, changes in kinetic and potential energies are negligible and only flow work and shaft work cross the system boundaries. The appropriate form of the 1st Law for this compressor is :

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1} \right)$$
 Eqn 5

We can solve Eqn 5 for the heat transfer rate:

 $\dot{\mathbf{Q}} = \dot{\mathbf{W}}_{s} + \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1} \right)$ Eqn 6

In part (a) we evaluated <u>all</u> of the <u>unknowns</u> on the <u>right-hand side</u> of Eqn 6 except H_2 . So, now we need to evaluate H_2 .

For state 2, we know the values of <u>two</u> intensive properties: P_2 and V_2 . Therfore, we can use the Ammonia Tables or the **NIST Webbook** to evaluate <u>any other properties</u> of interest, in this case, H_2 .

We begin by determining the phases present. Since $V_2 > V_{cature}$, state 2 is a superheated vapor.				At P = 750 kPa :	V _{sat liq} V _{sat vap}	0.0016228 m³/kg 0.169798 m³/kg
L L L	T (°C)	V (m ³ /kg)	H (kJ/kg)			
	75	0.21661	1611.9	-		
	T ₂	0.22156	H ₂		T ₂	81.85 °C
	100	0.23469	1672.2		H ₂	1628.4 kJ/kg

Finally, we can plug values back into **Eqn 5** to evaluate **Q** and complete this problem:

Q	-0.4586	kW

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers :	a.)	(W _s) _{int rev}	-7.06	kW
	b.)	Q	-0.459	kW

Dr. B - LearnThermo.com

Eqn 2

Eqn 4

kJ/kg

kg/s

1409.0

0.0301

The concept of entropy generation allows us to write entropy balance equations for both closed and open systems. Combination of the 1st and 2nd Laws and the 2nd Gibbs Equation leads to the Mechanical Energy Balance Equation, the Bernoulli Equation and a surprising relationship between shaft work, pressure and volume. Equations are derived for the shaft work of various polytropic processes.

This leads to the definition of isentropic efficiencies for turbines, nozzles and compressors. Isentropic efficiency is best visualized on an HS Diagram. Multi-stage compression with intercooling is discussed and represented on an HS Diagram.

The utility of the concept of entropy generation lies in its relationship to lost work. Equations relating entropy generation to lost work are derived for processes and cycles. Second Law Efficiency of a process is defined and discussed.

V	Vorkbook	LearnThermo.co	m Chapter 8
	Entropy Balance:	Closed System	• We start with closed systems, just to be thorough. The interesting application of the
•	1 st Law:	$d\mathbf{U} = \delta \mathbf{Q} - \delta \mathbf{W}$	2nd Law is for open systems.This is a quick run down of all the equations that apply to closed systems
•	Reversible Processes:	$\delta Q = T dS$	 The new part is the entropy balance equation.
•	Boundary Work, Internally Reversible Processes:	$W_{b} = P dV$	 The integral form is the one we will use most for closed systems. It is essentially the definition of entropy.
•	Gibbs 1 st Equation:	$d\mathbf{U} = \mathbf{T} d\mathbf{S} - \mathbf{p} d\mathbf{V}$	generation.
•	Entropy Balance Equation		 It is not really new. The rate form is a nice lead in to entropy
	♦ Integral Form:	$\mathbf{S}_2 - \mathbf{S}_1 = \int_1^2 \frac{\delta \mathbf{Q}}{\mathbf{T}} + \mathbf{S}_{gen}$	balances on open systems.
	♦ Differential Form:	$dS = \frac{\delta Q}{T} + \delta S_{gen}$	
	♦ Rate Form:	$\frac{\mathrm{d}\mathbf{S}}{\mathrm{d}\mathbf{t}} = \frac{\dot{\mathbf{Q}}}{\mathrm{T}} + \dot{\mathbf{S}}_{\mathrm{gen}}$	

	Entropy	Balance: Open System	
•	General:	$\frac{dS_{sys}}{dt} = \sum_{inlets} \dot{m}_{in} \hat{S}_{in} - \sum_{inlets} \dot{m}_{out} \hat{S}_{out} + \sum_{inlets} \frac{\dot{Q}}{T_{sys}} + \dot{S}_{gen}$	
•	Steady-state, SISO:	$\dot{\mathbf{m}}\left(\hat{\mathbf{S}}_{\text{out}}-\hat{\mathbf{S}}_{\text{in}}\right) = \sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{\text{sys}}} + \dot{\mathbf{S}}_{\text{gen}}$	
•	Entropy generation within the	<u>.</u>	

- The general entropy balance equation can be simplified a great deal for a SISO system operating at steady-state.
- Often, our objective is to determine the rate of entropy generation in a system.

 $\dot{\mathbf{S}}_{gen} = \dot{\mathbf{m}} \left(\hat{\mathbf{S}}_{out} - \hat{\mathbf{S}}_{in} \right) - \sum \frac{\dot{\mathbf{Q}}}{\mathbf{T}_{out}}$

- You will see why this is a key quantity later in this chapter.
- It is very important to realize that this is ONLY the entropy generation within the system.
- What about the reservoirs and the surroundings ?
- ♦ Irreversible heat exchange leads to <u>additional external</u> entropy generation.

system:

- The general form of the entropy balance equation states that the entropy of the system changes for four different reasons.
- Mass entering and leaving the system carries entropy with it.
 - The rate at which the entropy of the system changes as a result is equal to the rate at which mass flow carries entropy into the system minus the rate at which mass flow carries entropy out of the system.
- Heat transfer to and from the system results in a change in the entropy of the system.
 - Each place in the system where heat transfer occurs changes the entropy of the system at a rate of Q_{dot} / T , where **T** is the temperature of the system at the particular location where heat transfer occurs.
 - The net rate at which heat transfer changes the entropy of the system is the sum of all the individual Q_{dot} / T terms.For example: $Q_H / T_{sys,H} Q_C / T_{sys,C}$ for a heat engine with an evaporator operating at $T_{sys,H}$ and a condenser operating at $T_{sys,C}$.
- Note: These T's are the temperatures within the system and <u>NOT</u> the temperatures of the

1st Law and Entropy

 1st Law, Steady-state, Internally Reversible, SISO: 	$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{\text{not b}} = \dot{\mathbf{m}} \left[\Delta \mathbf{H} + \frac{\Delta \mathbf{v}^2}{2 \mathbf{g}_{\text{C}}} + \frac{\mathbf{g}}{\mathbf{g}_{\text{C}}} \Delta \mathbf{z} \right]$	
	$-\frac{\dot{W}_{\text{not b}}}{\dot{m}} = -\frac{\dot{Q}}{\dot{m}} + \left[\Delta H + \frac{\Delta v^2}{2g_C} + \frac{g}{g_C}\Delta z\right]$	
• From the definition of entropy:	$\hat{\mathbf{Q}} = \frac{\dot{\mathbf{Q}}}{\dot{\mathbf{m}}} = \int_{in}^{out} \mathbf{T} \mathbf{d}\hat{\mathbf{S}}$	
 Gibbs 2nd Equation: 	$T d\hat{S} = d\hat{H} - \hat{V} dP$	
• Integrating for an open system:	$\int_{in}^{out} T d\hat{S} = \Delta \hat{H} - \int_{in}^{out} \hat{V} dP$	

- When we apply the 1st Law to a SISO, internally reversible, steady-state process, the work term includes all forms of work OTHER THAN boundary work.
- In this course, that usually this means <u>shaft</u> work.
- Our goal here is to derive an equation that will let us determine the shaft work for the process, so we begin by solving for **W**_{not b}.
- We divide by m-dot to get the specific work on the left-hand side of the equation.
- The heat transfer is the key that connects the 1st Law to the 2nd Law.
- We can manipulate the definition of entropy and use it to eliminate Q from the 1st Law.
- Then, we can use Gibbs 2nd Equation to express **T** d**S** as d**H V** d**P**.
- This helps us get S out of the equation. This is a good thing because entropy is notoriously difficult to measure.
- On the next slide, we put all of these equations together to eliminate **Q** and then **S**.

Mechanical Energy Balance Equation • Combine all the equations from the previous slide: $-\frac{\dot{\mathbf{W}}_{\text{notb}}}{\dot{\mathbf{m}}} = -\left[\Delta \hat{\mathbf{H}} - \int_{z_{\text{c}}}^{\text{out}} \hat{\mathbf{V}} \, d\mathbf{P} \right] + \left| \Delta \hat{\mathbf{H}} + \frac{\Delta \mathbf{v}^2}{2 \, \mathbf{g}_{\text{c}}} + \frac{\mathbf{g}}{\mathbf{g}_{\text{c}}} \Delta \mathbf{z} \right|$ Reversible $+ \frac{g}{\Delta z}$. W not b Δv^2 • The MEBE: ŶdP+ Steady-State SISO $\Delta v^2 + g$ Bernoulli • If $W_{not b} = 0$: ŶdP+ Equation g **Bernoulli Equation** Δv^2 + _g (incompressible Δz $2g_c g_c$ fluid) Usually, W_{not b} • If $\Delta E_{kin} = \Delta E_{pot} = 0$: V dP $W_{not b} = W_{sh}$ m

- This is a surprising and all too often confusing result.
 - ♦ Look at it VERY carefully.
 - $\circ~$ It says that the specific non-boundary (usually SHAFT) work is equal to the integral of $V_{hat}~dP$ from the inlet to the outlet pressure.
 - This is CONFUSING sometimes because we found a similar looking result earlier in this course:
 - Specific BOUNDARY work is the integral of $P\,\,dV_{hat}$.
 - This is NOT a typo !
 - What does this result look like on a PV Diagram?

- The first cool thing that happens is that ΔH drops out.
- This is good because **H** is also a bit difficult to measure.
- The result is the Mechanical Energy Balance Equation or MEBE.
- This is a very useful equation in fluid mechanics.
- But it does not take friction into account because we started this analysis by assuming that the process was internally reversible.
- Another famous equation is the Bernoulli Equation.
 - It is just the MEBE with no work at all.
 - Bernoulli is especially useful for analyzing flow in pipes.
 - If the fluid flowing through the pipes is an incompressible liquid, then Bernoulli can be simplified even further.
 - In this case it is customary to use $\rho = 1 / V_{hat}$.
- The result that we will use most frequently in this course applies when changes in kinetic and potential energies are negligible.

LearnThermo.com

- On a PV diagram, shaft work is equal to the area to the LEFT of the process path FOR...
 - ◊ Steady-state.
 - Internally reversible
 - ♦ SISO
 - Shaft work and flow work only
 - $\diamond \quad \Delta \mathbf{E}_{kin} = \Delta \mathbf{E}_{pot} = \mathbf{0}$
- For a known process path, such as a polytropic process path, we can evaluate the shaft work by direct integration.
 - Results are shown here for $\delta = 1$ and $\delta \neq 1$.
 - Keep in mind that $\delta = 1$ does not necessarily imply an isothermal process here !
 - The results shown here apply when the assumptions listed above are valid: SISO, SS, Int. Rev, $\Delta E_{kin} = \Delta E_{pot} = 0$ & polytropic.
 - The equations apply for all fluids.
 - Liquids, real gases, and ideal gases.
 If the fluid is an ideal gas and d = 1
 - If the fluid is an ideal gas <u>and</u> d = 1, then the process is isothermal.

- Assumptions
 - ♦ Steady-state.
 - ♦ Internally reversible
 - ♦ SISO
 - \diamond Shaft work and flow work only
- $\diamond \quad \Delta \mathbf{E}_{kin} = \Delta \mathbf{E}_{pot} = \mathbf{0}$
- This diagram shows how the value of δ effects the shape of the polytropic process path on a **PV** Diagram.
- As δ increases, the process path becomes more steep and the specific volume changes by a smaller and smaller amount for the same change in pressure.
- Observations
- I have shown $\delta = 1$ following the red isotherm.
- ◊ This is ONLY the case for an ideal gas with constant heat capacities.
- The path for $\delta = \gamma$ is only isentropic if the fluid is an ideal gas and its heat capacities are constant.
- $\label{eq:result} \begin{array}{l} \diamond & \mbox{The isochoric process requires the most shaft} \\ \mbox{work to raise the pressure from P_1 to P_2. With} \\ \mbox{all of the assumptions we have made, no shaft} \\ \mbox{work can be done in an isobaric process.} \end{array}$
- Keep in mind that boundary work and flow work can still be done.
- In the next slide, I present equations for specific W_{Sh} for various polytropic processes for real fluids and ideal gases.

LearnThermo.com

Chapter 8

Summary: W _{sh} Polytropic Processes						
Process Type R	Real Fluids	Ideal Gases				
$\delta = 0$	$\hat{\mathbf{W}}_{\mathrm{sh}}=0$	$\hat{\mathbf{W}}_{\mathrm{sh}}=0$				
δ = 1	$\hat{\mathbf{W}}_{\mathrm{sh}} = -\mathbf{P}_{1}\hat{\mathbf{V}}_{1}\mathbf{Ln}\left[\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right]$	Isothermal $\hat{\mathbf{W}}_{sh} = -\frac{\mathbf{R} \mathbf{T}_1}{\mathbf{M} \mathbf{W}} \mathbf{L} \mathbf{n} \begin{bmatrix} \mathbf{P}_2 \\ \mathbf{P}_1 \end{bmatrix}$				
δ≠1: Polytropic	$\hat{\mathbf{W}}_{\mathrm{sh}} = -\frac{\delta}{\delta - 1} \left(\mathbf{P}_2 \ \hat{\mathbf{V}}_2 - \mathbf{P}_1 \ \hat{\mathbf{V}}_1 \right)$	$\hat{W}_{sh} = -\frac{\delta}{\delta - 1} \frac{R}{MW} (T_2 - T_1)$				
$\delta = \gamma = \text{const.}$	$\hat{\mathbf{W}}_{\mathrm{sh}} = -\frac{\gamma}{\gamma - 1} \left(\mathbf{P}_2 \ \hat{\mathbf{V}}_2 - \mathbf{P}_1 \ \hat{\mathbf{V}}_1 \right)$	Isentropic $\hat{W}_{sh} = -\frac{\gamma}{\gamma - 1} \frac{R}{MW} (T_2 - T_1)$				
$\delta = \infty$: Isochoric	$\hat{\mathbf{W}}_{\mathrm{sh}} = - \hat{\mathbf{V}} \left(\mathbf{P}_2 - \mathbf{P}_1 \right)$	$\hat{W}_{sh} = -\frac{R}{MW} (T_2 - T_1)$				
• W _{sh} is actually all work other than flow work.						

- Here are all of the most useful equations for calculating shaft work for polytropic processes.
- Once again, the assumptions we made are: • Steady-state.
- ◊ Internally reversible
- ♦ SISO
- Shaft work and flow work only
- $\Delta E_{kin} = \Delta E_{pot} = 0$
- The ideal gas column adds the assumption that the fluid behaves as an ideal gas.
- In order for $\delta = \gamma$ to mean that an IG is undergoing an isentropic process, the heat capacities (and therefore γ) must be constant.

Isentropic Efficiency: η_s

- Compare work input or output of a real device to to that of an isentropic device.
- Adiabatic Turbines:

$$\eta_{S,turb} = \frac{\dot{\mathbf{W}}_{Sh,act}}{\dot{\mathbf{W}}_{Sh,isen}} \qquad \begin{cases} \mathbf{Q} = \mathbf{0} \\ \Delta \mathbf{E}_{pot} = \Delta \mathbf{E}_{kin} = \mathbf{0} \end{cases} \qquad \eta_{S,turb} = \frac{\hat{\mathbf{H}}_{in} - \hat{\mathbf{H}}_{out,act}}{\hat{\mathbf{H}}_{in} - \hat{\mathbf{H}}_{out,isen}}$$

Adiabatic Nozzles:

$$\eta_{S,\text{noz}} = \frac{\frac{\mathbf{v}_{\text{out,act}}^{2}}{\mathbf{v}_{\text{out,isen}}^{2}}}{\frac{2\mathbf{g}_{C}}{\mathbf{v}_{1}^{2} < \mathbf{v}_{2}}} \qquad \left\{ \begin{array}{c} \mathbf{A}_{1} \gg \mathbf{A}_{2} \\ \mathbf{v}_{1} < < \mathbf{v}_{2} \end{array} \right\} \qquad \eta_{S,\text{noz}} \approx \frac{\hat{\mathbf{H}}_{\text{in}} - \hat{\mathbf{H}}_{\text{out,act}}}{\hat{\mathbf{H}}_{\text{in}} - \hat{\mathbf{H}}_{\text{out,isen}}}$$

Adiabatic Compressors:

$$\eta_{\mathrm{S,comp}} = \frac{-\dot{\mathbf{W}}_{\mathrm{Sh,isen}}}{-\dot{\mathbf{W}}_{\mathrm{Sh,act}}} \qquad \begin{cases} \mathbf{Q} = \mathbf{0} \\ \Delta \mathbf{E}_{\mathrm{pot}} = \Delta \mathbf{E}_{\mathrm{kin}} = \mathbf{0} \end{cases} \qquad \eta_{\mathrm{S,comp}} = \frac{\hat{\mathbf{H}}_{\mathrm{out,isen}} - \hat{\mathbf{H}}_{\mathrm{in}}}{\hat{\mathbf{H}}_{\mathrm{out,act}} - \hat{\mathbf{H}}_{\mathrm{in}}} \end{cases}$$

- Isentropic efficiency is a bit odd for nozzles because there is no shaft work involved
- The goal of a nozzle is to increase the kinetic energy of the flowing fluid.
- So, we define the isentropic efficiency of a nozzle as the ratio of the specific kinetic energy of the effluent for an actual or real nozzle to the specific kinetic energy of the effluent from an isentropic nozzle.
- Real nozzles are not isentropic primarily because of friction within the fluid and between the fluid and the wall of the nozzle.
- IF the outlet velocity is MUCH MUCH greater than the inlet velocity, then we get a simpler form of the equation for the isentropic efficiency of a nozzle in terms of the enthalpy of the fluid.

- We will apply the concept of isentropic efficiency to turbines, compressors, pumps and nozzles.
- Pumps are not listed here because the equation is the same as the one for the compressor.
- An isentropic turbine produces the most work possible beginning from the real inlet state and ending at the same outlet pressure as the real turbine.
- An isentropic compressor requires the least work possible beginning from the real inlet state and ending at the same outlet pressure as the real compressor.
- We define the isentropic efficiency of a turbine as the ratio of the actual work output to the work output of an isentropic turbine with the same inlet conditions and same outlet pressure.
- IF the REAL turbine is also adiabatic, then The 1st Law is: $W_{S,act} = m_{dot} (H_{in} H_{out,act})$.
- The isentropic efficiency is the ratio of the change in the specific enthalpy for the actual or real turbine to the change in the specific enthalpy of the isentropic turbine.
- We define the isentropic efficiency of a compressor as the ratio of the isentropic work input to the actual work input of a compressor with the same inlet conditions and same outlet pressure.
- IF the REAL compressor is also adiabatic, then:
- The 1st Law is: W_{S,act} = m_{dot} (H_{in} H_{out,act}).
 The isentropic efficiency is the ratio of the
- The isentropic entitlency is the faile of the change in the specific enthalpy for the isentropic compressor to the change in the specific enthalpy of the actual or real compressor.

LearnThermo.com

Chapter 8

- **TS & HS** Diagrams look deceptively similar for turbines, compressors pumps and nozzles.
- If the turbine is adiabatic, then S[^] cannot decrease because that would result in S_{gen} < 0.
- Therefore, the effluent of an adiabatic turbine can only occupy states to the right of S_1^{Λ} .
- The isentropic path is the best case.
- The isothermal path is the WORST case.
 - The enthalpy actually goes UP ! How does that happen ?
 - Irreversibilities within the turbine are so bad that you have to put shaft work INTO the system !
 - It isn't really a turbine anymore. But it isn't really a compressor either.
 - It is not a device you would want to buy.
 - It converts shaft work and **PV** work into relatively low value internal energy.

 An isentropic compressor requires less shaft work input than an actual, adiabatic compressor.But, if we could build an isothermal compressor, that was also adiabatic, it would require even LESS work input than an isentropic compressor.I hope that seems suspicious to you.

LearnThermo.com

Isothermal process for an adiabatic compressor violates the 2nd Law !

- The problem is that a compressor that is BOTH isothermal AND ADIABATIC is not possible.
 - Its process path moves into states that are not "accessible".
 - $\label{eq:schemestress} \begin{array}{l} & \mbox{An isothermal, adiabatic compressor leads} \\ & \mbox{to negative values for \mathbf{S}_{gen} and that is a violation of the 2^{nd} Law.} \end{array}$
- Unlike turbines, we DON'T WANT our compressor to be adiabatic.
 - It seems weird that we actually WANT our compressor to LOSE heat so that its performance and efficiency improve.
 Put we do !
- But we do !
- IN the BEST case, we can RECOVER this heat and use it somewhere else in our car/airplane/factory/ system.
- We can let our compressors lose heat to the air that surrounds them.
- We can give them a "cooling jacket" with cool water circulating through it.
- Or we can use multiple compressors and cool the working fluid between the compression steps.

- It is easy to visualize the savings in shaft work when a 2-stage compressor train is used instead of 1 big compressor.
- The intercooler keeps the specific volume of the gas lower.
- 3-stage compression trains are common when you must get a gas up to a very high pressure.

HS Diagram for Multi-Stage Compression

- Remember that the increase in enthalpy is how much shaft work you must put into the compression process.
- This HS Diagram makes it very clear why multi-stage compression can dramatically reduce the shaft work requirement for a compression process.
- Isothermal Efficiency
 - Only used for multi-stage compressors.
 - Compare a multi-stage compressor to one isothermal compressor.

• With a few assumptions we can determine the shaft work requirement and the total shaft work requirement for the system.

• The equation can be simplified if we use the intercooler to return the fluid temperature to the temperature of the feed, T_1 .

- The big question is how to decide how much shaft work to put into the 1st compressor and how much to put into the 2nd one ?
- More to the point, what is P_X ?
- Do we make $\mathbf{P}_{\mathbf{X}}$ = average of \mathbf{P}_1 and \mathbf{P}_2 ?
- Why? How do we decide?

• We determine the value of P_X that minimizes the **Two-Stage Compressor Design** specific shaft work requirement for the entire process by... ♦ Taking the derivative of the specific shaft work requirement for the entire process with $\frac{\mathrm{d}}{\mathrm{d} P_{\mathrm{X}}} \left(\frac{-\dot{\mathrm{W}}_{\mathrm{Sh,tot}}}{\dot{\mathrm{m}}} \right) = 0$ respect to $P_{X...}$ Calculus to the rescue ! Setting the derivative equal to zero... \diamond And solving the resulting equation for **P**_X. • We need to make sure that the extreme point that we found is a minimum and not a maximum by Solve for P_X ! (check the 2nd derivative to be sure you found a minimum making sure that the sign of the 2nd derivative is positive. ٥ The results are nice and simple. That seems and not a maximum !) surprising. • We do NOT set P_X at the algebraic average of P_1 and P₂. $\frac{P_1}{P_y} = \frac{P_x}{P_y}$ or: $P_x = \sqrt{P_1 P_2}$ Solution: • We set PX at the GEOMETRIC average of **P**₁ and P_2 . \diamond The square-root of **P**₁ times **P**₂ is called the geometric average. · Real compressors are not isentropic and frequently the gases are not ideal, but the geometric average pressure is a good starting point for choosing the intermediate pressure in a 2-stage compressor system. Are there 3-stage compressor trains? Yes, they are fairly common. Are there 4-stage compressor trains? Very few. ♦ The costs of all the extra equipment and its maintenance usually outweigh the savings due to improved efficiency. • Lost work is the difference between the **Lost Work** work of a reversible process between the real states 1 and 2 and the work of the real process between real states 1 and 2. Definition: $\dot{\mathbf{W}}_{S,lost} = \dot{\mathbf{W}}_{S,rev} - \dot{\mathbf{W}}_{S,act}$ • Applies to any device, so watch the signs carefully. ♦ W_{S.rev} · Rate at which work is done by or on a completely reversible process operating between the same initial state AND the same final state as the actual process. • Assume for now that heat exchange only occurs with the surroundings and not with a thermal reservoir.

LearnThermo.com

Chapter 8

2nd Law Efficiency

• 2nd Law Efficiency:
$$\eta_{ii,comp} = \frac{\dot{W}_{Sh,rev}}{\dot{W}_{Sh,act}}$$
 $\eta_{ii,turb} = \frac{\dot{W}_{Sh,act}}{\dot{W}_{Sh,rev}}$

- $\diamond~$ More fair than η_S because initial and final states are the same.
- Best measure of performance for processes that produce or consume work.
- In terms of Lost Work: ٥

$$\eta_{_{ii,comp}} = \frac{\dot{W}_{_{Sh,act}} + \dot{W}_{_{Sh,lost}}}{\dot{W}_{_{Sh,act}}} \qquad \qquad \eta_{_{ii,turb}} = \frac{\dot{W}_{_{Sh,act}}}{\dot{W}_{_{Sh,act}} + \dot{W}_{_{Sh,lost}}}$$

- We begin by analyzing a real process from state 1 to state 2 that only exchanges heat with the surroundings and NOT with any thermal reservoir.
 - This is just to make things simpler.
 - Later we will consider processes that exchange heat with reservoirs.

- The 2nd Law efficiency compares the work of a real process to the work of a reversible process
 - Both processes begin at state 1 and end at the exact same state 2.
- ٥ In this case we are comparing apples to apples, so to speak.
- For the isentropic efficiency, we compared apples and oranges.
 - We compared a real process from state 1 to state 2 to an isentropic process that began at state 1, but ended at a different state, state 2S.
- The isentropic efficiency is a much more fair and reasonable measure of the performance of a process than isentropic efficiency.
- Unfortunately, 2nd Law Efficiency is only • defined for processes that produce or consume work, like pumps, compressors, turbines and thermodynamic cycles !
- As we will see in a minute, Lost Work is relatively easy to calculate, so it is often convenient to express the 2nd Law Efficiency in terms of lost work.
- Now, let's see how to evaluate lost work.

• We can compute $W_{Sh,lost}$ from the actual heat exchange with the surroundings, ΔS for the process and the temperature of the sur-

This is a useful equation, but we know that ΔS is related to entropy generation, so we need to work the 2nd Law into this analysis

roundings.

Apply 1 st law &	Definition of Entropy	• Here, we apply the 1 st Law to both the reversible and actual processes from state 1
• 1 st Law:	$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{\mathrm{Sh}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$	to state 2.Entropy enters into the equations in order to
• Solve for W _s :	$\dot{\mathbf{W}}_{\mathrm{Sh}} = \dot{\mathbf{Q}} - \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$	eliminate Q _{rev} . ◊ Here, it is absolutely critical to understand
 From the definition of entropy: 	$\frac{\dot{\mathbf{Q}}_{intrev}}{\dot{\mathbf{m}}} = \int_{1}^{2} \mathbf{T} d\hat{\mathbf{S}} = \mathbf{T} \Delta \hat{\mathbf{S}} = \mathbf{T}_{surr} \Delta \hat{\mathbf{S}}$	that heat transfer must ALSO be reversible in the completely reversible process.
	$(T_{sys} = T_{surr}, completely reversible)$	◊ Therefore, T _{sys} = T _{surr} in the completely reversible process.
• For a reversible process:	$\dot{\mathbf{W}}_{\mathrm{Sh,rev}} = \dot{\mathbf{m}} \left(\mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}} - \Delta \hat{\mathbf{H}} \right)$	• Once we eliminate Q _{rev} from the 1 st Law for the reversible process, we are ready to determine W _{st back}
• For the actual process:	$\dot{\mathbf{W}}_{\mathrm{Sh,act}} = \dot{\mathbf{Q}}_{\mathrm{act}} - \dot{\mathbf{m}} \Delta \hat{\mathbf{H}}$	 We solve the two 1st Law equations (reversible and actual) for W_{sh}.
• Lost Work: \dot{W}_{Sh}	$_{\text{lost}} = \left(\dot{\mathbf{m}} \mathbf{T}_{\text{surr}} \Delta \hat{\mathbf{S}} - \dot{\mathbf{m}} \Delta \hat{\mathbf{H}} \right) - \left(\dot{\mathbf{Q}}_{\text{act}} - \dot{\mathbf{m}} \Delta \hat{\mathbf{H}} \right)$	• Lost work is just the reversible work minus the actual work.
Canceling terms gives:	$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \dot{\mathbf{m}} \mathbf{T}_{\mathrm{surr}} \Delta \hat{\mathbf{S}} - \dot{\mathbf{Q}}_{\mathrm{act}}$	 When we put all of the equations together, a cool thing happens. The ΔH terms cancel.
		• This leaves us with the equation in the box.

2nd Law and External S_{gen}

- 2nd Law:
- Algebraic slight of hand:
- More algebra:
- Substitute back into the 2nd Law:
- External Entropy **Generation:**
- A more robust statement of the 2nd Law:

$$\frac{\dot{\mathbf{Q}}_{act}}{\mathbf{T}_{act}} = \dot{\mathbf{Q}}_{act} \left[\frac{1}{\mathbf{T}_{surr}} + \frac{1}{\mathbf{T}_{act}} - \frac{1}{\mathbf{T}_{surr}} \right]$$

 $\frac{\dot{\mathbf{Q}}_{act}}{\mathbf{T}_{act}} = \frac{\dot{\mathbf{Q}}_{act}}{\mathbf{T}_{surr}} + \dot{\mathbf{Q}}_{act} \left[\frac{1}{\mathbf{T}_{act}} - \frac{1}{\mathbf{T}_{surr}} \right]$

$$\dot{\mathbf{m}} \Delta \hat{\mathbf{S}} = \frac{\dot{\mathbf{Q}}_{act}}{\mathbf{T}_{surr}} + \dot{\mathbf{Q}}_{act} \left[\frac{1}{\mathbf{T}_{act}} - \frac{1}{\mathbf{T}_{surr}} \right] + \dot{\mathbf{S}}_{gen,in}$$
$$\dot{\mathbf{S}}_{gen,ext} = \dot{\mathbf{Q}}_{act} \left[\frac{1}{\mathbf{T}_{act}} - \frac{1}{\mathbf{T}_{surr}} \right]$$

$$\dot{\mathbf{m}} \Delta \hat{\mathbf{S}} = \frac{\dot{\mathbf{Q}}_{act}}{\mathbf{T}_{surr}} + \dot{\mathbf{S}}_{gen,ext} + \dot{\mathbf{S}}_{gen,int}$$

- Here is our old friend the 2nd Law.
 - Notice that I have replaced the integral of dQ / T with Qact / Tact.
 - **o** This is only allowed when the temperature of the system at which heat exchange occurs is CONSTANT, at Tact.
- Now, things get a bit weird.
- I have done some algebra to split Q_{act} / T_{act} into two parts.
- I claim that Q_{act} times $[1/T_{act} 1/T_{surr}]$ is the external entropy generation due to irreversible heat transfer.
- Why is this true ?
 - Look at the boxed equation.
 - If heat exchange between the system and the surroundings is reversible, then $T_{act} = T_{surr}$.
 - \diamond Consequently, $S_{gen} = 0$.
 - The equation in the box becomes the 1st equation on this page...the 2nd Law !
 - I will show why this is true using a different approach in an example at the end of this lesson.

	Lost Work	• Now, let's make the connection between entropy generation and lost work.
•	2 nd Law: $\dot{m} \Delta \hat{S} = \frac{\dot{Q}_{act}}{T_{surr}} + \dot{S}_{gen,ext} + \dot{S}_{gen,int} = \frac{\dot{Q}_{act}}{T_{surr}} + \dot{S}_{gen,tot}$	 Define the total entropy generation as the sum of the internal and external entropy generation. Solve the form of the 2nd Law that we derived on the previous page for the total context.
•	Total Entropy Generation: $\dot{S}_{gen,tot} = \dot{m} \Delta \hat{S} - \frac{\dot{Q}_{act}}{T_{surr}}$	 entropy generation. Next, recall the equation we derived for work (2 slides back). When we compare the equation for the t
•	Lost Work revisited: $\dot{W}_{S,lost} = \dot{m} T_{surr} \Delta \hat{S} - \dot{Q}_{act}$	entropy generation with the equation for work we find an extraordinarily simple relationship.
•	Algebra: $T_{surr} \dot{S}_{gen,tot} = \dot{m} T_{surr} \Delta \hat{S} - \dot{Q}_{act}$	 Lost work is the product of the temperat of the surroundings and the lost work ! This equation applies even for complic processes or cycles that interact with
•	BIG result: $\dot{W}_{S,lost} = T_{surr} \dot{S}_{gen,tot}$	 reservoirs ! The boxed equation even applies for processes that do NOT exchange heat the summarized in the summary summarized in the summary summarized in the summarized in the summary sum

- What does T_{surr} have to do with lost work.
 - \circ **T**_{surr} is the temperature of a reservoir in the dead state.
- This reservoir has infinite capacity to give and receive heat without \diamond changing in temperature.
- Heat exchange with this reservoir has no cost.
- Anything that has no cost and infinite supply has NO VALUE.
- ♦ Hence the name "dead state".

	"	Now, let S make the connection between	
		entropy generation and lost work.	
	•	Define the total entropy generation as the	
		sum of the internal and external entropy	
,tot		generation.	
		Solve the form of the 2^{nd} Law that we	
		derived on the previous page for the total	
		entrony generation	
		Next recall the equation we derived for lost	
	ľ	work (2 slides back)	
		When we compare the equation for the total	
	ľ	entropy generation with the equation for lost	
		work we find an extraordinarily simple	
		relationship	
		Lest work is the product of the temperature	
	•	of the surroundings and the last work !	
		This equation equiped and the lost work !	
		 I his equation applies even for complicated 	
		processes or cycles that interact with	
		The servoirs !	
		Ine boxed equation even applies for	
		processes that do NOT exchange heat with	
		the surroundings !	
		• The example at the end of this lesson	
		should shed some light on why this is true.	
		♦ This is so cool, so simple and so elegant !	
		 This is the reason we care about calculating 	
		S _{gen} !	
		• We can also use $W_{Sh,lost}$ to compute the 2 nd	
		Law Efficiency.	

LearnThermo.com

Chapter 8

Lost Work for a Cycle

- Total entropy generation for a cycle:
- Lost Work for a cycle:

$$\dot{W}_{Sh,lost} = T_{surr} \sum_{i}^{Processes} \left[\dot{S}_{gen,tot} \right]$$

Processes - O

 $\dot{\mathbf{S}}_{\text{gen,tot}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{S}} - \sum_{i}^{\text{Processes}} \frac{\dot{\mathbf{Q}}_{\text{act,i}}}{T_{\text{max}}}$

• BIG Result:

$$\dot{\mathbf{W}}_{\text{Sh,lost}} = \mathbf{T}_{\text{surr}} \sum_{i} \frac{\mathbf{T}_{\text{res,i}}}{\mathbf{T}_{\text{res,i}}}$$
$$\dot{\mathbf{W}}_{\text{Sh,lost}} = \mathbf{T}_{\text{surr}} \left(\frac{\dot{\mathbf{Q}}_{\text{C,act}}}{\mathbf{T}_{\text{C,res}}} - \frac{\dot{\mathbf{Q}}_{\text{H,act}}}{\mathbf{T}_{\text{H,res}}} \right)$$

• Typical HE: (adiabatic pump, turbine compressor etc. HEX only with thermal reservoirs.)

- The lost work for a cycle is particularly useful to us and it isn't very difficult to calculate.
- We just apply our new and improved form of the 2nd Law in terms of the total entropy generation to the entire cycle.
- $\Delta S_{cycle} = 0$. It's a cycle !
- The result is the equation in the box.
- All you need to do to compute the lost work is evaluate all the heat transfer terms for the cycle.
 - And know the **T**'s for the reservoirs and the surroundings, of course.
- ♦ And you know W_{S,lost}.
- This is cool and relatively straightforward.
- You have just GOT to watch the signs !
 - The **Q**'s here are NOT all positive.
 - They follow the sign convention !
 - Next, we'll try a simple example that will clear this up.

LearnThermo.com

Example #2

- Why is there lost work for irreversible heat transfer ?
- How can we calculate the lost work for irreversible heat transfer ?

- By allowing the heat to flow spontaneously from T₁ to T₂, we lost the opportunity to recover work.
- We call this "Lost Work". $W_{HE} > W_{HP}$ $W_{lost} > 0$

- We can determine the lost work by building the hypothetical system, shown at right.
- This system includes 2 reversible cycles... one HE and one HP.
- The HE is more efficient than the reversed version of the HP because $T_1 > T_2$.
- As a result, the HE produces more work than the HP requires.
- Remember that both of these cycles are reversible !
- The difference between W_{HE} and W_{HP} is work that we COULD have gotten out of Q_{waste} if we had used it instead of letting it spontaneously dribble away into the cold reservoir.
- We call this lost work.
- $\mathbf{W}_{\text{lost}} = \mathbf{W}_{\text{HE}} \mathbf{W}_{\text{HP}}$.
- Now, let's determine exactly how much work we lost.

- We can determine W_{HE} and W_{HP} in terms of Q's by applying the 1st Law to the HE and the HP, as shown here.
- The catch is that we now apply Kelvin's Principle, remembering to use absolute T when it comes time to plug in numbers.
- Now, we substitute these equations for W_{HE} and W_{HP} into our definition of lost work.
- The result is simple, sweet and familiar !
- No tricks. This is how much WORK we could have gotten out of Q_{waste} if we didn't let it spontaneously dribble away into the cold reservoir.
- Now, let's look at this problem from another angle.

LearnThermo.com

S_{gen} and ΔS_{univ}

- **Definition:** $S_{gen} = \Delta S_{univ} = \Delta S_{res,1} + \Delta S_{res,2}$
- Reservoirs are isothermal and internally reversible:

$$\Delta S_{res,1} = \frac{-Q_{waste}}{T_1} \quad \Delta S_{res,2} = \frac{Q_{waste}}{T_2}$$

- Algebra: $S_{gen} = \Delta S_{univ} = \frac{-Q_{waste}}{T_1} + \frac{Q_{waste}}{T_2}$
- Big result:

$$= \Delta S_{univ} = \frac{-Q_{waste}}{T_1} + \frac{Q_{waste}}{T_2}$$
$$= \Delta S_{univ} = Q_{waste} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$

- In this system, the universe is made up of just two reservoirs.
 - No heat is exchanged with the surroundings.
- We can easily calculate ΔS for each reservoir because they are isothermal.
- The result is the same one presented on slide #5.
 - This is the entropy generation associated with heat exchange.
 - It is often considered to be S_{gen,ext} in more complicated processes.

8A-1 Entropy Generation and Thermal Efficiency in Power Cycles

5 pts

A power cycle exchanges heat with only **two** thermal reservoirs at 500°R and 2000°R. $Q_H = 4500$ Btu/h. For each of the following, calculate the **rate of entropy generation** in Btu/°R and state whether the power cycle is internally reversible, internally irreversible or impossible. a.) $\eta = 83\%$, b.) $\eta = 75\%$, c.) $\eta = 44\%$

Read : The key equations for this problem are the <u>definition</u> of <u>entropy generation</u> and <u>thermal efficiency</u>. Because the process operates in a cycle, $\Delta S = 0$. The other key point is that we are <u>only</u> asked to decide whether the process is <u>internally</u> reversible. That means we <u>don't</u> have to worry about whether heat exchange with the reservoirs is reversible. The main point is that the <u>temperatures</u> of the regions that exchange heat with the reservoirs must remain <u>constant</u>. This allows us to <u>directly</u> evaluate the <u>integral</u> of $\delta Q/T$ and evaluate the entropy generation.

Given:	т _н	2000	°R	a.)	η_A	0.83
	Q _H	4500	Btu	b.)	η_{B}	0.75
	т _с	500	°R	c.)	ης	0.44

Diagram:

Find:	Parts a-c.)	S _{gen}	???	Btu/°R
		Internally Re	eversible?	Internally Irreversible ? Impossible ?
Assumptions:		1 -	The system T_c.	n undergoes a power cycle while receiving ${\bf Q}_{\rm H}$ at ${\bf T}_{\rm H}$ and discharging ${\bf Q}_{\rm C}$ at
		2 -	The region <u>constant</u> te	of the system that receives heat from the hot reservoir remains at a mperature of $T_H = 2000^{\circ}R$.
		3 -	The <mark>region</mark> temperatu	of the system that <u>rejects</u> heat to the <u>cold reservoir</u> remains at a <u>constant</u> re of T _c = 500°R .

Entropy generation is defined by:

$$\Delta \mathbf{S} = \int \left(rac{\delta \mathbf{Q}}{\mathbf{T}}
ight) + \mathbf{S}_{\mathsf{gen}}$$
 Eqn 1

 $\mathbf{S}_{gen} = \Delta \mathbf{S} - \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)$

Since we are dealing with a cycle, $\Delta S = 0$ and Eqn 2 becomes:

$$\mathbf{S}_{\mathsf{gen}} = -\int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)$$
 Eqn 3

Eqn 2

Eqn 5

In our process, the system receives heat, Q_H , at a constant temperature, T_H , and rejects heat, Q_C , at a constant temperature, T_C . Because the temperatures are constant, they can be pulled out of the integral in Eqn 3 leaving :

$$\mathbf{S}_{\mathsf{gen}} = - \left(\frac{\int \delta \mathbf{Q}_{\mathsf{H}}}{\mathbf{T}_{\mathsf{H}}} - \frac{\int \delta \mathbf{Q}_{\mathsf{c}}}{\mathbf{T}_{\mathsf{c}}} \right) = - \left(\frac{\mathbf{Q}_{\mathsf{H}}}{\mathbf{T}_{\mathsf{H}}} - \frac{\mathbf{Q}_{\mathsf{c}}}{\mathbf{T}_{\mathsf{c}}} \right)$$
Eqn 4

 $\eta = 1 - \frac{\mathbf{Q}_{c}}{\mathbf{Q}_{u}}$

In Eqn 4, notice that δQ becomes $+\delta Q_H$ and $-\delta Q_C$ because of the sign convention that heat transfer into the system is positive.

The <u>only</u> variable in **Eqn 4** that we don't already know is Q_c . But we are given the value of the thermal efficiency of the power cycle in <u>each</u> part of this problem.

The <u>definition</u> of thermal efficiency is:

Rearranging Eqn 5 to solve for Qc yields :

$$\boldsymbol{Q}_{\text{C}}=(\boldsymbol{1}\!-\!\boldsymbol{\eta})\boldsymbol{Q}_{\text{H}}$$
 Eqn 6

Now, we can plug numbers into Eqn 6 to determine Q_c and then plug Q_c and the given values of Q_H , T_H and T_c into Eqn 4 to complete the solution.

Part (a)	Q _c	765	Btu	S _{gen}	-0.72	Btu/⁰R
Part (b)	Q _c	1125	Btu	S _{gen}	0.00	Btu/⁰R
Part (c)	Q _c	2520	Btu	S _{gen}	2.79	Btu/⁰R

We can now determine <u>whether</u> the cycle in <u>each part</u> of the problem is internally reversible, reversible or impossible using the following rules based on the <u>definition</u> of entropy generation.

lf S _{gen} = 0	the cycle is internally reversible.
lf S _{gen} > 0	the cycle is internally irreversible.
lf S _{gen} < 0	the cycle is impossible.

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers : Part (a)	S _{gen}	-0.72	Btu/°R	Part (a) is impossible.
Part (b)	S _{gen}	0.00	Btu/°R	Part (b) is internally reversible.
Part (c)	S _{gen}	2.79	Btu/ [°] R	Part (c) is internally irreversible.

8A-2 Heat, Work and Entropy Generation

5 pts

Two power cycles operate between the same two thermal reservoirs, as shown below. Cycle R is reversible and cycle I is irreversible.

They each absorb the same amount of heat from the hot reservoir, Q_H , but produce different amounts of work, W_R and W_I , and reject different amounts of heat to the cold reservoir, Q_C and Q'_C .

a.) Derive an equation for S_{gen} for the irreversible cycle in terms of W_I, W_R, and T_C only.

b.) Show that **W**_I **W**_R and **Q'**_C **Q**_C.

- **Read :** Start with the equation for the **entropy generated** and do an <u>energy balance</u> on <u>both</u> the <u>reversible</u> and <u>irreversible cycles</u>. Put the equations <u>together</u> and <u>simplify</u> to get an equation in the desired terms.
- **Given:** A reversible power cycle, **R**, and an irreversible power cycle, **I**, operate between the <u>same</u> two reservoirs.
- Find:Part (a)Evaluate S_{gen} for cycle I in terms of W_I , W_R , and T_C .Part (b)Show that: $W_I < W_R$ and $Q'_C > Q_C$.
- **Diagram:** The diagram in the problem statement is adequate.

 Assumptions:
 1 The systems shown undergo power cycles. R is reversible and I is irreversible.

 2 Each system receives Q_H at a constant temperature region at T_H from the hot reservoir and rejects heat, Q_C, at a constant temperature region at T_C to the cold reservoir.
Part a.) Let's begin with the <u>definition</u> of <u>entropy generation</u>:

$$\Delta \mathbf{S} = \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right) + \mathbf{S}_{gen}$$
 Eqn 1

We can <u>solve</u> Eqn 1 for S_{gen} :

Since we are dealing with a cycle, $\Delta S = 0$ and Eqn 2 becomes:

$$\mathbf{S}_{\mathsf{gen}} = \Delta \mathbf{S} - \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)$$
 Eqn 2

$${f S}_{\sf gen} = - \int \left({\delta {f Q} \over {f T}}
ight)$$
 Eqn 3

In the irreversible process, the system receives heat, Q_H , at a constant temperature, T_H , and rejects heat, Q'_C , at a constant temperature, T_C . Because the temperatures are constant, they can be pulled out of the integral in Eqn 3 leaving :

$$\Delta \mathbf{S} = -\left(\frac{\mathbf{Q}_{H}}{\mathbf{T}_{H}} - \frac{\mathbf{Q}_{C}}{\mathbf{T}_{C}}\right) \qquad \qquad \text{Eqn 4}$$

Eqn 5

The 1st Law for cycles is:

 $\mathbf{Q}_{H} = \mathbf{W}_{R} + \mathbf{Q}_{C}$

We can apply Eqn 5 to both the reversible and the irreversible cycles, as follows :

Eqn 6
$$\mathbf{Q}_{\mathbf{H}} = \mathbf{W}_{\mathbf{I}} + \mathbf{Q}_{\mathbf{C}}$$
 Eqn 7

 $\mathbf{Q}_{\text{cvcle}} = \mathbf{W}_{\text{cvcle}}$

We can combine Eqns 6 & 7 to obtain :

Now, solve Eqn 8 for Q'c :

Next, we can use Eqn 9 to eliminate Q'c from Eqn 4 to get : $\mathbf{W}_{\mathbf{R}} + \mathbf{Q}_{\mathbf{C}} = \mathbf{W}_{\mathbf{I}} + \mathbf{Q}_{\mathbf{C}}$ Eqn 8

$$\mathbf{Q}_{c} = \mathbf{Q}_{c} + \mathbf{W}_{R} - \mathbf{W}_{I}$$
 Eqn 9

 $\mathbf{S}_{gen} = -\left(rac{\mathbf{Q}_{H}}{\mathbf{T}_{H}} - rac{\mathbf{Q}_{c} + \mathbf{W}_{R} - \mathbf{W}_{I}}{\mathbf{T}_{c}}
ight)$ Eqn 10

We can rearrange Eqn 10 slightly to
make it more clear how to proceed :
$$\mathbf{S}_{gen} = -\left[\left(\frac{\mathbf{Q}_{H}}{\mathbf{T}_{H}} - \frac{\mathbf{Q}_{C}}{\mathbf{T}_{C}}\right) - \frac{\mathbf{W}_{R} - \mathbf{W}_{I}}{\mathbf{T}_{C}}\right] \qquad \text{Eqn 11}$$

Because **R** is a reversible cycle and we use the Kelvin Temperature Scale :

 $\frac{\mathbf{Q}_{c}}{\mathbf{Q}_{H}} = \frac{\mathbf{T}_{c}}{\mathbf{T}_{H}}$ Eqn 12

$$\frac{\mathbf{Q}_{c}}{\mathbf{T}_{c}} = \frac{\mathbf{Q}_{H}}{\mathbf{T}_{H}}$$
 Eqn 13

$$S_{gen} = \frac{W_R - W_I}{T_c}$$
 Eqn 14

This yields :

Part b.)	Because irreversibilities are present in cycle I :	${f S}_{gen}\!=\!rac{{f W}_{R}-{f W}_{I}}{{f T}_{C}}\!>\!{f 0}$	Eqn 15
	Rearranging Eqn 15 gives us :	$\mathbf{W}_{R} > \mathbf{W}_{I}$	Eqn 16
	Finally, we can rearrange Eqn 9 to help us determine <u>whether</u> Q'_c or Q_c is <u>larger</u> :	$\mathbf{Q}_{\mathbf{C}}^{'}-\mathbf{Q}_{\mathbf{C}}=\mathbf{W}_{\mathbf{R}}-\mathbf{W}_{\mathbf{R}}$	Eqn 17
	Since Eqn 16 tells us that $W_R > W_I$, Eqn 17 tells that :	$\mathbf{Q}_{\mathbf{c}}^{'} > \mathbf{Q}_{\mathbf{c}}^{'}$	Eqn 18
Verify:	The assumptions made in this solution cannot be verified with the	ne given information.	

Answers : Part a.)	$\mathbf{S}_{gen} = \frac{\mathbf{W}_{R} - \mathbf{W}_{I}}{\mathbf{T}_{C}}$	Part b.)	$W_{R} > W_{I}$	$\mathbf{Q}_{c}^{'} > \mathbf{Q}_{c}$
--------------------	---	----------	-----------------	---------------------------------------

8A-3 Entropy Production of Mixing Two Liquids at Different Temperatures

8 pts

The initial and final states of a sealed, insulated, rigid tank are shown below. Each side of the tank contains a different incompressible liquid at a different temperature, T_1 and T_2 .

The **mass** of liquid initally on each side of the tank is the same: $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}/2$. The barrier between the two sides of the tank is removed and the two liquids mix and eventually reach the final equilibrium state.

Assume each liquid has a constant **heat capacity** and there are no thermal effects due to the mixing of the fluids. **a.)** Show that **S**_{gen} is given by the following equation:

$$S_{gen} = m C Ln \left[\frac{T_1 + T_2}{2(T_1 T_2)^{1/2}} \right]$$

b.) Show that **S**_{gen} must be positive.

- **Read :** For **part (a)** Perform an entropy balance to determine an equation for **S**_{gen}. Then perform an energy balance to determine an expression for the <u>final</u> **temperature** and substitute the expression into **S**_{gen} and simplify.
- Given:Initial State:Final State :Chamber 1 : T_1 Chamber 1 :Chamber 2 : T_2 Chamber 2 :Incompressible fluids with $C_P = C_V = C$.
- Find: Part (a) Show that the amount of entropy generated is:

$$S_{gen} = m C Ln \left[\frac{T_1 + T_2}{2(T_1 T_2)^{1/2}} \right]$$

T_{eq}

Tea

Eqn 1

- Part (b) Demonstrate that **S**_{gen} must be positive.
- **Diagram:** The diagram in the problem statement is adequate.

Assumptions:	1 -	The system consists of the total mass of liquid in the <u>entire</u> tank.
	2-	The system is isolated (adiabatic and closed).
	3 - 4 -	<u>No</u> work crosses the sytem boundary.

Part a.)

Let's begin with the definition of entropy generation:

$$\Delta \mathbf{S} = \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right) + \mathbf{S}_{gen}$$
 Eqn 2

Eqn 3

Eqn 4

Eqn 13

We can solve Eqn 2 for Sgen :

Since the system is isolated, there is <u>no</u> heat transferred:

We can use Eqn 4 to simplify Eqn 3, yielding :
$$S_{gen} = \Delta S$$
 Eqn 5

The change in the entropy of the system is :

$$\Delta \mathbf{S} = \mathbf{m} \, \hat{\mathbf{S}}_{\text{final}} - \mathbf{m} \, \hat{\mathbf{S}}_{\text{init}}$$
 Eqn 6

$$\Delta \mathbf{S} = \mathbf{m} \, \hat{\mathbf{S}}_{\text{final}} - \left[\frac{\mathbf{m}}{2} \, \hat{\mathbf{S}}_1 + \frac{\mathbf{m}}{2} \, \hat{\mathbf{S}}_2 \right] \qquad \qquad \text{Eqn 7}$$

 $\mathbf{S}_{\mathsf{gen}} = \mathbf{\Delta}\mathbf{S} - \int \! \left(rac{\delta \mathbf{Q}}{\mathbf{T}}
ight)$

 $\int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right) = \mathbf{0}$

We can <u>rearrange</u> Eqn 7 to show that the <u>total change</u> in **entropy** for the <u>system</u> is the <u>sum</u> of the <u>changes</u> in **entropy** of <u>each</u> of the <u>two</u> fluids.

$$\Delta \mathbf{S} = \frac{\mathbf{m}}{2} \left[\left(\hat{\mathbf{S}}_{\text{final}} - \hat{\mathbf{S}}_{1} \right) + \left(\hat{\mathbf{S}}_{\text{final}} - \hat{\mathbf{S}}_{2} \right) \right]$$
 Eqn 8

The **entropy change** for an **incompressible fluid** depends <u>only</u> on **temperature**.

$$\Delta \hat{\mathbf{S}} = \int_{T_{init}}^{T_{final}} \frac{\hat{\mathbf{C}}}{\mathbf{T}} d\mathbf{T}$$
 Eqn 9

Because the **heat capacity** in this problem is a <u>constant</u>, it is relatively easy to <u>integrate</u> **Eqn 9** to get:

Properties of logarithms let us rearrange Eqn 11 to :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{C}}_{\text{avg}} \operatorname{Ln} \left[\frac{\mathbf{T}_{\text{final}}}{\mathbf{T}_{\text{init}}} \right]$$
Eqn 10

Next, apply Eqn 10 to determine the entropy change of <u>each</u> fluid in this process and substitute $\Delta S = \frac{m}{2} \hat{C} \left[Ln \frac{T_{final}}{T_1} + Ln \frac{T_{final}}{T_2} \right]$ Eqn 11 the result into Eqn 8 :

$$\Delta S = \frac{m}{2} \hat{C} Ln \left[\frac{T_{\text{final}}^2}{T_1 T_2} \right]$$
 Eqn 12

Combining Eqn 12 with Eqn 5 gives us :

To complete this derivation, we must eliminate
$$T_{final}$$
 from Eqn 13. We can determine T_{final} in terms of T_1 and T_2 by applying the 1st Law to this process.

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}$$
 Eqn 14

 $\mathbf{S}_{gen} = \frac{m}{2} \, \hat{\mathbf{C}} \mathbf{Ln} \left[\frac{\mathbf{T}_{final}^2}{\mathbf{T}_{i} \mathbf{T}_{a}} \right]$

No work or heat crosses the system boundary, so Eqn 14 becomes : $\Delta U = 0$ Eqn 15

Now, use the <u>constant</u> **specific heat** of the incompressible fluid to determine ΔU :

$$\frac{\mathbf{m}}{2} \left[\left(\hat{\mathbf{U}}_{\text{final}} - \hat{\mathbf{U}}_{1} \right) + \left(\hat{\mathbf{U}}_{\text{final}} - \hat{\mathbf{U}}_{2} \right) \right] = \mathbf{0} \qquad \text{Eqn 16}$$

$$\frac{m}{2} \hat{C} [(T_{\text{final}} - T_1) + (T_{\text{final}} - T_2)] = 0 \qquad \text{Eqn 17}$$

Now, solve Eqn 17 for T_{final} :

Simplify Eqn 19 algebraically :

$$T_{\text{final}} = \frac{T_1 + T_2}{2}$$
 Eqn 18

Now, we can use Eqn 18 to eliminate T_{final} from Eqn 13 :

$$\mathbf{S}_{gen} = \frac{\mathbf{m}}{2} \, \hat{\mathbf{C}} \mathbf{Ln} \left[\frac{1}{\mathbf{T}_1 \mathbf{T}_2} \left(\frac{\mathbf{T}_1 + \mathbf{T}_2}{2} \right)^2 \right] \qquad \text{Eqn 19}$$

$$\mathbf{S}_{gen} = \frac{\mathbf{m}}{2} \hat{\mathbf{C}} \left[2 \cdot \mathbf{Ln} \left[\frac{1}{\left(\mathbf{T}_{1} \mathbf{T}_{2}\right)^{1/2}} \left(\frac{\mathbf{T}_{1} + \mathbf{T}_{2}}{2} \right) \right] \right]$$
Eqn 20

 $S_{gen} = m \hat{C} Ln \left[\frac{T_1 + T_2}{2(T_1 T_2)^{1/2}} \right]$

Part b.) Entropy generation is <u>non-negative</u> when :

The values of \boldsymbol{m} and \boldsymbol{C} must be positive so, \boldsymbol{S}_{gen} is non-negative when :

Simplify **Eqn 23** by algebraic manipulation, as follows :

Squaring both sides of Eqn 24 yields :

(This is **OK** because $T_1 > 0$ K and $T_2 > 0$ K)

Expand the left-hand side of Eqn 25 :

$$\hat{C} Ln \left[\frac{T_1 + T_2}{2(T_1 T_2)^{1/2}} \right] \ge 0$$
 Eqn 22

Eqn 21

$$\frac{T_1 + T_2}{2(T_1 T_2)^{1/2}} \ge 1$$
 Eqn 23

$$T_1 + T_2 \ge 2(T_1 T_2)^{1/2}$$
 Eqn 24

$$(T_1 + T_2)^2 \ge 4(T_1 T_2)$$
 Eqn 25

$$T_1^2 + 2T_1T_2 + T_2^2 \ge 4T_1T_2$$
 Eqn 26

$$T_1^2 - 2T_1T_2 + T_2^2 \ge 0$$
 Eqn 27

$$\left(\mathbf{T}_{1}-\mathbf{T}_{2}\right)^{2}\geq\mathbf{0}$$
 Eqn 28

The <u>inequality</u> in Eqn 28 is satisfied for <u>either</u> $T_1 > T_2$ or $T_2 > T_1$. The <u>equality</u> in Eqn 28 is satisfied <u>only</u> when $T_1 = T_2$.

Verify: The assumptions made in this solution cannot be verified with the given information.

Answers : Part a.)
$$\mathbf{S}_{gen} = \mathbf{m} \ \hat{\mathbf{C}} \ \mathbf{Ln} \left[\frac{\mathbf{T}_1 + \mathbf{T}_2}{\mathbf{2} (\mathbf{T}_1 \mathbf{T}_2)^{1/2}} \right]$$
Part b.) $\mathbf{S}_{gen} \ge \mathbf{0}$ when : $(\mathbf{T}_1 - \mathbf{T}_2)^2 \ge \mathbf{0}$ which is ALWAYS true !

Dr. B - LearnThermo.com

Finally, we get :

8A-4 Entropy Change For R-134a Compression in Piston-and-Cylinder Device

6 pts

Four kilograms Saturated R-134a vapor at -20°C is compressed in a piston-and-cylinder device until the pressure reaches 500 kPa.

During the process, **26.3 kJ** of **heat** is lost to the surroundings, resulting in an increase in the **specific entropy** of the surroundings of **0.095 kJ/K**.

Assuming the process is completely reversible, calculate the work for this compression process in kJ.

Read : Use the 2nd Law and the fact that the process is <u>completely</u> reversible to determine S_2 . This gives you the <u>second</u> intensive property you need to evaluate U_2 . Then, use the 1st Law to determine W_b for the compression process.

Diagram:

		1)	Q = -26.3 kJ ΔS _{surr} = 0.095 kJ-K	2		
		R-134a P ₁ = P _{sat} (20 T ₁ = -20°C	0°C)	Reversible Compression	P ₂ = 500 kPa		
Given:	m	4	kg		P ₂	500	kPa
	x₁ T₁ ₽₁	1 -20 132.73	kg v °C kPa	ap/kg	Q ΔS _{surr}	-26.3 0.095	kJ kJ/K
Find:	W _b	???	kJ				
Assumpt	ions:	1 - 2 - 3 - 4 -	As sl Bou <u>Char</u> The and	nown in the diagram, the s ndary work is the <u>only</u> for <u>nges</u> in kinetic and potenti compression process is <u>c</u> no entropy change of the	system is the R-134a insid rm of work that crosses th al energies are <u>negligible</u> . <u>ompletely</u> reversible, so th e universe.	e the cylinder. e system bound ere is <u>no</u> entrop	ary. •y generated

Equations / Data / Solve:

To determine the **work** required we need to apply the 1st Law for closed systems:

 $\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U} + \Delta \mathbf{E}_{\mathbf{K}} + \Delta \mathbf{E}_{\mathbf{P}}$ Eqn 1

When we <u>assume</u> that <u>changes</u> in <u>kinetic</u> and <u>potential energies</u> are <u>negligible</u> and we <u>assume</u> **boundary work** is the <u>only</u> form of **work**, **Eqn 1** becomes:

$$\mathbf{Q} - \mathbf{W}_{\mathbf{b}} = \Delta \mathbf{U} = \mathbf{m} \cdot \left(\hat{\mathbf{U}}_{2} - \hat{\mathbf{U}}_{1} \right)$$
 Eqn 2

Ex 8A-4

We can now solve Eqn 2 for W_b :

$$\mathbf{W}_{\mathbf{b}} = \mathbf{Q} - \mathbf{m} \cdot \left(\hat{\mathbf{U}}_{2} - \hat{\mathbf{U}}_{1}
ight)$$
 Eqn 3

All we need to do is determine U_2 and U_1 and then we can use Eqn 3 to calculate W_b and complete this problem.

Start with U_1 because we were given T_1 and and it is a saturated vapor, so we can immediately look-up U_1 in the Saturated R-134a Table.

We know P_2 , but we need to know the value of <u>two</u> intensive properties before we can use the **R-134a Tables** to look-up U_2 .

Because the process is <u>completely</u> reversible: $S_{gen} = \Delta S_{univ} = 0$ Eqn 4

In this case, the universe consists of two parts: the system and the surroundings. As a result, Eqn 4 becomes:

$$\Delta \mathbf{S}_{univ} = \Delta \mathbf{S}_{sys} + \Delta \mathbf{S}_{surr} = \mathbf{0}$$
 Eqn 5

We were given ΔS_{surr} , so we need to consider ΔS_{sys} further in order to use Eqn 5. We can express the **entropy change** of the system in terms of the <u>initial</u> and <u>final</u> states as follows.

$$\Delta \mathbf{S}_{sys} = \mathbf{m} \cdot \left(\hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 \right)$$
 Eqn 6

S.

 X_2

Next, we can combine Eqn 5 and Eqn 6 and solve for S₂.

$$\mathbf{m} \cdot (\hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1) + \Delta \mathbf{S}_{surr} = \mathbf{0}$$
 Eqn 7 $\hat{\mathbf{S}}_2 = \hat{\mathbf{S}}_1 - \frac{\Delta \mathbf{S}_{surr}}{\mathbf{m}}$ Eqn 8

We can evaluate S_1 because we were given T_1 and and it is a saturated vapor.

	\mathbf{U}_1	1.1410	No/Ng IV
Now, we can plug values into Eqn 8 to evaluate S_2 :	S ₂	1.7176	kJ/kg-K

This gives us the value of a second intensive property for state 2 which allows us to calculate U₂.

At P = 500 kPa :	S _{sat liq}	1.0759	kJ/kg-K	Since S _{sat liq} < S ₂ < S _{sat vap} , state 2
	S _{sat vap}	1.7197	kJ/kg-K	is a saturated mixture.

Determine x_2 from the specific entropy, using: $x_2 = \frac{\hat{S}_2 - \hat{S}_{sat liq}}{\hat{S}_{sat vap} - \hat{S}_{sat liq}}$ Eqn 8

0.9967 kg vap/kg

1 7413 k.l/ka-K

Then, we can use the quality to determine H_{5S} , using:			$\hat{\mathbf{U}}_2 = \mathbf{X}_2 \hat{\mathbf{U}}_{sat}$		Eqn 9	
At P = 20 psia :	U _{sat liq} U _{sat vap}	221.10 386.91	Btu/lb _m Btu/lb _m	U ₂	386.36	Btu/lb _m
Now, we can use ${f U_2}$ i	n Eqn 3 to evalu	late W _b and	finish this problen	n. <mark>W</mark> b	-103.80	kJ

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : W_b -104 kJ

8A-5 Entropy Production for the Adiabatic Compression of Air

6 pts

Air is compressed in an adiabatic piston-and-cylinder device, as shown below, from 200 kPa and 360 K to 800 kPa.

a.) Calculate the final temperature, T₂, and the boundary work if the process is internally reversible.
b.) Calculate T₂ and the entropy generation if a real piston-and-cylinder device requires 15% more work than the internally reversible device.

Read :Assume ideal gas behavoir for air. Apply an energy balance and an entropy balance.Notice that in part (a) the problem asks for the "work required", therefore our answer will be positive.To get S and U data, use the 2nd Gibbs Equation in terms of the Ideal Gas Entropy Function.

Given:	Τ ₁	360	К			m	2.9	kg
	P ₁	200	kPa			Q	0	KJ
	P ₂	800	kPa		Part (b)	W _{part (b)} =	15%	> W _{part (a)}
Find:	Part (a)	T _{2S}	???	К	Part (b)	T ₂	???	к
		-W _b	???	kJ		S _{gen}	???	kJ/K
						W _{lost}	???	kJ

Diagram:

Assumptions:

- 2 -Air is modeled as an ideal gas.
- 3 -No heat transfer occurs.
- 4 -Boundary work is the only form of work that crosses the system boundary.

As shown in the diagram, the system is the air inside the cylinder.

- 5 -Changes in kinetic and potential energies are negligible.
- 6 -For Part (a), there is no entropy generated.

Equations / Data / Solve:

Part a.) To determine the work required we need to apply the 1st Law for closed systems:

1 -

$$\mathbf{Q} - \mathbf{W} = \Delta \mathbf{U} + \Delta \mathbf{E}_{\mathbf{K}} + \Delta \mathbf{E}_{\mathbf{P}}$$
 Eqn 1

Because the process is adiabatic and we assume that changes in kinetic and potential energies are negligible and we assume boundary work is the only form of work, Eqn 1 becomes:

$$\Delta \mathbf{U} = -\mathbf{W}_{\mathbf{b}}$$
 Eqn 2 or: $-\mathbf{W}_{\mathbf{b}} = \mathbf{m} \left(\hat{\mathbf{U}}_2 - \hat{\mathbf{U}}_1 \right)$ Eqn 3

So, in order to answer part (a), we need to determine U for both the initial and final states. Use the **Ideal Gas Property Table** for air to evaluate U_1 and U_2 , but <u>first</u> we must know T_1 and T_2 .

Because this process is both adiabatic and internally reversible, the process is isentropic. In this problem, we have air and we assume it behaves as an ideal gas. We can solve this problem using the ideal gas entropy function.

The 2nd Gibbs Equation in terms of the **S**^o is:

Since part (a) is an isentropic process, Eqn 4 becomes:

$$\mathbf{0} = \hat{\mathbf{S}}_{\mathsf{T}2}^{\circ} - \hat{\mathbf{S}}_{\mathsf{T}1}^{\circ} - \frac{\mathsf{R}}{\mathsf{MW}}\mathsf{Ln}\frac{\mathsf{P}_2}{\mathsf{P}_1} \qquad \qquad \mathsf{Eqn} \ \mathsf{5}$$

Eqn 4

 $\hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 = \hat{\mathbf{S}}_{T2}^\circ - \hat{\mathbf{S}}_{T1}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}}$

The final temperature, T₂, can be determined from determining S°(T₂) and then interpolating on the Ideal Gas Properties Table for air.

Solving Eqn 5 for S°(T₂) yields:
$$\hat{S}_{T2}^{\circ} = \hat{S}_{T1}^{\circ} + \frac{R}{MW} Ln \frac{P_2}{P_1}$$
 Eqn 6

Properties for state 1 are determined from Ideal Gas Properties Table for air.

	S°(T ₁)	0.189360	kJ/kg-K
	U(T ₁)	44.3940	kJ/kg
Now, we can plug values into Eqn 3:	R	8.314	kJ/kmol K
	MW	28.97	kg/kmol
	S°(T ₂)	0.58721	kJ/kg-K

Now, we can go back to the Ideal Gas Properties Table for air and determine T₂ and U₂ by interpolation.

Т (К)	U° kJ/kg	S [°] kJ/kg-K				
520	163.42	0.56803				
T ₂	U2	0.58721	T ₂	529.59	Κ	
530	171.04	0.58802	U ₂	170.73	kJ/kg	
Put values	into Egn 3 to f	inish this part of the problem:	-W _b	366.38	kJ	

Put values into Eqn 3 to finish this part of the problem:

Dr. B - LearnThermo.com

Part b.)The actual work is 15% greater than the work
determined in Part (a):

$$-\mathbf{W}_{part(b)} = \mathbf{1.2} \left(-\mathbf{W}_{part(a)}\right)$$
 Eqn 7

-W_b 421.33 kJ

In this part of the problem, we know the <u>actual</u> **work**, but we <u>don't</u> know T_2 or U_2 .

We can solve **Eqn 3** for
$$U_2$$
 interms of the known variables **m**, W_b and U_1 :

$$\hat{\mathbf{U}}_2 = \frac{-\mathbf{W}_{\text{part}(b)}}{\mathbf{m}} + \hat{\mathbf{U}}_1 \qquad \qquad \text{Eqn 8}$$

U2

Plugging values into Eqn 7 yields :

189.68 kJ/kg

Next, we can determine T_2 and $S^{\circ}(T_2)$ by interpolating on the **Ideal Gas Properties Table** for air.

	U° kJ/kg	Т (К)	S [°] kJ/kg-K					
	186.36	550	0.62702					
	189.68	T ₂	S°(T ₂)			T ₂	554.3	K
	194.05	560	0.64605			S°(T ₂)	0.63524	kJ/kg-K
	The 2nd Lav	w in terms of	the			(8)	O)	
	entropy gei	nerated is:			${\sf S}_{\sf gen} = 1$	$\Delta S - \int \left(\frac{3}{2}\right)^2$		Eqn 9
	Since there	is <u>no</u> heat tr a	ansfer in this pr	oblem:	$\mathbf{S}_{gen} = 1$	$\Delta S = m \cdot A$	۵Ŝ	Eqn 10
	The entrop determined	y change car from Eqn 4 :	n be		$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{T2}^{o} - \hat{\mathbf{S}}_{T1}^{o}$	- <mark>R</mark> Ln F	2 2 3	Eqn 11
	Now, we ca	n plug values	into Eqns 9 & [.]	10 to deterr	mine the entropy gene	rated: S _{gen}	0.04803	kJ/K
Verify:	The ideal ga	as assumption	n needs to be v	erified.		$\tilde{V} = \frac{RT}{P}$		Eqn 12
	We need to	determine th	e specific volu	i me at <u>each</u>	state and check if :	$ ilde{V}$ $>$ 5	L/mol	Eqn 13
	V ₁	14.97	L/mol					
	V_{2A}	5.50	L/mol			V_{2B}	5.76	L/mol
	The specifi a <mark>diatomic</mark> g	c volume at gas, so the ide	<u>each</u> state is gr eal gas assump	<u>eater than</u> tion is <u>valid</u>	5 L/mol for <u>all</u> states a l.	nd the working	g fluid can b	e treated as
Answers :	Part a.)	T ₂₅	530	К	Part b.)	T ₂	554	K
	,	-W _b	366	kJ	,	S _{gen}	0.0480	kJ/K

8A-6 Entropy Change as Compressed Liquid Water Expands

5 pts

Consider the rigid tank shown below. It is divided into two equal **volumes** by a barrier. The left-hand side (LHS) is a perfect vacuum and the right-hand side (RHS) contains 5 kg of ammonia at 300 kPa and -10°C.

When the barrier is removed, the **ammonia** expands and fills the entire tank.

When the **ammonia** reaches equilibrium, the **pressure** in the tank is **200** kPa. Calculate ΔS for the **ammonia** and **Q** for this process.

Read : The key to this problem is that the **mass** of ammonia in the system <u>does not change</u> and the **volume** <u>doubles</u>. We can use the Ammonia Tables to determine the **specific volume** and **specific entropy** at **state 1** because we know T_1 and P_1 . We can use the **specific volume** at **state 1** and the <u>known</u> **mass** and **volume** relationships to determine the **specific volume** at **state 2**. This gives us the values of <u>two</u> intensive properties at **state 2**, P_2 and **specific volume**, and allows us to use the Ammonia Tables to determine the **specific entropy** and the <u>total</u> **entropy** at **state 2**. $\Delta S = S_2 - S_1$ and we are done.

The 2nd Law and the fact that entropy generation must be positive will allow us to determine the <u>direction</u> of heat transfer <u>or</u> if the process could be <u>adiabatic</u>.

Given:	m	5	kg		P ₂	200	kPa
	T ₁	-10	°C		$V_2 = 2 V_1$		Eqn 1
	P ₁	300	kPa				
Find:	∆S	???	kJ/K	Determine whether:	Q = 0, Q > 0 o	or Q < 0	
Diagram:	See the pro	blem stateme	ent.				
Assumptions: 1 - 2 - 3 -		1 - 2 - 3 -	The <mark>system</mark> <u>No</u> work or <u>Changes</u> in	is the contents of the <u>entire</u> tank. mass crosses the system boundary. kinetic and potential energies are <u>ne</u>	gligible.		

The change in **entropy** can be calculated using:

We know <u>both</u> T_1 and P_1 , so we can look up S_1 in the Subcooled Liquid Table of the Ammonia Tables or in the **NIST Webbook.**

> S₁ 0.54252 kJ/kg-K

At state 2, we only know the value of one intensive variable, P₂. So, we need to determine the value of another intensive variable before we can use the Ammonia Tables to determine S_2 .

 $\mathbf{V}_1 = \mathbf{m} \ \hat{\mathbf{V}}_1$

 V_2

X2

 $\Delta \mathbf{S} = \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right) + \mathbf{S}_{gen}$

We can determine the specific volume at state 2 as follows:

We can obtain specific volume at state 1 from the Ammonia Tables or the NIST Webbook :

V ₁	0.0015336	m ³ /kg		V ₁	0.0076680 m ³
Then, we can	use the give	n relationship in Eqn 1 to determine	V ₂ :	V_2	0.015336 m ³
Then, determ	ine the spec	ific volume at state 2 using:	$\hat{V}_2 = \frac{V_2}{m}$		Eqn

Now, we know the values of two intensive variables, so we can go back to the Ammonia Tables or NIST **Webbook** and determine S_2 by interpolation.

At P ₂ = 200 kPa :	V _{sat liq}	0.0015068 m³/kg	Since V _{sat liq} < V ₂ < V _{sat vap} , state 2
	V _{sat vap}	0.5946 m ³ /kg	is a saturated mixture.

We can determine \mathbf{x}_2 from the **specific volume**, using:

$$\mathbf{x}_{2} = \frac{\hat{\mathbf{V}}_{2} - \hat{\mathbf{V}}_{sat liq}}{\hat{\mathbf{V}}_{sat vap} - \hat{\mathbf{V}}_{sat liq}} \qquad \qquad \text{Eqn 5}$$

0.002631 kg vap/kg

Then, we can use the quality to $\hat{\mathbf{S}}_2 = \mathbf{x}_2 \, \hat{\mathbf{S}}_{\mathsf{sat vap}} + (\mathbf{1} - \mathbf{x}_2) \, \hat{\mathbf{S}}_{\mathsf{sat liq}}$ Eqn 6 determine S₂, using:

At P ₂ = 200 kPa :	S _{sat liq}	0.387505	kJ/kg-K			
	S _{sat vap}	5.5998	kJ/kg-K	S ₂	0.40122	kJ/kg-K
Finally, we can plug va	alues into Ean 2	:		∆S	-0.70651	kJ/K

Finally, we can plug values into Eqn 2:

The 2nd Law tells us that:

where $S_{gen} > 0$ and T > 0 because it is a thermodynamic temperature scale, such as the Kelvin scale.

Therforefore, the <u>only</u> way for ΔS to be <u>negative</u> is <u>if</u> $\delta Q < 0$.

We conclude that **heat** <u>must</u> have been <u>transferred</u> <u>out</u> of the system during this process !

We <u>could</u> apply the 1st Law to evaluate **Q**, but it is not required. I got **Q = -184.6 kJ**.

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

ΔS -0.707 kJ/K Answers : Part a.) Heat was transferred out of the system during this process ! Part b.) Q < 0

Dr. B - LearnThermo.com

 $\Delta \mathbf{S} = \mathbf{m} \left(\hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 \right)$ Egn 2

4

Eqn 3

Egn 7

0.0030672 m³/kg

8B-1 Entropy Generation in a Compressor

irreversible or impossible?

Read : This is a straightforward application of the 2nd Law in the form of an entropy balance on an open system. Use T_{surf} in the 2nd Law equation to determine S_{gen} for <u>only</u> the turbine. Finish this problem by using the sign of S_{gen} to determine whether the compressor is impossible, internally reversible or internally reversible.

Diagram: See the problem statement.

m	0.41	kg/s	Q	-27	kW
S₁	1.42	kJ/kg-K	T _{surf}	410	Κ
S ₂	1.23	kJ/kg-K	Ws	128	kW
	m S ₁ S ₂	m 0.41 S ₁ 1.42 S ₂ 1.23	m 0.41 kg/s S ₁ 1.42 kJ/kg-K S ₂ 1.23 kJ/kg-K	m 0.41 kg/s Q S1 1.42 kJ/kg-K T _{surf} S2 1.23 kJ/kg-K W _S	m 0.41 kg/s Q -27 S1 1.42 kJ/kg-K T _{surf} 410 S2 1.23 kJ/kg-K W _S 128

Find: S_{gen} ??? kW/K

Is this compressor internally reversible, internally irreversible or impossible?

Assumptions:	1 -	The compressor operates at steady-state.
	2 -	Kinetic and potential energy changes are negligible.
	3 -	Shaft work and flow work are the only forms of work that cross the system
	4 -	Heat loss from the compressor occurs at a <u>constant</u> and <u>uniform</u> temperature of 410 K.

We can determine the **entropy generation** from an **entropy balance** on the **compressor**.

The entropy balance equation for a **SISO** process operating at steady-state that exchanges **heat** <u>only</u> with the surroundings is:

$$\left(\hat{\mathbf{S}}_{gen}\right)_{comp} = \hat{\mathbf{S}}_{2} - \hat{\mathbf{S}}_{1} - \frac{\hat{\mathbf{Q}}}{\mathbf{T}_{HT}}$$
 Eqn 1

Because we are interested <u>only</u> in the entropy generation <u>inside</u> the turbine, the **temperature** at which heat transfer occurs is the surface **temperature** of the turbine, **410** K. If we used $T_{HT} = T_{surr}$, we would obtain the <u>total</u> entropy generation for the process. This would include <u>both</u> the entropy generated inside the turbine and the entropy generated due to the irreversible nature of heat transfer through a <u>finite</u> temperature <u>difference</u>, that is between T_{surr} .

We were given the values of <u>all</u> the variables on the right-hand side of **Eqn 1**, so we can immediately evaluate $(S_{gen})_{comp}$.

(S_{aen})_{comp} -0.01205 kJ/kg-K

If the (S_{gen})_{comp} is …	negative, the compressor is impossible
	zero, the compressor is reversible
	positive, the compressor is irreversible

This compressor is impossible because $\Delta(S_{gen})_{comp} < 0$.

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : This compressor is impossible because $\Delta(S_{gen})_{comp} < 0$.

8B-2 Entropy Generation in a Steam Turbine

The outer surface of a steam turbine is at an average temperature of 160°C and the surroundings are at 20°C. Calculate the

5 pts

internal, external and total **entropy generation** for the turbine in **kJ/kg-K**. The operating parameters for the turbine are given in the figure below.

Read : Apply the 1st Law to determine Q and the 2nd Law to get S_{gen}. Properties come from the Steam Tables or the NIST Webbook. The key is that the heat losses occur at the constant, average surface temperature and this must be taken into account when evaluating S_{gen} for the turbine.

Given:	P ₁	2000	kPa	X ₂	1	
	T ₁	450	°C	Т _{нт}	160	°C
	P ₂	180	kPa	T _{surr}	20	°C
				Ws	500	kJ/kg
Find:	(S _{gen}) _{turb}	???	kJ/kg-K			

Diagram: The diagram in the problem statement is adequate.

Assumptions:	1 -	The turbine operates at steady-state.
	2 -	Kinetic and potential energy changes are negligible.
	3 -	Shaft work and flow work are the <u>only</u> forms of work that cross the <u>system</u> boundary.
	4 -	Heat loss from the turbine occurs at a constant and uniform temperature of 160°C.

We can determine the entropy generation from an entropy balance on the turbine.

The entropy balance equation for a **SISO** process operating at steady-state that exchanges **heat** <u>only</u> with the surroundings is:

$$\left(\hat{\mathbf{S}}_{gen}\right)_{turb} = \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 - \frac{\hat{\mathbf{Q}}}{\mathbf{T}_{HT}}$$
 Eqn 1

Because we are interested <u>only</u> in the entropy generation <u>inside</u> the turbine, the **temperature** at which heat transfer occurs is the surface **temperature** of the turbine, 160° C. If we used $T_{HT} = T_{surr}$, we would obtain the <u>total</u> entropy generation for the process. This would include <u>both</u> the entropy generated <u>inside</u> the turbine <u>and</u> the entropy generated due to the irreversible nature of heat transfer through a <u>finite</u> temperature <u>difference</u>, that is between T_{HT} and T_{surr} .

We can lookup S_1 and S_2 in the Steam Tables or the **NIST Webbook** because states 1 and 2 are <u>completely</u> determined by the information <u>given</u> in the problem statement.

Now, use the 1st Law for a steady-state process with <u>negligible changes</u> in kinetic and potential energies to determine **Q**.

$$\hat{\mathbf{Q}} - \hat{\mathbf{W}}_{s} = \Delta \hat{\mathbf{H}}$$
 Eqn 2

Solve Eqn 2 for Q :

$$\hat{\mathbf{Q}} = \hat{\mathbf{W}}_{\mathrm{S}} + \hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1}$$
 Eqn 3

We can now lookup H_1 and H_2 in the Steam Tables or the **NIST Webbook** because, again, states 1 and 2 are <u>completely</u> determined by the information given in the problem statement.

H1	3358.2	kJ/kg	H ₂	2701.4	kJ/kg
Now we can pl	ug values i	nto Eqn 2 to evaluate Q :	Q	-156.81	kJ/kg
We can now ev	valuate the	entropy generation within the turbine using Eqn	1.		
			(S _{gen}) _{turb}	0.2375	kJ/kg-K

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

|--|

8B-3 Ideal Gas Compressor and Heat Exchanger Combination

8 pts

The effluent from an **air** compressor is cooled by contacting with **water** in a heat exchanger. The operating parameters for this system are given in the diagram, below.

b.) Calculate the entropy production rate for the compressor and for the heat exchanger separately.

Read : Use the ideal gas EOS and the volumetric flow rate to determine the mass flow rate.

Use an energy balance to determine the work for the compressor in kW.

To determine the water flow rate, draw the control volume enclosing the heat exchanger. This control volume has <u>four</u> mass flows <u>entering</u> or <u>leaving</u> but <u>no</u> **Q** or **W**. An energy balance on this control volume yields the water flow rate.

Very important point: the air and the water DO NOT MIX in the heat exchanger!

For the **enthalpy** of the cooling water, use **H(T)** for saturated liquid water from the Steam Tables. **Part (b)** Don't forget about the cooling water when you calculate the **entropy generated**. Use **S(T)** for saturated liquid water from the Steam Tables.

Given:	T _A T _B P₁	15 35 104	°C °C kPa			P ₂ T ₂ P ₃	255 143 255	kPa °C kPa
	T ₁ m _{air}	30 35	°C kg/min			T ₃	65	°C
Find:	Part (a)	W _s m _{cw}	??? ???	kW kg/s	Part (b)	S _{gen, comp} S _{gen, HEX}	??? ???	kW/K kW/K

Diagram:

Diagram already provided in the problem statement.

Assumptions:	1 - 2 -	Both the compressor and heat exchanger operate at steady-state. Heat exchange between the equipment in this process and the surroundings is <u>negligible</u> .
	3 -	There is <u>no</u> shaft work in the <u>heat exchanger</u> .
	4 -	Kinetic and potential energy changes are negligible.
	5 -	The air behaves as an ideal gas.
	6 -	The properties of the cooling water are the <u>same</u> as the properties of saturated liquid water at the <u>same</u> temperature.

		20.97	ку/кшог	Illair	0.3033	ку/5
	M/M/	28 07	ka/kmol	m	0 5833	kale
Part a.)	R	8.314	kJ/kmol K			

We can determine the properties of air at all <u>three</u> states by <u>interpolating</u> on the **Ideal Gas Property Tables** for air because <u>all three</u> temperatures are given in the problem statement.

T ₁	303.15	К	Т (К)	H° (kJ/kg)	S° (kJ/kg-l	K)		
T ₂	416.15	К	300	87.410	0.0061681			
T ₃	338.15	К	310	97.396	0.038914	H ₁	90.556	kJ/kg
			410	198.63	0.32178			
			420	208.88	0.34649	H ₂	204.93	kJ/kg
			330	117.45	0.10159			
			340	127.51	0.13163	H ₃	125.65	kJ/kg
Now we c	an nlug values	s back into Fo r	1 to evalu	ate W ·		Wa	-66 72	kW

The **mass flow rate** of the cooling water can be determined by an energy balance on the heat exchanger. For a steady-state process with <u>negligible heat transfer</u>, kinetic and potential energy <u>changes</u> and <u>no</u> **shaft work**:

$$\mathbf{Q} - \mathbf{W}_{s} = \sum_{j=1}^{outlets} \mathbf{m}_{out,j} \, \hat{\mathbf{H}}_{out,j} - \sum_{i=1}^{inlets} \mathbf{m}_{in,i} \, \hat{\mathbf{H}}_{in,i}$$
 Eqn 3

Eqn 3 can be <u>simplified</u> because <u>no</u> **shaft work** crosses the system boundary and when we use the <u>entire</u> **HEX** as the <u>system</u>, there is <u>no</u> **heat transfer** across the <u>system</u> boundary either.

$$\mathbf{0} = \dot{\mathbf{m}}_{air} \left(\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_3 \right) + \dot{\mathbf{m}}_{cw} \left(\hat{\mathbf{H}}_A - \hat{\mathbf{H}}_B \right)$$
Eqn 4

Now, we can <u>solve</u> Eqn 4 for m_{cw} :

$$\dot{\mathbf{m}}_{cw} = \left(\frac{\dot{\mathbf{H}}_2 - \dot{\mathbf{H}}_3}{\dot{\mathbf{H}}_B - \dot{\mathbf{H}}_A} \right) \dot{\mathbf{m}}_{air}$$
 Eqn 5

We do <u>not know</u> the **pressure** of the cooling water, so we <u>cannot</u> look up its properties. Therefore, we <u>assume</u> that the **enthalpy** of the cooling water is the <u>same</u> as the **enthalpy** of <u>saturated liquid</u> water at the <u>same</u> temperature. This assumption is <u>accurate</u> as long as water is <u>nearly</u> an incompressible liquid. The properties of <u>saturated liquid</u> water were determined from **NIST WebBook**:

Saturated liquid water at T _A :	H _A	62.981	kJ/kg
Saturated liquid water at T _B :	H _B	146.63	kJ/kg
Now, we can plug values into Eqn 5 and evaluate m _{cw} :	m _{cw}	0.5529	kg/s

$$\mathbf{S}_{\mathsf{gen}} = \Delta \mathbf{S} - \int \left(\frac{\delta \mathbf{Q}}{\mathbf{T}} \right)$$
 Eqn 6

No heat transfer crosses the system boundary for either the compressor or the HEX, so Eqn 6 simplifes to:

$${f S}_{
m gen}=\Delta{f S}$$
 Eqn 7

We can determine the entropy change for air (ideal gas) in the compressor from the 2nd Gibbs Equation:

$$\hat{\mathbf{S}}_{gen} = \Delta \,\hat{\mathbf{S}} = \hat{\mathbf{S}}_{T2}^{\circ} - \hat{\mathbf{S}}_{T1}^{\circ} - \frac{\mathbf{R}}{\mathbf{MW}} \, \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$
 Eqn 8

Therefore, the rate at which entropy is generated in the compressor is:

$$(\dot{S}_{gen})_{comp} = \dot{m}_{air} \hat{S}_{gen} = \dot{m}_{air} \left[\hat{S}_{T2}^{\circ} - \hat{S}_{T1}^{\circ} - \frac{R}{MW} Ln \frac{P_2}{P_1} \right]$$
 Eqn 9

г

We can determine the properties of air at all three states by interpolating on the Ideal Gas Property Tables for air because <u>all three</u> temperatures are given in the problem statement.

S°(T₁)	0.016483	kJ/kg-K			
S°(T₂)	0.33698	kJ/kg-K	S°(T ₃)	0.12607	kJ/kg-K
w, we cai	n plug values	back into Eqn 9 :	S _{gen, comp}	0.03681	kW/K

Now, we can plug values back into Eqn 9 :

The entropy generated in the HEX must take into account the entropy change of BOTH the air and the cooling water.

$$(\dot{S}_{gen})_{HE} = \dot{m}_{air} \left[\hat{S}_{T3}^{o} - \hat{S}_{T2}^{o} - \frac{R}{MW} Ln \frac{P_3}{P_2} \right] + \dot{m}_{cw} \left[\hat{S}_{cw}(T_B) - \hat{S}_{cw}(T_A) \right] \qquad \text{Eqn 10}$$

Again, we <u>assume</u> that the **entropy** of the cooling water is the <u>same</u> as the **entropy** of saturated liquid water at the <u>same</u> temperature. The properties of <u>saturated liquid</u> water were determined from **NIST WebBook**:

Saturated liquid water at T _A :	S(T _A)	0.22446	kJ/kg-K
Saturated liquid water at T _B :	S(T _B)	0.50513	kJ/kg-K
Now, we can plug value into Eqn 10 :	S _{gen, HEX}	0.03215	kW/K

Verify: Check the Ideal Gas Assumption:

$$\tilde{V} = \frac{RT}{P}$$

_ _

V ₁ =	24.23	L/mole
V ₂ =	13.57	L/mole
V ₃ =	11.03	L/mole

Since air can be considered to be a diatomic gas and all three molar volumes are greater than 5 L/mole, it is accurate to treat the air as an ideal gas.

Answers : Part a.)	Ws	-66.7	kW	Part b.)	S _{gen, comp}	0.0368	kW/K
	m _{cw}	0.553	kg/s		S _{gen, HEX}	0.0321	kW/K

8B-4 Polytropic Compression of Air

6 pts

Calculate **Q** & **W**_s, in **kJ/kg**, when ambient **air** at **104** kPa and **320** K is compressed polytropically to **950** kPa. Assume $\delta = 1.38$ for this process path and that **air** behaves as an ideal gas.

Read : The key to this problem is the fact that the process is polytropic and that the air can be <u>assumed</u> to be an ideal gas. Because the process is polytropic, we can determine T_2 and W_s . Because the gas is ideal, we can use the **Ideal Gas Property Tables** to evaluate H_1 and H_2 . Finish by using W_s , H_1 and H_2 to evaluate Q.

Given:	P ₁	104	kPa	Find:	Ws	???	kJ/kg			
	T ₁	320	К		Q	???	kJ/kg			
	δ	1.38								
	P ₂	950	kPa							
Assumpt	ions:	1 -	The compressor opera	tes at steady-state.						
-		2 -	Kinetic and potential energy changes are negligible.							
		3 -	Shaft work and flow work are the <u>only</u> forms of work that cross t boundary.							

4 - Air is modeled as an ideal gas.

Diagram:

We can determine the **shaft work** for a polytropic process on an ideal gas using:

$$\hat{\mathbf{W}}_{s} = -\frac{\delta}{\delta - 1} \frac{\mathbf{R}}{\mathbf{MW}} (\mathbf{T}_{2} - \mathbf{T}_{1})$$
 Eqn 1

We can determine **T**₂ using the following **PVT** relationship for polytropic processes:

$$T_1 P_1^{\frac{1-\delta}{\delta}} = T_2 P_2^{\frac{1-\delta}{\delta}} = constant$$
 Eqn 2

Solve Eqn 2 for T₂:

$$\mathbf{T}_2 = \mathbf{T}_1 \left(\frac{\mathbf{P}_1}{\mathbf{P}_2}\right)^{\frac{1-\alpha}{\delta}}$$
 Eqn 3

. .

We can now either evaluate T_2 or use Eqn 3 to eliminate T_2 from Eqn 1.

$$\hat{\mathbf{W}}_{s} = -\frac{\delta}{\delta - 1} \frac{\mathbf{R} \mathbf{T}_{1}}{\mathbf{MW}} \left(\left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}} \right)^{\frac{1 - \delta}{\delta}} - 1 \right)$$
 Eqn 4

Now, we can plug values into **Eqns 3 & 4** to complete the first part of this problem.

MW	29.0	g/mol	T ₂	588.42	K
R	8.314	J/mol-K	Ws	-279.75	kJ/kg

In order to determine the **specific heat transfer** for the compressor, we must apply the 1st Law for steady-state, SISO processes. For this compressor, <u>changes</u> in kinetic and potential energies are <u>negligible</u> and <u>only</u> flow work and shaft work cross the system boundaries. The appropriate form of the 1st Law for this compressor is :

$$\hat{\mathbf{Q}} - \hat{\mathbf{W}}_{\mathrm{s}} = \hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1}$$
 Eqn 5

Solve Eqn 5 for Q :

$$\hat{\mathbf{Q}} = \hat{\mathbf{W}}_{s} + \hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1}$$
 Eqn 6

-2.272

5.15

kJ/kg

L/mole

Because we know <u>both</u> T_1 and T_2 and we <u>assumed</u> that air behaves as an ideal gas in this process, we can use the **Ideal Gas Property Table** for air to evaluate H_1 and H_2 .

T (K)	H° (kJ/kg)
590	386.57
588.42	H ₂
600	397.21

Now, we can plug values back into

Verify: Check the Ideal Gas Assumption:

V₁ 25.58 L/mole

Since air can be considered to be a diatomic gas and both **molar volumes** are greater than **5 L/mole**, it is <u>acceptable</u> to consider the air an ideal gas.

 $\tilde{V} = \frac{RT}{P}$

Answers : Part a.)	Ws	-280	kJ/kg	
	Q	-2.27	kJ/kg	Q > 0 , the compressor loses heat to the surroundings.

Q

 $V_2 =$

8C-1 Shaft Work Requirement for Different Compression Systems

7 pts

Determine the specific shaft work required for the air compressor shown below if the compression is...

- a.) Isothermal
- b.) Isentropic
- **c.)** Polytropic with $\delta = 1.24$
- **d.)** A 2-stage compressor with intercooling with $\delta = 1.24$ is used instead. Calculate the **isothermal efficiency** of this system.

Assume air behaves as an ideal gas with constant heat capacities and all the compressors are internally reversible.

Read : Parts (a) through (c) are direct applications of equations derived for shaft work in polytropic processes. Part
 (a) requires us to <u>assume</u> the fluid is an ideal gas with <u>constant</u> heat capacities so that we can assume δ = γ.
 Part (d) is the application of equations for the internally reversible, polytropic compression of of an ideal gas. The key is to to determine the <u>optimal intermediate</u> pressure, P_x, and use it to to determine the shaft work for <u>each compressor</u>.

Given:	P ₁	90	kPa		(isothermal)	δ _Α	1
	T ₁	310	K			(isentropic)	γв	1.4
	P ₂	1250	kPa				δ _c	1.24
		(ideal, 2-stage w/ intercooling)					δ_{D}	1.24
Find:	For each	part of the pr	oblem	-W _s / m _{dot}	???	kJ/kg		Compare results
Diagram:	See the p	problem statem	ent.					

Assumptions:

- 1 -All compressors operate at steady-state. 2 -
- Air behaves as an ideal gas.
- 3 -The heat capacities of the air are constant.
- 4 -The intercooler in part (d) returns the air to the inlet temperature, T₁.
- 5 -All compressors are internally reversible.

Equations / Data / Solve:

The key equation for parts (a), (c) and (d) is the equation for the specific shaft work in steady-state, polytropic processes.

$$\frac{-\dot{W}_{s}}{\dot{m}} = \frac{\delta}{\delta - 1} \left(\frac{R}{MW}\right) T_{1} \left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\delta - 1}{\delta}} - 1 \right]$$
Eqn 1

Part a.) When $\delta = 1$ for a polytropic process on an ideal gas, the process is isothermal. In this case, Eqn 1 does not apply. Instead, we must use :

<u>- </u>	$\frac{RT_1}{In}$	$\left[\underline{P}_{2} \right]$	Fan 2
ṁ ¯	MW		

	Plugging values into Eqn 2 yields :	-W _S / m _{dot}	234.1	kJ/kg
Part b.)	Plug values into Eqn 1 :	R MW	8.314 28.97	J/mole-K g/mole
		-W _S / m _{dot}	349.0	kJ/kg
Part c.)	Plug values into Eqn 1 :	-W _S / m _{dot}	305.2	kJ/kg

Part d.) The total work per unit mass of flowing fluid (air in this case) in a 2-stage compression process is the sum of the **specific work** for each compressor. The resulting equation is just the application of **Eqn 1** to each compressor.

$$\frac{-\dot{W}_{s,tot}}{\dot{m}} = \frac{\delta}{\delta - 1} \left(\frac{R}{MW}\right) T_1 \left[\left(\frac{P_x}{P_1}\right)^{\frac{\delta - 1}{\delta}} - 1 \right] + \frac{\delta}{\delta - 1} \left(\frac{R}{MW}\right) T_1 \left[\left(\frac{P_2}{P_x}\right)^{\frac{\delta - 1}{\delta}} - 1 \right]$$
Eqn 3

Where P_X is the <u>intermediate</u> pressure between the two compressors.

The optimal value of the intermediate pressure can be determined using:

$$\mathbf{P}_{\mathbf{X}} = \sqrt{\mathbf{P}_{\mathbf{1}}\mathbf{P}_{\mathbf{2}}}$$
Eqn 4

Now, we can plug values into Eqns 4 & 3 :

Compressor #1:	-W _s / m _{dot}	133.29	kJ/kg
Compressor #2:	-W _S / m _{dot}	133.29	kJ/kg
Total :	-W _S / m _{dot}	266.6	kJ/kg

335.4

kPa

Px

Notice that when the <u>optimal</u> value of P_X is used the <u>compression ratio</u> across <u>each</u> <u>compressor</u> is the <u>same</u>.

$$\frac{\mathbf{P}_{1}}{\mathbf{P}_{X}} = \frac{\mathbf{P}_{X}}{\mathbf{P}_{2}}$$
 Eqn 5

As a result, the **specific shaft work** for <u>each</u> compressor is the <u>same</u> as well.

The isothermal efficiency of the 2-stage compressor can be determined from :

$$\eta_{T,multi} = \frac{-\dot{W}_{s,iso-T}}{-\dot{W}_{s,act}}$$
Eqn 6

87.81%

 η_T

Plugging values into Eqn 6 yields :

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

8C-2 Power & Entropy Generation in Turbine With a Flash Drum

8 pts

A flash drum is a vessel in which gravity is allowed to separate a liquid and a gas. A throttling device can be used to reduce the **pressure** on a liquid stream to produce a two-phase mixture.

The two-phase mixture enters the flash drum where the liquid settles to the bottom and the vapor rises to the top. Because the vapor and liquid phases are allowed to reach equilibrium, the vapor and liquid leaving a flash drum

are both saturated.

Consider the system in the diagram shown below.

Calculate the **power** output of the turbine and the **entropy generation rate** for the valve, for the flash drum and for the turbine. Which unit or units generate a large amount of entropy?

Read : This is a <u>complicated</u> problem just because it is an ensemble of **three** processes. Drawing a <u>good</u> **flow diagram** that includes <u>all</u> the given information is <u>essential</u>. Fortunately, the problem statement includes a good **flow diagram**.

Start from State 1 because you know a lot of information about this stream. The valve behaves as a throttling valve. Apply mass and energy balances to the flash drum to determine m_3 and m_4 . Use the isentropic efficiency to calculate H_5 and then use H_5 to get x_5 . Application of the 1st Law to the turbine yields W_{turb} .

To get the <u>correct</u> **entropy generated**, you must be <u>very accuarate</u> in your calculations. Do <u>not</u> round off until the <u>very end</u>. Save the <u>intermediate results</u> in your calculator memory or use **Excel**.

Given:	P ₁	240	lb _f /in ²		P ₂	70	lb _f /in ²	
	T ₁	80	°F		P ₃	70	lb _f /in ²	
	m₁	5	lb _m /s		P ₄	70	lb _f /in ²	
	$\eta_{s, turb}$	0.88			P ₅	20	lb _f /in ²	
Find:	a.)	W _{turb}	?	Btu/s	b.)	(S _{gen}) _{valve}	?	Btu / s-⁰R
						(S _{gen}) _{flash}	?	Btu / s-⁰R
						(S _{gen}) _{turb}	?	Btu / s-°R

Assumptions:	1 -	Each component operates at steady-state with negligible heat transfer between the
		flowing fluid and the surroundings.

- 2 Kinetic and potential energy <u>changes</u> are <u>negligible</u>.
- **3** The expansion across the valve is an isenthalpic throttling process.

Part a.) Let's begin by applying the steady-state mass balance equation to the valve, the flash drum and the turbine, one unit at a time.

$$\dot{m}_1 = \dot{m}_2$$
 Eqn 1 $\dot{m}_2 = \dot{m}_3 + \dot{m}_4$ Eqn 2 $\dot{m}_4 = \dot{m}_5$ Eqn 3

Next, apply the 1st Law to the turbine. The turbine is a steady-state, **SISO** process with <u>negligible changes</u> in kinetic and potential energies. The appropriate form of the 1st Law is:

In Eqn 4, m_5 was <u>eliminated</u> using Eqn 3. Because the <u>turbine</u> is also <u>assumed</u> to be <u>adiabatic</u>, $Q_{turb} = 0$ and Eqn 4 becomes:

$$\dot{\mathbf{W}}_{turb} = - \dot{\mathbf{m}}_4 \left(\hat{\mathbf{H}}_5 - \hat{\mathbf{H}}_4 \right)$$
 Eqn 5

We can lookup H₄ in the Ammonia Tables or **NIST Webbook** because we know it is a saturated vapor at **70 psia**.

H₄ 622.25 Btu/lb_m

We must use the **isentropic efficiency** of the turbine to determine H_5 because we <u>only</u> know the value of <u>one</u> intensive variable at state 5 (P_5).

Isentropic efficiency applied to our turbine is defined by:

$$\eta_{s,turb} = \frac{\hat{H}_4 - \hat{H}_5}{\hat{H}_4 - \hat{H}_{5s}}$$
Eqn 6

We can solve **Eqn 6** for **H**₅, as follows:

$$\hat{\mathbf{H}}_{5} = \hat{\mathbf{H}}_{4} - \eta_{s, turb} \left(\hat{\mathbf{H}}_{4} - \hat{\mathbf{H}}_{5s} \right)$$
 Eqn 7

 H_{5S} is the enthalpy of the <u>effluent</u> (at P_2) from an adiabatic, isentropic turbine that has the <u>same</u> feed as the <u>actual</u> turbine. Because this <u>hypothetical</u> turbine is isentropic: $S_{5S} = S_4$

We can look up \mathbf{S}_4 in the Ammonia Tables or the NIST Webbook :	S ₄	1.2651	Btu Ib _m -°R
	S _{5S}	1.2651	Btu lb _m -⁰R

Now, we know the values of <u>two</u> intensive properties at **state 5S**, so we can determine the values of <u>other</u> properties at this **state**, such as T_{5S} and H_{5S} , by <u>interpolating</u> on the Ammonia Tables or the **NIST Webbook**. We begin by determining the phases present.

At P = 20 psia :	S _{sat liq}	0.057608	Btu/lb _m -°R	Since S _{sat liq} < S ₅ < S _{sat vap} , state 5S
	S _{sat vap}	1.3691	Btu/Ib _m -°R	is a saturated mixture.

Determine x₅₅ from the **specific entropy**, using:

$$\mathbf{X}_{5S} = \frac{\hat{\mathbf{S}}_{5S} - \hat{\mathbf{S}}_{sat liq}}{\hat{\mathbf{S}}_{sat vap} - \hat{\mathbf{S}}_{sat liq}}$$
Eqn 8

Then, we can use the quality to determine H_{5S}, using:

$$\hat{\mathbf{H}}_{5S} = \mathbf{x}_{5S} \, \hat{\mathbf{H}}_{sat\,vap} + (\mathbf{1} - \mathbf{x}_{5S}) \hat{\mathbf{H}}_{sat\,liq} \qquad \qquad \mathsf{Eqn} \; 9$$

 $\dot{\mathbf{m}}_4 = \dot{\mathbf{m}}_1 - \dot{\mathbf{m}}_3$

At P = 20 psia :	H _{sat liq} H _{sat vap}	24.887 605.98	Btu/lb _m Btu/lb _m	H _{5S}	559.90	Btu/lb _m
Now, we can use Eqn 7 to	evaluate H_5 :			H ₅	567.38	Btu/lb _m

Next, we need to evaluate m₄. Combine Eqns 1 & 2 to get :

We know m_1 , so we need to find m_3 to calculate m_4 .

We can determine m₃ by applying the 1st Law to the flash drum. The flash drum is adiabatic, operates at steadystate, no shaft work crosses it boundaries and changes in kinetic and potential energies are negligible. Therefore, the appropriate form of the 1st Law is:

$$\mathbf{0} = \dot{\mathbf{m}}_2 \hat{\mathbf{H}}_2 - \dot{\mathbf{m}}_3 \hat{\mathbf{H}}_3 - \dot{\mathbf{m}}_4 \hat{\mathbf{H}}_4$$
 Eqn 11

Use Eqn 10 to eliminate m₄ from Eqn 11 and use Eqn 1 to eliminate m₂ from Eqn 11 and you are left with:

$$\mathbf{0} = \dot{\mathbf{m}}_{1} \hat{\mathbf{H}}_{2} - \dot{\mathbf{m}}_{3} \hat{\mathbf{H}}_{3} - (\dot{\mathbf{m}}_{1} - \dot{\mathbf{m}}_{3}) \hat{\mathbf{H}}_{4}$$
 Eqn 12

We can solve Eqn 12 for m_3 , as follows:

 $\dot{\mathbf{m}}_{3} = \dot{\mathbf{m}}_{1} \left[\frac{\hat{\mathbf{H}}_{1} - \hat{\mathbf{H}}_{4}}{\hat{\mathbf{H}}_{3} - \hat{\mathbf{H}}_{4}} \right]$ Egn 13

Eqn 10

Eqn 14

We can lookup the specific enthalpies in states 1 and 3 in the Ammonia Tables or the NIST Webbook and we already know H_4 . Then, we can plug these values into Eqn 13 to evaluate m_3 :

H ₁	131.96	Btu/lb _m					
H ₃	84.109	Btu/lb _m		m ₃	4.56	lb _m /s	
Next we can	evaluate m_4	from Eqn 10 :		m ₄	0.44	lb _m /s	
At last, we ca	an plug value	es back into Equ	5 to complete part (a) :	W _{turb}	24.39	Btu/s	
The entrony	deneration ra	ate is defined					

Part b.) The entropy generation rate is defined in the 2nd Law as:

> Since we assumed that each of our three processes was adiabatic, Eqn 14 simplifies to:

$$\dot{S}_{gen} = \dot{m} \Delta \hat{S}$$
 Eqn 15

 $\dot{\mathbf{S}}_{\mathsf{gen}} = \sum_{i=1}^{\mathsf{outlets}} \dot{\mathbf{m}} \ \hat{\mathbf{S}} - \sum_{i=1}^{\mathsf{inlets}} \dot{\mathbf{m}} \ \hat{\mathbf{S}} - \int \frac{\delta \dot{\mathbf{Q}}}{\mathsf{T}}$

Apply Eqn 15 to each of the three processes:

$$(\dot{\mathbf{S}}_{gen})_{valve} = \dot{\mathbf{m}}_1(\hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1)$$
 Eqn 16

$$(\dot{S}_{gen})_{flash} = \dot{m}_4 \, \hat{S}_4 + \dot{m}_3 \, \hat{S}_3 - \dot{m}_2 \, \hat{S}_2$$
 Eqn 17

$$(\dot{S}_{gen})_{turb} = \dot{m}_4 (\hat{S}_5 - \hat{S}_4)$$
 Eqn 18

At this point, we have determined the **state** of all <u>five</u> streams in this process, so we can use the Ammonia Tables or the **NIST Webbook** to evaluate the **entropy** of each.

The specific entropies of streams 1, 3 and 4 come straight out of the Ammonia Tables or NIST Webbook.

S ₁	0.27391	Btu / Ib _m -°R	S ₃ S ₄		0.18317 1.2651	Btu / Ib _m -°R Btu / Ib _m -°R
			۸	^		

For \mathbf{S}_5 , we must first determine the **quality** using:

$$\mathbf{X}_{5} = \frac{\mathbf{H}_{5} - \mathbf{H}_{\text{sat liq}}}{\hat{\mathbf{H}}_{\text{sat vap}} - \hat{\mathbf{H}}_{\text{sat liq}}}$$
Eqn 19

0.9336 lb_m vap/lb_m

Then we can evaluate S_5 using :

$$\hat{\mathbf{S}}_{5} = \mathbf{X}_{5} \, \hat{\mathbf{S}}_{\text{sat vap}} + (\mathbf{1} - \mathbf{X}_{5}) \, \hat{\mathbf{S}}_{\text{sat liq}} \qquad \qquad \text{Eqn 20}$$

X5

 S_5

1.2820 Btu / Ib_m -°R

In order to determine S_2 , we must apply the 1st Law to the valve. We assume the valve operates at steady-state, is adiabatic, exhibits <u>negligible changes</u> in kinetic or potential energies and involves <u>no</u> shaft work. Under these conditions, the 1st Law tells us that the valve is an isenthalpic throttling device.

$$\hat{\mathbf{H}}_2 = \hat{\mathbf{H}}_1$$
 Eqn 21 \mathbf{H}_2 131.96 Btu/lb_m

Now, we know the values of <u>two</u> intensive properties at state 2, so we can determine the values of <u>other</u> properties at this state, such as S_2 , by <u>interpolating</u> on the Ammonia Tables or the **NIST Webbook**. We begin by determining the phases present.

At P = 70 psia :	H _{sat liq}	84.109	Btu/lb _m	Since H _{sat liq} < H ₂ < H _{sat vap} , state 2 is
	H _{sat vap}	622.25	Btu/lb _m	a saturated mixture.

Determine x_2 from the **specific entropy**, using:

$$\mathbf{X}_{2} = \frac{\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{\text{sat liq}}}{\hat{\mathbf{H}}_{\text{sat vap}} - \hat{\mathbf{H}}_{\text{sat liq}}}$$
Eqn 22

x₂ 0.08892 lb_m vap/lb_m

Then, we can use the quality to determine S ₂ , using:		$\hat{\mathbf{S}}_{2} = \mathbf{X}_{2} \hat{\mathbf{S}}_{satvap} + (1 - \mathbf{X}_{2}) \hat{\mathbf{S}}_{satliq}$			Eqn 23	
At P = 70 psia :	S _{sat liq} S _{sat yan}	0.18317 1.2651	Btu/lb _m -°R Btu/lb _m -°R	S2	0.27938	Btu/lb _m -°R

Finally, we have all the values necessary to plug into Eqns 16-18 to evaluate the entropy generation in each device and then Eqn 24 to evaluate the lost work in each device.

(S _{gen}) _{valve}	0.02734	Btu / s-°R	(S _{gen}) _{turb}	0.00751	Btu / s-⁰R
(S _{gen}) _{flash}	0.00000	Btu / s-°R			

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers:	a.)	W _{turb}	24.4	Btu/s	
	b.)	(S _{gen}) _{valve}	0.0273	Btu / s-°R	The expansion valve generates the most entropy.
		(S _{gen}) _{flash}	0.00000	Btu / s-⁰R	
		(S _{gen}) _{turb}	0.00751	Btu / s-°R	

8C-3 Isentropic Efficiency of an Ideal Gas Compressor

7 pts

Consider the adiabatic air compressor shown below.

a.) Calculate the minimum power input required and T₂

b.) The outlet **temperature** from a real, adiabatic compressor that accomplishes the same compression is **520K**. Calculate the actual **power** input and the isentropic efficiency of the real compressor.

Read : Determine S^o(T₂) for an isentropic process and then <u>interpolate</u> to obtain both T_{2S} and H_{2S}. Then, an energy balance will give you (W_S)_{min}. Use the isentropic efficiency and (W_S)_{min} to determine (W_S)_{act}.

Given:	m	9.5	kg/s	Find:	a.)	(W _S) _{min}	???	kW
	P ₁	110	kPa			T _{2S}	???	κ
	T ₁	310	К		b.)	(W _S) _{act}	???	kW
	P ₂	550	kPa			η _{s, comp}	???	
	T _{2, part (b)}	520	К					

Diagram: The diagram in the problem statement is adequate.

Assumptions:1 -The compressor operates at steady-state and there is no significant heat transfer.2 -Kinetic and potential energy changes are negligible.3 -Air is modeled as an ideal gas.

Equations / Data / Solve:

Part a.) An isentropic compressor requires the <u>minimum</u> power input.

We can determine the isentropic **work** by applying the 1st Law to an isentropic compressor that takes in the same feed and yields an effluent at the same pressure.

For a steady-state, single-inlet, single outlet system with <u>negligible</u> heat transfer, kinetic and potential energy <u>changes</u>, the 1st Law is:

$$(\dot{W}_{s})_{min} = (\dot{W}_{s})_{isen} = \dot{m} \left(\hat{H}_{1} - \hat{H}_{2s} \right)$$
 Eqn 1

The **entropy change** for this process can determined using the 1st Gibbs Equation in terms of the Ideal Gas Entropy Function.

$$\hat{S}_2 - \hat{S}_1 = \hat{S}_{T2}^\circ - \hat{S}_{T1}^\circ - \frac{R}{MW} \operatorname{Ln} \frac{P_2}{P_1}$$
 Eqn 2

We can also apply **Eqn 2** to our hypothetical, isentropic compressor:

$$\mathbf{0} = \hat{\mathbf{S}}_{\text{T2S}}^{\circ} - \hat{\mathbf{S}}_{\text{T1}}^{\circ} - \frac{\mathbf{R}}{\mathbf{MW}} \operatorname{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$$
 Eqn 3

We can solve Eqn 3 for the unknown \mathbf{S}°_{T2S} : $\hat{\mathbf{S}}^{\circ}_{T2S} = \hat{\mathbf{S}}^{\circ}_{T1} + \frac{R}{MW} Ln \frac{P_2}{P_1}$ Eqn 4

We can evaluate S°_{T1} using the Ideal Gas Property Tables: $S^{\circ}(T_1)$ 0.0061681 kJ/kg-K We can get H°_{T1} while we are looking in the Ideal Gas Property Tables because we will need it later when we evaluate Eqn 1.

	H₁	87.410	kJ/kg
Now, we can plug values into Eqn 4 :	R	8.314	kJ/kmol-K
	MW	28.97	kg/kmol
	S°(T _{2S})	0.46806	kJ/kg-K

Now, we can use S^{o}_{T2S} and the **Ideal Gas Property Tables** to determine T_{2S} and H_{2S} by <u>interpolation</u>.

T (K)	H (kJ/kg)	S° (kJ/kg-K)				
470	260.49	0.46258				
T _{2S}	H _{2S}	0.46806	T _{2S}	472.50	Κ	
480	270.88	0.48445	H _{2S}	263.09	kJ/kg	
Now, we ca	an plug values	back into Egn 1:	(W _S) _{min}	-1669.0	kW	1

Part b.) We can determine the <u>actual</u> **power** <u>input</u> for the compressor by applying the 1st Law to the <u>real</u> compressor, just as we did in **Eqn 1** for the isentropic compressor.

$$\dot{\mathbf{W}}_{s,act} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_2 \right)$$
 Eqn 5

We can evaluate H^o_{T2} using the Ideal Gas Property Tables :	T _{2, part (b)} H ₂	520 312.65	K kJ/kg
Now, we can evaluate W_{S,act} using Eqn 5 :	(W _S) _{act}	-2139.78	kW
The isentropic efficiency of a compressor is defined by:	$\eta_{\text{S,comp}} =$	₩s,isen ₩s,act	Eqn 6

Since we determined the isentropic work in part (a) and the <u>actual</u> work in part (b), we are ready to plug numbers into Eqn 6 and wrap up this problem.

	η _{s, comp}	78.00%	
Check the Ideal Gas assumption: $\tilde{V} = \frac{RT}{P}$	V ₁ =	23.43	L/mole
	V ₂ =	7.86	L/mole
Since air can be considered to be a diatomic gas and both molar volum <u>accurate</u> to treat the air as an ideal gas.	es are <u>greater</u> th	an 5 L/mol e	e , it is

Answers : Part a.)	(W _S) _{min}	-1670	kW
	T _{2S}	473	К

Part b.)	(W _S) _{act}	-2140	kW
	η _{s, comp}	78.0%	

Dr. B - LearnThermo.com

Verify:

8D-1 Lost Work Associated with Heat Transfer

5 pts

as

A thermal reservoir at **1550 K** transfers **10,000 kJ** of **heat** to a thermal reservoir at **350 K**. The **temperature** of the surroundings is **298 K**. Determine the **lost work** for this process based on...

- a.) The performance characteristics of Carnot Cycles.
- **b.)** The total **entropy generation** of this process.
- Read : Heat transfer through a <u>finite</u> temperature <u>difference</u> is irreversible. It results in entropy generation and represents a <u>lost</u> opportunity to do work. Part (a) is more challenging because we need to build a hypothetical process out of reversible HE's, Ref's and HP's that accomplishes the <u>same net</u> heat transfer as the <u>real</u> process and then determine how much work we <u>COULD</u> have obtained using these reversible devices. Part (b) is a straightforward application of the <u>definition</u> of entropy generation, the entropy change for an isothermal process such as a thermal reservoir and the relationship between lost work and entropy generation.

Given:	Q	10000	kJ	Т _н	1550	Κ
	T _{surr}	298	К	Т _с	350	К
Find:	W _{s,lost}	???	kJ			
Assumptions: 1 - 2 -		1 - 2 -	<u>No</u> shaft work is obtained in t <u>Both</u> reservoirs are <u>true</u> therm heat is <u>added</u> or <u>removed</u> .	he <u>actual process</u> . <mark>al reservoirs</mark> whose temperatu	re does <u>not</u>	<u>change</u>

Diagram: Actual Process

Part a.) The definition of lost work is :

$$W_{S,lost} = W_{S,rev} - W_{S,act}$$
Eqn

In our <u>actual</u> process, no shaft work is produced, so : W_{s,act} 0 kJ

So, we need to evaluate the reversible work in order to determine the lost work.

In order to evaluate the reversible **work**, we must setup a reversible process that accomplishes the <u>same</u> thing as the <u>actual process</u>.

The hypothetical process must result in a transfer of **10000 kJ** of **heat** from the hot reservoir to the cold reservoir.

We can build the hypothetical process from **Carnot Cycles**. The diagram of the hypothetical process I have chosen includes a heat engine and a heat pump, <u>both</u> of which are reversible.

The **HE** must <u>absorb</u> the **1000 kJ** from the hot reservoir and the **HP** must <u>reject</u> **10000 kJ** to the cold reservoir. In this way, the hypothetical process does indeed accomplish the <u>same</u> thing as the <u>real process</u>. The **work** that this hypothetical (reversible) process <u>produces</u> <u>is</u> the reversible **work** and **Eqn 1** tells us that is also the **lost work** because the <u>actual</u> **work** is **zero**.

So, now we need to use the Carnot Efficiency and COP to evaluate the lost work.

The Carnot Efficiency of our HE is : $\eta_R = 1 - \frac{T_{surr}}{T_H} = \frac{W_{HE}}{Q_H}$ Eqn 2

Solving Eqn 2 for the work produced by the HE yields :

kJ

1

W_{HE} 8077

 η_R

 $W_{HE} = \eta_R Q_H$

 $W_{HP} = \frac{Q_{H}}{COP_{P}}$

W_{HP}

W_{s,lost}

The COP of a Carnot HP is :

 $COP_{R} = \frac{1}{1 - \frac{T_{surr}}{T_{c}}} = \frac{Q_{H}}{W_{HP}}$ $COP_{P} = 6.731$

Solving Eqn 4 for the work required by the HP yields :

Eqn 5

kJ

Eqn 4

1486 kJ

6592

The reversible work, and therefore the lost work, is equal to the <u>difference</u> between the work <u>produced</u> by the reversible **HE** and the work <u>required</u> by the reversible **HP**.

W_{s,rev} 6592 kJ

Part b.) The entropy generation by the <u>real process</u> is <u>equal</u> to the entropy change of the universe resulting from the process. The entropy change of the universe is made up of the entropy <u>increase</u> of the cold reservoir and the entropy <u>decrease</u> of the hot reservoir because of the transfer of 1000 kJ.

$$\mathbf{S}_{gen} = \Delta \mathbf{S}_{univ} = \Delta \mathbf{S}_{hot} + \Delta \mathbf{S}_{cold} = -\frac{\mathbf{Q}}{\mathbf{T}_{H}} + \frac{\mathbf{Q}}{\mathbf{T}_{C}}$$
 Eqn 6

S_{gen}

22.12

kJ/K

Lost work is related to the total entropy generation by :

$$\dot{W}_{S,lost} = T_{surr} \dot{S}_{gen}$$
 Eqn 7
 $W_{s,lost} = 6592 ext{ kJ}$

We can combine **Eqns 6 & 7** to obtain a convenient equation for calculating the **lost work** associated with **heat transfer** through a <u>finite</u> **temperature** <u>difference</u>.

$$\mathbf{W}_{s,lost} = \mathbf{Q} \ \mathbf{T}_{surr} \left\{ \frac{\mathbf{T}_{H} - \mathbf{T}_{C}}{\mathbf{T}_{H} \mathbf{T}_{C}} \right\}$$
Eqn 8

Note: In this equation Q is the absolute value of the amount of heat transferred (a positive quantity).

Verify: None of the assumptions made in this problem solution can be verified.

W_{s,lost}

Answers: Parts a & b :

6592 kJ

8D-2 Sgen and Wlost for a Compressor with Heat Losses

7 pts

The outer surface of a air compressor is at an average **temperature** of **485** K and the surroundings are at **300** K. The operating parameters for the compressor are given in the figure below.

a.) Calculate the internal, external and total entropy generation rates for the compressor in kW/K.

b.) Calculate the internal, external and total lost work for the compressor in kW.

c.) Show that the total **lost work** determined in **part (b)** is the difference between the power requirement of a completely reversible compressor that accomplishes the same change in state of the **air** stream and the actual **work** for the real compressor.

Read : Equations for evaluating <u>total</u> and <u>external</u> **entropy generation** can be obtained from **Lesson 8D**. You could just take the difference between these to determine the <u>internal</u> **entropy generation**. But it is useful to <u>understand</u> how the <u>position</u> of the <u>system boundary</u> can be <u>manipulated</u> to directly yield an equation for the <u>internal</u> **entropy generation**.

The keys are to use the 1st Law to determine **Q** and to use the 2nd Gibbs Equation and the Ideal Gas Entropy Function to evaluate Δ **S**.

Once the entropy generation rates are known, it is easy to determine the lost work rates.

In order to verify the <u>definition</u> of **lost work**, we must determine the amount of **work** a reversible compressor would require to accomplish the <u>same</u> compression process. \mathbf{Q}_{rev} must be different from \mathbf{Q}_{act} . The key to this part of the problem is that <u>total</u> entropy generation rate for the reversible compressor must be zero.

Given:	P ₁	96	kPa			T ₁	310	κ	
	P ₂	1200	kPa			T ₂	640	Κ	
	m	1.30	kg/s			T _{surf}	485	K	
	$\mathbf{W}_{s,act}$	-555	kW			T _{surr}	300	K	
Find:	a.)	S _{aen.int}	???	kW/K	b.)	W _{lost.int}	???	kW	
	-	S _{gen.ext}	???	kW/K	-	W _{lost.ext}	???	kW	
		S _{gen,tot}	???	kW/K		W _{lost,tot}	???	kW	
	c.)	Show that :		₩slost = Ŵ	S rev — WS act			E	qn 1

- Assumptions: 1 The surface temperature of the compressor remains <u>constant</u>. Therefore, it can be treated as a thermal reservoir.
 - 2 The compressor operates at steady-state with <u>negligible changes</u> in kinetic and potential energies.
 - **3 Air** behaves as an ideal gas.

Diagram: The diagram in the problem statement is adequate.

Equations / Data / Solve:

Part a.) We can use the following equations to evaluate the internal and total entropy generation rates.

$$\dot{S}_{gen,tot} = \dot{m} \Delta \hat{S} - \frac{\dot{Q}_{act}}{T_{surr}}$$
 Eqn 2

If we place the system boundary <u>far</u> from the surface of the compressor, then <u>ALL</u> of the irreversibilities are <u>inside</u> the system because the **temperature** at the system boundary is the <u>same</u> as the **temperature** of the surroundings. So, **heat exchange** between this big system and the surroundings is reversible.

This explains why using T_{surr} in Eqn 2 tells us that we are computing the <u>TOTAL</u> entropy generation rate. Because with this big system, there are <u>no irreversibilities</u> <u>OUTSIDE</u> the system boundary. Notice that heat transfer from this system does occur, but it occurs with zero temperature driving force, so it is reversible !

$$\dot{S}_{gen,int} = \dot{m}\Delta\hat{S} - \frac{\dot{Q}_{act}}{T_{surf}}$$
 Eqn 3

Using our <u>usual system boundary</u>, right <u>at</u> the surface of the compressor, heat exchange with the surroundings is irreversible. So, by using Eqn 3, with T_{surf} instead of T_{surr} , we have <u>excluded</u> the <u>external irreversibility</u> due to heat transfer through a <u>finite</u> temperature <u>difference</u>. So, this entropy generation equation gives us the <u>INTERNAL</u> entropy generation <u>only</u>!

The <u>external</u> **entropy generation rate** is <u>equal</u> to the <u>rate</u> at which the **entropy** of the <u>universe</u> (compressor and <u>surroundings</u>) <u>changes</u> due <u>only</u> to the **heat transfer** from the <u>compressor</u> to the <u>surroundings</u>.

$$\dot{S}_{gen,ext} = \dot{S}_{univ} = \dot{S}_{comp} + \dot{S}_{surr} = \frac{\dot{Q}}{T_{surf}} - \frac{\dot{Q}}{T_{surr}}$$
Eqn 4

The <u>minus</u> sign appears in **Eqn 4** because the sign of **Q** from the perspective of the system is negative, but from the perspective of the surroundings, **Q** > **0** because heat is <u>entering</u> the surroundings !

Eqn 4 can be rearranged to give us :

$$\dot{S}_{gen,ext} = \dot{Q} \left\{ \frac{T_{surf} - T_{surr}}{T_{surf} T_{surr}} \right\}$$
Eqn 5

~

Let's begin by determing ΔS for the working fluid using the 2nd Gibbs Equation and the Ideal Gas Property Table for air.

Next, we need to evaluate **Q**, the rate of **heat** loss from the compressor. We can do this using the 1st Law for open systems operating at steady-state with <u>negligible changes</u> in kinetic and potential energies.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \Delta \hat{\mathbf{H}} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1} \right)$$
 Eqn 7

S°₁ R MW

$$\dot{\mathbf{Q}} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1 \right) + \dot{\mathbf{W}}_s$$
 Eqn 8

Now, we can use the **Ideal Gas Property Table** for **air** to evaluate **H**₁ and **H**₂.

H°₁	97.396	kJ/kg	H ^o ₂	439.98	kJ/kg
Plug values ba	ack into Ear	7 to evaluate Q :	Q	-109.64	kW

Now, we are able to plug values back into Eqns 2, 3 & 5 to evaluate the entropy generation rates.

S _{gen,int}	0.25791	kW/K		
S _{gen,ext}	0.13941	kW/K	S _{gen,tot}	0.39731 kW/K

Double check your calculations using :

$$\dot{S}_{gen,tot} = \dot{S}_{gen,int} + \dot{S}_{gen,ext}$$
 Eqn 9

Part b.) Once we have completed **part (a)**, **part (b)** is a straightforward application of the relationship between **lost work** and **entropy generation**.

Eqn 10 applies for internal, external and total entropy generation and lost work.

W _{lost,int}	77.37 kW		
W _{lost,ext}	41.82 kW	W _{lost,tot}	119.19 kW
$$W_{S,lost} = W_{S,rev} - W_{S,act}$$
Eqn 11

In order to do this, we must evaluate Ws,rev.

The key to doing this is to understand that the reversible process still operates between state 1 and state 2. The values of Q and W_s are different from those for the real compressor.

The fact that ties this part of the problem together and allows us to determine Q and W_s for the reversible compressor is that :

$$\dot{S}_{\text{gen,tot,rev}} = \mathbf{0}$$
 Eqn 12

We can use this fact and solve Eqn 2 for Qrev :

$$\dot{\mathbf{Q}}_{rev} = \dot{\mathbf{m}} \mathbf{T}_{surr} \Delta \hat{\mathbf{S}}$$
 Eqn 13

Q_{rev} 9.55 kW

-435.81

119.19

Egn 14

kW

kW

 $\dot{W}_{\text{S,rev}} = \dot{Q}_{\text{rev}} - \dot{m} \Big(\hat{H}_2 - \hat{H}_1 \Big)$

 $W_{s,rev} - W_{s,act} =$

W_{S,rev}

Next, we can apply the 1st Law to the reversible compressor to evaluate W_{S,rev}.

We can solve Eqn 7 for W_{S,rev}. The result is :

Plugging values into Eqn 14 yields :

Finally, put values into the right-hand side of Eqn 11 :

This <u>matches</u> our result for **lost work** from **part (b)**. So, we have <u>confirmed</u> the relationship between reversible **work**, <u>actual</u> **work** and **lost work**.

Verify: None of the assumptions made in this problem solution can be verified.

0.258 kW/K 77.4 kW Answers : **b.)** W_{lost,int} a.) S_{gen,int} 0.139 kW/K 41.8 kW W_{lost,ext} S_{gen,ext} 0.397 kW/K W_{lost,tot} 119.2 kW S_{gen,tot} W_{S,rev} - W_{S,act} = 119.2 kW c.)

8D-3 Isentropic and 2nd Law Efficiencies of a Steam Turbine

6 pts

A steam turbine lets 2000 psia steam down to 60 psia. The inlet steam temperature is 1500°F and the isentropic efficiency is 88%.

a.) Calculate W_{S,act} in Btu/Ib_m

b.) Calculate the **2nd Law Efficiency** of the turbine. Assume T_{surr} = 75°F.

Read : The key to this problem is to assume that the turbine is adiabatic.

We can calculate the isentropic work of the turbine because $S_2 = S_1$ gives us the additional intensive variable value that we need to fix the state of the <u>outlet stream</u>. Then we can calculate the <u>actual</u> work from the isentropic work and the isentropic efficiency.

The **2nd Law Efficiency** is the <u>ratio</u> of the <u>actual</u> **work** that we found in **part (a)** to the <u>reversible</u> **work**. We need to know the <u>actual</u> **entropy** of the <u>outlet</u> <u>stream</u> in order to determine the <u>reversible</u> **work** for the <u>turbine</u>. We can use the <u>actual</u> **work** and the <u>1st Law</u> to determine the <u>actual</u> **enthalpy** of the <u>effluent</u>. This gives us the <u>second</u> intensive property we need in order to use the **Steam Tables** to evaluate **S**₂.

Given:	η _s	88%		Fin	d:	W _{s,act}	?1	??	Btu/lb _m
	P ₁	2000	psia			η	?1	??	%
	T ₁	1500	°F						
	P ₂	60	psia						
	T _{surr}	75	°F						

Diagram:

Assumptions:	1 -	The turbine is assumed to be adiabatic.
	2 -	Changes in kinetic and potential energies are negligible.

Equations / Data / Solve:

Part a.) The isentropic efficiency of an adiabatic turbine is defined by:

$$\eta_{s} = \frac{\hat{W}_{s,act}}{\hat{W}_{s,isen}} = \frac{\hat{H}_{1} - \hat{H}_{2,act}}{\hat{H}_{1} - \hat{H}_{2s}}$$
Eqn 1

$$\hat{\mathbf{W}}_{s,act} = \eta_s \cdot \hat{\mathbf{W}}_{s,isen} = \eta_s \left(\hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_{2s} \right)$$
 Eqn 2

We can solve Eqn 1 for W_{s.act} :

Because we know the values of two intensive properties at state 1, we can use the Steam Tables or the NIST Webbook to look-up H_1 . Because $T_1 > T_{critical}$ (1165.3°R), we need to look in the superheated vapor table for properties at state 1.

The key to determining H_{2S} is the fact that $S_{2S} = S_1$ and we can determine S_1 from the Steam Tables or the NIST Webbook.

S₁	1.7406	Btu/lb _m -°R
S _{2S}	1.7406	Btu/lb _m -°R

1779.2 Btu/lb_m

H₁

Now, we know the values of two intensive properties at state 2S, so we can determine the values of other properties at this state, such as T_{2S} and H_{2S}, by interpolating on the Steam Tables or the NIST Webbook. We begin by determining the phases present.

At P = 60 psia :	S _{sat liq} S _{sat vap}	0.4276 1.6454	Btu/lb _m -⁰R Btu/lb _m -⁰R	Since S₂ > S superheated	_{sat vap} , state vapor.	2S is a
Interpolation within the 6	0 psia superh	eated steam	table is required.			
At P = 60 psia :	T (°F)	H (Btu/lb _m) S (Btu/lb _m -°R)			
	400	1234.5	1.7149			
	T _{2S}	H _{2S}	1.7406	T _{2S}	449.9	°F
	600	1333.1	1.8181	H _{2S}	1259.1	Btu/Ib _m
Now, we can plug values	s back into Eq r	n 2 to evalua	te W _{S,act} :	W _{s,act}	457.7	Btu/lb _m

Now, we can plug values back into Eqn 2 to evaluate W_{S.act}:

The 2nd Law Efficiency of a turbine is defined as: Part b.)

$$\eta_{ii,turb} = \frac{\mathbf{W} \mathbf{S}_{s,act}}{\hat{\mathbf{W}}_{s,rev}}$$
 Eqn 3

۱Â/

 H_2

The reversible work can be determined from :

$$\hat{\mathbf{W}}_{s,rev} = \mathbf{T}_{surr} \Delta \hat{\mathbf{S}} - \Delta \hat{\mathbf{H}}$$
 Eqn 4

1321.5

Btu/lb_m

We could determine S_2 if we knew H_2 . We can determine H_2 from and $W_{S,act}$ by applying the 1st Law to the actual, adiabatic process where changes in kinetic and potential energies are negligible.

$\hat{\mathbf{Q}} - \hat{\mathbf{W}}_{s} = \Delta \hat{\mathbf{H}}$	Eqn 5	or:	$\hat{\mathbf{H}}_2 = \hat{\mathbf{H}}_1 - \hat{\mathbf{W}}_{S,act}$	Eqn 6

Plugging values into Eqn 6 yields:

Now that we know the values of two intensive variables at state 2, P2 and H2, we can interpolate on the Steam Tables or NIST Webbook data to determine S_2 . Because $H_2 > H_{2S}$, and state 2S is a superheated vapor, we know that the <u>actual</u> **state 2** is a superheated vapor.

At P = 60 psia :	T (°F)	H (Btu/lb _m)	S (Btu/Ib _m -°R)			
	400	1234.5	1.7149			
	T ₂	1321.51	S ₂	T ₂	576.5	°F
	600	1333.1	1.8181	S ₂	1.8059	Btu/Ib _m -°R

Now, using $T_{surr} = 75^{\circ}F$, we can use Eqn 4 to calculate $W_{s,rev}$ and then use Eqn 3 to evaluate the 2nd Law Efficiency of the turbine.

T _{surr}	534.67	°R	Ws	S,rev	492.6	Btu/lb _m
				n"	92.9%	1

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : Part a.)	W _{s,act}	458	Btu/Ib _m	Part b.)	η _{ii}	92.9%	
Dr. B - LearnThern	no.com		Ex 8D-3	Copyright B-0	Cubed 2014	, all rights rese	erved

Read : We can calculate the isentropic work requirement of the compressor because $S_2 = S_1$ gives us the <u>additional</u> intensive variable value that we need to <u>fix</u> the state of the <u>effluent</u> stream. Then we can calculate the <u>actual</u> work from the isentropic work using the isentropic efficiency.

We need to know the <u>actual</u> **entropy** of the effluent in order to determine the <u>reversible</u> **work** for the turbine. We can use the <u>actual</u> **work** and the 1st Law to determine the <u>actual</u> **enthalpy** of the effluent. This gives us the <u>second</u> intensive property we need in order to interpolate on the Ideal Gas Property Table for **air** to evaluate S_2^{o} . Once we know S_2^{o} , we can use the 2nd Gibbs Equation to determine S_2 . Use S_2 to evaluate $W_{s,lost}$. The 2nd Law Efficiency is the <u>ratio</u> of the <u>actual</u> work to the reversible work that we found in part (a).

Given:	η _s	72%		Find:	W _{s,act}	???	kW
	P ₁	105	kPa		W _{s,rev}	???	kW
	T ₁	310	К		W _{s,lost}	???	kW
	P ₂	4250	kPa		η _{ii}	???	%
	m _{dot}	1.4	kg/s				
	T _{surr}	310	К				

Diagram: The diagram in the problem statement is adequate.

Assumptions:	1 -	The compressor operates at steady-state

- 2 The compressor is adiabatic.
- **3** <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.

Equations / Data / Solve:

Part a.) The isentropic efficiency of an adiabatic compressor is defined by:

$$\eta_{s} = \frac{-\hat{W}_{s,isen}}{-\hat{W}_{s,act}} = \frac{\hat{H}_{2s} - \hat{H}_{1}}{\hat{H}_{2,act} - \hat{H}_{1}}$$
Eqn 1

We can solve Eqn 1 for W_{S.act} :

$$\hat{\mathbf{W}}_{s,act} = \frac{\hat{\mathbf{W}}_{s,isen}}{\eta_s} = \frac{\left(\hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_{2s}\right)}{\eta_s}$$
 Eqn 2

Because we <u>assumed</u> air is an ideal gas and we know T_1 , we can look-up H_1 in the **Ideal Gas Property Table** for air.

Next, we need to determine T_{2S} so we can look-up H_{2S} in the **Ideal Gas Properties Table** for **air**. We can either use the Ideal Gas Entropy Function or the Relative Pressure Method.

Method 1: Use the Ideal Gas Entropy Function.

The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function is :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 = \hat{\mathbf{S}}_{T2S}^\circ - \hat{\mathbf{S}}_{T1}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \operatorname{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1} = \mathbf{0}$$
 Eqn 3

We can solve Eqn 3 for the unknown S^{o}_{T2} :

$$\hat{\mathbf{S}}_{\text{T2S}}^{\circ} = \hat{\mathbf{S}}_{\text{T1}}^{\circ} + \frac{R}{MW} \operatorname{Ln} \frac{P_2}{P_1}$$
 Eqn 4

Ŵ=ṁŴs

-1117.2

W_{s,act}

Eqn 5

kW

We can look up \mathbf{S}°_{T1} in the **Ideal Gas Property Table** for **air** and use it with the <u>known</u> **pressures** in **Eqn 4** to determine \mathbf{S}°_{T2} .

Now, we can use S^{o}_{T2} and the Ideal Gas Property Table for air to determine T_{2} and then H_{2} by interpolation :

Т (К)	S° (kJ/kg-K)	H° (kJ/kg)
840	1.0850	658.42
T _{2S}	1.1010	H _{2S}
860	1.1112	680.67
√ow, we c	an plug values l	back into Eqr

The <u>rate</u> at which **work** is <u>actually</u> done can be determined using :

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$\frac{P_r(T_{2S})}{P_r(T_1)} = \frac{P_2}{P_1}$$
 Eqn 6

Where **P**_r is the Ideal Gas Relative Pressure, which is a function of **T** only and we can look-up in the Ideal Gas Property Table for air.

We can solve Eqn 6 For
$$P_r(T_{2s})$$
, as follows : $P_r(T_{2s}) = \frac{P_2}{P_1}P_r(T_1)$ Eqn 7

Look-up $P_r(T_1)$ and use it in Eqn 7 To determine $P_r(T_{2S})$:

46.353

-1116.73

kW

We can now determine T_{2S} by interpolation on the the **Ideal Gas Property Table** for air. Then, we use T_{2S} to determine H_{2S} from the Ideal Gas Property Table for air.

T (K)	Pr	H [°] (kJ/kg)			
840	43.852	658.42			
T _{2S}	46.353	H _{2S}	T _{2S}	851.95	κ
860	48.039	680.67	H _{2S}	671.71	kJ/kg
Now, we ca	an plug values	back into Eqn 2 to get :	W _{s,act}	-797.66	kJ/kg

Then, use Eqn 5 to determine the rate at which shaft work is actually done :

The two key equations for determining lost and reversible work are :

$$(\dot{W}_s)_{lost} = (\dot{W}_s)_{rev} - (\dot{W}_s)_{act}$$
 Eqn 8

W_{s,act}

$$(\dot{W}_{s})_{lost} = \dot{m} T_{surr} \hat{S}_{gen} = \dot{m} T_{surr} \Delta \hat{S} - \dot{Q}_{act} \left(\frac{T_{surr}}{T_{HT}} \right)$$
Eqn 9

Because the process is adiabatic, Eqn 9 simplifies to :

$$(\dot{\mathbf{W}}_{s})_{lost} = \dot{\mathbf{m}} \mathbf{T}_{surr} \left(\hat{\mathbf{S}}_{2} - \hat{\mathbf{S}}_{1} \right)$$
 Eqn 10

We can determine S₁ from the Ideal Gas Property Table for air but we still need to know S₂.

Since we know (W_s)_{act}, we can determine H_{2,act} by applying the 1st Law. The appropriate form of the 1st Law for this adiabatic, open system, operating at steady-state with negligible changes in kinetic and potential energies is :

$$-\left(\hat{\mathbf{W}}_{s}\right)_{act} = \hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1}$$
 Eqn 11

$$\hat{\mathbf{H}}_2 = \hat{\mathbf{H}}_1 - \left(\hat{\mathbf{W}}_s\right)_{act}$$
 Eqn 12

Solve Eqn 11 for H₂:

Plug numbers into Eqn 12 :

	We alread	y obtained S°_{T1} f	from the Ideal Gas Prop e	erty Table fo	or air : S	S° _{T1}	0.038914	kJ/kg
	Now, we ca	an <u>interpolate</u> or	n the Ideal Gas Property	Table for ai	r to determir	he T_2 and S°_{T}	2:	
	Т (К)	S° (kJ/kg-K)	H ^o (kJ/kg)					
	1040	1.3257	883.90			Method 1	Method 2	
	T ₂	S° _{T2}	H ₂		T ₂	1050.1	1049.7	K
	1060	1.3475	906.80		S° _{T2}	1.3367	1.3363	kJ/kg-K
	Now, we a <u>actual</u> turb	pply Eqn 3 to the ine to evaluate 2	e A S :	$\Delta \hat{S} = \hat{S}^2$	°r2— Ŝ°11—	R MW Ln	2 2 1	Eqn 13
					∆S	<u>Method 1</u> 0.23571	<u>Method 2</u> 0.23535	kJ/kg-K
	Now, plug	values back into	Eqns 10 & 8 to get :		W _{s,lost} W _{s,rev}	<u>Method 1</u> 102.30 -1015.0	<u>Method 2</u> 102.14 -1015.1	kW kW
Part b.)	The 2nd L	aw Efficiency o	of a <mark>turbine</mark> is defined as:		$\eta_{ii,comp} =$	₩́s,rev Ŵs,act		Eqn 14
	Plugging v	alues into Eqn 1	4 gives us:	[ղ _{ii}	<u>Method 1</u> 90.84%	<u>Method 2</u> 90.90%	l
	<u>Note</u> : We	<u>could</u> have dete	rmined the reversible wo	rk from :	$\hat{\mathbf{W}}_{\mathtt{S,rev}} =$	$T_{surr}\Delta\hat{S}$ -	$-\Delta \hat{H}$	Eqn 14

Verify: Check the Ideal Gas Assumption:

24.55

 $\tilde{V} = \frac{RT}{P}$

V₂ = 2.05 L/mole

Air can be considered to be a diatomic gas, but the **molar volume** at **state 2** is <u>not greater than</u> **5** L/mole. So, it is <u>not accurate</u> to treat the **air** as an ideal gas.

Answers : Part a.)

V₁ =

W_{s,act} -1117 kW W_{s,lost} 102.3 kW W_{s,rev} -1015 kW

L/mole

Part b.) η_{ii} 90.8%

This chapter focuses on practical aspects of power generation using heat engines. In particular, we look at how the efficiency of power cycles can be increased.

The first part of the chapter covers the Rankine vapor power cycle. Five variations on the Rankine Cycle that increase the thermal efficiency of the cycle are discussed in detail.

In the second half of this chapter, gas power cycles are discussed. Many gas power cycles exist, but we limit our discussion to the Air-Standard Brayton Power Cycle. Four variations on the Air-Standard Brayton Power Cycle that increase the thermal efficiency of the cycle are discussed.

The impact of process irreversibilties on the thermal efficiencies of these cycles are also discussed.

Workbook

LearnThermo.com[™]

LearnThermo.com

TS Diagram: Power Cycles

- This is a TS Diagram of a Vapor Power Cycle
- A Gas Power Cycle looks the same, but the 2-phase envelope is

$$\dot{\mathbf{Q}}_{\text{cycle}} = \dot{\mathbf{W}}_{\text{Sh,cycle}}$$

$$\dot{\mathbf{m}}\,\mathbf{d}\hat{\mathbf{S}} = \int \left(\frac{\delta\,\dot{\mathbf{Q}}}{T}\right)_{\rm int\,r}$$

$$\frac{\dot{\mathbf{W}}_{\mathrm{sh,cycle}}}{\dot{\mathbf{m}}} = \int_{1}^{2} \mathbf{T} \, d\hat{\mathbf{S}} + \int_{2}^{3} \mathbf{T} \, d\hat{\mathbf{S}} + \int_{3}^{4} \mathbf{T} \, d\hat{\mathbf{S}} + \int_{4}^{1} \mathbf{T} \, d\hat{\mathbf{S}} = \text{Enclosed Area}$$

• In Vapor or Gas Power Cycles, the area enclosed by the cycle path is, once again, equal to the <u>specific shaft work</u> produced by the cycle.

- •The 1st Law for a cycle tells us that $Q_{cycle} = W_{cycle}$.
- The definition of entropy allows us to evaluate Q for each step in our reversible Carnot Cycle as the integral of T dS.
- When we put these equations together and integrate all the way around the cycle...
 - We again find that the area enclosed by the cycle path is equal to the <u>specific shaft</u> work produced by the cycle.
- Remember that power cycles proceed clockwise around the cycle path on TS Diagrams as well.

• The types of pumps and turbines that are **Carnot Is Not Practical** most efficient are easily damaged by 2phase mixtures. Why is the Carnot Vapor Power Cycle impractical ? • Also, pump efficiency drops significantly when vapor is present. Most pumps do not handle vapor-liquid mixtures well • We need to be able to use subcooled liquid feed to the boiler to avoid cavitation (vapor Pumps that do are more expensive and less efficient. bubbles) in the pump. Turbines do not work well with low quality • We need to produce superheated vapor in the boiler to improve the quality of the tur-Quality must be greater than 90% at the outlet bine effluent. This is difficult to achieve without superheating in the reboiler • The problem is that both of these practical improvements prevent the boiler from oper-Using strictly isothermal heating prevents... ating isothermally ! Subcooled liquid feed to the boiler which would make the pump more This makes it almost impossible to make efficient heat transfer in the boiler reversible because Superheating in the boiler effluent which would increase turbine effluent the inlet and outlet temperatures are differauality ent. • No matter what temperature you use for your hot reservoir, there is going to be a finite temperature difference and therefore irreversibility and lost work.

• This is a trade-off that we must accept to make our pump and turbine work well.

Workbook

LearnThermo.com

The Rankine Cycle

- A practical vapor power cycle
 - Minimizes cavitation problems in the pump
 - Allows for the possibility of superheating in the boiler

• The Rankine Cycle

• Step 1-2: Boiler Heat added at constant pressure

- Step 2-3 Turbine Isentropic expansion
- Step 3-4: Condenser Heat rejected at constant pressure
- Step 4-1: Pump Isentropic compression

• Internally Reversible

• External irreversibility due to heat transfer through a finite temperature difference in the boiler

- In the Rankine Cycle, the boiler and condenser operate at constant pressure, but not necessarily at constant temperature.
- This allows the use of subcooled liquid boiler feed.
- In a modified version of the Rankine Cycle, we will also use superheating in the boiler.
- More about this in the next lesson.
- The irreversible heat transfer in the boiler means that the Rankine Cycle is NOT as efficient as the Carnot Cycle.
- We cannot calculate its efficiency based only on the reservoir temperatures, because it is not completely reversible.
- In order to determine the efficiency of a Rankine Cycle, we must analyze each step in the process, calculate $W_{Sh,cycle}$ and Q_H and then use them to determine the thermal efficiency of the cycle from its definition: $h = W_{Sh,cycle} / Q_H$.

- The Rankine Cycle is internally reversible.
 - The pump and turbine are isentropic.
- Heat transfer at the boiler is irreversible.
- The Rankine Cycle...
 - Addresses the problem with pumping a two-phase mixture.
 - Does not address the problem of low quality in the turbine effluent.
 - But allows for the possibility of fixing this problem by producing superheated vapor in the boiler.
 - This will be a modification / improvement to the Rankine Cycle that we will study in the next lesson.

Workbook

LearnThermo.com

- When we operate the boiler at a higher pressure, BOTH W_{Sh} and Q_H increase.
- The good news is that \mathbf{W}_{Sh} increases by a larger amount.
- The net result is an INCREASE in the thermal efficiency of the cycle. Whoohoo !
- The bad news is that the quality of the turbine effluent drops even lower.
- We will see in the next lesson that this problem can be addressed by superheating the turbine feed in the boiler.

- When we operate the condenser at a lower pressure, W_{Sh} increases while Q_H remains the same.
- The result is an INCREASE in the thermal efficiency of the cycle. Whoohoo !
- Unfortunately, the quality of the turbine effluent drops.
- Again, we will see in the next lesson that this problem can be addressed by superheating the turbine feed in the boiler.

LearnThermo.com

Improvements on the Rankine Cycle

- Superheat Rankine Cycle
 - $\diamond\,$ Almost always used, improves η and turbine effluent quality
- Supercritical Rankine Cycle
 - $\diamond~$ Increases $\eta.~$ Not common b/c, for steam, T and P are very high & materials become very expensive.
- Reheat Rankine Cycle
 - Very common way to improve turbine effluent quality
 - $\diamond \quad \eta \text{ drops slightly unless regeneration is used as well.}$
- Regeneration Rankine Cycle
 - Preheating boiler feed reduces irreversibility of heat transfer
 Increases η.
- Binary Rankine Cycle
 - $\diamond~$ Not very common.
 - Main advantage is $T_H >> T_C Big$ increase in η , but also increases cost to build.
- Rankine Cycle with Cogeneration
 Use some of the HP turbine effluent in another process.

- All of the improvements are designed to either..
 - Increase the quality of the turbine effluent.
- Increase the thermal efficiency of the cycle.
- ♦ OR BOTH !
- Cogeneration is not really an improvement to the Rankine Cycle.
- ◊ It is more of an optional mode of operation.

Workbook

LearnThermo.com

- Big boost to efficiency.
- Not so common when steam is the working fluid because the critical point of water is so high...**373.95°C**.
 - This forces the boiler to operate at very high temperatures.
 - This requires the boiler and turbine to made of very expensive materials.
- More useful when steam is not the working fluid.

LearnThermo.com

•Use two working fluid in two separate superheat Rankine Cycles.

- •A common choice has been mercury and water.
- Mercury is a good high-temperature fluid, but it is relatively toxic.
- The key that connects the two cycles is a heat exchanger.
 - As the high-temperature working fluid condenses, it gives up its heat to boil the low-temperature fluid.
 - ♦ Cool, eh?
- A binary cycle yields a very high efficiency, but costs almost twice as much as our standard superheat Rankine Cycle.

Workbook

٥

LearnThermo.com

Irreversibilities

• 4 main sources of irreversibility in a <u>real</u> power cycle:

- Heat losses to the surroundings
 - Effects every process as well as the pipes that connect them.
- Fluid friction
 - Effects every process as well as the pipes that connect them.
 - Result is pressure drop. This causes the temperature to drop as well in the boiler and condenser.
- Mechanical losses
 - Friction & rapid expansion & compression)
 - Effects the turbine and the pump the most.
 - Causes entropy to increase.

Subcooling in the condenser

• Necessary to avoid cavitation in the pump.

- Consider a real power cycle that is setup to follow the Rankine Cycle as close as possible.
- Irreversibilities make it impossible for the real cycle to be a Rankine Cycle.
- This is a short list of the main sources of irreversibility.
- On the next page we will see what the real cycle path looks like on a **TS** Diagram.

- Every step in the process path is skewed.
- Every form of irreversibility adds to the entropy generation and the lost work.

LearnThermo.com

Chapter 9

Irreversibilities & Lost Work							
• From Lesson 8D:	$\dot{\mathbf{S}}_{\text{gen,tot}} = \dot{\mathbf{m}} \Delta \hat{\mathbf{S}} - \sum_{i}^{\text{Processes}} \frac{\dot{\mathbf{Q}}_{\text{act},i}}{\mathbf{T}_{\text{res},i}}$						
	$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \mathbf{T}_{\mathrm{surr}} \sum_{i}^{\mathrm{Processes}} \left[\dot{\mathbf{S}}_{\mathrm{gen,tot}} \right]_{i}$						
	$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \mathbf{T}_{\mathrm{surr}} \sum_{i}^{\mathrm{Pr}\mathrm{ocesses}} \frac{-\dot{\mathbf{Q}}_{\mathrm{act},i}}{\mathbf{T}_{\mathrm{res},i}}$						
• Now, include the effect	$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \mathbf{T}_{\mathrm{surr}} \left(\frac{\dot{\mathbf{Q}}_{\mathrm{C,act}}}{\mathbf{T}_{\mathrm{C,res}}} - \frac{\dot{\mathbf{Q}}_{\mathrm{H,act}}}{\mathbf{T}_{\mathrm{H,res}}} \right)$						
of direct heat lost to the surroundings:	$\dot{\mathbf{W}}_{\mathrm{Sh,lost}} = \mathbf{T}_{\mathrm{surr}} \left(\frac{\dot{\mathbf{Q}}_{\mathrm{C,act}}}{\mathbf{T}_{\mathrm{C,res}}} - \frac{\dot{\mathbf{Q}}_{\mathrm{H,act}}}{\mathbf{T}_{\mathrm{H,res}}} \right) + \dot{\mathbf{Q}}_{\mathrm{lost}}$						

- The algebra is shown in Thermo-CD.
- The bottom line on heat lost is simple.
- Any heat lost results in a DIRECT increase in the lost work.
- ♦ This not surprising.
- Any energy that is transferred to the surroundings (the DEAD state) is LOST !

- The Brayton Cycle is an internal combustion engine.
 - This means heat is not added to the cycle in a HEX.
 - Instead, a chemical reaction (combustion) is carried out within the cycle.
 - The energy released by the chemical reaction increases the temperature of the working fluid (air-fuel-combustion products mixture).
 - This complicates the system a great deal because we no longer have a pure working fluid.

- Gas-turbine engines are used for transportation.
 - ◊ Warships
- ◊ Abrams tanks
- Gas turbines are also commonly used for electrical power generation.
- Other types of gas power cycles are better suited to other applications.
 - The Diesel Cycle is a reasonable approximation of the cycles used in many trucks, trains and ships.
 - The Otto Cycle is a reasonable approximation of the cycles used in gasoline powered automobile engines.
 - The Brayton Cycle is the only gas power cycle we will consider in this course.
- The Brayton Cycle is an open cycle because fresh working fluid is draw into the cycle and spent working fluid is rejected from the cycle.
 - This almost invariably means the working fluid is air.

The Air-Standard Brayton Cycle

Air-Standard Assumptions

- \diamond Air is the working fluid and it behaves as an ideal gas.
- The Brayton Cycle is modeled as as a closed cycle.
- \diamond $\;$ The combustor is replaced by HEX #1. (External Combustion)
- All processes are internally reversible.

- It is much easier to analyze the performance of the Air-Standard Brayton Cycle.
- We lose some accuracy by assuming the air is an ideal gas.
 - But we can still learn a great deal about how Brayton Cycles work and how different operating parameters effect their efficiency.
- In an internally reversible Brayton Cycle, the Compressor and Turbine are adiabatic and therefore, isentropic.
- But, in Ch 7 and Ch 8 we learned how to use isentropic efficiency to take irreversibilities into account.
- We will use isentropic efficiencies for the compressor and turbine in Brayton Cycles to develop slightly more realistic models of their performance.
- We will always consider the heat exchangers to be isobaric.

• **PV** and **TS** Diagrams for the internally reversible Brayton Cycle are pretty simple.

The Cold Air-Standard Assumption

- The heat capacities of air are <u>constant</u> and always have the values determined at 25° C.
- Compression Ratio:

$$r_{\rm P} = \frac{P_1}{P_4}$$

• Thermal efficiency of an internally reversible, cold air-standard Brayton Cycle:

$$\eta_{\rm th} = 1 - \frac{1}{r_{\rm p}^{\left[(\gamma-1)/\gamma\right]}}$$

- The cold <u>air-standard</u> assumption makes analysis of the Brayton Cycle pretty straightforward.
 - \circ **C**_P and **C**_V are both assumed to be constant. Nothing complicated like the Shomate Equation is used in this model.
 - C_P and C_V are both evaluated at 25°C.
 - Because gas turbines generally do not operate anywhere near 25°C, this assumption introduces some very significant error.
 - Still, the cold air-standard model helps us understand the trends observed in a real gas power cycle without all the tedious calculations.
 - We are also able to understand how the Brayton Cycle can be improved.
- The derivation of the thermal efficiency of the <u>air-standard</u> Brayton Cycle is in Thermo-CD.
- ♦ It isn't long or hard.
- Take the time to understand it and you will have a good grasp of how to analyze Brayton Cycles.
- The boxed equation is the result.

- The shaded band represents the range of compression ratios that are commonly used.
- The graph shows that the corresponding range of thermal efficiency is from about 37% to about 58%.
- That is not bad when you consider the efficiency of most automobile engines is less than **35%**.

Improvements to the Brayton Cycle

Regeneration

- Use the hot turbine effluent to preheat the feed to the combustor.
- Reheat
 - Use a 2-stage turbine and reheat the effluent from the HP turbine before putting into the LP turbine.
- Intercooling
 - Use a 2-stage compressor with an intercooler.

• Regeneration with Reheat and Intercooling

• Use all of the techniques listed above to achieve high efficiency.

- Regeneration and reheat work in the same way that they do in a vapor power cycle.
- Regeneration can improve the efficiency if the proper compression ratio is used.
- Reheat reduces the efficiency of the cycle unless it is used with regeneration.
 - Reheat can help keep operating temperatures down.
- ♦ This can reduce equipment costs.
- A 2-stage compressor costs more and actually lowers the thermal efficiency of the cycle...
 - Our Unless it is used in combination with regeneration !
- When you use regeneration with both a 2stage turbine with reheat and a 2-stage compressor with intercooling, the thermal efficiency increases substantially !
 - In fact, if you could use an infinite number of compressor stages with intercoolers...
 - And an infinite number of turbine stages with reheat...
 - You would have a CARNOT cycle and you would get maximum efficiency !
- ♦ You would also have infinite cost !

- The boxed equation applies for an internally reversible <u>air-standard</u> Brayton Cycle with Regeneration.
- A closed cycle is shown here because this is the way we will analyze Brayton Cycles, even though they are usually open.
- The hot turbine effluent, stream 5, is used to preheat the compressed air that enters the combustor, stream 3.
- Regeneration does not effect the power generated by the cycle, but reduces Q_H and Q_C and thereby increases the efficiency of the cycle.

LearnThermo.com

- For certain compression ratios, the regeneration cycle is significantly more efficient.
 The bonus is that the regenerative cycle is more efficient at LOW compression ratios !
 The result is that the compressor is less
 - expensive to purchase and to operate.

- Reheat increases **Q**_H and **Q**_C, but DECREASES the thermal efficiency.
- It does help avoid very high operating temperatures which drive up the costs of the equipment.
- Reheat is never used without regeneration in a Brayton Cycle.

Workbook

LearnThermo.com

Brayton Cycle with Intercooling Image: Cycle with Intercooling Imag

- Intercooling reduces the power requirement for compression.
- It also increases Q_H and Q_C . But it increases Q_C by more !
- The net result is a slight DECREASE in the thermal efficiency.
- Intercooling is never used without regeneration.

- This is the way real gas turbine power cycles are operated.
- The increase in thermal efficiency is substantial when all the improvements are combined.
- The intercooler reduces the compressor work.
- The reheater keeps the maximum operating temperature down while increasing Q_{H} .
- The regenerator facilitates the intercooler and reheater while maintaining a high thermal efficiency.
- This is the top of the line.
- It is also the most complex system we will analyze in this course.

Read : The key is that the cycle is an <u>ideal</u> **Rankine Cycle**. This means that the pump and turbine operate isentropically and that the condenser <u>effluent</u> is a saturated liquid.

Constructing the plots requires looking-up <u>a</u> lot of data. This can be done most efficiently using the **NIST Webbook** to generate data tables that can be copied and pasted into **Excel**.

Given:	$P_1 = P_2$	10	МРа	m	75	kg/s
	T ₂	550	°C			

Find: Plot W_{cycle} and η_{th} as functions of P_4 .

Diagram:

The pump and the turbine are adiabatic and reversible and, therefore, isentropic. Only **flow work** crosses the boundary of the boiler and condenser.

Equations / Data / Solve:

Let's begin with a very detailed analysis of the problem for a single condenser pressure of 10 kPa.

Then, we can present a <u>table</u> of <u>results</u> for <u>all</u> of the other <u>condenser</u> **pressures** so we can construct the <u>plot</u> that is required.

Let's <u>organize</u> the **data** that we need to collect into a <u>table</u>. This will make it easier to keep track of the values we have looked up and the values we have calculated.

Stream	State	T (°C)	P (kPa)	Х	H (kJ/kg)	S (kJ/kg-K)
1	Sub Liq	46.14	10000	N/A	201.88	0.64920
2	Super Vap	550	10000	N/A	3502.0	6.7585
3	VLE	45.81	10	0.8146	2140.4	6.7585
4	Sat Liquid	45.81	10	0	191.81	0.64920

Additional **data** that may be useful.

State	T (°C)	P (kPa)	X	H (kJ/kg)	S (kJ/kg-K)
Sat Vap	45.81	10	1	2583.9	8.1488
Sat Liquid	45.81	10	0	191.81	0.64920
Sat Vap	311.06	10000	1	2725.5	5.6160
Sat Liquid	311.06	10000	0	1408.1	3.3606

The values in the table that are shown in **bold** with a **yellow** <u>background</u> are the values we <u>will</u> determine in the following solution.

One approach to solving cycle problems of this nature is to work your way <u>around</u> the cycle until you have evaluated <u>all</u> the properties to <u>complete</u> the **table** shown <u>above</u>. Then, you can go back and <u>apply</u> the <u>1st Law</u> to <u>each</u> process in the cycle to <u>evaluate</u> \mathbf{Q} and \mathbf{W}_s as need. That is the approach I will take.

In this problem, it makes the most sense to begin at either **state 2** or **state 4** because these **states** are <u>completely fixed</u> (this means we know the values of <u>two</u> intensive properties and we can use them to determine the values of <u>any other</u> intensive properties using the **NIST Webbook**. I will begin at **state 2**.

H ₂	3502.0	kJ/kg	S ₂	6.7585	kJ/kg-K
Because the tu	urbine is ise	ntropic , we know that $S_3 = S_2$:	S₁	6.7585	kJ/ka-K

Now, we know the values of two intensive properties at state 3, so this state is completely fixed and we can lookup all of its properties.

We can see from the <u>additional</u> data <u>table</u> that $S_{sat liq} < S_3 < S_{sat vap}$. Therefore, state 3 is a two-phase mixture, $T_3 = T_{sat}$ at 10 kPa and we must determine the quality so that we can determine the enthalpy.

$$\mathbf{x}_{3} = \frac{\mathbf{S}_{3} - \mathbf{S}_{\text{satliq}}}{\mathbf{\hat{S}}_{\text{sat vap}} - \mathbf{\hat{S}}_{\text{satliq}}}$$
Eqn 1
45.81 °C x₃ 0.8146 kg vap/kg

T₃

$$\hat{\mathbf{H}}_{3} = \mathbf{X}_{3} \, \hat{\mathbf{H}}_{\mathsf{sat vap}} + \left(\mathbf{1} - \mathbf{X}_{3}\right) \hat{\mathbf{H}}_{\mathsf{sat liq}}$$

H₃ 2140.4

Eqn 2

kJ/ka

We can look-up <u>all</u> the properties at **state 4** because the **state** is <u>completely fixed</u> by the fact that the **fluid** is a <u>saturated liquid</u> leaving the <u>condenser</u> in an <u>Ideal Rankine Cycle</u> and because we know the pressure is **10 kPa**.

Next, we proceed to state 1 using the fact that the pump is also isentropic: $S_1 = S_4$.

0.64920 kJ/kg

S₁

Now, we know the values of two intensive properties at state 4, so this state is completely fixed and we can lookup all of its properties.

We can see from the <u>additional data table</u>, above, that $S_4 < S_{sat liq}$. Therefore, state 4 is a subcooled liquid. We can look-up its properties in the **NIST Webbook**. The **NIST Webbook** require <u>interpolation</u> or repeated temperature range selection to zero-in on the precise property values for state 4.

By zooming-in on a very narrow temperature range, I found :	T ₁	46.14	°C
	H ₁	201.88	kJ/kg

Interpolation on a wider temperature range is shown below. The results are very similar.

<u>At 10 MPa :</u>	T (°C)	H (kJ/kg)	S(kJ/kg-K)			
	45	197.15	0.63436			
	T ₁	H ₁	0.64920	T ₁	46.14	°C
	50	217.94	0.69920	H ₁	201.91	kJ/kg

Now, we have <u>all</u> the <u>information</u> we need to apply the 1st Law to <u>each device</u> in the cycle to determine **Q** and W_s for <u>each device</u>. This process is made easier by our <u>assumptions</u> that <u>no</u> **shaft work** crosses the boundary of the <u>boiler</u> or <u>condenser</u> and that <u>both</u> the <u>pump</u> and the <u>turbine</u> are <u>adiabatic</u>.

The four relevant forms of the 1st Law are :

· ~	~	
> \A/		
J — VV_	$= \Lambda \Pi$	E
- ••s	<u></u>	

 $\hat{\mathbf{Q}}_{\text{boil}} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1$ Eqn 5

Turbine :

$$\hat{W}_{s,turb} = \hat{H}_2 - \hat{H}_3$$
 Eqn 6

Condenser :

Pump:

$$\hat{\mathbf{W}}_{\mathbf{S},\mathsf{pump}} = \hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_1$$
 Eqn 8

Plugging values into Eqns 5 - 8 yields :

- - -

Q _{boil}	3300.1	kJ/kg	W _{turb}	1361.6	kJ/kg	
Q _{cond}	-1948.6	kJ/kg	W _{pump}	-10.071	kJ/kg	
Q _{boil}	247.5	MW	W _{turb}	102.12	MW	
Q _{cond}	-146.1	kW	W _{pump}	-755.3	kW	

Finally, we can calculate the **thermal efficiency** of this cycle.

$$\eta_{th} = \frac{W_{cycle}}{Q_{boil}}$$
Eqn 9

<mark>η_{th} 40.95%</mark>

W_{cycle}

101.36

MW

Tropoding this dridiyors for a variety of condenser pressures yield the following table of results.

P _{cond}	H ₃	H ₄	S ₄	H ₁	W _{cycle}	Q _H	
(kPa)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(kJ/kg)	(MW)	(MW)	η_{th}
10	2140.4	191.81	0.64920	201.88	101.4	247.5	41.0
20	2226.2	251.42	0.83202	261.55	94.9	243.0	39.1
30	2279.2	289.27	0.94407	299.44	90.9	240.2	37.9
40	2318.3	317.62	1.0261	327.83	88.0	238.1	37.0
50	2349.4	340.54	1.0912	350.77	85.7	236.3	36.3
60	2375.4	359.91	1.1454	370.15	83.7	234.9	35.6
70	2397.8	376.75	1.1921	387.02	82.0	233.6	35.1
80	2417.5	391.71	1.2330	401.99	80.6	232.5	34.7
90	2435.2	405.20	1.2696	415.49	79.2	231.5	34.2
100	2451.1	417.50	1.3028	427.81	78.0	230.6	33.8
110	2465.8	428.84	1.3330	439.15	76.9	229.7	33.5
120	2479.3	439.36	1.3609	449.68	75.9	228.9	33.2
130	2491.8	449.19	1.3868	459.52	75.0	228.2	32.9
140	2503.5	458.42	1.4110	468.76	74.1	227.5	32.6
150	2514.5	467.13	1.4337	477.47	73.3	226.8	32.3
160	2524.9	475.38	1.4551	485.73	72.5	226.2	32.1
170	2534.7	483.22	1.4753	493.58	71.8	225.6	31.8
180	2544.0	490.70	1.4945	501.06	71.1	225.1	31.6
190	2552.8	497.85	1.5127	508.22	70.4	224.5	31.4
200	2561.3	504.70	1.5302	515.07	69.8	224.0	31.1

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

9B-2 Steam Power Plant Operating on the Rankine Cycle

Consider the Rankine Power Cycle shown below. Steam is the working fluid. The hot and cold thermal reservoirs are at 500°C and 10°C, respectively. The boiler operates at 12 MPa and the condenser operates at 100 kPa. The

9 pts

pump is isentropic and the turbine has an **isentropic efficiency** of **84%**. The pump and turbine are adiabatic. The **temperature** of the surroundings is $T_{surr} = 300$ K.

a.) Construct a neat, fully labelled **TS Diagram** of the cycle. Calculate...

b.) Q & W for each unit in the cycle, in kJ/kg.

c.) The thermal efficiency of the power cycle.

d.) The total entropy generation in kJ/kg-K and the total lost work in kJ/kg for the cycle.

e.) The net work that would be produced if this cycle were completely reversible and the state of all four streams remained the same as in the actual cycle.

Read : The **TS Diagram** is pretty standard. The pump is isentropic, but the turbine is <u>not</u>. In order to determine the **Q**'s and **W**_S's we will need to determine all the **H**'s. **H**₂ and **H**₄ come straight from the **Steam Tables**. Then use **entropy** to determine **H**₁ and **H**₃. Plug the **H**'s into the 1st Law for <u>each unit</u> to determine all the **Q**'s and **W**'s. Once we have all the **Q**'s and **W**'s in **part (b)**, we can calculate the **thermal efficiency** from its definition. The key to **part (d)** is that, for a cycle, Δ **S** = **0**. So, **S**_{gen} = Δ **S**_{univ} is just Δ **S**_{furn} + Δ **S**_{cw}. Because the furnace and cooling water behave as thermal reservoirs, we can evaluate the <u>change</u> in their **entropy** from the <u>definition</u> of **entropy**. Lost work is just **T**_{surr} **S**_{gen}. The easiest way to evaluate **W**_{s,rev} is to use the <u>definition</u> of **W**_{s,lost} and the values of **W**_{s,act} and **W**_{s,lost} that were determined in **parts (b)** and (d), repectively. **W**_{s,rev} = **W**_{s,act} + **W**_{s,lost}.

Given:	P ₂	12000	kPa	$Q_{41} = Q_{23} =$	0	kJ/kg
	T ₂	450	°C	T _{furn}	500	°C
	$\eta_{s,turb}$	84%			773.15	κ
	P ₃	100	kPa	T _{cw}	10	°C
	X 4	1	kg vap / kg		283.15	κ
				T _{surr}	300	κ

Diagram:

Let's organize the data that we need to collect into a table. This will make it easier to keep track of the values we have looked up and the values we have calculated.

Stream	State	T (°C)	P (kPa)	Х	H (kJ/kg)	S (kJ/kg-K)
1	Sub Liq	100.42	12000	N/A	429.9	1.3028
2	Super Vap	450	12000	N/A	3209.8	6.3028
3S	Sat Mix	99.61	100	0.8256	2281.3	6.3028
3	Sat Mix	99.61	100	0.8914	2429.9	6.7013
4	Sat Liq	99.61	100	1	417.50	1.30276

Additional **data** that may be useful.

State	T (°C)	P (kPa)	Х	H (kJ/kg)	S (kJ/kg-K)
Sat Vap	324.68	12000	1	2685.4	5.4939
Sat Liquid	324.68	12000	0	1491.46	3.49671
Sat Vap	99.63	100	1	2674.9	7.3588
Sat Liquid	99.63	100	0	417.5	1.3028

In order to evaluate Q and Ws for each process in the cycle, we will apply the 1st Law to each process. Part b.) All the devices operate at steady-state and any changes in kinetic and potential energies are negligible. The boiler and condenser have no shaft work interaction and the pump and turbine are both adiabatic. Therefore, the relevant forms of the 1st Law for the four devices are:

Boiler :	$\hat{\mathbf{Q}}_{12} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1$	Eqn 1	
Turbine :	$\hat{\mathbf{W}}_{s,turb} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_3$	Eqn 2	

Condenser :	$\hat{\mathbf{O}}_{11} = \hat{\mathbf{H}}_{1} = \hat{\mathbf{H}}_{2}$	Egn 3

Pump :	$\hat{\mathbf{W}}_{s,pump} = \hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_1$	Eqn 4
Fump.	$\mathbf{W}_{S,pump} = \mathbf{H}_4 - \mathbf{H}_1$	Eqfi 4

In order to evaluate all the W's and Q's in Eqns 1 - 4, we must first determine H for all four streams. We can immediately evaluate H_2 and H_4 because we know both P_2 and T_2 and we know P_4 and we know that it is a saturated liquid, $x_4 = 0$. So, we can lookup H_2 and H_4 in the **NIST Webbook**.

H ₂	3209.8	kJ/kg	H ₄ 417.50	kJ/kg
----------------	--------	-------	-----------------------	-------

In order to determine H₁, we must make use of the fact that the pump is adiabatic and internally reversible and that changes in kinetic and potential energies are negligible. Under these conditions, the shaft work done at the pump can be determined from the Mechanical Energy Balance Equation:

$$-\hat{W}_{s,pump} = \int_{4}^{1} \hat{V} dP + \frac{\Delta v^{2}}{2g_{c}} + \frac{g}{g_{c}} \Delta z \qquad \text{Eqn 5}$$

Cancelling terms yields :

Because the liquid water flowing through the pump is incompressible, the specific volume is constant, and Eqn 6 simplifies to:

 $-\hat{\mathbf{W}}_{s,pump} = \int_{4}^{1} \hat{\mathbf{V}} d\mathbf{P}$

$$-\hat{W}_{s,pump} = \hat{V}_{4}(P_{1} - P_{4}) = \hat{V}_{4}(P_{2} - P_{3})$$
Eqn 7

Now, we can look-up V₄ and use it in Eqn 7 to evaluate W_{S,pump}: V₄ 0.0010432 m³/kg W_{S,pump} -12.414 kJ/kg

$$\hat{\mathbf{H}}_1 = \hat{\mathbf{H}}_4 - \hat{\mathbf{W}}_{s,pump}$$
 Eqn

Eqn 6

8

Eqn 10

Egn 11

kJ/kg-K

Next, we need to use the isentropic efficiency of the turbine to determine H₃.

6.3028

kJ/kg-K

Now, we can use $W_{s,pump}$ and Eqn 4 to determine H_1 .

$$\eta_{s,turb} = \frac{\mathbf{H}_2 - \mathbf{H}_3}{\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_{3s}}$$
 Eqn 9

 $\hat{\mathbf{H}}_{3} = \hat{\mathbf{H}}_{2} - \eta_{s, turb} \left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{3s} \right)$

S_{3S}

S₂

Now, we must evaluate H_{3S} before we can use Eqn 10 to determine H₃. H_{3S} is the enthalpy of the turbine <u>effluent</u> IF the turbine were isentropic. Therefore, $S_{3S} = S_2$.

Now, we know the values of two intensive properties at state 3S: S_{3S} and P_{3S}, so we can fix this state and determine H_{3S} by interpolation in the NIST Webbook. First we must determine the phase of state 3S.

At 100 kPa :		T _{sat}	99.63	°C		
	H (kJ/kg)	S (kJ/kg-K)		Since S _{sat liq} < S _{3S} < S _{sat vap} , state 3	3S is a satura	ted mixture.
Sat Liq:	417.50	1.30276				
Sat Vap :	2674.9	7.3588		T _{3S}	99.63	°C

 $\mathbf{X}_{3S} = \frac{\hat{\mathbf{S}}_{3} - \hat{\mathbf{S}}_{satliq}}{\hat{\mathbf{S}}_{satvan} - \hat{\mathbf{S}}_{satliq}}$

Determine
$$x_{3S}$$
 from the **specific entropy**, using:

Then, we can use the **quality** to determine
$$H_{3S}$$
, using:

$$\hat{\mathbf{H}}_{3S} = \mathbf{X}_{3} \hat{\mathbf{H}}_{sat vap} + (\mathbf{1} - \mathbf{X}_{3}) \hat{\mathbf{H}}_{sat liq}$$
 Eqn 12

H_{3S} 2281.3 kJ/kg

X_{3S}

0.8256 kg vap/kg

6.3028

Now, plug H_{3S} back into Eqn 10 to determine H_3 : H_3 2429.86 kJ/kg Now that we know the specific enthalpy of all four streams, we can use Eqns 1 - 3 to evaluate the Ws.turb and the two remaining Q's.

$$W_{S,turb} 779.97 \text{ kJ/kg} Q_{34} -2012.4 \text{ kJ/kg}$$

The **thermal efficiency** of a power cycle is defined by: Part c.)

Where :

Now, we can plug values into Eqns 13 & 14 to complete this part of the problem.

The total entropy generation for the cycle is equal to the entropy change of the universe caused by the cycle. Part d.)

 $\hat{\mathbf{S}}_{\mathsf{gen}} = \Delta \, \hat{\mathbf{S}}_{\mathsf{univ}} = \Delta \, \hat{\mathbf{S}}_{\mathsf{cycle}} + \Delta \, \hat{\mathbf{S}}_{\mathsf{furn}} + \Delta \, \hat{\mathbf{S}}_{\mathsf{cw}}$

$$\Delta \hat{S}_{furn} = \int \frac{\delta \hat{Q}_{furn}}{T_{furn}} = \frac{-\hat{Q}_{12}}{T_{furn}}$$
Eqn 16

 $\Delta \hat{\mathbf{S}}_{\mathsf{cw}} = \int \frac{\delta \hat{\mathbf{Q}}_{\mathsf{cw}}}{\mathsf{T}} = \frac{-\hat{\mathbf{Q}}_{34}}{\mathsf{T}}$ **Eqn 17**

Now, we can put values into Eqns 16, 17 & 15 :	∆S _{furn}	-3.5956	kJ/kg-K
	ΔS_{cw}	7.1070	kJ/kg-K
	S _{gen}	3.5115	kJ/kg-K

We can calculate lost work using :

Alternatively, we can compute the lost work using :

$$\hat{\mathbf{W}}_{s,lost} = \mathbf{T}_{surr} \left(\frac{\hat{\mathbf{Q}}_{cw}}{\mathbf{T}_{cw}} - \frac{\hat{\mathbf{Q}}_{furn}}{\mathbf{T}_{furn}} \right) = \mathbf{T}_{surr} \left(\frac{-\hat{\mathbf{Q}}_{34}}{\mathbf{T}_{cw}} - \frac{\hat{\mathbf{Q}}_{12}}{\mathbf{T}_{furn}} \right)$$
Eqn 19

W_{S,lost} 1053.44 kJ/kg

`

 $\hat{\mathbf{W}}_{\mathsf{lost}} = \mathbf{T}_{\mathsf{surr}} \ \hat{\mathbf{S}}_{\mathsf{gen}}$

1053.44 kJ/kg

2770 0

k l/ka

Egn 13

Eqn 14

Eqn 15

Δ

 $\eta = \frac{\ddot{W}_{\text{cycle}}}{\hat{Q}_{\text{in}}} = \frac{\hat{W}_{\text{cycle}}}{\hat{Q}_{12}}$

Egn 18

 $W_{S,lost}$

Part e.) The reversible work can be determined from the <u>definition</u> of lost work :

$$\hat{\mathbf{W}}_{s,\text{lost}} = \hat{\mathbf{W}}_{s,\text{rev}} - \hat{\mathbf{W}}_{s,\text{act}} = \hat{\mathbf{W}}_{s,\text{rev}} - \hat{\mathbf{W}}_{cycle}$$
Eqn 19

W_{S.rev}

1821.0

kJ/kg

Solving for
$$W_{s,rev}$$
 yields : $\hat{W}_{s,rev} = \hat{W}_{s,lost} + \hat{W}_{cycle}$ Eqn 20

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : a.) See the diagram at the beginning of this solution.

	b.)	Device	Step	Q (kJ/kg)	W _S (kJ/kg)	c.)	η	27.6	%
		Boiler	1 - 2	2780	0				
		Turbine	2 - 3	0	780	d.)	S _{gen}	3.51	kJ/kg-K
		Condenser	3 - 4	-2010	0		W _{S,lost}	1053	kJ/kg
		Pump	4 - 1	0	-12.4				
						e.)	W _{S,rev}	1820	kJ/kg
l	Why is it th	nat :	Â _H ≠	$1 - \frac{T_c}{T_H}$???		W _{S,rev} / Q _H 1-T _C /T _H	65.5% 63.4%	

Because the reversible cycle also exchanges heat at the turbine !

In fact, the reversible turbine <u>absorbs</u> heat reversibly from a <u>third</u> thermal reservoir. This reservoir is a <u>very</u> <u>special</u> thermal reservoir because it is <u>always</u> at the <u>same</u> temperature as the working fluid in the turbine. This is <u>pretty tricky</u> because the temperature of the working fluid <u>changes</u> as it passes through the turbine !

Consider the <u>definition</u> of **entropy generation**:

$$\Delta \hat{\mathbf{S}}_{23} = \int \frac{\delta \hat{\mathbf{Q}}_{23}}{\mathbf{T}_{sys}} + \hat{\mathbf{S}}_{gen}^{fen} = \int \frac{\delta \hat{\mathbf{Q}}_{23}}{\mathbf{T}_{sys}}$$
 Eqn 21

But, T_{sys} is <u>NOT</u> constant !

1st Law, Reversible Cycle :

HEY

$$\hat{\mathbf{Q}}_{23} = \int_{\hat{\mathbf{S}}_2}^{\mathbf{S}_3} \mathbf{T}_{sys} \, \mathbf{d} \, \hat{\mathbf{S}}$$
 Eqn 22

The value of Q_{23} is <u>equal</u> to the <u>area under</u> the <u>path</u> for **Step 1-2** on the **TS Diagram**, but we <u>cannot</u> evaluate it because we do <u>not</u> know the <u>equation</u> of the <u>path</u>, **T** = fxn(S).

We <u>could</u> evaluate Q_{23} by applying the 1st Law to the <u>entire</u> reversible cycle, because Q_{12} , Q_{34} and Q_{41} are the <u>same</u> for the reversible cycle as they were for the <u>actual</u> cycle. So, we can use the values calculated in **part (c)**.

$$\hat{\mathbf{Q}}_{12} + \hat{\mathbf{Q}}_{23,\text{rev}} + \hat{\mathbf{Q}}_{34} + \hat{\mathbf{Q}}_{41} - \hat{\mathbf{W}}_{s,\text{rev}} = \mathbf{0}$$
 Eqn 23

$$\hat{\mathbf{Q}}_{_{23,rev}} = \hat{\mathbf{W}}_{s,rev} - \hat{\mathbf{Q}}_{_{34}} - \hat{\mathbf{Q}}_{_{12}}$$
 Eqn 24

Q_{23,rev} 1053.44 kJ/kg

Let's double check that this cycle is indeed reversible when it GAINS heat from the surroundings at the turbine.

$$\Delta \hat{S}_{univ} = \Delta \hat{S}_{cycle} + \Delta \hat{S}_{furn} + \Delta \hat{S}_{cw} + \Delta \hat{S}_{surr}$$
 Eqn 25

We already calculated ΔS_{furn} and ΔS_{cw} , above. So, now we need to calculate ΔS_{surr} .

$$\Delta \hat{\mathbf{S}}_{surr} = \int \frac{\delta \hat{\mathbf{Q}}_{surr}}{\mathbf{T}_{surr}} = \frac{-\hat{\mathbf{Q}}_{32,rev}}{\mathbf{T}_{surr}}$$
Eqn 26

∆S_{surr} ∆S_{univ} -3.5115

0.0000

kJ/kg-K

kJ/kg-K

Plug in values:

Now, plug values into Eqn 26 :

There is <u>one impossible aspect</u> about our <u>imaginary reversible cycle</u>. The surroundings (at **300 K**) <u>must</u> reversibly supply **heat** to the **steam** inside the turbine (which is always at a <u>higher</u> **temperature** than **300 K**). That would require a heat pump and that would be a <u>very complicated</u> turbine, indeed ! This is <u>ok</u> because this is just a <u>hypothetical</u> reversible turbine anyway. It just seems strange.

9B-3 Vapor Power Cycle Based on Temperature Gradients in the Ocean

9 pts

A Rankine Power Cycle uses water at the surface of a tropical ocean as the heat source, $T_H = 82^{\circ}F$, and cool water deep beneath the surface as the heat sink, $T_c = 48^{\circ}F$. Ammonia is the working fluid.

The boiler produces saturated **ammonia** vapor at 80°F and the condenser effluent is saturated liquid **ammonia** at 50°F. The **isentropic efficiencies** of the pump and turbine are 75% and 85%, repectively. Calculate the...

a.) Thermal efficiency of this Rankine Cycle

b.) Thermal efficiency of a Carnot Cycle operating between the same two thermal reservoirs

Read : Assume the process operates at steady-state and that <u>changes</u> in potential and kinetic energies are <u>negligible</u>.

We want the boiler **pressure** to be <u>as high as possible</u> and the condenser **pressure** to be <u>as low as possible</u> in order to <u>maximize</u> the **thermal efficiency** of the cycle. But the saturation temperature of the **ammonia** at the boiler **pressure** <u>must</u> be <u>less than</u> 82°F in order to <u>absorb</u> heat from the <u>warmer</u> seawater. This explains why the **ammonia** boils at 80°F. A similar argument regarding the vapor-liquid equilibrium in the condenser leads us to the choice of 50°F for the saturation temperature of the **ammonia** in the condenser.

Given:	T ₂	80	°F		Тc	48	°F
	X ₂	1	lb _m vap/lb _m		т _н	82	°F
	T ₃	50	°F		(T _{sw, in}) _{boil}	80	°F
	X_4	0	lb _m vap/lb _m		(T _{sw, in}) _{cond}	48	°F
	η _{s,pump}	75%			η _{s,turb}	85%	
Find:	a.)	η_{th}	??? %	b.)	η_{max}	???	%

Diagram: A good flow diagram was provided in the problem statement.

TS Diagram :

Assumptions:	1 -	Each process in the cycle operates at steady-state.
	2 -	The power cycle operates on the Rankine Cycle.
	3 -	Changes in kinetic and potential energies are negligible.
	4 -	The pump and the turbine are both adiabatic.

Equations / Data / Solve:

Let's <u>organize</u> the **data** that we need to collect into a <u>table</u>. This will make it easier to keep track of the values we have looked up and the values we have calculated.

		Т	Р	Х	н	S
Stream	State	(°F)	(psia)	(lb _m vap/lb _m)	(Btu/lb _m)	(Btu/lb _m -°R)
1S	Sub Liq	50.18	153.13	N/A	98.132	0.21024
1	Sub Liq	50.27	153.13	N/A	98.233	0.21044
2	Sat Vap	80	153.13	1	630.36	1.1982
3S	Sat Mix	50	89.205	0.9551	601.38	1.1982
3	Sat Mix	50	89.205	0.9633	605.73	1.2068
4	Sat Liq	50	89.205	0	97.828	0.21024

Additional data that may be useful.

	Т	Р	Х	н	S	
State	(°F)	(psia)	(lb _m vap/lb _m)	(Btu/lb _m)	(Btu/lb _m -°R)	
Sat Vap	80	153.13	1	630.36	1.1982	
Sat Liquid	80	153.13	0	131.86	0.27452	
Sat Vap	50	89.205	1	625.07	1.2447	
Sat Liquid	50	89.205	0	97.828	0.21024	

power cycle can be determined using :

$$\eta = 1 - \frac{\hat{Q}_{c}}{\hat{Q}_{H}} = 1 - \frac{-\hat{Q}_{34}}{\hat{Q}_{12}}$$
 Eqn 1

We need to evaluate Q_{12} and Q_{34} so we can use Eqn 1 to evaluate the thermal efficiency of the cycle.

Apply the 1st Law to the boiler, assuming it operates at steady-state, <u>changes</u> in <u>kinetic</u> and <u>potential energies</u> are <u>negligible</u> and <u>no</u> **shaft work** crosses the <u>boundary</u> of the <u>boiler</u>.

We can get a value for H_1 from the Steam Tables or NIST Webbook because we know that the boiler <u>effluent</u> in a Rankine Cycle is a saturated vapor at 80°F.

P₂ 153.13 psia H₂ 630.36 Btu/lb_m

In order to <u>fix</u> state 1 and evaluate H_1 , we must use the **isentropic efficiency** of the pump. The <u>feed</u> to the pump is a saturated liquid at $80^{\circ}F$. So, we can look-up S_4 in the **Steam Tables** or **NIST Webbook**.

The definition of
isentropic efficiency for a pump is :
$$\eta_{s,pump} = \frac{-\dot{W}_{s,isen}}{-\dot{W}_{s,act}} = \frac{\dot{m}(\hat{H}_{1s} - \hat{H}_{4})}{\dot{m}(\hat{H}_{1} - \hat{H}_{4})}$$
 Eqn 3

We can solve Eqn 2 for H₁:
$$\hat{H}_1 = \hat{H}_4 + \frac{\hat{H}_{1s} - \hat{H}_4}{\eta_{s,pump}}$$
 Eqn 4

Next, we need to determine H_{1S} . For an isentropic pump : S_{1S} 0.21024 $Btu/lb_m^{\circ}R$ Now, we know the value of two intensive properties at state 1S: S_{1S} and P_1 (because the boiler is isobaric in a **Rankine Cycle**, $P_1 = P_2$.

At P = 153.13 psia :	T (°F)	H Btu/lb _m	S Btu/lb _m -°R			
	50	97.935	0.20985			
	T _{1S}	H_{1S}	0.21024	T _{1S}	50.18	°F
	55	103.528	0.22077	H _{1S}	98.13	Btu/lb _m
Now ,we can plug values	into Eqn	4 to determir	ne H 1 :	H1	98.23	Btu/lb _m
Next, we can plug values	s into Eqn	2 to evaluate	e Q ₁₂ :	Q ₁₂	532.12	Btu/lb _m

We can determine **Q**₃₄ by applying the 1st Law, with all the same assumptions made about the boiler.

$$\hat{\mathbf{Q}}_{\mathsf{C}} = -\hat{\mathbf{Q}}_{34} = \hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_4 \qquad \qquad \mathsf{Eqn} \ \mathsf{5}$$

We already know H_4 , so we need to evaluate H_3 . To do this, we use the **isentropic efficiency** of the turbine. In order to <u>fix state 3</u> and evaluate H_3 , we must use the **isentropic efficiency** of the turbine. The <u>feed</u> to the turbine is a saturated vapor at 80° F. So, we can look-up S_2 in the <u>Steam Tables</u> or **NIST Webbook**.

P ₄	89.205	psia	S ₂	1.1982	Btu/lb _m -°R
			H ₂	630.36	Btu/lb _m

At P = 89.205 psia :
$$S_{sat vap}$$

Determine x_{3s} from the
specific entropy, using: $x_{3s} = \frac{\hat{S}_{3s} - \hat{S}_{sat liq}}{\hat{S}_{sat vap} - \hat{S}_{sat liq}}$ Eqn 8
Then, we can use the quality
to determine H_{3s} , using: $\hat{H}_{3s} = x_3 \hat{H}_{sat vap} + (1 - x_3) \hat{H}_{sat liq}$ Eqn 9
At P = 89.205 psia : $H_{ast vap} - \hat{S}_{sat liq}$ Eqn 9
At P = 89.205 psia : $H_{ast vap} - \hat{S}_{sat vap} + (1 - x_3) \hat{H}_{sat vap}$ (25.07 Btu/lbm
Has 601.38 Btu/lbm
Now , we can plug values into Eqn 7 to determine H_1 : H_3 605.73 Btu/lbm
Next, we can plug values into Eqn 1 to evaluate the thermal efficiency of the Rankine Cycle.
The maximum thermal efficiency for a power cycle operating between two thermal reservoirs at T_H and T_c is the Carnot Efficiency :
 $\eta_{max} = 1 - \frac{T_c}{T_H}$ Eqn 10
The assumptions made in the solution of this perphase respect to variation information

We can solve Eqn 6 for H₃:

isentropic efficiency for a turnine is :

The definition of

Next, we need to determine H_{3s} . For an isentropic turbine : 1.1982 Btu/lb_m-°R S_{3S} Now, we know the value of \underline{two} intensive properties at state 3S: S_{3S} and P_3 (because the condenser is isobaric in

 $\hat{H}_{3} = \hat{H}_{2} - \eta_{\text{S,pump}} \left(\hat{H}_{2} - \hat{H}_{3\text{S}} \right)$

a Rankine Cycle, $P_3 = P_4$.

$$\eta_{s,turb} = \frac{\dot{W}_{s,act}}{\dot{W}_{s,isen}} = \frac{\dot{m} \left(\hat{H}_2 - \hat{H}_3 \right)}{\dot{m} \left(\hat{H}_2 - \hat{H}_{3s} \right)}$$
Eqn 6

Egn 7

The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : a.)

Verify:

4.55% η_{th}

6.28% η_{max}

9C-1 Ideal Rankine Cycle with Reheat

9 pts

Water is the working fluid in an ideal Rankine cycle with reheat. The steam at the high-pressure turbine inlet is at 1500 psia and 800°F and the effluent is saturated vapor.

The steam is reheated to 750°F before it enters the low pressure turbine where the steam is let down to 20 psia. If the mass flow rate of steam is 126 lb_m/s, determine...

a.) The net power output in million Btu per hour (mmBtu/h)

- b.) The heat transfer rate in the reheat process in mmBtu/h
- c.) The thermal efficiency of the cycle
- Read : Determine the specific enthalpy of each stream in the process and then use the 1st Law to calculate $(W_s)_{cycle}$, Q_{in} , and η .

States 2 & 6 are <u>completely determined</u> from the <u>given</u> information. Use the fact that the <u>pump</u> and <u>HP</u> turbine are **isentropic** to <u>fix</u> states 1 & 3 respectively. Once state 3 is <u>fixed</u>, you know P_3 and $P_4 = P_3$. T_4 is given, so state 4 is now <u>fixed</u>. Next, use the fact that the <u>LP</u> turbine is also **isentropic** to <u>fix</u> state 5.

Once we know <u>all</u> the **H** values, we apply the 1st Law to the pump and turbines to determine W_{cycle} . Then, we apply the 1st Law to the boiler and the reheater to determine Q_{in} . Finally, we evaluate η from its definition.

Given:	m _{dot}	126	lb _m /s			T ₂	800	°F
		4.54E+05	lb _m /h			T ₄	750	°F
	P ₁	1500	psia			P ₅	20	psia
	P ₂	1500	psia			P ₆	20	psia
Find:	a.)	W _{cycle}	???	Btu/h				
	b.)	Q ₃₄	???	Btu/h	c.)	η	???	%

Diagram:

Assumptions:

- 1 <u>Each</u> component in the cycle is analyzed as an open system operating at steady-state.
 - 2 <u>All</u> of the processes are internally reversible.
 - **3** The turbine and pump operate adiabatically and are internally reversible, so they are also **isentropic**.
 - 4 Condensate exits the condenser as saturated liquid.
 - **5** The <u>effluent</u> from the HP turbine is a saturated vapor.
 - 6 <u>No</u> shaft work crosses the system boundary of the boiler or condenser.
 - 7 <u>Changes in kinetic and potential energies are negligible.</u>

Equations / Data / Solve:

Let's <u>organize</u> the **data** that we need to collect into a <u>table</u>. This will make it easier to keep track of the values we have looked up and the values we have calculated.

	I	Р	X	Н	S	
Stream	(°F)	(psia)	(lb _m vap/lb _m)	(Btu/lb _m)	(Btu/lb _m -°R)	Phase
1	229.30	1500	N/A	201.002	0.33605	Sub. Liq.
2	800	1500	N/A	1364.0	1.5075	Super. Vap.
3	422.18	316.11	1	1204.6	1.5075	Sat'd Vap.
4	750	316.11	N/A	1395.1	1.6928	Super. Vap.
5	227.92	20	0.9712	1129.26	1.6928	VLE
6	227.92	20	0	196.400	0.33605	Sat'd Liq.

Additional data that may be useful.

		Р	X	Н	S
State	(°F)	(psia)	(lb _m vap/lb _m)	(Btu/lb _m)	(Btu/lb _m -°R)
Sat Vap	0	1500	1	1169.80	1.3372
Sat Liquid	0	1500	0	612.08	0.80900
Sat Vap	0	20	1	1156.96	1.7331
Sat Liquid	0	20	0	196.40	0.33605

Part a.) The <u>net</u> shaft work for the reheat cycle is:

 $\dot{\mathbf{W}}_{\mathsf{cycle}} = \dot{\mathbf{W}}_{\mathsf{S},\mathsf{turb}} + \dot{\mathbf{W}}_{\mathsf{S},\mathsf{pump}}$

Eqn 1

Now, apply the 1st Law to the LP and HP turbines, as well as the pump. Assume <u>each</u> device is <u>adiabatic</u>, operating at <u>steady-state</u> and has <u>negligible</u> <u>changes</u> in <u>kinetic</u> and <u>potential</u> <u>energies</u>.

$$\mathbf{W}_{\mathrm{S,turb}} = \dot{\mathbf{m}} \left[\left(\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_3 \right) + \left(\hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_5 \right) \right]$$
Eqn 2

$$W_{s,pump} = \dot{m} \left(\hat{H}_6 - \hat{H}_1 \right)$$
 Eqn 3

So, we need to determine the enthalpy in every stream in the cycle in order to determine W_{cycle}.

States 2 & 6 are the <u>only</u> streams that are <u>completely determined</u> by the <u>given</u> information, so let's look up the properties of those streams in the **Steam Tables** or **NIST Webbook** first.

T ₂	800	°F	T ₆	227.92	°F
H ₂	1364.0	Btu/Ib _m	H ₆	196.400	Btu/Ib _m
S ₂	1.5075	Btu/Ib _m -°R	S ₆	0.33605	Btu/Ib _m -°R

Now, because the pump and HP turbine are **isentropic**, $S_1 = S_6$ and $S_3 = S_2$.

	423.31	320	1204.7	1.5064	H ₃	1204.6	Btu/Ib _m
Now that we evaluate H_4 a	know P 4, v and S 4.	we can use it	with T₄ to <u>fix</u>	state 4 and us	se the Steam Tables or N	IIST Webbo	ook to
H ₄	1395.1	Btu/Ib _m			S ₄	1.6928	Btu/Ib _m -°R
We now know	w S₄ and v	ve know that	the LP turbin	e is also isent	ropic, so S₅ = S ₄ .		
					S ₅	1.6928	Btu/lb _m -°R
We now know properties. V	w the value Ve begin b	es of <u>two</u> inte by determinin	nsive propert g which phas	<mark>ies</mark> at state 5 , <mark>es</mark> are present	so the state is <u>fixed</u> and v in state 5 .	we can evalu	uate its
At 20 psia :							
T _{sat}	227.92	°F		Since S sat liq	< S ₅ < S _{sat vap} , state 5 is a	a saturated i	mixture.
S _{sat liq}	0.33605	Btu/Ib _m -°R					_
S _{sat vap}	1.7331	Btu/Ib _m -°R			T ₅	227.92	°F
Determine x ₃	_s from the	specific en	t ropy , using:		$\mathbf{X}_{5} = \frac{\mathbf{\hat{S}}_{5} - \mathbf{\hat{S}}_{satliq}}{\mathbf{\hat{S}}_{satvap} - \mathbf{\hat{S}}_{satliq}}$		Eqn 4
					x ₅	0.9712	lb _m vap/lb _m
Then, we car to determine	n use the c e H_{3s}, using	quality g:		$\hat{\mathbf{H}}_{3S} = \mathbf{X}_{3}\hat{\mathbf{H}}$	$\hat{H}_{satvap} + (1 - x_3)\hat{H}_{satlig}$	I	Eqn 5
At 20 psia :		H _{sat liq} H _{sat vap}	196.400 1106.2	Btu/lb _m Btu/lb _m	H ₅	1079.96	Btu/lb _m
At last we kn the shaft wo	ow <u>all</u> the rk for <u>eac</u> l	p <mark>roperties</mark> at <u>h device</u> as w	<u>all</u> of the sta vell as the <u>en</u> t	tes in the rehe tire cycle.	at cycle and we can use I	Eqns 1 - 3 to	o evalaute
W _{S,pump}	-2.09	0E+06	Btu/h				
W _{S,LP-turb}	1.430)E+08	Btu/h				
W _{S,HP-turb}	7.233	3E+07	Btu/h		W _{cycle}	2.132E+08	Btu/h

Now, we know the values of two intensive properties at state 1 and we know both S_3 and x_3 , so we can fix these
states and determine H_1 and H_3 . Because stream 1 is a subcooled liquid, it is easiest and most accurate to use
the NIST Webbook <u>instead</u> of the Steam Tables.

0.32241

0.33605

0.33708

1.5121

1.5075

Interpolation yields:

Interpolation yields:

°F

Btu/lb_m

psia °F

229.30

201.01

316.18

422.18

T₁

H₁

 P_3

T₃

H Btu/lb_m S Btu/lb_m-°R

H Btu/lb_m S Btu/lb_m-^oR

191.667

H₁

201.708

1204.1

H₃

T (°F)

220

 \mathbf{T}_1

230

P (psia)

300

 P_3

Dr. B - LearnThermo.com

At 1500 psia:

Sat. Vap. :

T (°F)

417.35

T₃

Part b.) The amount of heat absorbed in the reheat step is Q₃₄. We can determine it by applying the 1st Law to the reheater, Step 3-4. The reheater operates at steady-state, has no shaft work interaction and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

Since we already know **m**_{dot} and all the **H** values, we can immediately plug values into Eqn 6:

Part c.) The thermal efficiency of a power cycle is defined by:

$$\eta = \frac{\dot{W}_{cycle}}{\dot{Q}_{in}} = \frac{\dot{W}_{cycle}}{\dot{Q}_{12} + \dot{Q}_{34}}$$
 Eqn 7

In parts (a) and (b) we determined W_{cycle} and Q₃₄, so here we need to evaluate Q₁₂ so we can use Eqn 7 to evaluate η.

We can determine Q₁₂ by applying the 1st Law to the boiler, Step 1-2. The boiler operates at steady-state, has no shaft work interaction and has negligible changes in kinetic and potential energies. The appropriate form of the 1st Law is:

$$\dot{\mathbf{Q}}_{12} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1 \right)$$
 Eqn 8

Since we already know **m**_{dot} and all the **H** values, we can immediately plug values into Eqn 8 :

	Q ₁₂	5.275E+08 Btu/h
plug values into Eqn 7 :	Q _{in}	6.140E+08 Btu/h
	n	34.72%

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

W_{cycle} Answers : a.) 2.13E+08 Btu/h 8.65E+07 Btu/h b.) Q_{34} c.) η

Now, we can

34.7%

 Read : Use the 1st Law to write an equation for the <u>net</u> work produced by the cycle. Use the <u>constant</u> heat capacity to <u>eliminate</u> enthalpy from your equation for W_{cycle}. Differentiate your equation for W_{cycle} with respect to r_P and set the result <u>equal</u> to zero. Simplify the result using the fact that the compressor and turbine are isentropic and the heat capacity ratio, γ, is <u>constant</u>.
 Finally, calculate the 2nd derivative of W_{cycle} with respect to r_P and verify that it is positive at the point determined above so that the extremum you found is a <u>maximum</u> of W_{cycle} and <u>not</u> a <u>minimum</u>.

- Given: An ideal Brayton Cycle is analyzed on a cold air-standard basis.
- Find: Show that the compressor effluent temperature that <u>maximizes net</u> work per unit mass of air flow is given by $T_2 = (T_1T_3)^{1/2}$.

Assumptions:	1 -	Each component is an open system operating at steady-state.
	2 -	The turbine and compressor are isentropic.
	3 -	There are <u>no</u> pressure <u>drops</u> for flow through the heat exchangers.
	4 -	Kinetic and potential energy changes are negligible.
	5 -	The working fluid is air modeled as an ideal gas.
	6 -	The specific heat , C_{P_1} and the specific heat ratio , γ , are <u>constant</u> .

Equations / Data / Solve:

The <u>net</u> **work** for the power cycle is:

$$\hat{\mathbf{W}}_{\text{cvcle}} = \hat{\mathbf{W}}_{\text{C}} + \hat{\mathbf{W}}_{\text{T}}$$
 Eqn 1

The 1st Law can be applied to the compressor and to the turbine, <u>assuming</u> they operate adiabatically at steadystate with <u>negligible changes</u> in kinetic and potential energies.

$$\hat{W}_{s} = -\Delta \hat{H}$$
 Eqn 2

Combining Eqn 1 and Eqn 2 yields:

$$\hat{\mathbf{W}}_{cycle} = -(\mathbf{H}_2 - \mathbf{H}_1) - (\mathbf{H}_4 - \mathbf{H}_3)$$
 Eqn 3

The <u>change</u> in **enthalpy** of the **air** in the turbine and in the <u>compressor</u> can be determined as follows because we have <u>assumed</u> that the **heat capacity** is <u>constant</u>.

$$\Delta \hat{\mathbf{H}}_{\mathbf{a}-\mathbf{b}} = \int_{\mathbf{T}_{\mathbf{a}}}^{\mathbf{T}_{\mathbf{b}}} \hat{\mathbf{C}}_{\mathbf{P}} \, \mathbf{dT} = \hat{\mathbf{C}}_{\mathbf{P}} \cdot \left(\mathbf{T}_{\mathbf{b}} - \mathbf{T}_{\mathbf{a}}\right)$$
 Eqn 4

Now we can apply **Eqn 4** to the turbine and to the compressor and use the results to <u>eliminate</u> **enthalpy** from **Eqn 3**.

$$\hat{\mathbf{W}}_{cycle} = -\mathbf{C}_{P} \cdot (\mathbf{T}_{2} - \mathbf{T}_{1})\mathbf{C}_{P} \cdot (\mathbf{T}_{4} - \mathbf{T}_{3})$$
 Eqn 5

The goal is to determine the <u>maximum</u> W_{cycle} , so we need to set $dW_{cycle}/dr_P = 0$ and solve for T_2 . This will help us find an <u>extremum</u>, either a <u>maximum</u> or a <u>minimum</u>. Later, we will need to make sure the 2nd derivative, d^2W_{cycle}/dr_P^2 , is positive so we can be sure this <u>extremum</u> is a <u>maximum</u> value of W_{cycle} .

$$\frac{\mathrm{d}\mathbf{W}_{\text{cycle}}}{\mathrm{d}\mathbf{r}_{\text{P}}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}_{\text{P}}} \left(-\mathbf{C}_{\text{P}} \cdot \left(\mathbf{T}_{2} - \mathbf{T}_{1}\right) - \mathbf{C}_{\text{P}} \cdot \left(\mathbf{T}_{4} - \mathbf{T}_{3}\right) \right) = \mathbf{0}$$
 Eqn 6

We can simplify Eqn 6 because T_1 , T_3 and C_P are <u>all constant</u>.

$$\frac{d}{dr_{P}}\left(-T_{2}-T_{4}\right)=0$$
 Eqn 7

A little algebra makes **Eqn 7** easier to work with.

$$\frac{\mathrm{dT}_2}{\mathrm{dr}_{\mathrm{P}}} = -\frac{\mathrm{dT}_4}{\mathrm{dr}_{\mathrm{P}}}$$
 Eqn 8

Because T_2 and T_4 change as the compression ratio, r_P changes. We need to figure out the <u>relationship</u> between T_2 and T_4 and r_P in order to solve Eqn 8.

Next, we can take advantage of the fact that the compressor and the turbine are **isentropic** and use the following relationships from **Lesson 7E**, **page 6**.

$$T_{1}P_{1}^{\frac{1-\gamma}{\gamma}} = T_{2}P_{2}^{\frac{1-\gamma}{\gamma}} \qquad \qquad Eqn 9 \qquad \qquad T_{3}P_{3}^{\frac{1-\gamma}{\gamma}} = T_{4}P_{4}^{\frac{1-\gamma}{\gamma}} \qquad \qquad Eqn 10$$

Solve Eqns 9 and 10 for T₂ and T₄, respectively.

$$\mathbf{T}_{2} = \mathbf{T}_{1} \left(\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}}\right)^{\frac{1-\gamma}{\gamma}} = \mathbf{T}_{1} \cdot \mathbf{r}_{p}^{\frac{\gamma-1}{\gamma}}$$
 Eqn 11

$$\mathbf{T}_{4} = \mathbf{T}_{3} \left(\frac{\mathbf{P}_{3}}{\mathbf{P}_{4}}\right)^{\frac{1-\gamma}{\gamma}} = \mathbf{T}_{1} \cdot \mathbf{r}_{P}^{\frac{1-\gamma}{\gamma}}$$
 Eqn 12

Now, we can differentiate Eqns 11 and 12 with respect to r_P so we can use the results in Eqn 8.

$$\frac{dT_2}{dr_P} = T_1 \cdot \left(\frac{\gamma - 1}{\gamma}\right) r_P^{\frac{-1}{\gamma}} \qquad \text{Eqn 13} \qquad \frac{dT_4}{dr_P} = T_3 \cdot \left(\frac{1 - \gamma}{\gamma}\right) r_P^{\frac{1 - 2\gamma}{\gamma}} \qquad \text{Eqn 14}$$

Now, we can substitute **Eqns 13** and **14** into **Eqn 8**.

When the minus sign is <u>combined</u> with the constant term, it is clear that the <u>two</u> constant terms, $(\gamma-1)/\gamma$, cancel.

This equation is more manageable, but we can simplify it a bit further.

The result is simple, but there is noT₂ in Eqn 18!

Here, we need to use **Eqn 11** again, but in a slightly different form.

Squaring Eqn 19 yields :

A slight rearrangement of **Eqn 20** yields :

Now, we can use **Eqn 21** to eliminate **r**_P from **Eqn 18**.

 $\frac{1}{dr_{P}} = I_{3} \cdot \left(\frac{\gamma}{\gamma}\right) r_{P}^{\gamma} \qquad \text{Eqn 14}$ $T_{1} \cdot \left(\frac{\gamma - 1}{\gamma}\right) r_{P}^{\frac{-1}{\gamma}} = -\left[T_{3} \cdot \left(\frac{1 - \gamma}{\gamma}\right) r_{P}^{\frac{1 - 2\gamma}{\gamma}}\right] \qquad \text{Eqn 15}$

$$\mathbf{T}_{1} \cdot \left(\frac{\gamma - 1}{\gamma}\right) \mathbf{r}_{\mathbf{p}}^{\frac{-1}{\gamma}} = \mathbf{T}_{3} \cdot \left(\frac{\gamma - 1}{\gamma}\right) \mathbf{r}_{\mathbf{p}}^{\frac{1 - 2\gamma}{\gamma}}$$
 Eqn 16

$$\mathbf{T}_{1} \cdot \mathbf{r}_{P}^{\frac{-1}{\gamma}} = \mathbf{T}_{3} \cdot \mathbf{r}_{P}^{\frac{1-2\gamma}{\gamma}}$$
 Eqn 17

$$\mathbf{T}_{1} = \mathbf{T}_{3} \cdot \mathbf{r}_{P}^{2 \cdot \frac{1 - \gamma}{\gamma}}$$
 Eqn 18

$$\mathbf{T}_{1} = \mathbf{T}_{2} \cdot \mathbf{r}_{P}^{\frac{1-\gamma}{\gamma}}$$
 Eqn 19

$$\mathbf{T}_{1}^{2} = \mathbf{T}_{2}^{2} \cdot \mathbf{r}_{P}^{2 \cdot \frac{1-\gamma}{\gamma}}$$
 Eqn 20

$$r_{P}^{2,\frac{1-\gamma}{\gamma}} = \left(\frac{T_{1}}{T_{2}}\right)^{2}$$
 Eqn 21

$$\mathbf{T}_{1} = \mathbf{T}_{3} \cdot \left(\frac{\mathbf{T}_{1}}{\mathbf{T}_{2}}\right)^{2}$$
 Eqn 22

 $\mathbf{T}_1 \cdot \mathbf{T}_2^2 = \mathbf{T}_3 \cdot \mathbf{T}_1^2 \qquad \qquad \text{Eqn 23}$

$$T_2 = (T_1 T_3)^{1/2}$$
 Eqn 24

Dr. B - LearnThermo.com

Now, solve for T_2 :

Ex 9E-1

Copyright B-Cubed 2014, all rights reserved

Now we need to make sure this is the maximum W_{cvcle} and not the minimum. The criterion for a maximum is:

$$\frac{d^2 W_{cycle}}{dr_P^2} > 0$$
 Eqn 25

Combining Eqns 5 and 25 yields :

$$\frac{d^2}{dr_P^2} \Big[-C_P \cdot (T_2 - T_1) C_P \cdot (T_4 - T_3) \Big]^2 0 \qquad \text{Eqn 26}$$

We can simplify Eqn 26 because T_1 , T_3 and C_P are all constant.

$$\frac{d^{2}}{dr_{P}^{2}} \left(-T_{2} - T_{4} \right) = -\left[\frac{d^{2}T_{2}}{dr_{P}^{2}} + \frac{d^{2}T_{4}}{dr_{P}^{2}} \right]^{2} 0 \qquad \text{Eqn 27}$$

Now, we need to differentiate Eqns 13 and 14, as follows.

$$\frac{d^{2}T_{2}}{dr_{p}^{2}} = T_{1} \cdot \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{-1}{\gamma}\right) r_{p}^{\frac{-1 - \gamma}{\gamma}}$$
 Eqn 28

$$\frac{d^{2}T_{4}}{dr_{P}^{2}} = T_{3} \cdot \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{1-2\gamma}{\gamma}\right) r_{P}^{\frac{1-3\gamma}{\gamma}}$$
 Eqn 29

Combine Eqns 27 - 29 :

$$-\left[\mathbf{T}_{1}\cdot\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{-1}{\gamma}\right)\mathbf{r}_{P}^{\frac{-1-\gamma}{\gamma}}+\mathbf{T}_{3}\cdot\left(\frac{1-\gamma}{\gamma}\right)\left(\frac{1-2\gamma}{\gamma}\right)\mathbf{r}_{P}^{\frac{1-3\gamma}{\gamma}}\right]^{2}\mathbf{0}$$
 Eqn 30

$$\mathbf{T}_{1} \cdot \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{-1}{\gamma}\right) \mathbf{r}_{p}^{\frac{-1-\gamma}{\gamma}} \stackrel{?}{>} \mathbf{T}_{3} \cdot \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{1-2\gamma}{\gamma}\right) \mathbf{r}_{p}^{\frac{1-3\gamma}{\gamma}}$$
 Eqn 31

Multiply by γ . This does <u>not</u> change the > sign because γ > **0**.

$$-\mathbf{T}_{1} \cdot \mathbf{r}_{P}^{\frac{-1-\gamma}{\gamma}} \stackrel{?}{>} \mathbf{T}_{3} \cdot (1-2\gamma) \mathbf{r}_{P}^{\frac{1-3\gamma}{\gamma}}$$
 Eqn 32

Combine the r_P terms :

$$-\mathbf{T}_{1} \stackrel{?}{>} \mathbf{T}_{3} \cdot (1 - 2\gamma) \mathbf{r}_{P}^{\frac{1 - 3\gamma}{\gamma}} \cdot \mathbf{r}_{P}^{\frac{1 + \gamma}{\gamma}} = \mathbf{T}_{3} \cdot (1 - 2\gamma) \cdot \mathbf{r}_{P}^{2 \cdot \frac{1 - \gamma}{\gamma}}$$
 Eqn 33

Egn 34

Eqn 36

Combine Eqn 18 with Eqn 33 to get: $-T_1 \stackrel{?}{>} T_1 \cdot (1 - 2\gamma)$

We can divide Eqn 34 by T_1 without changing the > sign because $T_1 > 0$ and then do some more algebra.

$$-1 > 1 - 2\gamma$$
 Eqn 35 $2\gamma > 2$ Eqn 35

Finally :

2

The **heat capacity ratio**, γ , is <u>always greater than</u> **1**. So the <u>2nd derivative</u> is <u>positive</u> and we have indeed found the <u>maximum</u> **W**_{cycle} and <u>NOT</u> the <u>minimum</u> !

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers :

 $T_2 = (T_1 T_3)^{1/2}$

The optimal temperature of the compressor effluent in a Brayton Cycle is the geometric average of the temperatures of the compressor and turbine feed streams.

9E-2 Performance of a "Real" Brayton Cycle

10 pts

A real gas power cycle is similar to the Brayton Cycle, but the compressor and turbine are not isentropic. The compressor and turbine have **isentropic efficiencies** of **80%** and **85%**, respectively.

Read : In order to evaluate <u>all</u> of the W_s and Q values that we need to answer <u>all</u> the parts of this question, we will need to know the H values at <u>every state</u>. In addition, we will need to know H_{1s} and H_{3s} because part (c) requires that we analyze the ideal cycle as well the <u>actual cycle</u>.

We can lookup H_2 and H_4 immediately, but we need to use the **isnetropic efficiency** and <u>either</u> the Ideal Gas Entropy Function and the 2nd Gibbs Equation or the Ideal Relative Pressure to determine H_1 and H_3 . Whichever method we choose, we will compute H_{1s} and H_{2s} in the process, so when we are done with part (a), we will have <u>all</u> the values we need to complete part (c).

Once we know <u>all</u> the **H** values, it is a straight-forward process to apply the 1st Law to <u>each</u> process in the cycle in order to answer the questions in parts (a) & (b). We repeat these calculations in part (c) using H_{1s} instead of H_1 and H_{3s} instead of H_3 . Finally, calculate the % Change in <u>each</u> answer for our comparison.

Given:	η _{s, comp} η _{s, turb} Ρ ₁ /Ρ ₄	0.80 0.85 15				T ₂ T ₄	1800 300	K K
Find:	a.) b.)	W _{cycle} Q _{out} η	??? ??? ???	kJ/kg kJ/kg %	c.)	(W _{cycle}) _{ideal} (Q _{out}) _{ideal} η _{ideal}	??? ??? ???	kJ/kg kJ/kg %

Diagram: The flow diagram in the problem statement is adequate. A **TS Diagram** will also be useful.

Assumptions:

- 1 <u>Each</u> component is an open system operating at steady-state.
- 2 The turbine and compressor are adiabatic.
- **3** There are <u>no</u> **pressure** <u>drops</u> for flow through the <u>heat exchangers</u>.
- 4 Kinetic and potential energy <u>changes</u> are <u>negligible</u>.
- 5 The working fluid is **air** modeled as an ideal gas.

Equations / Data / Solve:

	Т	H°	S°
Stream	(K)	(kJ/kg)	(kJ/kg-K)
1	717.4	523.58	
1S	636.6	436.34	0.78254
2	1800	1791.5	1.9784
3	1068.4	916.49	
3S	932.7	762.08	1.20203
4	300	87.410	0.0061681

Part a.) Only the compressor and the turbine have shaft work interactions, so the net work for the cycle is given by:

$$\hat{\mathbf{W}}_{\mathsf{cycle}} = \hat{\mathbf{W}}_{\mathsf{S},\mathsf{turb}} + \hat{\mathbf{W}}_{\mathsf{S},\mathsf{comp}}$$

Apply the 1st Law to the turbine and the compressor. They are adiabatic, operate at steady-state and <u>changes</u> in kinetic and potential energies are <u>negligible</u>.

$$\hat{W}_{s,turb} = \hat{H}_2 - \hat{H}_3$$
 Eqn 2 $\hat{W}_{s,comp} = \hat{H}_4 - \hat{H}_1$ Eqn 3

We know T_2 and T_4 , so we can look-up H_2 and H_4 in the **Ideal Gas Properties Table** for air.

H₂ 1791.5 kJ/kg H₄ 87.410

We can determine T_1 and T_3 using <u>either</u> the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both **methods** are presented here.

Eqn 1

kJ/kg

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function is :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{3S} - \hat{\mathbf{S}}_{2} = \hat{\mathbf{S}}_{T3S}^{\circ} - \hat{\mathbf{S}}_{T2}^{\circ} - \frac{\mathbf{R}}{\mathbf{MW}} \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} = \mathbf{0}$$
 Eqn 4

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{1S} - \hat{\mathbf{S}}_{4} = \hat{\mathbf{S}}_{T1S}^{\circ} - \hat{\mathbf{S}}_{T4}^{\circ} - \frac{R}{MW} \ln \frac{P_{1}}{P_{4}} = 0 \qquad \text{Eqn 5}$$

We can solve **Eqns 4** & **5** for the unknowns **S°**т1 & **S°**т3 :

$$\hat{\mathbf{S}}_{T3S}^{o} = \hat{\mathbf{S}}_{T2}^{o} + \frac{R}{MW} \operatorname{Ln} \frac{P_{3}}{P_{2}}$$
 Eqn 6

$$\hat{S}^{o}_{T1S} = \hat{S}^{o}_{T4} + \frac{R}{MW} Ln \frac{P_1}{P_4}$$
 Eqn 7

We can look up $S_{T_2}^{\circ}$ and $S_{T_4}^{\circ}$ in the **Ideal Gas Property Table** for **air** and use it with the known **compression** ratio in Eqns 6 & 7 to determine $S_{T_3}^{\circ}$ and $S_{T_1}^{\circ}$. We can do this because the HEX's are isobaric. $P_1 = P_2$ and $P_3 = P_4$.

R	8.314	J/mol-K	MW	29.00	g/mol
S° _{T2}	1.9784	kJ/kg-K	S° _{T4}	0.0061681	kJ/kg-K
S° _{T3S}	1.2020	kJ/kg-K	S° _{T1S}	0.78254	kJ/kg-K

Now, we can use S°_{T1S} and S°_{T3S} and the **Ideal Gas Property Table** for **air** to determine T_{1S} and T_{3S} and then H_{1S} and H_{3S} by <u>interpolation</u>:

T (K)	H° (kJ/kg)	S° (kJ/kg-K)				
630	429.25	0.77137				
T _{1S}	H _{1S}	0.78254	Interpolation yields :	T _{1S}	636.61	Κ
640	439.98	0.78826		H₁s	436.34	kJ/kg
Т (К)	H° (kJ/kg)	S [°] (kJ/kg-K)				
T (K) 920	H [°] (kJ/kg) 747.82	S [°] (kJ/kg-K) 1.1867				
T (K) 920 T _{3S}	H [°] (kJ/kg) 747.82 H _{3S}	S [°] (kJ/kg-K) 1.1867 1.2020	Interpolation yields :	T _{3S}	932.67	к

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$\frac{P_{r}(T_{3s})}{P_{r}(T_{2})} = \frac{P_{3}}{P_{2}} \qquad \text{Eqn 8} \qquad \frac{P_{r}(T_{1s})}{P_{r}(T_{4})} = \frac{P_{1}}{P_{4}} \qquad \text{Eqn 9}$$

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look up in the **Ideal Gas Property Table** for **air**.

We can solve Eqns 8 & 9 For P_r(T₃) and P_r(T₁), as follows :

$$P_r(T_{3S}) = \frac{P_3}{P_2} P_r(T_2)$$
 Eqn 10 $P_r(T_{1S}) = \frac{P_1}{P_4} P_r(T_4)$ Eqn 11

Look-up $P_r(T_2)$ and $P_r(T_2)$ and use them in Eqns 10 & 11, respectively, To determine $P_r(T_3)$ and $P_r(T_1)$:

P _r (T ₂)	986.20	P _r (T ₄)	1.0217
P _r (T _{3S})	65.747	P _r (T _{1S})	15.326

We can now determine T_{3S} and T_{1S} by <u>interpolation</u> on the the **Ideal Gas Property Table** for air. Then, we use T_{3S} and T_{1S} to determine H_{3S} and H_{1S} from the **Ideal Gas Property Table** for air.

Pr	H° (kJ/kg)				
14.7	429.25				
15.326	H _{1S}	Interpolation yields :	T _{1S}	637.02	Κ
15.591	439.98		H _{1S}	436.78	kJ/kg
Pr	H [°] (kJ/kg)				
62.489	747.82				
65.747	H _{3S}	Interpolation yields :	T _{3S}	931.84	Κ
67 000	770 33		H	761 15	k l/ka
	Pr 14.7 15.326 15.591 Pr 62.489 65.747 67.990	P_r H° (kJ/kg) 14.7 429.25 15.326 H_{1S} 15.591 439.98 P_r H° (kJ/kg) 62.489 747.82 65.747 H_{3S} 67.990 770.33	Pr H° (kJ/kg) 14.7 429.25 15.326 H _{1S} 15.591 439.98 Pr H° (kJ/kg) 62.489 747.82 65.747 H _{3S} Interpolation yields : 67.990 770.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Since the <u>two</u> methods differ by only about **0.1%**, I will use the results from Method **1** in the <u>remaining</u> <u>calculations</u> of this problem.

Next, we use the **isentropic efficiencies** of the compressor and the turbine to determine the <u>actual</u> **T** and **H** of **states 1** and **3**.

$\eta_{s,turb} = \frac{H_2 - H_3}{\hat{H}_2 - \hat{H}_{3s}} \qquad \text{Eqn 12} \qquad \qquad \eta_{s,comp} = \frac{H_4 - H_{1s}}{\hat{H}_4 - \hat{H}_1} \qquad \qquad \text{Eqn 12}$
--

Solve Eqns 12 & 13 for H_3 and H_1 , respectively :

$$\hat{\boldsymbol{H}}_{3}=\hat{\boldsymbol{H}}_{2}-\eta_{S,turb}\left(\hat{\boldsymbol{H}}_{2}-\hat{\boldsymbol{H}}_{3S}\right) \hspace{1cm} \text{Eqn 14}$$

$$\hat{\mathbf{H}}_{1} = \hat{\mathbf{H}}_{4} - \frac{\left(\hat{\mathbf{H}}_{4} - \hat{\mathbf{H}}_{1S}\right)}{\eta_{S,turb}}$$
 Eqn 15

Plugging values into **Eqns 14 & 15** gives:

H₁	523.58	kJ/kg
H_3	916.49	kJ/kg

And by interpolation on the Ideal Gas Property Tables:

Т (К)	H [°] (kJ/kg)		Т (К)	H [°] (kJ/kg)
710	515.58	-	1060	906.80
T ₁	523.58		T ₃	916.49
720	526.46		1080	929.77
T₁	717.35	К	T ₃	1068.44 K

Now that we have <u>fixed all</u> the **states** and determined the values of all the **H**'s, we can plug values back into **Eqns 1 - 3** and complete **part (a)**.

W _{S,turb}	875.01	kJ/kg			
W _{S,comp}	-436.17	kJ/kg	W _{cycle}	438.84	kJ/kg

Heat tranfer <u>out</u> of the system occurs in step 3-4. We can determine Q_{34} by appplying the 1st Law to HEX #2. The HEX operates at steady-state, has <u>no</u> shaft work interaction and <u>changes</u> in kinetic and potential energies are <u>negligible</u>. So, the appropriate form of the 1st Law is:

$$\hat{Q}_{34} = \hat{H}_4 - \hat{H}_3$$
 Eqn 16
 Q_{34} -829.08 kJ/kg

Plugging values into Eqn 16 gives us:

Part b.) We can calculate the **thermal efficiency** of the cycle from:

$$\eta = \frac{\hat{W}_{cycle}}{\hat{Q}_{12}}$$
 Eqn 17

Heat tranfer into of the system occurs in step 1-2. We can determine Q_{12} by appplying the 1st Law to HEX #1. The HEX operates at steady-state, has no shaft work interaction and changes in kinetic and potential energies are negligible. So, the appropriate form of the 1st Law is:

	$\hat{\mathbf{Q}}_{12} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1$			
Plugging values into Eqn 18 gives us:	Q ₁₂	1267.92 kJ/kg		
Plugging values into Eqn 17 gives us:	η	34.61%		

Part c.) In the ideal cycle, the compressor and turbine are **isentropic**. So, all we need to do to complete this part of the problem is use H_{1s} and H_{3s} instead of H_1 and H_3 when we calculate $W_{s,comp}$, $W_{s,turb}$, W_{cycle} , Q_{34} , Q_{12} and η .

The equations from parts (a) - (c) become:

$\hat{\mathbf{W}}_{cycle} = \hat{\mathbf{W}}_{S,turb} + \hat{\mathbf{W}}_{S,comp}$	Eqn 19	$\hat{W}_{s,turb} = \hat{H}_2 - \hat{H}_3$	Eqn 20
$\hat{\mathbf{W}}_{\mathrm{S,comp}} = \hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_1$	Eqn 21	$\hat{\mathbf{Q}}_{34} = \hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_3$	Eqn 22
$\hat{\mathbf{Q}}_{12} = \hat{\mathbf{H}}_2 - \hat{\mathbf{H}}_1$	Eqn 23	$\eta = \frac{\hat{W}_{cycle}}{\hat{Q}_{12}}$	Eqn 24

Plugging values into Eqns 19 - 24 yields the values in the following table. The "% Change" is defined as :

%Change = Real – Ideal ×100% Ideal	Eqn 25

		Real Cycle	Ideal Cycle	% Change
W _{S,turb}	(kJ/kg)	875.0	1029.4	-15.0%
W _{S,comp}	(kJ/kg)	-436.2	-348.9	25.0%
W _{cycle}	(kJ/kg)	438.8	680.5	-35.5%
Q ₃₄	(kJ/kg)	-829.1	-674.7	22.9%
Q ₁₂	(kJ/kg)	1267.9	1355.2	-6.4%
η		34.6%	50.2%	-31.1%

Verify:

The assumptions made in the solution of this problem cannot be verified with the given information.

Answers :			Real Cycle	c.)	Ideal Cycle	%Change
	W _{S,turb}	(kJ/kg)	875.0		1029.4	-15.0%
	W _{S,comp}	(kJ/kg)	-436.2		-348.9	25.0%
a.)	W _{cycle}	(kJ/kg)	438.8	1	680.5	-35.5%
	Q ₃₄	(kJ/kg)	-829.1		-674.7	22.9%
	Q ₁₂	(kJ/kg)	1267.9		1355.2	-6.4%
b.)	η		34.6%	1	50.2%	-31.1%

Although the isentropic efficiencies of the compressor and turbine are very high, 80% and 85%, they reduce the work output by 35% and reduce the efficiency by 31%. This shows the enormous significance of the these isentropic efficiencies in the overall performance of the power cycle.

"The <u>best</u> way to Learn Thermodynamics"

9F-1 Air-Standard Brayton Cycle With and Without Regeneration

10 pts

Consider three air-standard power cycles operating between the same two thermal reservoirs. All three cycles have the same pressure ratio, 12, and the same maximum and minimum temperatures, 2500°R and 560°R, respectively.

In each cycle, the **mass flow rate** of **air** is **25,000 lb**_m/h and the **pressure** at the compressor inlet is **14.7 psia**. Cycle A is an ideal Brayton Cycle. In Cycle B, the compressor and turbine have isentropic efficiencies

of 85% and 90%, respectively. Cycle C uses the same compressor and turbine as Cycle B, but also incorporates a regenerator with an effectiveness of 75%. Calculate the net power output, in hP, and thermal efficiency of each cycle.

Read : We will need to know <u>all</u> of the H's in order to determine both W_{cycle} and η . We can get H_1 and H_3 immediately from the **Ideal Gas Property Table** for <u>air</u>.

Then, for <u>each</u> part of the problem, use the given **isentropic** compressor and turbine efficiencies to evaluate H_2 and H_4 . Then, calculate W_{cycle} and Q_{in} for each part and finally the **thermal efficiency**.

In Cycle C, re-number the streams <u>carefully</u> so you can easily use <u>most</u> of the H's from Cycle B. The key to Cycle C is to use the regenerator effectiveness to determine the H of the combustor feed. Once you have this, you can compute Q_{in} . W_{cycle} is the <u>same</u> as in Cycle B. So, calculate η from its definition.

Given:	P ₂ /P ₁	12					T ₃	2500	°R
	Ρ ₁ Τ ₁	560	°R				m	25,000	n\ _m ai
	Cycle A	η _{s, turb} η _{s, comp}	1.00 1.00			Cycle B	η _{s, turb} η _{s, comp}	0.90 0.85	
	Cycle C	ηs, _{turb} η _{s, comp} η _{regen}	0.90 0.85 0.75						
Find:	For each	cycle :	η	???	%		W _{cycle}	???	hp

1 -

2 -

4 -

Assumptions:

Each component is an open system operating at steady-state.

The turbine and compressor are adiabatic.

3 - There are <u>no pressure drops</u> for flow through the heat exchangers.

Kinetic and potential energy changes are negligible.

5 - The working fluid is air modeled as an ideal gas.

Equations / Data / Solve:

	Т	Р	H°	S°	
Stream	(°R)	(psia)	(Btu/lb _m)	(Btu/lb _m -°R)	Pr
1	560	14.7	42.351	0.010149	1.1596
2		176.4	204.58		
2S	1117.2	176.4	180.24	0.010149	13.915
3	2500	176.4	555.34	0.39732	329.12
4		14.7	269.21		
4S	1338.5	14.7	237.42	0.39732	27.427

We can calculate the thermal efficiency of the cycle when the compressor and turbine are isentropic using :

$$\eta = 1 - \frac{\hat{Q}_{out}}{\hat{Q}_{in}} = 1 - \frac{-\hat{Q}_{41}}{\hat{Q}_{23}}$$
 Eqn 1

We can determine Q_{12} and Q_{34} by applying the 1st Law to HEX #1 and HEX #2, respectively.

Each HEX operates at steady-state, involves <u>no</u> **shaft work** and has <u>negligible</u> <u>changes</u> in <u>kinetic</u> and <u>potential</u> <u>energies</u>. The appropriate forms of the 1st Law are:

$$\hat{Q}_{23} = \hat{H}_3 - \hat{H}_2$$
 Eqn 2 $\hat{Q}_{41} = \hat{H}_1 - \hat{H}_4$ Eqn 3

In order to use Eqns 1 - 3, we must first evaluate H at each state in the cycle.

Let's begin with states 4 and 2 because they are <u>completely fixed</u> by the given data.

We know T_1 and T_3 , so we can look-up H_1 and H_3 in the Ideal Gas Property Table for air.

The <u>two</u> remaining **H** values depend on the **isentropic efficiency** of the **compressor** and the **turbine**, so they will be <u>different</u> depending on <u>which</u> **part** of the problem is being considered.

We can determine W_{cycle} by applying the 1st Law to the <u>entire</u> cycle.

$$W_{cycle} = Q_{cycle}$$
 Eqn 4

Because the compressor and turbine are assumed to be adiabatic, Eqn 4 simplifies to:

$$\mathbf{W}_{\text{cycle}} = \mathbf{Q}_{\text{cycle}} = \mathbf{Q}_{23} + \mathbf{Q}_{41}$$
 Eqn 5

So, once we determine Q₂₃ and Q₄₁ for each part of the problem, we can use Eqn 5 to evaluate W_{cvcle}.

Both the compressor and the turbine are isentropic. This changes Eqns 2 & 3 to: Part a.)

$$\hat{Q}_{23} = \hat{H}_3 - \hat{H}_{2S}$$
 Eqn 6 $\hat{Q}_{41} = \hat{H}_1 - \hat{H}_{4S}$ Eqn 7

We can determine T_{1S} and T_{3S} using either the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function for the compressor and the turbine are :

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{2S} - \hat{\mathbf{S}}_{1} = \hat{\mathbf{S}}_{T2S}^{\circ} - \hat{\mathbf{S}}_{T1}^{\circ} - \frac{R}{MW} \operatorname{Ln} \frac{P_{2}}{P_{1}} = \mathbf{0}$$
 Eqn 8

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{4\mathrm{S}} - \hat{\mathbf{S}}_{3} = \hat{\mathbf{S}}_{\mathrm{T}4\mathrm{S}}^{\circ} - \hat{\mathbf{S}}_{\mathrm{T}3}^{\circ} - \frac{R}{MW} \operatorname{Ln} \frac{P_{4}}{P_{3}} = 0$$
 Eqn 9

We can solve Eqns 8 & 9 for the unknowns $\mathbf{S^{o}}_{T2S}$ & $\mathbf{S^{o}}_{T4S}$:

$$\hat{\mathbf{S}}_{\text{T2S}}^{\circ} = \hat{\mathbf{S}}_{\text{T1}}^{\circ} + \frac{R}{MW} \ln \frac{P_2}{P_1}$$
 Eqn 10

$$\hat{S}^{\circ}_{T4S} = \hat{S}^{\circ}_{T3} + \frac{R}{MW} Ln \frac{P_4}{P_3}$$
Eqn 11

We can look up S^{o}_{T1} and S^{o}_{T3} in the **Ideal Gas Property Table** for **air** and use it with the <u>known</u> **compression** ratio in Eqns 10 & 11 to determine S_{T2S}° and S_{T4S}° . We can do this because the HEX's are isobaric. $P_2 = P_3$ and $\mathbf{P}_4 = \mathbf{P}_1$.

R	1.987	Btu/Ibmole- [°] R	MW	29.00	lb _m / Ibmole
S° _{T1}	0.010149	Btu / Ib _m °R	S° _{T3}	0.39732	Btu / Ib _m °R
S° _{T2S}	0.18041	Btu / Ib _m °R	S° _{T4S}	0.22706	Btu / Ib _m °R

Now, we can use **S^o_{T2S}** and **S^o_{T4S}** and the **Ideal Gas Property Table** for **air** to determine **T**_{2S} and **T**_{4S} and <u>then</u> H_{2S} and H_{4S} by interpolation :

T (°R) 1100	H [°] (Btu/lb _m) 175.86	S° (Btu/lb _m °R) 0.17647				
T _{2S}	H _{2S}	0.18041	Interpolation yields :	T _{2S}	1117.16	°R
1120	180.97	0.18106		H_{2S}	180.24	Btu / Ib _m
T (°R)	H [°] (Btu/lb _m)	S° (Btu/lb _m °R)				
1300	227.38	0.21948		_		0-
T _{4S}	H_{4S}	0.22706	Interpolation yields :	T _{4S}	1338.52	⁻ R
1350	240.41	0.22932		H_{4S}	237.42	Btu / Ib _m

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$\frac{P_{r}(T_{2S})}{P_{r}(T_{1})} = \frac{P_{2}}{P_{1}} \qquad \text{Eqn 12} \qquad \frac{P_{r}(T_{4S})}{P_{r}(T_{3})} = \frac{P_{4}}{P_{3}} \qquad \text{Eqn 13}$$

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look-up in the **Ideal Gas Property Table** for **air**.

We can solve Eqns 12 & 13 For $P_r(T_3)$ and $P_r(T_1)$, as follows :

$$P_r(T_{2S}) = \frac{P_2}{P_1}P_r(T_1)$$
 Eqn 14 $P_r(T_{4S}) = \frac{P_4}{P_3}P_r(T_3)$ Eqn 15

Look-up $P_r(T_1)$ and $P_r(T_3)$ and use them in Eqns 14 & 15, respectively, To determine $P_r(T_{2S})$ and $P_r(T_{4S})$:

P _r (T₁)	1.1596	P _r (T ₃)	329.12
P _r (T _{2S})	13.915	P _r (T _{4S})	27.427

We can now determine T_{2S} and T_{4S} by interpolation on the the Ideal Gas Property Table for air.

Then, we use T_{2s} and T_{4s} to determine H_{2s} and H_{4s} from the Ideal Gas Property Table for air.

T (°R) 1100	P _r 13.124	H [°] (Btu/lb _m) 175.86				
T _{2S}	13.915	H _{2S}	Interpolation yields :	T _{2S}	1117.39	°R
1120	14.034	180.97		H _{2S}	180.30	Btu / Ib _m
T (°R)	Pr	H [°] (Btu/lb _m)				
T ([°] R) 1300	P _r 24.581	H ^o (Btu/lb _m) 227.38				
T ([°] R) 1300 T _{4S}	P _r 24.581 27.427	H [°] (Btu/lb _m) 227.38 H _{4s}	Interpolation yields :	T _{4S}	1337.49	°R

Since the <u>two</u> methods differ by less than 0.1%, I will use the results from Method 1 in the <u>remaining</u> calculations of this problem.

Now, that we have values for <u>all</u> of the H's, we can plug values back into Eqns 2, 3, 5 & 1 to complete our analysis of Cycle A.

Q ₂₃	375.10	Btu / Ib _m	W _{cycle}	4.501E+06	Btu / h
Q ₄₁	-195.07	Btu / Ib _m	W _{cycle}	1769	hP
1 hp	2544.5	Btu/h	η	48.00%	

η_{S, turb}

η_{s, comp}

0.85

We use the **isentropic efficiencies** of the **compressor** and the **turbine** to determine the <u>actual</u> **T** and **H** of **states 1** and **3**.

$$\eta_{s,comp} = \frac{\hat{H}_1 - \hat{H}_{2s}}{\hat{H}_1 - \hat{H}_2} \qquad \text{Eqn 16}$$

0.90

 $\eta_{\rm S,turb} = \frac{\hat{\rm H}_3 - \hat{\rm H}_4}{\hat{\rm H}_3 - \hat{\rm H}_{4\rm S}}$ Eqn 17

$$\hat{\mathbf{H}}_{2} = \hat{\mathbf{H}}_{1} - \frac{\left(\hat{\mathbf{H}}_{1} - \hat{\mathbf{H}}_{2S}\right)}{\eta_{S, \text{turb}}}$$
Eqn 18

Solve Eqns 12 & 13 for
$$H_2$$
 and H_4 , respectively :

$$\hat{\boldsymbol{H}}_{4} = \hat{\boldsymbol{H}}_{3} - \eta_{S,turb} \left(\hat{\boldsymbol{H}}_{3} - \hat{\boldsymbol{H}}_{4S} \right) \hspace{1cm} \text{Eqn 19}$$

Plugging values into Eqns 18 & 19 gives:

0.90

H ₂	204.58	Btu / Ib _m
H ₄	269.21	Btu / Ib _m

0.75

We have all of the H's, so we can plug values back into Eqns 2, 3, 5 & 1 to complete our analysis of Cycle B.

Q ₂₃	350.76	Btu / Ib _m	_w.	cycle	3.098E+06	Btu / h
Q ₄₁	-226.86	Btu / Ib _m		W _{cycle}	1217	hP
W _{cycle}	123.90	Btu / Ib _m		η	35.32%	

0.85

 $\eta_{S,\,comp}$

Diagram:

Cycle C

 $\eta_{S, turb}$

 $\epsilon_{s, regen}$

	Т	Р	H°	S°	
Stream	(°R)	(psia)	(Btu/lb _m)	(Btu/lb _m -°R)	Pr
1	560	14.7	42.351	0.010149	1.1596
2		176.4	204.58		
2S	1117.2	176.4	180.24	0.010149	13.915
3	2500	176.4	555.34	0.39732	329.12
4		14.7	269.21		
4S	1338.5	14.7	237.42	0.39732	27.427
5					
6			253.05		

We can determine the thermal efficiency of the regenerative cycle using:

$$\eta_{\text{regen}} = \frac{W_{\text{cycle}}}{Q_{\text{in}}} = \frac{W_{\text{cycle}}}{Q_{63}}$$
Eqn 20

The addition of a regenerator does not effect the value of W_{cvcle}. It is the same as in Cycle B.

W_{cycle} 123.902 Btu / Ib_m

The regenerator does reduce the magnitude of both Q_{63} and Q_{51} . We can determine Q_{12} by applying the 1st Law to the combustor.

The combustor operates at steady-state, involves <u>no</u> **shaft work** and has <u>negligible changes</u> in kinetic and potential energies. The appropriate form of the 1st Law is:

$$\hat{\mathbf{Q}}_{63} = \hat{\mathbf{H}}_6 - \hat{\mathbf{H}}_3$$
 Eqn 21

From Cycle B the following values of H do not change:

H ₂	204.58	Btu / Ib _m			
H ₃	555.34	Btu / Ib _m	H ₄	269.21	Btu / Ib _m

So, we need to use the **effectiveness** of the regenerator to determine H_6 .

The effectiveness of the regenerator is given by:
$$\epsilon_{\text{regen}} = \frac{\hat{H}_6 - \hat{H}_2}{\hat{H}_4 - \hat{H}_2}$$
 Eqn 22

~

We can solve Eqn 22 for H_3 :

$$\hat{\mathbf{H}}_{6} = \hat{\mathbf{H}}_{2} + \varepsilon_{\text{regen}} \left(\hat{\mathbf{H}}_{4} - \hat{\mathbf{H}}_{2} \right)$$
 Eqn 23

Now, we can plug values back into Eqns 23, 21 & 20 :

H ₆	253.05	Btu / Ib _m
Q ₆₂	302.29	Btu / Ib _m
W _{cycle}	3.098E+06	Btu / h

W _{cycle}	1217	hP
η	40.99%	

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : Cycle A	W _{cycle} η	1770 48.0%	hP				
Cycle B	W _{cycle} η	1220 35.3%	hP	Cycle C	W _{cycle} η	1220 41.0%	hP

Refrigeration and Heat Pump Systems

In this chapter, we discuss refrigeration and heat pump systems in a manner analogous to our discussion of power systems in Chapter 9.

We begin with a discussion of ideal vapor-compression refrigeration (VCR) and follow with a discussion of the impact of irreversibilities on the coefficient of performance. Refrigerant selection criteria are discussed, with special attention to the vapor pressure—temperature relationship. Cascade and multi-stage VCR cycles are covered. Heat pumps and the key reversing valve are discussed.

The chapter concludes with a discussion of Air-Standard Gas Refrigeration Cycles. Regeneration can be used to increase the coefficient of performance. Irreversibilities decrease the coefficient of performance.

Applications of Refrigeration Systems Refrigeration revolutionized food distribution. *It is the growth of bacteria in the food supply.* **V-C Refrigeration Cycle** Air-conditioning dramatically improved life in the tropical and subtropical regions. Food preservation \diamond ٥ Facilitated the economic development of the \Diamond Air conditioning southern US. Industrial cooling processes \Diamond Gas refrigeration is not as efficient as V-C refrigeration. **Gas Refrigeration Cycle** O But, it is lightweight. This makes it wellsuited to use in passenger aircraft. \diamond Air conditioning on passenger aircraft The other great attribute of gas refrigeration ٥ Cryogenic refrigeration (very low temperatures, < 150 K) \Diamond cycles is that they can reach very, very low temperatures, even into the cryogenic range. **Thermoelectric Refrigeration Systems** Thermoelectric refrigerators make use of the Peltier Effect. Peltier Effect \diamond • When a current is passed through the junction Very small and lightweight \Diamond between two wires made of different metals, Very low efficiency heat is either released or absorbed, depending on the direction of the electrical current. This is also the principle upon which thermocouples operate. Thermoelectric refrigerators are lightweight and inexpensive, but not very efficient. (Less than 10% of Carnot Efficiency, so generally less than 5%.)

Ammonia Absorption Refrigeration

- **Ammonia Absorption Refrigeration**
 - No moving parts ٥
 - No work input ٥
 - Well-suited to remote and portable applications
 - Locations where electric power is not available
 - RV's and campers
 - Invented by a student in Sweden
- See external flow diagram or visit: http://www.nh3tech.org/absorption.html

- · Harrison Ford builds a giant ammonia absorption refrigeration system in the film Mosquito Coast !
- The refrigeration system in the VW Eurovan and most campers is an ammonia refrigeration system!
 - It is VERY important to park the Eurovan or camper on level ground in order to make the refrigerator work.
 - See why by visiting the Ammonia Refrigeration Technicians Association website.

Heat rejected at constant pressure

Isenthalpic expansion

Ideal V-C Refrigeration Cycle

The Ideal V-C Refrigeration Cycle• Step 1-2:EvaporatorHeat absorbed at constant pressure

- Step 1-2: EvaporatorStep 2-3 Compressor
 - 2-3 Compressor Isentropic compression
- Step 3-4: Condenser
- Step 4-1: Expansion Valve
- $COP_{R} = \frac{\dot{Q}_{C}}{\dot{W}_{cycle}} = \frac{\dot{H}_{2} \dot{H}_{1}}{\dot{H}_{3} \dot{H}_{2}}$
- The ideal VCR Cycle is <u>not</u> internally reversible because flow through the expansion valve has lots of friction and is therefore irreversible.

LearnThermo.com

Chapter 10

Irreversibilities in the VCR Cycle

- The additional irreversibilities (above and beyond the expansion valve) come from the same sources as in the Rankine Vapor Power Cycle.
 - Fluid-solid friction in the Evaporator and condenser produce pressure drops in these device. They are not quite isobaric any longer.
 - Mechanical or solid-solid friction plus fluid-solid friction and even fluid-fluid friction due to turbulent flow contribute to the irreversibility of the compressor.
 - The result is that the entropy of the fluid increases through the real compressor.
 - As in power cycles, this is taken into account by the isentropic efficiency of the compressor.

Refrigerant Selection	 Cost Cheap is always good. P* vs T Relationship. It is not practical to use water as a
 Selection Criteria Cost P* vs T Relationship ΔH_{vap} Chemical Stability Corrosiveness Toxicity Flammability 	 It is not plactical to use water as a refrigerant to chill food to -5°C. Water does not exist in VLE at -5°C. Heat of Vaporization. The larger the heat of vaporization, the lower the required refrigerant flow rate. Chemical Stability If the refrigerant degrades chemically in the system, it must be replaced. If it degrades in the atmosphere due to interaction with UV light, it may lead to severe air pollution and/or global warming. Corrosiveness If the refrigerant corrodes the devices and tubing in the system, it is not a good choice. Toxicity Refrigerants always leak into the environment eventually. This may cause a disaster if they are toxic at very low concentrations. Flammability Non-flammable refrigerants are desirable. A leak + spark = disaster, if the refrigerant is highly flammable.

Vapor Pressure - Temperature Relationship

Condenser

- \circ T_{sat}(P_{high}) > T_{hot res} because the working fluid must reject heat to the hot reservoir in the condenser.
- Rule of thumb is at least: $T_{sat}(P_{high}) T_{hot res} = 10^{\circ}C$

Evaporator

- \circ $T_{sat}(P_{low}) < T_{cold res}$ because the working fluid must absorb heat from the cold reservoir in the evaporator.
- Rule of thumb is at least: $T_{cold res} T_{sat}(P_{low}) = 10^{\circ}C$

• Vapor Pressure (Saturation Pressure)

- Not too high: makes equipment expensive and dangerous.
- Not too low: must be greater than atmospheric pressure
 Air leaks into the system drastically reduce COP_R.

- This is usually the 1st criterion applied in refrigerant selection.
- Basically, this determines whether a refrigerant CAN be used to accomplish a given refrigeration task.
- Use this criterion to select a group of POSSIBLE refrigerants.
- THEN consider the criteria on the previous slide to choose the best refrigerant from the group.

Cascade VCR Cycles

Cascade V-C Refrigeration Cycles

- Two separate refrigeration cycles
- Analogous to Binary Vapor Power Cycles
- One provides cooling to the other
- Usually two different refrigerants
- High COPR
- High cost
- \circ Can reach very low temperatures: $T_c \ll T_H$

- Cascade VCR Cycles are comparable to Binary Vapor Power Cycles.
 - Two separate cycles only interact by exchanging heat.
 - The upper and lower cycles usually use different refrigerants.
 - This allows you to choose an appropriate refrigerant for a VERY low temperature range for the lower cycle and...
 - A different refrigerant that is appropriate for a higher temperature range for the upper cycle.
 - The result is a refrigeration system that makes the refrigerated space VERY cold using an ordinary high temperature reservoir, such as ambient air.
 - The lower cycle absorbs heat from the refrigerated space. And rejects heat into the upper cycle.
 - The upper cycle absorbs heat from the lower cycle and rejects heat into the high temperature reservoir.
 - Cascade refrigeration cycles can be used to reach temperatures as low as 100 K.
 - This is cold enough to liquefy many gases, such as light hydrocarbons.
 - The cascade cycle is more efficient than a single VCR cycle operating between the same two reservoirs, but is also more expensive to build and operate.
 - Therefore, it is generally only used for very low temperature applications.

LearnThermo.com

Chapter 10

Cascade VCR Flow Diagram

- Notice that streams 3 and 5 do NOT mix in the HEX. They just exchange heat.
 - This provides the flexibility to use different refrigerants in the lower and upper cycles.
 - It also results in lost work due to the irreversibility of heat transfer through a finite temperature difference.

- There is one little catch. This analysis and conclusion are only completely true if the MASS FLOW RATE of the refrigerant is the same in the lower and upper cycle.
- This point becomes critical in the next cycle, the Multi-Stage VCR Cycle.

- For simplicity, this **TS** Diagram is based on a cascade refrigeration cycle in which both cycles use the SAME refrigerant.
- Notice that $T_3 > T_5$ in order to make the HEX work.
- This seems odd, but remember that this is a refrigeration cycle.
- The low temperature cycle must reject heat INTO the higher temperature cycle.
- In order to make this happen, stream 3 must be hotter than stream 5.
- This temperature difference is necessary to make a real cycle function, but this heat transfer is irreversible !
- The orange shaded area bounded by points 3 and 7 represents the DECREASE in Q_H when the cascade cycle is compared to a simple, single VCR Cycle operating between P_{LO} and PHI.
- Similarly, the light blue shaded area beneath the P_{LO} isobar (near point 1) is the INCREASE in Q_C .
- The 1st Law tells us that if Q_C increases and Q_H decreases, then W_{Sh} must DECREASE. $Q_C + W_{Sh} = Q_H$.
- From the definition of **COPR** (**COPR** = Q_C / W_{Sh}) it is clear that the Cascade VCR Cycle is more efficient than the ordinary VCR Cycle operating between the same two thermal reservoirs.

LearnThermo.com

Chapter 10

Multi-Stage VCR Cycles

- Similar to Cascade V-C Refrigeration
- Two cycles use the same refrigerant
- Instead of exchanging heat between two cycles, the refrigerant streams are mixed.
- This is more efficient than heat exchange.
- COP_R increases (slightly better than Cascade VCR)
- Cost increases (but not as expensive as Cascade VCR)
 - ♦ Can reach very low temperatures

 $T_{\rm c} \ll T_{\rm H}$

Cannot reach as temperatures as cold as Cascade VCR

- In a Multi-Stage VCR Cycle, streams are simply MIXED instead of exchanging heat.
- This reduces the irreversibility of heat exchange, but requires that both cycles use the same refrigerant.
- This has the fringe benefit of saving the cost of the HEX.
- For a given pair of thermal reservoirs, Multi-Stage is more efficient and less expensive than Cascade VCR.
 - The bad news is that Multi-Stage VCR cannot reach the very low temperatures that Cascade VCR can because just one refrigerant can be used.

Multi-Stage VCR Flow DiagramMulti-Stage Vapor-Compression Refrigeration CycleUpper
CycleUpper
CycleFlash
Drum
Upper
CycleLower
CycleValve
Valve

- Stream 8 is a saturated liquid.
 - When the pressure drops isenthalpically in the expansion valve, some of the liquid vaporizes. So point 5 is in the 2-phase envelope.
 - The flash drum just separates the saturated liquid from the saturated vapor.
 - The saturated vapor, stream 6, comes out the top and flows to the mixer.
 - The saturated liquid, stream 4, drops out the bottom of the flash drum and proceeds to the second expansion valve.
 - Stream 6 is used to cool stream 3 by mixing with it (instead of exchanging heat as in the cascade cycle).
- One key point here is that the mass flow rate CANNOT be the same in all of the streams in this process !
 - Streams 1, 2, 3 & 4 all have the same mass flow rate.
 - Streams 5, 7, 8 & 9 all have the same mass flow rate.
 - \diamond BUT: $\mathbf{m}_5 > \mathbf{m}_4$ because...
 - A mass balance on the flash drum tells us that: $\mathbf{m}_5 = \mathbf{m}_4 + \mathbf{m}_2$.
- This makes it VERY tricky to interpret areas on the TS Diagram for a Multi-Stage VCR Cycle.

LearnThermo.com

- It is just that the areas on the **TS** Diagram can be misleading because of the differences in the mass flow rates of the streams.
 - Areas on the **TS** Diagram are actually Q_{hat} .
 - We must multiply by the mass flow rate to get Q_{dot} .
 - $Q_{dot,C} = m_{dot,1} * Q_{hat,C}$ and $Q_{dot,H} = m_{dot,7} * Q_{hat,H}$ (watch the signs)
 - $m_{dot,7} > m_{dot,1}$.
 - So, areas can be misleading if you interpret them as Q_{dot} values

Heat Pumps - Review

- Goal: Transfer into a hot reservoir
- Requires work and must take in heat from cold a reservoir

$$COP_{HP} = \frac{Q_{H}}{W_{cycle}} = \frac{Q_{H}}{Q_{H} - Q_{C}} = \frac{1}{1 - Q_{C} / Q_{H}}$$

- HP's and Ref's operate with thermal reservoirs at very similar temperatures
 - As a result, they use the same refrigerants. R-134a is popular.
- Heat pump operate on essentially the same cycle as a V-C refrigerator, only in reverse.

- This **TS** Diagram is a bit different.
 - Stream 5 is split by the Flash Drum into streams 4 and 6, Saturated liquid and saturated vapor.
 - Streams 4 and 6 then flow to different places.
 - Stream 4 proceeds to the 2nd expansion valve and the lower cycle.
- Stream 6 mixes with and thereby cools stream 3.
- The orange shaded area bounded by points 3 and 7 is proportional to the DECREASE in Q_H when the cascade cycle is compared to a simple, single VCR Cycle operating between P_{LO} and P_{HI} .
- Similarly, the light blue shaded area beneath the P_{LO} isobar (near point 1) is proportional to the INCREASE in Q_C .
- However, because the mass flow rates vary, we cannot visually estimate the MAGNITUDE of the decrease in Q_H or the increase in Q_C .
 - $\label{eq:constraint} \begin{array}{l} \diamond & \mbox{We still know that } Q_H \mbox{ decreases, } Q_C \mbox{ increases} \\ & \mbox{ and therefore } W_{Sh} \mbox{ decreases and } COPR \\ & \mbox{ increases.} \end{array}$
- We can calculate all of these changes.
- R-134a is popular because...It does not damage the ozone layer in the Earth's atmosphere.
 - It has relatively low flammability and toxicity.
 - It is relatively inexpensive. It is chemically stabile.
 - It has a fairly large heat of vaporization.
 - Most important: it has the right vapor pressure over the range from -20°C to 40°C.
 - This allows it to be used to freeze our food or cool our homes, but still reject heat to the surroundings at modest operating pressures.

Heat Pump: Flow Diagram & TS Diagram

- Just like the VCR Cycle !The only difference is the OBJECTIVE of the device.

The Reversing Valve	• The reversing valve is cool and clever.
• Home heat pumps can function as both heating and air-conditioning systems	
 Heat pump mode (HP) Indoor air is the hot reservoir 	
 Air-conditioning mode (AC) Indoor air is the cold reservoir 	
 Reversing Valve Clever way to switch from HP to AC mode without physically moving the HEX's ! 	

LearnThermo.com

<section-header></section-header>	 Remember that the compressor outlet stream is the hottest stream. It must flow to the HEX where the working fluid rejects heat. The compressor inlet stream comes FROM the HEX where the working fluid absorbs heat and is vaporized. Heat Pump Mode The compressor outlet goes into a HEX inside your house to reject heat and keep you warm. The compressor inlet receives the working fluid that has just been vaporized by absorbing heat from the air outside your house. Air-Conditioning Mode The compressor outlet goes into a HEX outside your house to reject heat. Air-Conditioning Mode The compressor outlet goes into a HEX outside your house to reject heat. The compressor inlet receives the working fluid that has just been vaporized by absorbing heat from the air outside your house. This keeps you cool ! The reversing valve is controlled electronically by your home thermostat and turned by a device called a solenoid. When your home gets too cold, the thermostat sets the reversing valve to heat pump mode and heats your house.
 Air-Standard Gas Refrigeration Cycle Less efficient than V-C Refrigeration Cycles Lightweight Capable of reaching temperatures below 100 K with a regenerator. Reverse Air-Standard Brayton Cycle Air-Standard Assumptions Air is the working fluid and it behaves as an ideal gas. The GRC is modeled as a closed cycle. All processes are internally reversible. Cold Air-Standard Assumption The heat capacities of air are <u>constant</u> and always have the values determined at <u>25°C</u>. 	 Because gas refrigeration cycles (GRC's) tend to be less efficient than VCR cycles, they are only used under special circumstances in which a VCR cycle would be difficult or impossible to use. GRC's are used to provide air-conditioning on passenger aircraft because they are lightweight. GRC's are used to help liquefy gases such as propane and methane. No worries about vapor pressure – temperature relations because no phase change occurs in a GRC ! The limit is the temperature at which the working fluid (usually air) condenses. At 100 kPa, N₂ condenses at 77 K and O₂ condenses at 90 K. So a GRC with air as the working fluid can chill a refrigerated space down to about 100 K and meet the rule of thumb guideline for a 10°C driving force to pull heat out of the refrigerated space.

Friction causes a pressure drop as the working fluid flows through each heat exchanger.
 ◊ Friction means lost work.

• Mechanical and fluid friction within the compressor and turbine are sources of irreversibility.

 The result is an increase in entropy along paths 2-3 and 4-1.Work is lost in these devices as a result of the irreversibilities.

Gas Refrigeration Cycle: Regeneration

- The purpose of regeneration is to allow the GRC to reach the lowest possible temperature.
 - \diamond It does increase the COP_R of the cycle, but that is not the main objective.
- Key: "pre-cool" the turbine feed so that when it expands through the turbine, it will reach a lower temperature than without pre-cooling.
- Multiple regenerative GRC's in series are used to reach temperatures below 100 K.
- Check out: http://www.stirling.nl
 - They use the reverse Stirling Cycle, but it is similar to the reverse Brayton Cycle.

- After the working fluid absorbs heat from the refrigerated space in HEX #1, it is still colder than the stream that just rejected heat to the hot reservoir.
 - That is: $T_6 < T_3$.
- These two streams exchange heat in a COUNTERCURRENT heat exchanger called a Regenerator.
- Countercurrent means that the two streams flow through the HEX in OPPOSITE directions.
- This means that stream 3 is in direct contact with stream 1 at one end of the HEX and...
- Stream 6 is in direct contact with stream 4 at one end of the HEX.
- ♦ The 2nd Law tells us that heat will flow out of the turbine feed stream spontaneously at both ends of the HEX as long as $T_3 > T_1$ AND $T_4 > T_6$.
- It is interesting to note that it is possible (and desirable) for $T_4 < T_1$. Think about this carefully.

LearnThermo.com

- The regenerator provides only a slight increase in the COPR, but it can dramatically lower T_5 .
- This is the goal because T₅ (plus about 10°C for our driving force for heat transfer) is the coldest that this cycle can maintain a refrigerated space.
- Very, VERY cool.

10B-1 Ideal Ammonia Vapor-Compression Refrigerator

7 pts

A cold-storage warehouse uses a refrigeration system to keep groceries at 2°C while the **temperature** outside the warehouse is 30°C. The groceries and the outside air act as thermal reservoirs in this process.

Although the warehouse is insulated, it absorbs heat from the surroundings at a rate of **775** kW. Determine the power requirement and **COP** for a **Carnot** refrigeration cycle and for an **ideal ammonia**

vapor-compression refrigeration cycle that will maintain the **temperature** of the groceries under these conditions. The condenser operates at **1.6 MPa** and the evaporator operates at **300 kPa**.

Read : In **Part (a)**, we can determine the **COP** of the **Carnot** refrigeration cycle directly from the [temperatures of the two thermal reservoirs. Then, we can use the <u>definition</u> of **COP** to evaluate **W**_{cycle}.

In Part (b), we can work our way around the cycle in the TS Diagram and evaluate H for every stream. Then, use the H values determined to evaluate $W_{comp} = W_{cycle}$ and finally evaluate COP from its <u>definition</u>.

The <u>approach</u> illustrated in <u>this solution</u> is to <u>start</u> from an equation that includes the <u>variable</u> that is your objective, in this case the <u>definition</u> of **COP** is the equation and the objective is the **COP** itself. Then, you must proceed to <u>determine</u> the <u>values</u> of <u>all</u> the <u>variables</u> needed to <u>evaluate</u> the **COP**.

These two <u>approaches</u> to solving cycle problems <u>often</u> turn out to require the <u>same</u> amount of <u>effort</u>. So, you can choose whichever <u>method</u> appeals to you.

Diagram:

Assumptions:

Each component is an open system operating at steady-state.

- 2 <u>All processes are internally reversible, except</u> the expansion valve, which is an isenthalpic throttling processes.
- **3** The compressor and valves operate adiabatically.
- Kinetic and potential energy <u>changes</u> are <u>negligible</u>.
- 5 There are <u>no</u> **pressure** <u>drops</u> for flow through the <u>heat exchangers</u>.

Equations / Data / Solve:

Let's <u>organize</u> the **data** that we need to collect into a <u>table</u>. This will make it easier to keep track of the values we have looked-up and the values we have calculated.

	Т	Р	Н	S	Х	
Stream	(°C)	(kPa)	(kJ/kg)	(kJ/kg-K)	(kg vap/kg)	Phase
1	-9.22	300	376.52	1.4582	0.1840	Two-Phase Mixture
2	-9.22	300	1432.5	5.4592	1	Saturated Vapor
3	113.53	1600	1680.1	5.4592	N/A	Superheated Vapor
4	41.02	1600	376.52	1.3737	0	Saturated Liquid

Additional data that may be useful.

1 -

State	T (°C)	P (kPa)	Х	H (kJ/kg)	S (kJ/kg-K)
Sat Vap	-9.22	300	1	1432.5	5.4592
Sat Liquid	-9.22	300	0	138.39	0.55596
Sat Vap	41.02	1600	1	1471.0	4.8573
Sat Liquid	41.02	1600	0	376.5	1.3737

Part a.) Let's begin by determining the COP of a Carnot refrigeration cycle working between these two thermal reservoirs.

$$COP_{R,rev} = \frac{Q_{C}}{W_{cycle,rev}} = \frac{T_{C}}{T_{H} - T_{C}}$$
Eqn 1

 $W_{cycle,rev} = \frac{Q_{c}}{COP_{R,rev}}$

Plugging in values for $\mathbf{T}_{\mathbf{H}}$ and $\mathbf{T}_{\mathbf{C}}$ yields :

Solve Eqn 1 for the unknown W_{cvcle} :

Plugging values into Eqn 2 yields :

Part b.) Eqn 2 can be <u>modified</u> slightly to apply to our ideal ammonia VCR cycle :

$$COP_{R} = \frac{Q_{C}}{W_{cycle}}$$
 Eqn 3

W_{cycle,rev}

COP_{R,rev}

9.83

78.87

Eqn 2

kW

We were given the value of Q_c , so we need to determine W_{cvcle} before we can use Eqn 3 to evaluate COP_R .

Only the compressor produces or consumes **shaft work** in the **ideal** VCR cycle, so let's begin by applying the 1st Law to the compressor.

The 1st Law for a steady-state, single-inlet, single-outlet, adiabatic compressor with <u>negligible</u> kinetic and potential energy <u>changes</u> is:

$$\dot{\mathbf{W}}_{\text{cycle}} = \dot{\mathbf{W}}_{\text{comp}} = \dot{\mathbf{m}}(\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_2)$$
 Eqn 4

We can immediately evaluate H_2 because we know it is a saturated vapor at 300 kPa. Use the **Saturated** Ammonia Tables or the NIST Webbook.

H₂ 1432.5 kJ/kg

In order to determine H_3 , we need to determine the value of a <u>2nd</u> intensive variable, because we <u>only</u> know the **pressure**, P_3 .

We can make use of the fact that an **ideal** VCR cycle is internally reversible and the compressor in an **ideal** VCR cycle is adiabatic. A device that is internally reversible and adiabatic is **isentropic**. $S_3 = S_2$.

We can evaluate S_2 because we know it is a saturated vapor at 300 kPa. Use the Saturated Ammonia Tables or the NIST Webbook.

 $S_2 = S_3$ 5.4592 kJ/kg

Now, we can use P_3 and S_3 and the Superheated Ammonia Tables or the **NIST Webbook** to determine H_3 by interpolation. This is much easier using the Isobaric Properties option in the **NIST Webbook**.

At 1600 kPa :	<u>T (°C)</u>	<u>H (kJ/kg)</u>	<u>S (kJ/kg-K)</u>			
	110	1670.89	5.4354			
	T ₃	H ₃	5.4592	T ₃	113.54	kJ/kg
	115	1683.89	5.4691	H ₃	1680.1	kJ/kg

We still need to determine the **mass flow rate** of the **Ammonia** through the cycle before we can use **Eqn 4** to determine W_{cycle} .

The key to determining the mass flow rate is the value of Q_c that was given in the problem statement.

We need to apply the 1st Law for a steady-state, single-inlet, single-outlet, evaporator with <u>negligible</u> kinetic and potential energy <u>changes</u>. No **shaft work** crosses the boundary of the evaporator.

Solve Eqn 5 for the mass flow rate :

$$\dot{\mathbf{m}} = \frac{\dot{\mathbf{Q}}_{c}}{(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{1})}$$
 Eqn 6

We already determined H_2 . The trouble is we don't know the value of H_1 .

The key to determining the H_1 is the <u>assumption</u> that the Expansion Valve is **isenthalpic**. This <u>assumption</u> is based on the application of the 1st Law to the Valve.

We need to apply the 1st Law for a steady-state, single-inlet, single-outlet, expansion valve with <u>negligible</u> kinetic and potential energy <u>changes</u>. No **shaft work** crosses the boundary of the expansion valve. We <u>assume</u> the valve is adiabatic because it is <u>small</u> and there is <u>little opportunity</u> for heat exchange.

$$\dot{\mathbf{Q}} - \dot{\mathbf{W}}_{s} = \dot{\mathbf{m}} \left[\Delta \hat{\mathbf{H}} + \Delta \hat{\mathbf{E}}_{kin} + \Delta \hat{\mathbf{E}}_{pot} \right]$$
 Eqn 7

Eqn 7 simplifies to :

 $\Delta \hat{\mathbf{H}} = \hat{\mathbf{H}}_1 - \hat{\mathbf{H}}_4 = \mathbf{0} \quad \text{Eqn 8} \qquad \text{Or}: \quad \hat{\mathbf{H}}_1 = \hat{\mathbf{H}}_4$

Eqn 9 is helpful because we already have enough information to determine H_4 . We know stream 4 is a saturated liquid at 1600 kPa. So, we can use the Saturated Ammonia Tables or the NIST Webbook to evaluate H_4 .

 $H_4 = H_1$ 376.52 kJ/kg

We can finally put values back into Eqns 6, 4, & 3, in that order, to complete the solution to Part (b).

m	0 7339
111	0.7333

kg/s

W _{cycle}	181.7	kW
COP _R	4.26	

Eqn 9

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : a.)	W _{cycle,rev}	78.9	kW
b.)	W _{cycle}	182	kW

10B-2 Refrigerant Selection for a Home Refrigerator

4 pts

Why do modern home refrigerators use R-134a instead of ammonia or Freon-12 (R-12)?

Read : Compare the performance of these <u>three</u> refrigerants in a vapor-compression refrigeration cycle using the 7 criteria presented in Lesson 10B. Some <u>calculations</u> are necessary to assess the P*-T Relationship and the Heat of Vaporization.

Diagram:

Given: Consider three refrigerants : R134a Ammonia R12

Find: Why is R-134a the most common choice for home refrigeration systems?

Assumptions: None.
Here is a list of criteria used to choose the best refrigerant for a given application.

1 -	Cost		
2 -	The P*-T Relationship	5 -	Corrosiveness
3 -	ΔH _{vap}	6 -	Toxicity
4 -	Chemical Stability	7 -	Flammability

Cost : R-134a is much more <u>expensive</u> than ammonia, while Freon is <u>not</u> easy to <u>buy</u> since it was <u>banned</u> in 1990 because it damages the <u>ozone layer</u> in the upper atmosphere. Ammonia can cost as little as \$0.40/kg while R-134a can cost <u>several US dollars per kg</u>.

The P*-T Relationship

A <u>home</u> rerigerator must keep food in the freezer <u>colder</u> than **-10°C**. Cool air from the freezer compartment is used to keep the refrigerator compartment <u>colder</u> than **3°C**. As a result, the freezer serves as the **Cold Reservoir**.

The air <u>surrounding</u> the refrigerator serves as the **Hot Reservoir**. A high value of T_H results in the <u>lowest</u> **COP** for the refrigerator <u>and</u> it also requires the <u>highest</u> **pressure** in the <u>condenser</u>. So, let's use a rather <u>high</u> **temperature** for the <u>surroundings</u>.

 $T_{\rm C}$ -10 °C $T_{\rm H}$ 30 °C

The temperature of the refrigerant in the evaporator must be greater than T_c and in the condenser it must be less than T_H .

A rule of thumb in heat exchanger design is that you would like to have a ΔT of about 10°C between two fluids entering the heat exchanger. In this case, since T_c is -10°C, assume that T_1 is -20°C. Since T_H is 30°C, assume that T_4 is 40°C. This gives our refrigerator the desired ΔT of 10°C. in both the condenser and the evaporator.

Now, we need to use thermodynamic tables or the **NIST Webbook** to determine the <u>operating</u> **pressures** of the condenser and the evaporator. The <u>operating</u> **pressures** are the saturation **pressures** that correspond to T_1 and T_4 , determined in the previous paragraph.

	P _{Evap} (kPa)	P _{Cond} (kPa)	
Ammonia	190.1	1555.4	Ammonia generally requires a fairly high P _{Cond} .
R134a	132.7	1016.6	R-134a and R-12 allow the use of lower P_{Cond} and P_{Eval}
R12	150.7	958.8	than Ammonia does.

The R-12 is the winner in this test, but the R-134a does almost as well.

$\pmb{\Delta H}_{vap}$

A <u>higher</u> latent heat of vaporization results in a <u>smaller</u> mass flow rate for the refrigerant. This may allow the use of <u>smaller</u>, <u>less</u> expensive equipment.

Consider the values of ΔH_{vap} at the values of P_{Cond} and P_{Evap} that we determined above.

	ΔH @ P _{Evap} (kJ/kg)	ΔH @ P _{Cond} (kJ/kg)	
Ammonia	1329.1	1099.3	Ammonia has the largest ΔH_{vap} , by far.
R134a	212.9	163.0	R-134a takes 2nd place this criterion.
R12	162.0	129.7	R-12 is the biggest loser by this criterion.

Chemical Stability

<u>All</u> three of these refrigerants are <u>relatively stable</u>. **Ammonia** is perhaps <u>more reactive</u> and <u>slightly less stable</u> than **R-134a** and **R-12**.

Corrosiveness

R-134a and **R-12** are non-corrosive to ferrous metals <u>unless</u> exposed to <u>flame</u> or <u>very high</u> **temperatures**. So, they <u>score well</u> by this criterion.

Ammonia is non-corrosive to ferrous metals <u>unless</u> water is present. In the presence of water, ammonia becomes <u>highly corrosive</u>. So, Ammonia does not <u>score</u> quite as <u>well</u> by this criterion, because water has a way of <u>penetrating</u> devices that are not <u>rigorously maintained</u>.

Toxicity

R-134a and R-12 have very low acute inhalation toxicity, but are irritants to eyes and skin

Ammonia is a strong irritant to eyes, skin, mouth, nose, throat and respiratory tract, but has low inhalation toxicity.

Ammonia may be the loser by this criterion, but all three refrigerants have fairly low toxicity overall.

Flammability

There is some debate about the flammability of **R-134a** and **R-12**, but they are <u>definitely less</u> flammable than **Ammonia**. Ammonia is <u>quite</u> flammable and can present an explosion hazard.

Verify: None.

Answers : R-134a is the best of the three choices for home refrigeration because it...

... Allows the condenser and evaporator to operate at **pressures** that are <u>greater than</u> atmospheric **pressure**, but <u>not dangerously high</u>.

... It is stabile, non-corrosive, has low toxicity and low flammability.

... It does not damage the ozone layer.

Ammonia is a commonly used industrial refrigerant because...

... Allows the condenser and evaporator to operate at **pressures** that are <u>greater than</u> atmospheric **pressure**, but <u>not dangerously high</u>., by <u>industrial safety standards</u>.

... The price of Ammonia is very low.

... With proper industrial safety practices, the problems with **corrosion**, **toxicity** and **flammability** can be overcome.

10C-1 Analysis of a Dual Evaporator V-C Refrigeration System

The special **R-134a** refrigeration system with two **evaporators**, shown below, is used to cool both a refrigerator, with **evaporator 2**, and a freezer, with **evaporator 1**.

Evaporators 1 and **2** have refrigeration capacities of **3 tons** and **5 tons**, respectively. A **ton of refrigeration** is defined as the heat of fusion absorbed by melting **1 short ton** of pure ice at **0°C** in **24 hours**.

The key here is that one **ton of refrigeration** is equivalent to **211 kJ/min**. The **condenser** operates at **800 kPa**. **Evaporators 1** and **2** operate at **-15°C** and **250 kPa**, respectively.

The R-134a leaves each evaporator as a saturated vapor and it leaves the condenser as a saturated liquid.

- Calculate...
- a.) m₆ and m₇ in kg/min
- b.) W_{S,comp} in kW
- c.) Q_{cond} in kW
- **Read :** Don't let the **diagram** scare you. Analyze <u>each unit</u> or process in the cycle just as you would in an ordinary refrigeration cycle.

Assume the cycle operates at steady-state and that <u>each</u> process is internally reversible, except for the <u>expansions</u> through each valve. These are throttling processes. The compressor and valves operate **adiabatically**. <u>Changes</u> in kinetic and potential energies are <u>negligible</u>.

First, determine the **specific enthalpy** at **states 3** to **8**. These are the <u>easy</u> ones. To determine the **enthalpies** at **states 1** and **2**, you will need to know the **mass flow rates** through <u>each</u> evaporator. You can determine the **mass flow rates** by applying the 1st Law to <u>each</u> evaporator.

There are <u>two</u> stealth <u>units</u> on this flow diagram. A stream splitter where steam is <u>divided</u> before it enters Evaporator #2 or Valve #2 and a Mixer where streams 6 and 8 combine to form stream 1. The Mixer is <u>crucial</u> to this problem. You can write mass and energy balances on the Mixer. The Mixer can be considered adiabatic. This will help you determine the specific enthalpy for stream 1. Then, because the compressor is isentropic, you can determine the specific enthalpy for stream 2.

10 pts

Given:	Q _{in,1}	5	tons			P ₃	800	kPa
	Q _{in,2}	3	tons			X ₃	0	kg vap/kg
	T ₆	-15	°C			x ₆	1	kg vap/kg
	P ₂	800	kPa			P ₇	250	kPa
						x ₇	1	kg vap/kg
Find:	Part (a)	m ₆	???	kg/min	Part (b)	W _{comp}	???	kW
		m ₈	???	kg/min	Part (c)	Q _{out}	???	kW

Diagram: The process flow diagram was provided in the problem statement.

Assumptions:	1 -	Each component is an open system operating at steady-state.
	2 -	<u>All</u> processes are internally reversible, <u>except</u> the expansion valves, which are isenthalpic throttling processes.
	3 -	The compressor and valves operate adiabatically.

Kinetic and potential	energy changes	are <u>negligible</u> .
-----------------------	----------------	-------------------------

					X	
	Т	Р	Н	S	(kg	
Stream	(oC)	(kPa)	(kJ/kg)	(kJ/kg-K)	vap/kg)	Phase
1	-12.2	163.94	391.98	1.7462	N/A	Super. Vap.
2	40.77	800	425.39	1.7462	N/A	Super. Vap.
3	31.3	800	243.65	1.1497	0	Sat'd Liq.
4	-4.28	250	243.65	1.1626	0.245	VLE
5	-15	163.94	243.65	1.1716	0.303	VLE
6	-15	163.94	389.63	1.7371	1	Sat'd Vap.
7	-4.28	250	396.08	1.7296	1	Sat'd Vap.
8	-7.3	163.94	396.08	1.7617	N/A	Super. Vap.

Equations / Data / Solve:

Part a.) The key to determining \mathbf{m}_6 and \mathbf{m}_8 are the given values for $\mathbf{Q}_{in,1}$ and $\mathbf{Q}_{in,2}$. We can use these values when we apply the 1st Law to each evaporator to determine \mathbf{m}_6 and \mathbf{m}_8 .

Each evaporator operates at steady-state, involves <u>no</u> **shaft work** and has <u>negligible changes</u> in kinetic and potential energies. The appropriate forms of the 1st Law are:

$$\dot{\boldsymbol{Q}}_{\text{in},1} = \dot{\boldsymbol{m}}_{6} \left(\hat{\boldsymbol{H}}_{6} - \hat{\boldsymbol{H}}_{5} \right) \qquad \text{Eqn 1}$$

$$\dot{\mathbf{Q}}_{\text{in,2}} = \dot{\mathbf{m}}_8 \left(\hat{\mathbf{H}}_7 - \hat{\mathbf{H}}_4 \right)$$
 Eqn 2

We can solve these equations for the unknown mass flow rates:

Now, we need to determine the values of the H's to use in Eqns 3 & 4.

The throttling valves are **isenthalpic** because they are adiabatic, have <u>no</u> **shaft work** interactions and <u>changes</u> in <u>kinetic</u> and <u>potential energies</u> are <u>negligible</u>. Therefore:

$$\hat{\mathbf{H}}_3 = \hat{\mathbf{H}}_4 = \hat{\mathbf{H}}_5$$
 Eqn 5 $\hat{\mathbf{H}}_7 = \hat{\mathbf{H}}_8$ Eqn 6

Fortunately, we were given enough information to lookup the **specific enthalpy** of **states 3**, **6** and **7** in the **Saturated R-134a Tables** or the **NIST Webbook**. Once we have these values, we can use **Eqns 5** & **6** to evaluate the **H**'s at **states 4**, **5** and **8** as well !

H ₃	243.65	kJ/kg	H ₆	389.63	kJ/kg
H ₄	243.65	kJ/kg	H ₇	396.08	kJ/kg
H ₅	243.65	kJ/kg	H ₈	396.08	kJ/kg
NI		into Enno 0.0.4 to determine	the two contractions are a flavorable a		

Now, we can plug values into Eqns 3 & 4 to determine the two unknown mass flow rates.

1 ton =	211	kJ/min	m ₆	7.227	kg/min	
			m ₈	4.152	kg/min	

Part b.) We need to determine W_s for the compressor. We can accomplish this by applying the 1st Law to the compressor. The compressor operates at steady-state, is adiabatic and reversible and has <u>negligible changes</u> in kinetic and potential energies. The appropriate form of the 1st Law is:

We know the mass flow rates from part (a), but we don't know either of the H's in Eqn 7 yet.

We can determine H_1 by applying the 1st Law to the mixer where streams 6 and 8 <u>combine</u> to form stream 1. The mixer is a **MIMO** process that operates at steady-state, is adiabatic and has <u>negligible changes</u> in kinetic and potential energies. The appropriate form of the 1st Law is:

$$\dot{\mathbf{m}}_1 \hat{\mathbf{H}}_1 = \dot{\mathbf{m}}_6 \hat{\mathbf{H}}_6 + \dot{\mathbf{m}}_8 \hat{\mathbf{H}}_8$$
 Eqn 8

 $\dot{\mathbf{m}}_1 = \dot{\mathbf{m}}_6 + \dot{\mathbf{m}}_8$

Solve Eqn 8 for the <u>only</u> unknown in the equation: H_1 .

A mass balance on the mixer tells us that:

kJ/kq

Now, we can plug values into Eqns 9 & 10 to evaluate m_1 and H_1 :

m₁ 11.38 kg/min H₁ 391.98

Now, we need to work on evaluating H_2 . The key to determining H_2 is the fact that the compressor is <u>both</u> adiabatic and internally reversible, so it is **isentropic**. $S_2 = S_1$. We can lookup S_1 because we know H_1 and we know that:

$$P_1 = P_6 = P_8 = P_{sat}(-18^{\circ}C)$$
 Eqn 11

P_{sat}(-18°C) = 163.94 kPa P₁ 163.94 kPa

In evaluating S_1 , we must <u>first</u> determine whether **stream 1** is a superheated vapor or a saturated mixture.

This is easier using the NIST Webbook than the R-134a Tables because no interpolation is required.

At P = 163.94 kPa :	H _{sat liq}	180.14	kJ/kg	
	H _{sat vap}	389.63	kJ/kg	
	Since H₁ >	H _{sat van} , stat	e 1 is a superheated vapor.	

Т (°С)	H (kJ/kg)	S (kJ/kg-K)				
-13	391.30	1.7435	Interpolation yields :	T ₁	-12.17	°C
T ₁	391.98	S₁		S ₁	1.7462	kJ/kg-K
-10	393.80	1.7531		S ₂	1.7462	kJ/kg-K

Be careful with this interpolation. Use a narrow temperature range because the answer is very sensitive to this result.

Now, we know the values of <u>two</u> intensive variables at state 2 ($P_2 \& S_2$), so we can go back to the R-134a Tables or NIST Webbook and determine H_2 by <u>interpolation</u>.

At P = 800	kPa :					
T (°C)	H (kJ/kg)	S (kJ/kg-K)				
40	424.59	1.7436				
T ₂	H ₂	1.7462	Interpolation yields :	T ₂	40.78	°C
45	429.74	1.7599		H ₂	425.40	kJ/kg-
Finally, we	can plug value	es back into Eqn 7 :				
Ws	-380.20	kJ/min		Ws	-6.337	k۷

Part c.) We can determine the heat transfer rate in the condenser by applying the 1st Law to it.

The condenser operates at steady-state, involves <u>no</u> **shaft work** and has <u>negligible changes</u> in <u>kinetic</u> and <u>potential energies</u>. The appropriate form of the <u>1st Law</u> is:

$$\dot{\mathbf{Q}}_{23} = \dot{\mathbf{m}}_1 \left(\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_2 \right)$$
 Eqn 12

In parts (a) & (b) we evaluated m_1 , H_2 and H_3 , so we cannow plug values into Eqn 12:

Q ₂₃ -2068.2 kJ/min Q ₂₃ -34.47	kW
---	----

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : a.) m₆ 7.23 kg/min **b.**) Ws -6.34 kW 4.15 kg/min (The "-" sign indicates that shaft m₈ work is done on the working fluid in the compressor.) c.) **Q**₂₃ -34.5 kW (The "-" sign indicates that heat is transferred out of the working fluid in the condenser.)

10D-1 COP of a Heat Pump Used for Home Heating

8 pts

At steady-state, a house loses **10 kW** of heat to the surroundings when the outdoor **temperature** is **0°C** and the indoor **temperature** is **22°C**. This energy must be replaced by a heat pump that uses **R-134a** as the working fluid. Assume **evaporator** effluent is a saturated vapor and the **condenser effluent** is a saturated liquid. Assume the **compressor** has an **isentropic efficiency** of **85%**.

a.) Determine the operating **pressures** for the **evaporator** and **condenser** that provide at least a **10°C** driving force for heat exchange at the inlet and outlet of the evaporator and the condenser.

b.) Calculate the mass flow rate of the R-134a, the power requirement of the compressor and the COP of the heat pump.

Read : The operating **pressures** of the evaporator and condenser are governed by the saturation considerations. A rule of thumb in heat exchanger design is that you would like to have a ΔT of about 10°C between two fluids entering the heat exchanger. In this case, since the <u>outside</u> temperature is 0°C, assume that T₁ is -10°C. Since the <u>inside</u> temperature is 22°C, the temperature of the R-134a entering the condenser must be 32°C to give us the desired ΔT of 10°C. This leads to some messy interpolation that you can avoid by using the NIST Webbook. With these assumptions, there are really no tricks to this problem!

Given:	T _{outside} T _{inside}	0 22	°C °C		Q _{out} η _{s, comp}	10 0.85	kW
Find:	a.)	P ₁	???	kPa	P ₃	???	kPa
	b.)	m _{dot} W _{comp}	??? ???	kg/min kW	COP _{HP}	???	

Diagram:

Assumptions:

- 1 <u>Each</u> component is an open system, operating at steady-state.
- 2 There are <u>no pressure drops</u> through the evaporator or condenser.
- 3 The compressor operates adiabatically with an isentropic efficiency of 80%.
- **4** The expansion through the valve is an isenthalpic throttling process.
- 5 Kinetic and potential energy <u>changes</u> are <u>negligible</u>.
- **6** The evaporator and condenser **pressures** must be chosen to allow for sufficient ΔT 's to avoid <u>excessive</u> heat exchanger <u>sizes</u> (**surface area**). For a preliminary design <u>assume</u>:

$\Delta T_{evap} = \Delta T_{cond} =$	10	°C
$T_1 = T_2 =$	-10	°C
T ₄ =	32	°C

Equations / Data / Solve:

	Т	Р	н	S	x	
Stream	(°C)	(kPa)	(kJ/kg)	(kJ/kg-K)	(kg vap/kg)	Phase
1	-10.0	200.60	201.10	1.0054	0.0699	VLE
2	-10.0	200.60	392.66	1.7334	1	Sat'd Vap.
3	42.6	815.43	426.94	1.5485	N/A	Super. Vap.
3S	37.7	815.43	421.80	1.7334	N/A	Super. Vap.
4	32	815.43	201.10	1.0040	0	Sat'd Liq.

Part a.) The mass flow rate is the <u>same</u> through <u>each</u> piece of equipment. Therefore, we can determine the mass flow rate by applying the 1st Law to <u>any one process</u>. Because we are given the **heat transfer rate** at the condenser, it is the device where we will have the <u>fewest unknowns</u> in the 1st Law so we are <u>most likely</u> to be able to determine the mass flow rate of the working fluid.

The 1st Law for a steady-state, single-inlet, single-outlet condenser with <u>no</u> shaft work and <u>negligible</u> kinetic and potential energy <u>changes</u> is:

$$\dot{\mathbf{Q}}_{\text{out}} = -\dot{\mathbf{Q}}_{34} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_4 \right)$$
 Eqn 1

Solve Eqn 1 for the mass flow rate:

$$\dot{\mathbf{m}} = \frac{\dot{\mathbf{Q}}_{out}}{\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_4}$$
 Eqn 2

We can look up H₄ in the R-134a Tables or in the NIST Webbook because it is saturated liquid at 32 °C.

H₄ 201.10 kJ/kg

In order to determine H_3 , we must use the **isentropic efficiency** of the compressor.

$$\eta_{\text{S,comp}} = \frac{-\dot{\textbf{W}}_{\text{S,isen}}}{-\dot{\textbf{W}}_{\text{S,act}}} = \frac{\hat{\textbf{H}}_{3\text{S}} - \hat{\textbf{H}}_2}{\hat{\textbf{H}}_3 - \hat{\textbf{H}}_2}$$
Eqn 3

$$\hat{\mathbf{H}}_{3} = \hat{\mathbf{H}}_{2} + \frac{\left(\hat{\mathbf{H}}_{3S} - \hat{\mathbf{H}}_{2}\right)}{\eta_{S,comp}}$$
Eqn 4

Next, we need to determine H_{3S} . For an **isentropic** compressor, $S_{3S} = S_2$ and we can look-up S_2 in the **NIST** Webbook because stream 2 is a saturated vapor at -10°C.

S ₂	1.7334	kJ/kg-K	S _{3S}	1.7334	kJ/kg-K
H ₂	392.66	kJ/kg			

Now, we know the value of <u>two</u> intensive properties at state 3S: S_{3S} and P_3 (because the condenser is isobaric: $P_3 = P_4 = P_{sat}(32^{\circ}C)$

$$P_3 = P_4 = P_{sat}(32^{\circ}C) = 815.43$$
 kPa

This involves some painful interpolation. I suggest you use the NIST Webbook to avoid the pain of

<u>At 800 kPa:</u>	<u>T (°C)</u> 31.33	<u>H (kJ/kg)</u> 415.46	<u>S (kJ/kg-K)</u> 1.7140			
	T _{3S,800}	H _{3S,800}	1.7334	H _{3S,800}	36.99	kJ/kg
	40	424.59	1.7436	H _{3S,800}	421.42	kJ/kg
<u>At 900 kPa:</u>	<u>T (°C)</u>	<u>H (kJ/kg)</u>	<u>S (kJ/kg-K)</u>			
	40	422.32	1.7283			
	T _{3S,900}	H _{3S,900}	1.7334	H _{3S,900}	41.51	kJ/kg
	50	432.92	1.7616	H _{3S,900}	423.92	kJ/kg

Finally, at 815.43 kPa :	<u>T (°C)</u>	<u>P (kPa)</u>	<u>H (kJ/kg)</u>			
	36.99	800	421.42			
	T _{3S}	815.43	H _{3S}	T _{3S}	37.69	
	41.51	900	423.92	H _{3S}	421.81	kJ/kg
Now ,we can plug values	into Eqn 4 t	o determine	e H ₃ :	H ₃	426.94	kJ/kg
Now, we can plug H_3 back	m _{dot}	0.04428	kg/s			
				m _{dot}	2.657	kg/min

Part b.) In order to determine the **shaft work** requirement for the compressor, we must apply the 1st Law to it. The 1st Law for a steady-state, single-inlet, single-outlet, adiabatic compressor with <u>negligible</u> kinetic and potential energy <u>changes</u> is:

$$\dot{\mathbf{W}}_{\text{comp}} = \dot{\mathbf{m}} (\hat{\mathbf{H}}_3 - \hat{\mathbf{H}}_2)$$
 Eqn 5

We already determined H_2 and H_3 , so all we need to do is plug numbers into Eqn 5.

Eqn 6

Part c.) We can determine the COP_R from its <u>definition</u>:

COP _{HP}	$= \frac{\dot{\mathbf{Q}}_{out}}{\dot{\mathbf{W}}_{comp}}$	

COP _R	6.589

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers :	a.)	m _{dot}	2.66	kg/min				
	b.)	W _{comp}	1.52	kW	c .))	COP _R	6.59

10E-1 Brayton Refrigeration Cycle

8 pts

A Brayton refrigeration cycle uses **air** as the working fluid and operates between a high **pressure** of **800 kPa** and a low **pressure** of **120 kPa**. The **compressor** and **turbine** inlet **temperatures** are **540 K** and **510 K**, respectively. The **turbine** is **isentropic** and the **compressor** has an **isentropic efficiency** of **88%**. Calculate **W**_{net}, in **kJ/kg**, and the **coefficient of performance** for the cycle.

Read : The key here is that this is a Brayton Cycle. Because air behaves as an ideal gas, we can use the Ideal Gas Property Tables for air. Other key points include the fact that <u>both</u> the compressor and turbine are adiabatic, the compressor has an isentropic efficiency of 88% and the turbine is isentropic.

Given:	$P_1 = P_2$ T_2 $\eta_{s,comp}$	120 540 88%	kPa K			$P_4 = P_3$ T_4	800 510	kPa K
Find:	a.)	W _{cycle}	?	kJ/kg	b.)	COP _R	?	

Diagram:

Assumptions:

- Each component is analyzed as an open system operating at steady-state.
- 2 The turbine is **isentropic**.
- **3** There are <u>no **pressure** drops</u> for flow through the <u>heat exchangers</u>.
- 4 Kinetic and potential energy <u>changes</u> are <u>negligible</u>.
- 5 The working fluid is air modeled as an ideal gas.
- 6 There is <u>no</u> heat <u>exchanged</u> with the <u>surroundings</u>.

1 -

Equations / Data / Solve:

	Т	Р	H°	S°	
Stream	(°R)	(psia)	(Btu/lb _m)	(Btu/lb _m -°R)	Pr
1	299.12	120	86.535	0.0032422	1.0114
2	540	120	333.66	0.60768	8.3101
3	938.62	800	768.78		
3s	892.14	800	716.57	1.1521	55.400
4	510	800	302.17	0.54769	6.742

Part a.) There is <u>no</u> shaft work occurring in the HEX's, so W_{cycle} is :

 $\hat{\mathbf{W}}_{cycle} = \hat{\mathbf{W}}_{comp} + \hat{\mathbf{W}}_{turb}$ Eqn 1

We can determine W_{comp} and W_{turb} by applying the 1st Law to <u>each</u> device.

The 1st Law equations for a steady-state, single-inlet, single-outlet adiabatic turbine and compressor with <u>negligible</u> kinetic and potential energy <u>changes</u> are:

$$\hat{W}_{turb} = \hat{W}_{s,41} = \hat{H}_4 - \hat{H}_1$$
 Eqn 2 $\hat{W}_{comp} = \hat{W}_{s,23} = \hat{H}_2 - \hat{H}_3$ Eqn 3

So, in order to evaluate W_{cycle} , we must first determine the **specific enthalpy** of <u>all four</u> **streams** in the cycle. We can immediately find H_2 and H_4 in the **Ideal Gas Property Table** for **air** because both T_2 and T_4 are given.

H^o_{T2} 333.66 kJ/kg

H^o_{T4} 302.17 kJ/kg

Next, let's make use of the fact that the turbine is **isentropic** ($S_2 = S_1$) to evaluate H_1 . We can either use the **Ideal Gas Entropy Function** and the 2nd Gibbs Equation or we can use Relative Properties. Both methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_1 - \hat{\mathbf{S}}_4 = \hat{\mathbf{S}}_{T1}^\circ - \hat{\mathbf{S}}_{T4}^\circ - \frac{\mathsf{R}}{\mathsf{MW}} \operatorname{Ln} \frac{\mathsf{P}_1}{\mathsf{P}_4} = \mathbf{0} \qquad \qquad \mathsf{Eqn } 4$$

We can solve **Eqn 4** for **S°_{T1}** :

$$\hat{\mathbf{S}}_{\mathsf{T}1}^{\circ} = \hat{\mathbf{S}}_{\mathsf{T}4}^{\circ} + \frac{\mathsf{R}}{\mathsf{MW}} \mathsf{Ln} \frac{\mathsf{P}_{1}}{\mathsf{P}_{4}}$$
 Eqn 5

We can look-up S°_{T4} in the **Ideal Gas Property Table** for **air** and use it with the <u>known</u> **pressures** in **Eqn 5** to determine S°_{T1} . We can do this because the HEX's are isobaric. $P_1 = P_2$ and $P_3 = P_4$.

R		8.314	J/mol-K		MW	28.97	g/mol
	T (K)	H° (kJ/kg)	S [°] (kJ/kg-K)		S° _{T4}	0.54769	kJ/kg-K
Г	298.15	85.565	0.00000		S° _{T1}	0.0032422	kJ/kg-K
	T ₁	Н° _{т1}	0.0032422	Interpolation yields :	T ₁	299.12	К
	300	87.410	0.0061681		Н° _{т1}	86.535	kJ/kg

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process : $\frac{P_{r}(T_{1})}{P_{r}(T_{4})} = \frac{P_{1}}{P_{4}}$

Eqn 6

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look-up in the **Ideal Gas Property Table** for **air**. We can solve **Eqn 6** For **P_r(T₁)** , as follows :

$$P_r(T_1) = \frac{P_1}{P_4}P_r(T_4)$$

Eqn 7

Look-up $P_r(T_4)$ and use it in Eqn 7 to determine $P_r(T_1)$: $P_r(T_4)$ 6.7424 $P_r(T_1)$ 1.0114

We can now determine T_5 and H_5 by <u>interpolation</u> on the **Ideal Gas Property Table** for air.

T (K)	Pr	H [°] (kJ/kg)	_			
298	1.0000	85.565	•			
T ₁	1.0114	Н° _{т1}	Interpolation yields :	T ₁	299.12	κ
300	1.0217	87.410		Н° _{т1}	86.530	kJ/kg

Since the two methods differ by less than 0.01%, I will use the results from Method 1 in the remaining calculations of this problem.

Next, we need to evaluate H_3 . To do this, we need to use the **isentropic efficiency** of the compressor.

$$\eta_{s,comp} = \frac{\hat{H}_2 - \hat{H}_{3s}}{\hat{H}_2 - \hat{H}_3}$$
 Eqn 8

Solving Eqn 8 for H₃ gives us:

$$\hat{\mathbf{H}}_{3} = \hat{\mathbf{H}}_{2} - \frac{\left(\hat{\mathbf{H}}_{2} - \hat{\mathbf{H}}_{3s}\right)}{\eta_{s, \text{comp}}}$$
 Eqn 9

So, in order to determine H_3 , we must first determine H_{3S} , the **enthalpy** of **stream 3** <u>IF</u> the turbine <u>were</u> **isentropic**. We can determine T_{3S} using either the **Ideal Gas Entropy Function** and the **2nd Gibbs Equation** <u>or</u> we can use **Relative Properties**. <u>Both</u> methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_{3s} - \hat{\mathbf{S}}_{2} = \hat{\mathbf{S}}_{T3s}^{\circ} - \hat{\mathbf{S}}_{T2}^{\circ} - \frac{\mathbf{R}}{\mathbf{MW}} \operatorname{Ln} \frac{\mathbf{P}_{3}}{\mathbf{P}_{2}} = \mathbf{0}$$
Eqn 10

We can solve **Eqn 10** for the unknown **S^or**a

$$\hat{\mathbf{S}}_{\text{T3S}}^{\circ}: \quad \hat{\mathbf{S}}_{\text{T3S}}^{\circ} = \hat{\mathbf{S}}_{\text{T2}}^{\circ} + \frac{R}{MW} \ln \frac{P_3}{P_2}$$
Eqn 11

We can look up S_{T2}° in the **Ideal Gas Property Table** for **air** and use it with the <u>known</u> **compression ratio** in **Eqn** 11 to determine S_{T3}° . We can do this because the HEX's are isobaric. $P_1 = P_2$ and $P_3 = P_{3S} = P_4$.

R	8.314	J/mol-K	MW 28.	97	g/mol
S ^o T2	0.60768	kJ/kg-K	S° _{T3S} 1.15	21	kJ/kg-K

Now, we can use S^{o}_{T3S} and the **Ideal Gas Property Table** for **air** to determine T_{3S} and then H_{3S} by <u>interpolation</u>:

T (K)	H° (kJ/kg)	S° (kJ/kg-K)				
880	702.98	1.1369				
T _{3S}	H _{3S}	1.1521	Interpolation yields :	T _{3S}	892.14	κ
900	725.37	1.1620		H _{3S}	716.57	kJ/kg

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :

$$\frac{\mathsf{P}_{\mathsf{r}}(\mathsf{T}_{3\mathsf{S}})}{\mathsf{P}_{\mathsf{r}}(\mathsf{T}_{2})} = \frac{\mathsf{P}_{3}}{\mathsf{P}_{2}}$$
 Eqn 12

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look-up in the **Ideal Gas Property Table** for **air**.

We can solve Eqn 12 For P_r(T₃), as follows :

$$P_r(T_{3S}) = \frac{P_3}{P_2} P_r(T_2)$$
 Eqn 13

 Look-up $P_r(T_2)$ and use it in Eqn 13 to determine $P_r(T_{3S})$:
 $P_r(T_2)$ 8.3101

 $P_r(T_3)$ 55.400

We can now determine T_{3S} by <u>interpolation</u> on the the **Ideal Gas Property Table** for **air**. Then, we use T_3 to determine H_3 from the **Ideal Gas Property Table** for **air**.

Т (К)	P _r	H° (kJ/kg)				
880	52.530	702.98				
T _{3S}	55.400	H _{3S}	Interpolation yields :	T _{3S}	891.93	κ
900	57.342	725.37		H _{3S}	716.33	kJ/kg

Since the two methods differ by less than 0.05%, I will use the results from Method 1 in the remaining calculations of this problem.

e Eqn 9 to evaluate H ₃ :	H ₃	768.78	kJ/kg	
H [°] (kJ/kg)				
747.82				
768.78				
770.33	Interpolation yields :	T ₃	938.62	К
back to Eqns 2 & 3 to eva	luate W_{turb} and W_{comp} :	W _{turb}	215.64	kJ/kg
		W_{comp}	-435.12	kJ/kg
olug values into Eqn 1 to e	W _{cycle}	-219.48	kJ/kg	
	 Eqn 9 to evaluate H₃ : H° (kJ/kg) 747.82 768.78 770.33 back to Eqns 2 & 3 to eva blug values into Eqn 1 to eva 	H° (kJ/kg) 747.82 768.78 770.33 Interpolation yields : back to Eqns 2 & 3 to evaluate W _{turb} and W _{comp} : blug values into Eqn 1 to evaluate W _{cycle} :	H° (kJ/kg) H_3 H_3 747.82 768.78 770.33 Interpolation yields : T_3 back to Eqns 2 & 3 to evaluate W_{turb} and W_{comp} : W_{turb} W_{comp} W_{comp}	H° (kJ/kg) 747.82 768.78 768.78 770.33 Interpolation yields : T_3 938.62 back to Eqns 2 & 3 to evaluate W_{turb} and W_{comp} : W_{turb} 215.64 bug values into Eqn 1 to evaluate W_{cycle} : W_{cycle} -219.48

Part b.) We can determine the

coefficient of performance from its definition.

 $COP_{R} = \frac{\hat{Q}_{C}}{-\hat{W}_{cuclo}}$ **Egn 14**

Ean 16

We can evaluate Q_c by applying the 1st Law to HEX #2 because $Q_c = Q_{12}$.

HEX #2 operates at steady-state, has <u>no</u> **shaft work** interaction and <u>changes</u> in <u>kinetic</u> and <u>potential energies</u> are <u>negligible</u>. So, the appropriate form of the 1st Law is:

<u>^</u>

.

.^.

COPR

	$\mathbf{Q}_{12} = \mathbf{H}_2 - \mathbf{H}_1$		Equite
Plugging values into Eqn 16 gives us:	Q ₁₂	247.13	kJ/kg
Finally, we can plug values back into Eqn 14 :	COP _R	1.126	

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : W_{cycle} -219 kJ/kg

1.13

10E-2 Ideal Regenerative Brayton Refrigeration Cycle

9 pts

Calculate the refrigeration capacity, **Q**_c, in **tons of refrigeration**, and the **coefficient of performance** of the regenerative Brayton Cycle, shown below.

Read : Make all the usual assumptions for the standard Brayton cycle. Use the ideal gas EOS to convert the volumetric flow rate to a mass flow rate. Determine the specific enthalpy for <u>each</u> stream and then use the 1st Law and the definition of the COP to answer the questions.

Given:	V ₁	1250	ft ³ /min		P ₂	70	psia ⁰⊓
	I ₁	(4)	R		I 3	(15	R
	P ₁	25	psia		T ₄	747	°R
Find:	a.)	Q _{in}	???	tons			
	b.)	COP _R	???				

Diagram:

Assumptions:	1 -	Each process is analyzed as an open system operating at steady-state.
	2 -	The turbine and compressor are isentropic .
	3 -	There are <u>no pressure drops</u> for flow through the heat exchangers.
	4 -	Kinetic and potential energy changes are negligible.
	5 -	The working fluid is air modeled as an ideal gas.
	6 -	There is no heat transfer from the heat exchanger to its surroundings.

	Т	Р	H°	S°	
Stream	(°R)	(psia)	(Btu/lb _m)	(Btu/lb _m -°R)	Pr
1	747	25	87.598		3.2050
2	992.7	70			8.9740
3	775	70	94.467		
4	747	70	87.598	0.079819	3.2050
5	557.8	25	41.824	0.0091996	1.1446
6		25	80.728		

Part a.) The refrigeration capacity is how much heat the refrigerator can remove from the cold reservoir. So, we need to determine Q_{in} (from the diagram above). We can accomplish this by applying the 1st Law to HEX #1. The 1st Law for a steady-state, single-inlet, single-outlet, HEX with no shaft work and negligible kinetic and potential energy changes is:

$$\dot{\mathbf{Q}}_{in} = \dot{\mathbf{Q}}_{56} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_6 - \hat{\mathbf{H}}_5 \right)$$
 Eqn 1

First, let's determine the **mass flow rate** of the **working fluid**. The key is that we know the **volumetric flow rate** and the **T** & **P** at the compressor <u>inlet</u>. And, remember that we have <u>assumed</u> that the **air** behaves as an ideal gas.

$$\dot{m} = \frac{\dot{V}_{1}}{\hat{V}_{1}} = \frac{P_{1}\dot{V}_{1}}{(R / MW)T_{1}}$$
 Eqn 2

Plugging values into Eqn 2 yields:

 R
 1545
 ft lb_f/lb_m-°R

 MW
 29.00
 lb_m/lbmole

m_{dot} 113.07 lb_m/min

Dr. B - LearnThermo.com

Next, let's determine H_5 . We can accomplish this because we <u>assumed</u> the turbine is **isentropic**. We can <u>either</u> use the Ideal Gas Entropy Function and the 2nd Gibbs Equation or we can use Relative Properties. <u>Both</u> methods are presented here.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$\Delta \hat{S} = \hat{S}_{5} - \hat{S}_{4} = \hat{S}_{75}^{\circ} - \hat{S}_{74}^{\circ} - \frac{R}{MW} Ln \frac{P_{5}}{P_{4}} = 0$$
 Eqn 3

We can solve **Eqn 3** for **S°**_{T5} :

$$\hat{S}^{\circ}_{T5} = \hat{S}^{\circ}_{T4} + \frac{R}{MW} Ln \frac{P_5}{P_4}$$
 Eqn 4

We can look-up S^{o}_{T4} in the **Ideal Gas Property Table** for **air** and use it with the <u>known</u> **pressures** in **Eqn 4** to determine S^{o}_{T5} . We can do this because the HEX's are isobaric. $P_1 = P_5 = P_6$ and $P_2 = P_3 = P_4$.

R	1.987	Btu/Ibmole- [°] R	MW	28.97	lb _m /lbmole
T (°R)	H [°] (Btu/lb _m)	S° (Btu/lb _m °R)			
740.00	85.884	0.077519			
747	Н° _{т4}	S° _{T4}	Н ^о _{т4}	87.598	Btu/lb _m
750	88.332	0.080805	S° _{T4}	0.079819	Btu/lb _m -°R
T (°R)	H° (Btu/lb _m)	S° (Btu/Ib _m °R)			
550	39.963	0.005848	S ° _{T5}	0.0091996	Btu/lb _m -°R
T ₅	Н° _{т5}	0.009200	T ₅	557.79	°R
560	42.351	0.010149	Η° _{τ5}	41.824	Btu/lb _m

Method 2: Use the Ideal Gas Relative Pressure.

Eqn 5

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look-up in the **Ideal Gas Property Table** for **air**.

We can solve **Eqn 5** For **P_r(T₅)** , as follows :

$$\mathbf{P}_{r}(\mathbf{T}_{5}) = \frac{\mathbf{P}_{5}}{\mathbf{P}_{4}} \mathbf{P}_{r}(\mathbf{T}_{4})$$
 Eqn 6

Look-up $P_r(T_4)$ and use it in Eqn 6 to determine $P_r(T_5)$:

T (°R)	Pr	H [°] (Btu/lb _m)			
740	3.0985	85.884	Н ^о _{т4}	87.598	Btu/lb _m
747	P _r (T₄)	H° _{T4}	P _r (T ₄)	3.2050	
750	3.2506	88.332	P _r (T ₅)	1.1446	

We can now determine T_5 and H_5 by interpolation on the the **Ideal Gas Property Table** for air.

T (°R)	Pr	H [°] (Btu/lb _m)			
550	1.0891	39.963			
T ₅	1.1446	Н° _{т5}	T ₅ 55	7.88	°R
560	1.1596	42.351	Н ^о т5 41	.845	Btu/lb _m

Since the two methods differ by less than 0.01%, I will use the results from Method 1 in the remaining calculations of this problem.

Next, we need to evaluate H_6 . To do that, we need to apply the 1st Law to the Regenerator.

The 1st Law for a steady-state, multiple-inlet, multiple-outlet, adiabatic **HEX** with <u>no</u> **shaft work** and <u>negligible</u> kinetic and potential energy <u>changes</u> is:

$$\left(\hat{\mathbf{H}}_{3}+\hat{\mathbf{H}}_{6}\right)-\left(\hat{\mathbf{H}}_{1}+\hat{\mathbf{H}}_{4}\right)=\mathbf{0}$$
 Eqn 7

Solve Eqn 7 for H₆:

$$\hat{\mathbf{H}}_6 = \hat{\mathbf{H}}_1 + \hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_3$$
 Eqn 8

We already found H_4 , so we need to find H_1 and H_3 . We can do this by <u>interpolation</u> in the **Ideal Gas Property Table** for **air** because we know both T_1 and T_3 . Because $T_1 = T_4$, $H_1 = H_4$ and we already found H_4 . So, all we need to work on is H_3 .

T (°R)	H [°] (Btu/lb _m)				
770	93.238		Н° _{т1}	87.598	Btu/lb _m
775	Н ^о тз				
780	95.696		Н° _{тз}	94.467	Btu/Ib _m
Now, we p	lug values back	Н° _{т6}	80.728	Btu/Ib _m	
At last, we	can plug numbe	Q _{in}	4399.1	Btu/min	
Converting	g <mark>units</mark> to tons o	1 ton =	200	Btu/min	
			Q _{in}	21.995	tons

Part b.) We can determine the **coefficient of performance** from its <u>definition</u>.

$$COP_{R} = \frac{Q_{in}}{-W_{cycle}}$$
 Eqn 9

Where :

$$W_{cvcle} = W_{comp} + W_{turb}$$
 Eqn 10

We can determine W_{comp} and W_{turb} by applying the 1st Law to the compressor and the turbine separately.

The 1st Law for a steady-state, single-inlet, single-outlet adiabatic turbine and compressor with <u>negligible</u> kinetic and potential energy <u>changes</u> are:

$$\dot{\mathbf{W}}_{\text{turb}} = \dot{\mathbf{W}}_{\text{S},45} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_4 - \hat{\mathbf{H}}_5 \right)$$
Eqn 11

$$\dot{\mathbf{W}}_{\text{comp}} = \dot{\mathbf{W}}_{\text{S},12} = \dot{\mathbf{m}} \left(\hat{\mathbf{H}}_{1} - \hat{\mathbf{H}}_{2} \right)$$
Eqn 12

We know <u>all</u> of the values we need <u>except</u> H_2 . We can determine it because we know the <u>compressor</u> is **isentropic**. We can use <u>either</u> Method 1 or 2 described above.

Method 1: Use the Ideal Gas Entropy Function and the 2nd Gibbs Equation.

Apply the 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function:

$$\Delta \hat{\mathbf{S}} = \hat{\mathbf{S}}_2 - \hat{\mathbf{S}}_1 = \hat{\mathbf{S}}_{T2}^\circ - \hat{\mathbf{S}}_{T1}^\circ - \frac{\mathbf{R}}{\mathbf{MW}} \operatorname{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1} = \mathbf{0}$$
 Eqn 13

Solving Eqn 13 for \mathbf{S}°_{T2} yields : $\hat{\mathbf{S}}^{\circ}_{T2} = \hat{\mathbf{S}}^{\circ}_{T1} + \frac{\mathbf{R}}{\mathbf{MW}} \mathbf{Ln} \frac{\mathbf{P}_2}{\mathbf{P}_1}$

Because $T_1 = T_4$, $S^o_{T1} = S^o_{T4}$. Then, we can use Eqn 4 to determine S^o_{T2} . We can do this because the HEX's are isobaric. $P_1 = P_5 = P_6$ and $P_2 = P_3 = P_4$.

S° _{T1}	0.079819	Btu/lb _m -⁰R	S° _{T2}	0.15044	Btu/lb _m -°R
T ([°] R) 990	H ^o (Btu/lb _m) 147.98	S [°] (Btu/lb _m [°] R) 0.14976			
T ₂	Н° _{т2}	0.15044	T ₂	992.67	°R
1000	150.50	0.15230	Η ^ο _{T2}	148.65	Btu/lb _m

Method 2: Use the Ideal Gas Relative Pressure.

When an ideal gas undergoes an isentropic process :	$\frac{\mathbf{P}_{r}(\mathbf{T}_{2})}{\mathbf{P}_{r}(\mathbf{T}_{1})} = \frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}$	Eqn 15

Where **P**_r is the Ideal Gas Relative Pressure, which is a <u>function</u> of **T** <u>only</u> and we can look-up in the **Ideal Gas Property Table** for **air**.

We can solve **Eqn 15** For **P**_r(**T**₂) , as follows :

 $P_r(T_2) = \frac{P_2}{P_1} P_r(T_1)$ Eqn 16

Egn 14

 $P_r(T_1) = P_r(T_4)$ because $T_1 = T_4$. Use $P_r(T_1)$ in Eqn 16 to determine $P_r(T_2)$:

 $P_r(T_1)$ 3.2050 $P_r(T_2)$ 8.9740We can now determine T_5 and H_5 by interpolation on the the Ideal Gas Property Table for air.

T (°R)	Pr	H [°] (Btu/lb _m)		
990	8.8893	147.981		
T ₂	8.9740	Η ^ο _{T2}	T ₂ 992.53	°R
1000	9.2240	150.502	Н ^о _{т2} 148.62	Btu/lb _m

Since the two methods differ by less than 0.01%, I will use the results from Method 1 in the remaining calculations of this problem.

At last we return to Eqns 11, 12, 10 & 9, in that order:

W _{turb}	5175.83	Btu/min	W _{cycle}	-1728.08	Btu/min
W _{comp}	-6903.91	Btu/min	COP _R	2.546	

Verify: The assumptions made in the solution of this problem cannot be verified with the given information.

Answers : a.)	Q _{in}	22.0	tons	b.)	COP _R	2.55

A.	Steam Tables SI Units	525 534
В.	Ammonia TablesSI UnitsAmerican Engineering Units	544 549
C.	R-134a Tables SI Units	555 561
D.	Ideal Gas Property Tables SI Units American Engineering Units	567 574
E.	Ideal Gas, Constant Pressure Heat Capacity Shomate Equation Constants for Common Gases	581
F.	Conversion Factors and the Universal Gas Constant	582

Saturation Temperature Table

Water
SI

Temp.	Pressure	V (m	³ /kg)	U (k	J/kg)	H (kJ/kg)		S (kJ/kg*K)	
(°C)	(kPa)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
0.01	0.61165	0.0010002	205.99	0	2374.9	6.1178E-04	2500.9	0	9.1555
5	0.87258	0.0010001	147.01	21.019	2381.8	21.020	2510.1	0.076254	9.0248
10	1.2282	0.0010003	106.30	42.020	2388.6	42.021	2519.2	0.15109	8.8998
15	1.7058	0.0010009	77.875	62.980	2395.5	62.981	2528.3	0.22446	8.7803
20	2.3393	0.0010018	57.757	83.912	2402.3	83.914	2537.4	0.29648	8.6660
25	3.1699	0.0010030	43.337	104.83	2409.1	104.83	2546.5	0.36722	8.5566
30	4.2470	0.0010044	32.878	125.73	2415.9	125.73	2555.5	0.43675	8.4520
35	5.6290	0.0010060	25.205	146.63	2422.7	146.63	2564.5	0.50513	8.3517
40	7.3849	0.0010079	19.515	167.53	2429.4	167.53	2573.5	0.57240	8.2555
45	9.5950	0.0010099	15.252	188.43	2436.1	188.43	2582.4	0.63861	8.1633
50	12.352	0.0010121	12.027	209.33	2442.7	209.34	2591.3	0.70381	8.0748
55	15.762	0.0010146	9.5643	230.24	2449.3	230.26	2600.1	0.76802	7.9898
60	19.946	0.0010171	7.6672	251.16	2455.9	251.18	2608.8	0.83129	7.9081
65	25.042	0.0010199	6.1935	272.09	2462.4	272.12	2617.5	0.89365	7.8296
70	31.201	0.0010228	5.0395	293.03	2468.9	293.07	2626.1	0.95513	7.7540
75	38.595	0.0010258	4.1289	313.99	2475.2	314.03	2634.6	1.0158	7.6812
80	47.414	0.0010291	3.4052	334.96	2481.6	335.01	2643.0	1.0756	7.6111
85	57.867	0.0010324	2.8258	355.95	2487.8	356.01	2651.3	1.1346	7.5434
90	70.182	0.0010360	2.3591	376.97	2494.0	377.04	2659.5	1.1929	7.4781
95	84.608	0.0010396	1.9806	398.00	2500.0	398.09	2667.6	1.2504	7.4151
100	101.42	0.0010435	1.6718	419.06	2506.0	419.17	2675.6	1.3072	7.3541
105	120.90	0.0010474	1.4184	440.15	2511.9	440.27	2683.4	1.3633	7.2952
110	143.38	0.0010516	1.2093	461.26	2517.7	461.42	2691.1	1.4188	7.2381
115	169.18	0.0010559	1.0358	482.41	2523.3	482.59	2698.6	1.4737	7.1828
120	198.67	0.0010603	0.89121	503.60	2528.9	503.81	2705.9	1.5279	7.1291
125	232.24	0.0010649	0.77003	524.83	2534.3	525.07	2713.1	1.5816	7.0770
130	270.28	0.0010697	0.66800	546.09	2539.5	546.38	2720.1	1.6346	7.0264
135	313.23	0.0010746	0.58173	567.41	2544.7	567.74	2726.9	1.6872	6.9772
140	361.54	0.0010798	0.50845	588.77	2549.6	589.16	2733.4	1.7392	6.9293
145	415.68	0.0010850	0.44596	610.19	2554.4	610.64	2739.8	1.7907	6.8826
150	476.16	0.0010905	0.39245	631.66	2559.1	632.18	2745.9	1.8418	6.8371
155	543.50	0.0010962	0.34646	653.19	2563.5	653.79	2751.8	1.8924	6.7926
160	618.23	0.0011020	0.30678	674.79	2567.8	675.47	2757.4	1.9426	6.7491
165	700.93	0.0011080	0.27243	696.46	2571.9	697.24	2762.8	1.9923	6.7066
170	792.19	0.0011143	0.24259	718.20	2575.7	719.08	2767.9	2.0417	6.6650
175	892.60	0.0011207	0.21658	740.02	2579.4	741.02	2772.7	2.0906	6.6241
180	1002.8	0.0011274	0.19384	761.92	2582.8	763.05	2777.2	2.1392	6.5840
185	1123.5	0.0011343	0.17390	783.91	2586.0	785.19	2781.4	2.1875	6.5447
190	1255.2	0.0011415	0.15636	806.00	2589.0	807.43	2785.3	2.2355	6.5059
195	1398.8	0.0011489	0.14089	828.18	2591.7	829.79	2788.8	2.2832	6.4678
200	1554.9	0.0011565	0.12721	850.47	2594.2	852.27	2792.0	2.3305	6.4302
205	1724.3	0.0011645	0.11508	872.87	2596.4	874.88	2794.8	2.3777	6.3930
210	1907.7	0.0011727	0.10429	895.39	2598.3	897.63	2797.3	2.4245	6.3563
215	2105.8	0.0011813	0.094679	918.04	2599.9	920.53	2799.3	2.4712	6.3200
220	2319.6	0.0011902	0.086092	940.82	2601.2	943.58	2800.9	2.5177	6.2840
225	2549.7	0.0011994	0.078403	963.74	2602.2	966.80	2802.1	2.5640	6.2483
230	2797.1	0.0012090	0.071503	986.81	2602.9	990.19	2802.9	2.6101	6.2128
235	3062.5	0.0012190	0.065298	1010.0	2603.2	1013.8	2803.2	2.6561	6.1775

Reference States:

Saturation Temperature Table

W	a	te
	SI	ſ

Temp.	Pressure	V (m	n ³ /kg)	U (k	J/kg)	H (k	J/kg)	S (kJ/kg*K)		
(°C)	(kPa)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	
240	3346.9	0.0012295	0.059705	1033.4	2603.1	1037.6	2803.0	2.7020	6.1423	
245	3651.2	0.0012403	0.054654	1057.0	2602.7	1061.5	2802.2	2.7478	6.1072	
250	3976.2	0.0012517	0.050083	1080.8	2601.8	1085.8	2800.9	2.7935	6.0721	
255	4322.9	0.0012636	0.045938	1104.8	2600.5	1110.2	2799.1	2.8392	6.0369	
260	4692.3	0.0012761	0.042173	1129.0	2598.7	1135.0	2796.6	2.8849	6.0016	
265	5085.3	0.0012892	0.038746	1153.4	2596.5	1160.0	2793.5	2.9307	5.9661	
270	5503.0	0.0013030	0.035621	1178.1	2593.7	1185.3	2789.7	2.9765	5.9304	
275	5946.4	0.0013175	0.032766	1203.1	2590.3	1210.9	2785.2	3.0224	5.8944	
280	6416.6	0.0013328	0.030153	1228.3	2586.4	1236.9	2779.9	3.0685	5.8579	
285	6914.7	0.0013491	0.027756	1253.9	2581.8	1263.2	2773.7	3.1147	5.8209	
290	7441.8	0.0013663	0.025555	1279.9	2576.5	1290.0	2766.7	3.1612	5.7834	
295	7999.1	0.0013846	0.023529	1306.2	2570.5	1317.3	2758.7	3.2080	5.7451	
300	8587.9	0.0014042	0.021660	1332.9	2563.6	1345.0	2749.6	3.2552	5.7059	
305	9209.4	0.0014252	0.019933	1360.2	2555.9	1373.3	2739.4	3.3028	5.6657	
310	9865.1	0.0014479	0.018335	1387.9	2547.1	1402.2	2727.9	3.3510	5.6244	
315	10556	0.0014724	0.016851	1416.3	2537.2	1431.8	2715.1	3.3998	5.5816	
320	11284	0.0014990	0.015471	1445.3	2526.0	1462.2	2700.6	3.4494	5.5372	
325	12051	0.0015283	0.014183	1475.1	2513.4	1493.5	2684.3	3.5000	5.4908	
330	12858	0.0015606	0.012979	1505.8	2499.2	1525.9	2666.0	3.5518	5.4422	
335	13707	0.0015967	0.011847	1537.6	2483.0	1559.5	2645.4	3.6050	5.3906	
340	14601	0.0016376	0.010781	1570.6	2464.4	1594.5	2621.8	3.6601	5.3356	
345	15541	0.0016846	0.0097690	1605.3	2443.1	1631.5	2594.9	3.7176	5.2762	
350	16529	0.0017400	0.0088024	1642.1	2418.1	1670.9	2563.6	3.7784	5.2110	
355	17570	0.0018079	0.0078684	1682.0	2388.4	1713.7	2526.6	3.8439	5.1380	
360	18666	0.0018954	0.0069493	1726.3	2351.8	1761.7	2481.5	3.9167	5.0536	
365	19821	0.0020172	0.0060115	1777.8	2303.8	1817.8	2422.9	4.0014	4.9497	
370	21044	0.0022152	0.0049544	1844.1	2230.3	1890.7	2334.5	4.1112	4.8012	
373.95	22064	0.0031056	0.0031056	2015.7	2015.7	2084.3	2084.3	4.4070	4.4070	

Reference States:

Saturation Pressure Table

W	a	ter
	SI	[

Pressure	Temp.	$V (m^3/kg)$		U (k	J/kg)	H (k	J/kg)	S (kJ/kg*K)		
(kPa)	(°C)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	
1.0	6.970	0.0010001	129.18	29.298	2384.5	29.299	2513.7	0.10591	8.9749	
1.5	13.02	0.0010007	87.958	54.681	2392.8	54.683	2524.7	0.19556	8.8270	
2.0	17.49	0.0010014	66.987	73.426	2398.9	73.428	2532.9	0.26056	8.7226	
2.5	21.08	0.0010021	54.240	88.417	2403.8	88.420	2539.4	0.31182	8.6420	
3.0	24.08	0.0010028	45.653	100.97	2407.9	100.98	2544.8	0.35429	8.5764	
4.0	28.96	0.0010041	34.791	121.38	2414.5	121.39	2553.7	0.42239	8.4734	
5.0	32.87	0.0010053	28.185	137.74	2419.8	137.75	2560.7	0.47620	8.3938	
7.5	40.29	0.0010080	19.233	168.74	2429.8	168.75	2574.0	0.57627	8.2501	
10	45.81	0.0010103	14.670	191.80	2437.2	191.81	2583.9	0.64920	8.1488	
15	53.97	0.0010140	10.020	225.93	2448.0	225.94	2598.3	0.75486	8.0071	
20	60.06	0.0010172	7.6480	251.40	2456.0	251.42	2608.9	0.83202	7.9072	
25	64.96	0.0010198	6.2032	271.93	2462.4	271.96	2617.4	0.89319	7.8302	
30	69.10	0.0010222	5.2284	289.24	2467.7	289.27	2624.5	0.94407	7.7675	
40	75.86	0.0010264	3.9930	317.58	2476.3	317.62	2636.1	1.0261	7.6690	
50	81.32	0.0010299	3.2400	340.49	2483.2	340.54	2645.2	1.0912	7.5930	
75	91.76	0.0010372	2.2170	384.36	2496.1	384.44	2662.4	1.2132	7.4557	
100	99.61	0.0010432	1.6939	417.40	2505.6	417.50	2674.9	1.3028	7.3588	
125	106.0	0.0010482	1.3749	444.22	2513.0	444.35	2684.9	1.3741	7.2840	
150	111.3	0.0010527	1.1593	466.97	2519.2	467.13	2693.1	1.4337	7.2230	
175	116.0	0.0010568	1.0036	486.82	2524.5	487.00	2700.1	1.4850	7.1715	
200	120.2	0.0010605	0.88568	504.49	2529.1	504.70	2706.2	1.5302	7.1269	
225	124.0	0.0010640	0.79320	520.47	2533.2	520.71	2711.6	1.5706	7.0876	
250	127.4	0.0010672	0.71866	535.08	2536.8	535.34	2716.5	1.6072	7.0524	
275	130.6	0.0010703	0.65725	548.56	2540.1	548.86	2720.9	1.6408	7.0207	
300	133.5	0.0010732	0.60576	561.10	2543.2	561.43	2724.9	1.6717	6.9916	
325	136.3	0.0010759	0.56194	572.84	2545.9	573.19	2728.6	1.7005	6.9649	
350	138.9	0.0010786	0.52418	583.88	2548.5	584.26	2732.0	1.7274	6.9401	
375	141.3	0.0010811	0.49129	594.32	2550.9	594.73	2735.1	1.7526	6.9171	
400	143.6	0.0010836	0.46238	604.22	2553.1	604.65	2738.1	1.7765	6.8955	
450	147.9	0.0010882	0.41390	622.65	2557.1	623.14	2743.4	1.8205	6.8560	
500	151.8	0.0010925	0.37481	639.54	2560.7	640.09	2748.1	1.8604	6.8207	
550	155.5	0.0010967	0.34260	655.16	2563.9	655.76	2752.3	1.8970	6.7886	
600	158.8	0.0011006	0.31558	669.72	2566.8	670.38	2756.1	1.9308	6.7592	
650	162.0	0.0011044	0.29259	683.36	2569.4	684.08	2759.6	1.9623	6.7322	
700	164.9	0.0011080	0.27277	696.23	2571.8	697.00	2762.8	1.9918	6.7071	
750	167.7	0.0011114	0.25551	708.40	2574.0	709.24	2765.6	2.0195	6.6836	
800	170.4	0.0011148	0.24034	719.97	2576.0	720.86	2768.3	2.0457	6.6616	
850	172.9	0.0011180	0.22689	731.00	2577.9	731.95	2770.8	2.0705	6.6409	
900	175.4	0.0011212	0.21489	741.55	2579.6	742.56	2773.0	2.0940	6.6213	
950	177.7	0.0011242	0.20410	751.67	2581.2	752.74	2775.1	2.1165	6.6027	
1000	179.9	0.0011272	0.19436	761.39	2582.7	762.52	2777.1	2.1381	6.5850	
1100	184.1	0.0011330	0.17745	779.78	2585.5	781.03	2780.6	2.1785	6.5520	
1200	188.0	0.0011385	0.16326	796.96	2587.8	798.33	2783.7	2.2159	6.5217	
1300	191.6	0.0011438	0.15119	813.11	2589.9	814.60	2786.5	2.2508	6.4936	
1400	195.0	0.0011489	0.14078	828.36	2591.8	829.97	2788.8	2.2835	6.4675	
1500	198.3	0.0011539	0.13171	842.83	2593.4	844.56	2791.0	2.3143	6.4430	
1750	205.7	0.0011657	0.11343	876.13	2596.7	878.17	2795.2	2.3845	6.3877	
2000	212.4	0.0011767	0.099585	906.14	2599.1	908.50	2798.3	2.4468	6.3390	

Reference States:

Saturation Pressure Table

Water
SI

Pressure	Temp.	V (m	³ /kg)	U (k	J/kg)	H (k	J/kg)	S (kJ/kg*K)		
(MPa)	(°C)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	
2250	218.41	0.0011873	0.088715	933.57	2600.9	936.24	2800.5	2.5029	6.2954	
2500	223.95	0.0011974	0.079949	958.91	2602.1	961.91	2801.9	2.5543	6.2558	
3000	233.85	0.0012167	0.066664	1004.7	2603.2	1008.3	2803.2	2.6455	6.1856	
3500	242.56	0.0012350	0.057058	1045.5	2602.9	1049.8	2802.6	2.7254	6.1243	
4000	250.35	0.0012526	0.049776	1082.5	2601.7	1087.5	2800.8	2.7968	6.0696	
5000	263.94	0.0012864	0.039446	1148.2	2597.0	1154.6	2794.2	2.9210	5.9737	
6000	275.58	0.0013193	0.032448	1206.0	2589.9	1213.9	2784.6	3.0278	5.8901	
7000	285.83	0.0013519	0.027378	1258.2	2581.0	1267.7	2772.6	3.1224	5.8148	
8000	295.01	0.0013847	0.023526	1306.2	2570.5	1317.3	2758.7	3.2081	5.7450	
9000	303.34	0.0014181	0.020490	1351.1	2558.5	1363.9	2742.9	3.2870	5.6791	
10000	311.00	0.0014526	0.018030	1393.5	2545.2	1408.1	2725.5	3.3606	5.6160	
11000	318.08	0.0014885	0.015990	1434.1	2530.5	1450.4	2706.3	3.4303	5.5545	
12000	324.68	0.0015263	0.014264	1473.1	2514.3	1491.5	2685.4	3.4967	5.4939	
13000	330.85	0.0015665	0.012780	1511.1	2496.5	1531.5	2662.7	3.5608	5.4336	
14000	336.67	0.0016097	0.011485	1548.4	2477.1	1571.0	2637.9	3.6232	5.3727	
15000	342.16	0.0016570	0.010338	1585.3	2455.6	1610.2	2610.7	3.6846	5.3106	
16000	347.35	0.0017094	0.0093088	1622.3	2431.8	1649.7	2580.8	3.7457	5.2463	
17000	352.29	0.0017693	0.0083709	1659.9	2405.2	1690.0	2547.5	3.8077	5.1787	
18000	356.99	0.0018398	0.0075017	1699.0	2374.8	1732.1	2509.8	3.8718	5.1061	
19000	361.47	0.0019268	0.0066773	1740.5	2339.1	1777.2	2466.0	3.9401	5.0256	
20000	365.75	0.0020400	0.0058652	1786.4	2295.0	1827.2	2412.3	4.0156	4.9314	
21000	369.83	0.0022055	0.0049961	1841.2	2233.7	1887.6	2338.6	4.1064	4.8079	
22000	373.71	0.0027044	0.0036475	1951.8	2092.8	2011.3	2173.1	4.2945	4.5446	
22064	373.95	0.0031056	0.0031056	2015.7	2015.7	2084.3	2084.3	4.4070	4.4070	

Reference States:

Superheated Vapor

Water SI

	P =	10 kPa ($T_{sat} = 45$.81°C)	$P = 50 \text{ kPa} (T_{\text{sat}} = 81.32^{\circ} \text{C})$						$P = 100 \text{ kPa} (T_{sat} = 99.61^{\circ} \text{C})$				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	
Sat	14.670	2437.16	2583.9	8.1488		3.2400	2483.2	2645.2	7.5930		1.6939	2505.6	2674.9	7.3588	
50	14.867	2443.3	2592.0	8.1741											
100	17.196	2515.5	2687.5	8.4489		3.4187	2511.5	2682.42	7.6953						
150	19.513	2587.9	2783.0	8.6892		3.8897	2585.7	2780.21	7.9413		1.9367	2582.9	2776.6	7.6148	
200	21.826	2661.3	2879.6	8.9049		4.3562	2660.0	2877.77	8.1592		2.1724	2658.2	2875.5	7.8356	
250	24.136	2736.1	2977.4	9.1015		4.8206	2735.1	2976.15	8.3568		2.4062	2733.9	2974.5	8.0346	
300	26.446	2812.3	3076.7	9.2827		5.2840	2811.6	3075.76	8.5386		2.6388	2810.6	3074.5	8.2172	
400	31.063	2969.3	3279.9	9.6094		6.2094	2968.9	3279.33	8.8659		3.1027	2968.3	3278.6	8.5452	
500	35.680	3132.9	3489.7	9.8998		7.1338	3132.6	3489.27	9.1566		3.5655	3132.2	3488.7	8.8361	
600	40.296	3303.3	3706.3	10.163		8.0576	3303.1	3706.0	9.4201		4.0279	3302.8	3705.6	9.0998	
700	44.911	3480.8	3929.9	10.406		8.9812	3480.6	3929.7	9.6625		4.4900	3480.4	3929.4	9.3424	
800	49.527	3665.3	4160.6	10.631		9.9047	3665.2	4160.44	9.8882		4.9519	3665.0	4160.2	9.5681	
900	54.142	3856.9	4398.3	10.843		10.828	3856.8	4398.19	10.100		5.4137	3856.6	4398.0	9.7800	
1000	58.758	4055.2	4642.8	11.043		11.751	4055.1	4642.7	10.300		5.8754	4055.0	4642.6	9.9800	
	D = 2	000 եթթ	(T - 1)	20 2 ⁰ C)		D _2	an kDa	(T - 1)	23 5 ⁰ C)		$P = 40 \text{ kPa} (T = -143.6^{\circ} \text{C})$				
	1 - 4	200 KI a	$(\mathbf{I}_{sat} - \mathbf{I})$	20.2 C)		1 -0	000 KI a	$(\mathbf{I}_{sat} - \mathbf{I})$	5.5 C)		1 -	- 40 KI a (1 _{sat} – 143		
Temp.	v	U	н	S		V	U	н	S		V	U	н	S	
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)		(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)		(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	
Sat	0.88568	2529.1	2706.23	7.1269		0.60576	2543.2	2724.9	6.9916		0.46238	2553.1	2738.1	6.8955	
150	0.95986	2577.1	2769.1	7.2810		0.63401	2571.0	2761.2	7.0791		0.47088	2564.4	2752.8	6.9306	
200	1.0805	2654.6	2870.7	7.5081		0.71642	2651.0	2865.9	7.3131		0.53433	2647.2	2860.9	7.1723	
250	1.1989	2731.4	2971.2	7.7100		0.79644	2728.9	2967.9	7.5180		0.59520	2726.4	2964.5	7.3804	
300	1.3162	2808.8	3072.1	7.8941		0.87534	2807.0	3069.6	7.7037		0.65489	2805.1	3067.1	7.5677	
400	1.5493	2967.1	3277.0	8.2236		1.0315	2966.0	3275.5	8.0347		0.77264	2964.9	3273.9	7.9002	
500	1.7814	3131.4	3487.7	8.5152		1.1867	3130.6	3486.6	8.3271		0.88936	3129.8	3485.5	8.1933	
600	2.0130	3302.2	3704.8	8.7792		1.3414	3301.6	3704.0	8.5914		1.0056	3301.0	3703.2	8.4580	
700	2.2443	3479.9	3928.8	9.0220		1.4958	3479.5	3928.2	8.8344		1.1215	3479.0	3927.6	8.7012	

P =	500	kPa	$(\mathbf{T}_{sat} =$	151	.8°C)
------------	-----	-----	-----------------------	-----	-------

4159.8

4397.6

4642.3

3664.7

3856.3

4054.8

9.2479

9.4598

9.6599

1.6500

1.8042

1.9582

 $P = 600 \text{ kPa} (T_{\text{sat}} = 158.8^{\circ} \text{C})$

4159.3

4397.3

4642.0

3664.3

3856.0

4054.5

9.0604

9.2724

9.4726

1.2373

1.3530

1.4686

 $P = 800 \text{ kPa} (T_{sat} = 170.4^{\circ}\text{C})$

4158.8

4396.9

4641.7

3663.9

3855.7

4054.3

8.9273

9.1394

9.3396

Temp.	\mathbf{V}	U	н	S	\mathbf{V}	U	н	S	\mathbf{V}	U	н	S
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)
Sat	0.37481	2560.7	2748.1	6.8207	0.31558	2566.8	2756.1	6.7592	0.24034	2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.3	2850.6	6.9683	0.26088	2631.0	2839.7	6.8176
250	0.47443	2723.8	2961.0	7.2724	0.39390	2721.2	2957.6	7.1832	0.29320	2715.9	2950.4	7.0401
300	0.52261	2803.2	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416	2797.5	3056.9	7.2345
400	0.61730	2963.7	3272.3	7.7955	0.51374	2962.5	3270.8	7.7097	0.38428	2960.2	3267.6	7.5734
500	0.71094	3129.0	3484.5	8.0892	0.59200	3128.2	3483.4	8.0041	0.44332	3126.6	3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3543	0.66976	3299.8	3701.7	8.2695	0.50185	3298.7	3700.1	8.1354
700	0.89696	3478.5	3927.0	8.5977	0.74725	3478.1	3926.4	8.5131	0.56011	3477.2	3925.3	8.3794
800	0.98966	3663.6	4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.4	4157.0	8.6061
900	1.0823	3855.4	4396.6	9.0362	0.90178	3855.1	4396.2	8.9518	0.67619	3854.5	4395.5	8.8185
1000	1.1748	4054.0	4641.4	9.2364	0.97893	4053.7	4641.1	9.1521	0.73411	4053.2	4640.5	9.0189

Reference States:

800

900

1000

2.4755

2.7066

2.9375

LearnThermo.com

Appendix A

Superheated Vapor

Water SI

										51		
	P = 100)0 kPa (T	$\Gamma_{\rm sat} = 179$	∂.9° C)	P = 12	200 kPa	$(T_{sat} = 1)$	88.0°C)	P = 14	00 kPa ($T_{sat} = 1$	95.0°C)
Temp.	V	U	Н	S	V	U	н	S	V	U	н	S
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)
Sat	0.19436	2582.7	2777.1	6.5850	0.16326	2587.8	2783.7	6.5217	0.14078	2591.8	2788.8	6.4675
200	0.20602	2622.2	2828.3	6.6955	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2977.8	6.9265	0.19241	2704.7	2935.6	6.8313	0.1635608	2698.9	2927.9	6.7488
300	0.25799	2793.6	3077.0	7.1246	0.21386	2789.7	3046.3	7.0335	0.18232	2785.7	3040.9	6.9552
400	0.30661	2957.9	3280.1	7.4669	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3489.8	7.7641	0.29464	3123.4	3476.9	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3706.4	8.0310	0.33394	3296.3	3697.0	7.9455	0.28597	3295.1	3695.4	7.8730
700	0.44/85	3476.2	3930.0	8.2755	0.37297	3475.5	3922.9	8.1904	0.31951	34/4.4	3921.7	8.1183
800	0.49438	3661.7	4160.7	8.5024	0.41184	3661.0	4155.2	8.4170	0.35287	3660.2	4154.5	8.3457
1000	0.54065	3853.9	4398.4 4642.8	8.7150	0.45039	3855.5 4052.2	4394.0	8.8303	0.38014	3852.7 4051.7	4395.5 4638.8	8.5587
1000	D 1((1002.1		4900	D 1	000 L.D.			D 0(12 49(1)
T	P = 100	0 KPa (1	$s_{\rm sat} = 201$		$\mathbf{P} = 1\mathbf{c}$	300 KPa ($T_{\text{sat}} = 20$	J/.FC)	P = 20	00 KPa ($\Gamma_{\text{sat}} = 2$	(2.4°C)
Temp.	V			S	V			S	V (³ /l-a)			S
(U)	(m /Kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg·K)	(m /kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg·K)	(m /kg)	(KJ/Kg)	(KJ/Kg)	(KJ/Kg·K)
Sat	0.12374	2594.8	2/92.8	6.4199	0.11037	2597.2	2/95.9	6.5775	0.0995851	2599.1	2798.5	6.3390
250	0.14190	2092.9	2919.7	0.0755	0.12502	2080.7	2911.7	6.0087	0.11150	2080.2	2903.2	6.5475
400	0.15800	2/81.0	2055.4	0.8805	0.14023	2018.3	2251.6	0.8240	0.12551	2015.2	3024.2	0.7004
500	0.19007	2950.7	3234.2	7.5409	0.10042	2946.5	3231.0 3470.4	7.1014	0.13121	2945.5	3240.5 3168 2	7.1292
500	0.22027	3120.1	2603.9	7.8100	0.19351	3110.5	2602 3	7.4643	0.17300	3110.5	3400.∠ 3600 7	7.7043
700	0.24999	3473.5	3095.2	8.0557	0.22200	3472.6	3092.5	8 0004	0.19901	3471.6	3090.7	7.9509
800	0.27940	3659.5	4153.3	8 2834	0.27621	3658.8	4152.4	8 2284	0.22520	3658.0	4151.5	8 1790
900	0.33780	3852.1	4392.6	8 4965	0.30020	3851.5	4391,9	8 4416	0.27012	3850.9	4391.1	8 3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.6	8.6426	0.29342	4050.2	4637.0	8.5936
	P = 250	0 kPa (7	г — <u>2</u> 24	4.0°C)	$\mathbf{P} = 3$	000 kPa	$(T_{1} = 2)$	33 Q ⁰ (C)	P = 35	00 kPa ($(\mathbf{T} = 2)$	42.6°C)
T	1 – 200 V	UNIA	sat — 44		1 - 00	JUU KI a	sat - 2) 3.7 C)	1 - 00	UU KI a (sat	12.0 C)
Temp.	$\sqrt{(m^3/4ra)}$	U (Iz I/kg)	H (l:1/kg)	S (lz I/ka*K)	$\sqrt{(m^3/ka)}$	U (k I/kg)	H (ly1/kg)	S (lz I/ka*K)	۷ (m ³ /ka)	U (lz I/kg)	H (ŀI/kg)	S (kI/ka*K)
	(m /kg)	(KJ/Kg)	(NJ/Ng)	(NJ/Ng IN)		(KJ/Kg)	(NJ/Ng)	(NJ/Ng IX)	(m /kg)	(KJ/Kg)	(NJ/Ng)	(NJ/Ng IX)
Sat	0.07/9949	2602.1	2801.9	6.25577	0.066664	2603.2	2803.2	6.1856	0.05/058	2602.9	2802.6	6.1243
250	0.08/055	2663.5	2880.9	6.41071	0.070027	2644.7	2850.5	6.2895	0.058/57	2624.0	2829.7	6.1/04
300	0.098957	2762.2	3009.0	0.04390	0.000379	2750.8	2994.5	6.0234	0.008433	2/38.8	29/8.4	6.4484
400 500	0.12012	2959.8	3240.1 2462 7	7.01097	0.099577	2955.5	3231.7 2457 2	7 2359	0.084550	2927.2	3223.2 3451.6	0.0427
600	0.15931	3788 5	3402.7	7.52540	0.11020	3285 5	3437.2	7.5103	0.099195	3282.5	3431.0	7.4356
700	0.1335	3469.3	3915.2	7.84549	0.13245	3467.0	3912.2	7 7590	0.12702	3464.7	3909.3	7.6854
800	0 19721	3656.2	4149.2	8 07434	0.16420	3654.3	4146.9	7.9885	0 14061	3652.5	4144.6	7 9156
900	0.21597	3849.4	4389.3	8.28822	0.17988	3847.9	4387.5	8.2028	0.15410	3846.4	4385.7	8.1303
1000	0.23466	4048.9	4635.6	8.48964	0.19549	4047.7	4634.1	8.4045	0.16751	4046.4	4632.7	8.3324
	P = 400)0 kPa (7	$\Gamma_{\rm cot} = 250$	J.4°C)	$\mathbf{P} = 4$	500 kPa	$(T_{cat} = 2)$	57.4°C)	P = 50)00 kPa ($T_{cat} = 2$	63.9°C)
Temp.	V	U	H	S	v	U	H	S	v	U	H	S
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)
Sat	0.049776	2601.7	2800.8	6.0696	0.044059	2599.7	2797.9	6.0197	0.039446	2597.0	2794.2	5.9737
300	0.058870	2726.2	2961.7	6.3639	0.051378	2713.0	2944.2	6.2854	0.045346	2699.0	2925.7	6.2110
400	0.073431	2920.7	3214.5	6.7714	0.064772	2914.2	3205.6	6.7070	0.057837	2907.5	3196.7	6.6483
500	0.086442	3100.3	3446.0	7.0922	0.076521	3096.0	3440.4	7.0323	0.068583	3091.7	3434.7	6.9781
600	0.098859	3279.4	3674.9	7.3705	0.087662	3276.4	3670.9	7.3127	0.078704	3273.3	3666.8	7.2605

Reference States:

0.11098

0.12292

0.13476

0.14652

3462.4

3650.6

3844.8

4045.1

3906.3

4142.3

4383.9

4631.2

700

800

900

1000

U = 0 and S = 0 at for saturated liquid at the triple point (0.01°C and 0.61165 kPa).

3903.3

4140.0

4382.1

4629.8

7.5646

7.7962

8.0118

8.2144

0.088518

0.098158

0.10769

0.11715

3457.7

3646.9

3841.8

4042.6

3900.3

4137.7

4380.2

4628.3

7.5136

7.7458

7.9618

8.1648

3460.0

3648.8

3843.3

4043.9

0.098500

0.10916

0.11972

0.13020

7.6214

7.8523

8.0674

8.2697

Superheated Vapor

Water SI

	P = 600	0 kPa (1	$C_{\rm sat} = 275$	5.6°C)	P = 70	85.8°C)	$P = 8000 \text{ kPa} (T_{sat} = 295.0^{\circ} \text{C})$					
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.032448	2589.9	2784.6	5.8901	0.027378	2581.0	2772.6	5.8148	0.023526	2570.5	2758.7	5.7450
300	0.036189	2668.4	2885.5	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
400	0.047419	2893.7	3178.2	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658
500	0.056671	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041767	3065.4	3399.5	6.7266
600	0.065265	3267.2	3658.7	7.1693	0.055665	3260.9	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
700	0.073545	3453.0	3894.3	7.4246	0.062850	3448.3	3888.2	7.3486	0.054828	3443.6	3882.2	7.2821
800	0.081648	3643.2	4133.1	7.6582	0.069855	3639.5	4128.4	7.5836	0.061011	3635.7	4123.8	7.5184
900	0.089641	3838.8	4376.6	7.8751	0.076750	3835.7	4373.0	7.8014	0.067082	3832.6	4369.3	7.7371
1000	0.097560	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419

	P = 900	0 kPa (1	$C_{\rm sat} = 303$	3.3°C)	P = 10	000 kPa	$(T_{sat} = 3)$	$P = 15000 \text{ kPa} (T_{sat} = 342.2^{\circ} \text{C})$				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.020490	2558.5	2742.9	5.6791	0.018030	2545.2	2725.5	5.6160	0.0103384	2455.6	2610.7	5.3106
350	0.025816	2724.9	2957.3	6.0380	0.022440	2699.6	2924.0	5.9459				
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.4	6.2141	0.015671	2740.6	2975.7	5.8819
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.020827	2998.4	3310.8	6.3480
600	0.042861	3248.4	3634.1	6.9605	0.038378	3242.0	3625.8	6.9045	0.024921	3209.3	3583.1	6.6796
700	0.048589	3438.8	3876.1	7.2229	0.043597	3434.0	3870.0	7.1693	0.028621	3409.8	3839.1	6.9572
800	0.054132	3632.0	4119.1	7.4606	0.048629	3628.2	4114.5	7.4085	0.032121	3609.2	4091.1	7.2037
900	0.059562	3829.6	4365.7	7.6802	0.053547	3826.5	4362.0	7.6290	0.035503	3811.2	4343.7	7.4288
1000	0.064918	4032.4	4616.7	7.8855	0.058390	4029.9	4613.8	7.8349	0.038808	4017.1	4599.2	7.6378

	$P = 20000 \text{ kPa} (T_{sat} = 365.8^{\circ} \text{C})$				P = 40000 kPa				P = 60000 kPa			
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.0058652	2295.0	2412.3	4.9314	Supercritical				Supercritical			
400	0.0099503	2617.9	2816.9	5.5525	0.0019108	1854.9	1931.4	4.1145	0.0016329	1745.2	1843.2	3.9317
500	0.014793	2945.3	3241.2	6.1446	0.0056231	2681.6	2906.5	5.4744	0.0029522	2393.2	2570.3	4.9356
600	0.018185	3175.3	3539.0	6.5075	0.0080891	3026.8	3350.4	6.0170	0.0048330	2866.8	3156.8	5.6527
700	0.021133	3385.1	3807.8	6.7990	0.0099297	3282.0	3679.1	6.3740	0.0062649	3175.4	3551.3	6.0814
800	0.023869	3590.1	4067.5	7.0531	0.011521	3511.8	3972.6	6.6612	0.0074560	3432.6	3880.0	6.4033
900	0.026483	3795.7	4325.4	7.2829	0.012980	3733.3	4252.5	6.9106	0.0085188	3670.9	4182.0	6.6725
1000	0.029020	4004.3	4584.7	7.4950	0.014360	3952.9	4527.3	7.1355	0.0095043	3901.9	4472.2	6.9099

Reference States:

Subcooled Liquid

Water SI

		P = 500	00 kPa (263	5.9°C)			$P = 10000 \text{ kPa} (311.0^{\circ} \text{C})$						
Temp. (°C)	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	_	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		
10	1002.0	0.00099797	41.893	46.883	0.15062		1004.4	0.00099564	41.762	51.719	0.15009		
20	1000.4	0.00099956	83.609	88.61	0.29543		1002.7	0.00099731	83.308	93.281	0.29435		
40	994.36	0.0010057	166.92	171.95	0.57046		996.52	0.0010035	166.33	176.36	0.56851		
60	985.33	0.0010149	250.29	255.36	0.82865		987.48	0.0010127	249.42	259.55	0.82602		
80	973.97	0.0010267	333.82	338.95	1.0723		976.17	0.0010244	332.69	342.94	1.0691		
100	960.63	0.0010410	417.64	422.85	1.3034		962.93	0.0010385	416.23	426.62	1.2996		
120	945.49	0.0010576	501.90	507.19	1.5236		947.94	0.0010549	500.18	510.73	1.5191		
140	928.63	0.0010769	586.79	592.18	1.7344		931.28	0.0010738	584.71	595.45	1.7293		
160	910.05	0.0010988	672.55	678.04	1.9374		912.95	0.0010954	670.06	681.01	1.9315		
180	889.65	0.0011240	759.46	765.08	2.1338		892.88	0.0011200	756.48	767.68	2.1271		
200	867.26	0.0011531	847.91	853.68	2.3251		870.94	0.0011482	844.31	855.80	2.3174		
220	842.58	0.0011868	938.39	944.32	2.5127		846.84	0.0011809	934.00	945.81	2.5037		
240	815.10	0.0012268	1031.6	1037.7	2.6983		820.18	0.0012192	1026.1	1038.3	2.6876		
260	784.03	0.0012755	1128.5	1134.9	2.8841		790.30	0.0012653	1121.6	1134.3	2.8710		
280							756.07	0.0013226	1221.8	1235.0	3.0565		
300							715.29	0.0013980	1329.4	1343.3	3.2488		
Sat	777.369	0.0012864	1148.2	1154.64	2.9210		688.42	0.0014526	1393.5	1408.1	3.3606		

		P = 150	00 kPa (342	2.2°C)		$P = 20000 \text{ kPa} (365.8^{\circ} \text{C})$				
Temp. (°C)	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
10	1006.71	0.0009933	41.626	56.526	0.14951	1009.0	0.000991069	41.486	61.307	0.14888
20	1004.926	0.0009951	83.007	97.934	0.29323	1007.1	0.000992916	82.708	102.57	0.29207
40	998.65	0.0010013	165.75	180.77	0.56656	1000.8	0.000999233	165.17	185.16	0.56461
60	989.60	0.0010105	248.58	263.74	0.82340	991.71	0.0010084	247.75	267.92	0.82080
80	978.35	0.0010221	331.59	346.92	1.0659	980.49	0.0010199	330.50	350.90	1.0627
100	965.20	0.0010361	414.85	430.39	1.2958	967.44	0.0010337	413.50	434.17	1.2920
120	950.35	0.0010522	498.49	514.28	1.5148	952.72	0.0010496	496.85	517.84	1.5105
140	933.87	0.0010708	582.69	598.75	1.7243	936.42	0.0010679	580.71	602.07	1.7194
160	915.79	0.0010920	667.63	684.01	1.9259	918.57	0.0010886	665.27	687.05	1.9203
180	896.04	0.0011160	753.58	770.32	2.1206	899.12	0.0011122	750.77	773.02	2.1143
200	874.50	0.0011435	840.84	857.99	2.3100	877.97	0.0011390	837.49	860.27	2.3027
220	850.95	0.0011752	929.80	947.43	2.4951	854.91	0.0011697	925.77	949.16	2.4867
240	825.03	0.0012121	1021.0	1039.2	2.6774	829.67	0.0012053	1016.1	1040.2	2.6676
260	796.20	0.0012560	1115.1	1134.0	2.8586	801.78	0.0012472	1109.0	1134.0	2.8469
280	763.58	0.0013096	1213.4	1233.0	3.0409	770.52	0.0012978	1205.5	1231.5	3.0265
300	725.55	0.0013783	1317.6	1338.3	3.2279	734.71	0.0013611	1307.1	1334.4	3.2091
320	678.77	0.0014733	1431.9	1454.0	3.4263	692.06	0.0014450	1416.6	1445.5	3.3996
340	613.07	0.0016311	1567.9	1592.4	3.6555	637.23	0.0015693	1540.2	1571.6	3.6086
360						548.01	0.0018248	1703.6	1740.1	3.8787
Sat	603.52	0.0016570	1585.3	1610.2	3.6846	490.19	0.0020400	1786.4	1827.2	4.0156

Reference

States:

Subcooled Liquid

Water	
SI	

		P =	= 30000 kPa	a			P =	50000 kP	a	
Temp. (°C)	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	ρ (kg/m ³)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
10	1013.5	9.8664E-04	41.193	70.792	0.14745	1022.3	9.7816E-04	40.559	89.467	0.14402
20	1011.5	9.8865E-04	82.112	111.77	0.28968	1019.9	9.8047E-04	80.931	129.95	0.28454
40	1004.9	9.9509E-04	164.05	193.90	0.56069	1013.0	9.8715E-04	161.90	211.25	0.55281
60	995.84	0.0010042	246.14	276.26	0.81564	1003.9	9.9616E-04	243.08	292.88	0.80549
80	984.71	0.0010155	328.40	358.86	1.0564	992.86	0.0010072	324.42	374.78	1.0442
100	971.82	0.0010290	410.87	441.74	1.2847	980.27	0.0010201	405.93	456.94	1.2705
120	957.35	0.0010445	493.66	525.00	1.5020	966.24	0.0010349	487.69	539.43	1.4859
140	941.39	0.0010623	576.89	608.76	1.7098	950.87	0.0010517	569.77	622.36	1.6916
160	923.97	0.0010823	660.74	693.21	1.9094	934.20	0.0010704	652.32	705.84	1.8889
180	905.07	0.0011049	745.40	778.54	2.1020	916.25	0.0010914	735.49	790.06	2.0790
200	884.62	0.0011304	831.10	865.02	2.2888	896.97	0.0011149	819.45	875.19	2.2628
220	862.46	0.0011595	918.14	952.93	2.4707	876.30	0.0011412	904.39	961.45	2.4414
240	838.40	0.0011927	1006.9	1042.7	2.6491	854.12	0.0011708	990.55	1049.09	2.6156
260	812.10	0.0012314	1097.8	1134.7	2.8250	830.26	0.0012044	1078.2	1138.4	2.7864
280	783.10	0.0012770	1191.5	1229.8	3.0001	804.48	0.0012430	1167.7	1229.9	2.9547
300	750.66	0.0013322	1288.9	1328.9	3.1760	776.48	0.0012879	1259.6	1324.0	3.1218
320	713.58	0.0014014	1391.6	1433.7	3.3557	745.79	0.0013409	1354.3	1421.4	3.2888
340	669.70	0.0014932	1502.3	1547.1	3.5438	711.78	0.0014049	1452.9	1523.1	3.4575
360	614.39	0.0016276	1626.7	1675.6	3.7498	673.51	0.0014848	1556.5	1630.7	3.6301
380	533.93	0.0018729	1782.0	1838.2	4.0025	629.57	0.0015884	1667.1	1746.5	3.8101
Sat		Sup	percritica	a l			S u p	ercritica	al	

Reference

States:

Saturation Temperature Table

Water
AE

Temp.	Pressure	V $(\mathbf{ft}^3/\mathbf{lb}_m)$		U (B	u/lb _m)	H (Bt	u/lb _m)	S (Btu/lb ^o _m R)		
(°F)	(psia)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	
32.018	0.088713	0.016022	3299.7	0	1021.7	2.6319E-04	1075.9	0	2.1882	
35	0.099980	0.016020	2945.4	3.0056	1022.7	3.0059	1077.2	0.0060944	2.1777	
40	0.12173	0.016020	2443.3	8.0373	1024.3	8.0377	1079.4	0.016215	2.1604	
45	0.14757	0.016021	2035.5	13.061	1026.0	13.061	1081.6	0.026219	2.1435	
50	0.17814	0.016024	1702.8	18.077	1027.6	18.078	1083.8	0.036110	2.1271	
55	0.21414	0.016029	1430.2	23.089	1029.3	23.089	1086.0	0.045895	2.1111	
60	0.25640	0.016035	1206.0	28.096	1030.9	28.096	1088.2	0.055576	2.0954	
65	0.30580	0.016043	1020.7	33.099	1032.5	33.100	1090.3	0.065158	2.0802	
70	0.36336	0.016052	867.11	38.100	1034.2	38.101	1092.5	0.074644	2.0653	
75	0.43017	0.016062	739.23	43.098	1035.8	43.100	1094.7	0.084037	2.0508	
80	0.50747	0.016074	632.38	48.095	1037.4	48.097	1096.8	0.093340	2.0366	
85	0.59660	0.016086	542.79	53.091	1039.0	53.093	1099.0	0.10255	2.0228	
90	0.69904	0.016100	467.40	58.086	1040.6	58.088	1101.1	0.11168	2.0093	
95	0.81642	0.016115	403.75	63.081	1042.3	63.083	1103.3	0.12073	1.9961	
100	0.95051	0.016131	349.83	68.076	1043.9	68.078	1105.4	0.12969	1.9832	
110	1.2767	0.016166	264.97	78.065	1047.1	78.069	1109.7	0.14738	1.9583	
120	1.6950	0.016205	202.95	88.057	1050.3	88.062	1114.0	0.16477	1.9346	
130	2.2259	0.016247	157.09	98.052	1053.4	98.059	1118.2	0.18187	1.9118	
140	2.8930	0.016293	122.82	108.05	1056.6	108.06	1122.3	0.19868	1.8901	
150	3.7232	0.016342	96.930	118.06	1059.7	118.07	1126.5	0.21523	1.8693	
160	4.7472	0.016394	77.184	128.07	1062.7	128.08	1130.6	0.23152	1.8493	
170	5.9998	0.016449	61.980	138.09	1065.8	138.11	1134.6	0.24756	1.8302	
180	7.5195	0.016508	50.169	148.12	1068.8	148.14	1138.6	0.26336	1.8118	
190	9.3496	0.016569	40.916	158.16	1071.8	158.18	1142.6	0.27893	1.7942	
200	11.538	0.016633	33.609	168.21	1074.7	168.24	1146.5	0.29429	1.7772	
210	14.136	0.016701	27.794	178.27	1077.5	178.31	1150.3	0.30943	1.7609	
212	14.709	0.016715	26.779	180.28	1078.1	180.33	1151.1	0.31243	1.7577	
220	17.201	0.016771	23.133	188.35	1080.4	188.40	1154.1	0.32436	1.7451	
230	20.795	0.016845	19.371	198.44	1083.1	198.51	1157.7	0.33911	1.7299	
240	24.986	0.016921	16.314	208.55	1085.8	208.63	1161.3	0.35366	1.7153	
250	29.844	0.017001	13.815	218.68	1088.5	218.78	1164.8	0.36804	1.7011	
260	35.447	0.017084	11.759	228.83	1091.0	228.95	1168.2	0.38225	1.6874	
270	41.878	0.017170	10.058	239.01	1093.5	239.14	1171.5	0.39629	1.6741	
280	49.222	0.017259	8.6431	249.21	1095.9	249.37	1174.7	0.41017	1.6612	
290	57.574	0.017352	7.4600	259.44	1098.3	259.62	1177.8	0.42391	1.6487	
300	67.029	0.017448	6.4658	269.69	1100.5	269.91	1180.7	0.43750	1.6365	
310	77.691	0.017548	5.6263	279.98	1102.6	280.23	1183.6	0.45096	1.6246	
320	89.667	0.017652	4.9142	290.30	1104.7	290.60	1186.3	0.46428	1.6131	
330	103.07	0.017760	4.3075	300.66	1106.6	301.00	1188.8	0.47749	1.6018	
340	118.02	0.017872	3.7884	311.06	1108.5	311.45	1191.3	0.49058	1.5908	
350	134.63	0.017987	3.3425	321.50	1110.2	321.95	1193.5	0.50355	1.5800	
360	153.03	0.018108	2.9580	331.99	1111.8	332.50	1195.6	0.51643	1.5694	
370	173.36	0.018233	2.6252	342.52	1113.3	343.11	1197.5	0.52921	1.5591	
380	195.74	0.018363	2.3361	353.11	1114.6	353.77	1199.3	0.54190	1.5489	
390	220.33	0.018498	2.0841	363.75	1115.8	364.50	1200.9	0.55450	1.5388	
400	247.26	0.018639	1.8638	374.45	1116.9	375.30	1202.2	0.56703	1.5289	
410	276.68	0.018785	1.6706	385.21	1117.8	386.17	1203.4	0.57948	1.5192	
420	308.76	0.018938	1.5006	396.04	1118.6	397.12	1204.4	0.59187	1.5096	

Reference States:

U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Saturation Temperature Table

Water
AE

Temp.	Pressure	V (ft	/lb _m)	U (B	tu/lb _m)	H (Bt	u/lb _m)	S (Btu	/lb _m ^o R)
([°] F)	(psia)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
430	343.64	0.019097	1.3505	406.94	1119.2	408.15	1205.1	0.60420	1.5000
440	381.48	0.019263	1.2177	417.91	1119.6	419.27	1205.6	0.61648	1.4905
450	422.46	0.019437	1.0999	428.97	1119.9	430.49	1205.9	0.62872	1.4811
450	422.46	0.019437	1.0999	428.97	1119.9	430.49	1205.9	0.62872	1.4811
460	466.75	0.019619	0.99506	440.11	1119.9	441.81	1205.9	0.64092	1.4718
470	514.52	0.019810	0.90154	451.35	1119.8	453.24	1205.7	0.65309	1.4624
480	565.95	0.020010	0.81791	462.69	1119.4	464.78	1205.1	0.66524	1.4531
490	621.23	0.020220	0.74293	474.13	1118.8	476.46	1204.3	0.67738	1.4438
500	680.55	0.020441	0.67555	485.69	1118.0	488.27	1203.1	0.68952	1.4344
510	744.11	0.020675	0.61486	497.38	1116.9	500.23	1201.6	0.70167	1.4250
520	812.10	0.020923	0.56007	509.21	1115.5	512.35	1199.8	0.71384	1.4155
530	884.74	0.021185	0.51049	521.18	1113.9	524.65	1197.5	0.72604	1.4059
540	962.24	0.021464	0.46553	533.32	1111.9	537.14	1194.8	0.73829	1.3962
550	1044.8	0.021761	0.42466	545.63	1109.5	549.84	1191.7	0.75060	1.3863
560	1132.7	0.022080	0.38742	558.14	1106.8	562.77	1188.0	0.76299	1.3762
570	1226.2	0.022422	0.35341	570.87	1103.6	575.96	1183.8	0.77549	1.3658
580	1325.5	0.022791	0.32227	583.85	1099.9	589.44	1179.0	0.78812	1.3552
590	1430.8	0.023193	0.29369	597.10	1095.8	603.25	1173.6	0.80090	1.3443
600	1542.5	0.023631	0.26739	610.67	1091.0	617.42	1167.4	0.81388	1.3329
610	1660.9	0.024113	0.24311	624.60	1085.6	632.02	1160.3	0.82710	1.3210
620	1786.2	0.024647	0.22062	638.96	1079.3	647.11	1152.3	0.84062	1.3085
630	1918.9	0.025247	0.19971	653.82	1072.2	662.79	1143.1	0.85451	1.2953
640	2059.2	0.025930	0.18017	669.30	1063.9	679.19	1132.6	0.86888	1.2812
650	2207.8	0.026720	0.16180	685.55	1054.3	696.48	1120.4	0.88387	1.2659
660	2364.9	0.027661	0.14439	702.84	1042.8	714.96	1106.1	0.89974	1.2491
670	2531.2	0.028826	0.12768	721.61	1029.1	735.12	1088.9	0.91690	1.2301
680	2707.3	0.030361	0.11132	742.67	1011.8	757.89	1067.6	0.93611	1.2078
705.10	3200.1	0.049747	0.049747	867.19	867.19	896.67	896.67	1.0533	1.0533

Reference States:

U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Saturation Pressure Table

Water	
AE	

Pressure	Temp.	V (ft	$^{3}/lb_{m})$	U (Bt	tu/lb _m)	H (B	tu/lb _m)	S (Btu	$(lb_m^0 R)$
(psia)	(°F)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
1	101.70	0.016137	333.50	69.766	1044.4	69.769	1106.2	0.13271	1.9789
2	126.03	0.016230	173.71	94.079	1052.2	94.085	1116.5	0.17511	1.9207
3	141.42	0.016300	118.70	109.47	1057.0	109.48	1122.9	0.20104	1.8871
4	152.91	0.016357	90.626	120.97	1060.6	120.98	1127.7	0.22000	1.8634
5	162.18	0.016406	73.521	130.26	1063.4	130.27	1131.5	0.23504	1.8451
6	170.00	0.016449	61.977	138.09	1065.8	138.11	1134.6	0.24756	1.8302
7	176.79	0.016489	53.647	144.90	1067.8	144.92	1137.4	0.25832	1.8176
8	182.81	0.016525	47.343	150.93	1069.6	150.96	1139.8	0.26776	1.8068
9	188.22	0.016558	42.402	156.37	1071.2	156.40	1141.9	0.27619	1.7973
10	193.16	0.016589	38.421	161.33	1072.7	161.36	1143.8	0.28381	1.7887
14.696	211.95	0.016714	26.802	180.24	1078.1	180.28	1151.0	0.31236	1.7578
15	212.99	0.016722	26.294	181.28	1078.4	181.33	1151.4	0.31391	1.7561
20	227.92	0.016829	20.091	196.34	1082.6	196.40	1157.0	0.33605	1.7331
25	240.03	0.016922	16 305	208 58	1085.8	208.66	1161 3	0.35371	1 7152
30	250.30	0.017003	13 747	218.98	1088.5	219.08	1164.9	0.36847	1 7007
35	259.25	0.017078	11 899	228.07	1090.8	219.00	1168.0	0.38119	1.6884
40	267.23	0.017146	10,500	226.07	1090.0	226.10	1170.6	0.39240	1.6777
45	274 41	0.017209	9 4019	243 51	1092.0	230.50	1172.9	0.40243	1.6684
50	280.00	0.017268	8 5168	250.22	1094.0	243.03	1172.)	0.40243	1.6599
55	287.05	0.017324	7 7876	256.22	1090.2	256.58	1175.0	0.41193	1.6523
55 60	207.03	0.017378	7.1761	250.42	1097.0	250.57	1178.6	0.41787	1.6454
65	292.08	0.017428	6.6556	267.59	11098.9	267.80	11/8.0	0.42737	1.6300
70	297.93	0.017428	6 2071	207.39	1100.0	207.80	1180.2	0.43473	1.6330
70	207.59	0.017524	5.9165	272.08	1101.1	272.91	1181.0	0.44143	1.6275
7.5 80	212.02	0.017560	5.4720	277.49	1102.1	277.74	1182.3	0.44772	1.6223
00 85	216.24	0.017509	5 1697	282.00	1103.1	282.32	1104.1	0.45300	1.0223
85 00	220.26	0.017615	J.1087 4 8070	200.41	1103.9	280.09	1105.5	0.43928	1.01/4
90	224.11	0.017633	4.8970	290.37	1104.7	290.87	1180.3	0.46463	1.0128
95 100	524.11 227.91	0.017726	4.0530	294.30	1105.5	294.87	1187.3	0.46973	1.6084
100	527.81 221.25	0.017775	4.4320	298.38	1106.2	298.71	1188.3	0.47460	1.6043
105	224.77	0.017712	4.2324	302.07	1106.9	302.41	1189.2	0.47927	1.6003
110	334.// 229.07	0.017813	4.0498	305.62	1107.5	305.98	1190.0	0.48375	1.5965
115	338.07 241.25	0.017890	3.8820	309.05	1108.1	309.43	1190.8	0.48805	1.5929
120	341.25	0.017886	3.7288	312.36	1108.7	312.76	1191.5	0.49221	1.5894
125	344.55	0.017921	3.5870	315.58	1109.2	315.99	1192.2	0.49621	1.5801
130	347.32	0.017956	3.4556	318.70	1109.7	319.13	1192.9	0.50008	1.5829
135	350.21	0.01/990	3.3337	321.72	1110.2	322.17	1193.6	0.50383	1.5798
140	353.03	0.018023	3.2201	324.67	1110.7	325.14	1194.2	0.50746	1.5768
145	355.76	0.018056	3.1142	327.54	1111.1	328.02	1194.7	0.51098	1.5739
150	358.42	0.018089	3.0150	330.33	1111.5	330.83	1195.3	0.51440	1.5/11
155	361.01	0.018120	2.9220	333.05	1111.9	333.57	1195.8	0.51773	1.5684
160	363.54	0.018152	2.8347	335.71	1112.3	336.25	1196.3	0.52097	1.5657
165	366.01	0.018182	2.7524	338.31	1112.7	338.86	1196.8	0.52412	1.5632
170	368.41	0.018213	2.6748	340.85	1113.0	341.42	1197.2	0.52719	1.5607
175	370.77	0.018243	2.6015	343.33	1113.4	343.92	1197.7	0.53019	1.5583
180	373.07	0.018272	2.5321	345.76	1113.7	346.37	1198.1	0.53311	1.5559
185	375.32	0.018301	2.4664	348.15	1114.0	348.77	1198.5	0.53597	1.5536
190	377.52	0.018330	2.4040	350.48	1114.3	351.13	1198.9	0.53876	1.5514
195	379.68	0.018359	2.3447	352.77	1114.6	353.43	1199.2	0.54150	1.5492

Reference States:

U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088667 psia).

Saturation Pressure Table

Water
AE

Pressure	Temp.	V (ft	³ /lb _m)	U (Bt	tu/lb _m)	H (B	tu/lb _m)	S (Btu	$(lb_m^{o}R)$
(psia)	(°F)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
200	381.80	0.018387	2.2882	355.02	1114.8	355.70	1199.6	0.54417	1.5470
220	389.87	0.018496	2.0872	363.61	1115.8	364.36	1200.8	0.55434	1.5390
240	397.39	0.018602	1.9185	371.65	1116.6	372.48	1201.9	0.56376	1.5315
260	404.44	0.018703	1.7750	379.214	1117.3	380.114	1202.8	0.57256	1.5246
280	411.07	0.018801	1.6513	386.368	1117.9	387.342	1203.5	0.58081	1.5182
300	417.35	0.018897	1.5435	393.16	1118.4	394.21	1204.1	0.58859	1.5121
320	423.31	0.018990	1.4488	399.64	1118.8	400.77	1204.7	0.59596	1.5064
340	429.00	0.019081	1.3648	405.84	1119.1	407.04	1205.1	0.60296	1.5010
360	434.42	0.019170	1.2898	411.78	1119.4	413.06	1205.4	0.60964	1.4958
380	439.62	0.019257	1.2225	417.50	1119.6	418.85	1205.6	0.61602	1.4909
400	444.62	0.019342	1.1616	423.00	1119.8	424.44	1205.8	0.62213	1.4862
420	449.42	0.019427	1.1064	428.32	1119.9	429.84	1205.9	0.62801	1.4817
440	454.05	0.019510	1.0560	433.47	1119.9	435.06	1206.0	0.63366	1.4773
460	458.52	0.019592	1.0098	438.46	1119.9	440.13	1205.9	0.63912	1.4732
480	462.85	0.019672	0.96733	443.30	1119.9	445.05	1205.9	0.64439	1.4691
500	467.04	0.019752	0.92815	448.01	1119.8	449.84	1205.8	0.64949	1.4652
550	476.98	0.019948	0.84223	459.25	1119.6	461.28	1205.3	0.66157	1.4559
600	486.24	0.020140	0.77015	469.82	1119.1	472.06	1204.6	0.67282	1.4473
650	494.94	0.020328	0.70878	479.82	1118.4	482.27	1203.8	0.68337	1.4392
700	503.13	0.020513	0.65586	489.34	1117.7	492.00	1202.7	0.69332	1.4315
750	510.89	0.020697	0.60974	498.43	1116.8	501.31	1201.5	0.70275	1.4242
800	518.27	0.020879	0.56917	507.15	1115.8	510.24	1200.1	0.71173	1.4171
850	525.30	0.021060	0.53319	515.53	1114.7	518.85	1198.6	0.72030	1.4104
900	532.02	0.021240	0.50106	523.62	1113.5	527.16	1197.0	0.72851	1.4039
950	538.46	0.021420	0.47217	531.44	1112.2	535.21	1195.2	0.73640	1.3977
1000	544.65	0.021600	0.44605	539.02	1110.8	543.02	1193.4	0.74400	1.3916
1100	556.35	0.021961	0.40062	553.55	1107.8	558.02	1189.4	0.75846	1.3799
1200	567.26	0.022326	0.36243	567.36	1104.5	572.32	1185.0	0.77205	1.3687
1300	577.49	0.022696	0.32983	580.57	1100.9	586.03	1180.3	0.78493	1.3579
1400	587.14	0.023074	0.30163	593.28	1097.0	599.26	1175.2	0.79722	1.3474
1500	596.26	0.023462	0.27697	605.56	1092.9	612.08	1169.8	0.80900	1.3372
1600	604.93	0.023862	0.25518	617.49	1088.4	624.56	1164.0	0.82036	1.3271
1700	613.18	0.024277	0.23577	629.13	1083.7	636.77	1157.9	0.83137	1.3171
1800	621.07	0.024708	0.21832	640.52	10/8.6	648.76	1151.4	0.84208	1.3072
1900	628.61	0.025160	0.20252	651.73	10/3.2	660.58	1144.5	0.85255	1.2972
2000	035.85	0.025635	0.18813	662.79	1067.5	672.28	1137.2	0.86284	1.2872
2100	642.80	0.026139	0.1/491	0/3.//	1061.4	605.57	1129.4	0.8/300	1.2//0
2200	049.49	0.0200//	0.102/1	084./1	1034.8	707.29	1121.1	0.88309	1.200/
2300	662.16	0.027200	0.13130	706.75	1047.7	710.15	1112.2	0.0931/	1.2301
2400	668 17	0.027890	0.14073	710.75	1040.1	719.15	1002.0	0.90332	1.2452
2500	672.09	0.028590	0.130/1	718.03	1031.8	751.27	1092.3	0.91303	1.2338
2000	670.60	0.029380	0.12110	729.00	1022.7	756.00	1069.5	0.92423	1.2217
2800	685.04	0.030290	0.11198	757 50	1012.3	730.90	1008.5	0.93328	1.2000
3200 1	705.10	0.031303	0.10500	867.19	867.19	896.67	896.67	1 0533	1.1947
5200.1	705.10	0.049/4/	0.049/4/	007.19	007.19	090.07	090.07	1.0555	1.0555

Reference States:

U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Superheated Vapor

Water AE

	P =	= 1 psia ('	$\Gamma_{\rm sat} = 101$.70°F)	$P = 5 psia (T_{sat} = 162.2^{\circ}F)$					P =	= 10 psia	$(\mathbf{T}_{\text{sat}} = 19)$	3.2°F)
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	333.50	1044.4	1106.2	1.9789	73.52	1063.4	1131.5	1.8451		38.42	1072.7	1143.8	1.7887
150	362.57	1061.1	1128.2	2.0166									
200	392.52	1078.2	1150.9	2.0523	78.15	1076.9	1149.3	1.8729		38.85	1075.2	1147.2	1.7938
250	422.41	1095.4	1173.6	2.0856	84.22	1094.5	1172.5	1.9068		41.94	1093.4	1171.0	1.8287
300	452.27	1112.7	1196.5	2.1167	90.25	1112.1	1195.6	1.9383		44.99	1111.2	1194.6	1.8607
350	482.10	1130.2	1219.5	2.1460	96.25	1129.7	1218.8	1.9678		48.02	1129.1	1218.0	1.8906
400	511.92	1147.8	1242.6	2.1737	102.25	1147.4	1242.1	1.9957		51.04	1146.9	1241.4	1.9187
500	571.54	1183.6	1289.5	2.2253	114.21	1183.4	1289.1	2.0475		57.04	1183.0	1288.6	1.9707
600	631.14	1220.2	1337.1	2.2725	126.15	1220.0	1336.8	2.0948		63.03	1219.8	1336.5	2.0181
700	690.73	1257.6	1385.6	2.3162	138.09	1257.5	1385.3	2.1385		69.01	1257.3	1385.1	2.0619
800	750.31	1295.9	1434.9	2.3570	150.02	1295.8	1434.7	2.1793		74.98	1295.7	1434.5	2.1028
1000	869.47	1375.2	1536.2	2.4316	173.86	1375.1	1536.1	2.2540		86.91	1375.0	1535.9	2.1774
1200	988.62	1458.1	1641.1	2.4989	197.70	1458.0	1641.1	2.3214		98.84	1457.9	1641.0	2.2449
1400	1107.8	1544.8	1749.9	2.5608	221.54	1544.7	1749.8	2.3832		110.8	1544.6	1749.7	2.3067
	P = 1	4.696 ps i	ia (T _{sat} =	212.0°F)	P :	= 20 psia	$(T_{sat} = 22)$	27.9°F)		P =	= 40 psia	$(T_{sat} = 26)$	7.2°F)
Т	v	U	н	S	v	U	н	S		v	U	н	S
°F	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R		ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R
Sat	26.802	1078.1	1151.0	1.7578	20.091	1082.6	1157.0	1.7331		10.500	1092.8	1170.6	1.6777
250	28.428	1092.3	1169.6	1.7847	20.795	1091.0	1168.0	1.7489					
300	30.529	1110.5	1193.5	1.8172	22.361	1109.5	1192.4	1.7820		11.040	1105.9	1187.7	1.7008

Jui	20.002	1070.1	1101.0	1.7570	20.071	1002.0	1157.0
250	28.428	1092.3	1169.6	1.7847	20.795	1091.0	1168.0
300	30.529	1110.5	1193.5	1.8172	22.361	1109.5	1192.4
350	32.607	1128.5	1217.2	1.8474	23.903	1127.8	1216.3
400	34.671	1146.5	1240.8	1.8757	25.429	1145.9	1240.1
500	38.774	1182.7	1288.2	1.9279	28.458	1182.3	1287.7
600	42.858	1219.5	1336.2	1.9754	31.467	1219.3	1335.8
800	51.002	1295.5	1434.3	2.0602	37.461	1295.4	1434.1
1000	59.129	1374.9	1535.8	2.1349	43.438	1374.8	1535.6
1200	67.248	1457.9	1640.9	2.2024	49.407	1457.8	1640.8
1400	75.363	1544.6	1749.7	2.2642	55.372	1544.5	1749.6
1600	83.476	1635.0	1862.2	2.3217	61.335	1635.0	1862.1

S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
1.7331	10.500	1092.8	1170.6	1.6777
1.7489				
1.7820	11.040	1105.9	1187.7	1.7008
1.8125	11.841	1125.1	1212.8	1.7328
1.8411	12.625	1143.8	1237.3	1.7622
1.8935	14.165	1181.0	1285.9	1.8156
1.9412	15.686	1218.3	1334.5	1.8637
2.0261	18.702	1294.7	1433.3	1.9491
2.1008	21.700	1374.3	1535.1	2.0241
2.1683	24.691	1457.5	1640.4	2.0917
2.2302	27.678	1544.3	1749.3	2.1536
2.2877	30.662	1634.8	1861.9	2.2111

 $P = 60 \text{ psia} (T_{sat} = 292.7^{\circ} \text{F})$

 $P = 80 psia (T_{sat} = 312.0^{\circ}F)$

 $P = 100 \text{ psia} (T_{sat} = 327.8^{\circ} \text{F})$

T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	7.1761	1098.9	1178.6	1.6454	Ì	5.4730	1103.1	1184.1	1.6223	4.4326	1106.2	1188.3	1.6043
300	7.2603	1102.0	1182.7	1.6507									
350	7.8172	1122.3	1209.2	1.6845		5.8031	1119.3	1205.3	1.6491	4.5926	1116.2	1201.2	1.6205
400	8.3548	1141.7	1234.5	1.7149		6.2186	1139.5	1231.6	1.6806	4.9359	1137.2	1228.6	1.6532
600	10.426	1217.3	1333.1	1.8181		7.7951	1216.2	1331.7	1.7854	6.2166	1215.2	1330.3	1.7598
800	12.448	1294.1	1432.4	1.9039		9.3217	1293.5	1431.6	1.8717	7.4457	1292.9	1430.8	1.8466
1000	14.454	1373.9	1534.5	1.9791		10.831	1373.5	1534.0	1.9471	8.6575	1373.1	1533.4	1.9222
1200	16.452	1457.2	1640.0	2.0468		12.333	1456.9	1639.6	2.0148	9.8614	1456.5	1639.2	1.9900
1400	18.446	1544.1	1749.0	2.1088		13.831	1543.8	1748.7	2.0769	11.061	1543.6	1748.4	2.0522
1600	20.438	1634.6	1861.7	2.1663		15.326	1634.4	1861.5	2.1345	12.258	1634.2	1861.2	2.1098
1800	22.428	1728.8	1978.0	2.2202		16.819	1728.6	1977.8	2.1884	13.454	1728.5	1977.6	2.1637

Reference States: U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

LearnThermo.com

Appendix A

Superheated Vapor

Water AE

	P =	120 psia	$(T_{sat} = 3)$	41.3°F)	P =	= 140 psia	$T_{sat} = 3$	53.0°F)	P =	160 psia	$(T_{sat} = 3)$	63.5°F)
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	3.7288	1108.7	1191.5	1.5894	3.2201	1110.7	1194.2	1.5768	2.8347	1112.3	1196.3	1.5657
350	3.7834	1112.8	1196.9	1.5961								
400	4.0799	1134.8	1225.4	1.6303	3.4676	1132.3	1222.2	1.6103	3.0076	1129.7	1218.8	1.5925
450	4.3612	1155.3	1252.2	1.6606	3.7147	1153.4	1249.7	1.6415	3.2293	1151.5	1247.2	1.6245
500	4.6340	1175.2	1278.2	1.6883	3.9525	1173.7	1276.1	1.6697	3.4412	1172.1	1274.1	1.6534
600	5.1642	1214.2	1328.9	1.7387	4.4124	1213.1	1327.5	1.7207	3.8484	1212.1	1326.1	1.7049
700	5.6829	1253.0	1379.3	1.7841	4.8603	1252.2	1378.2	1.7664	4.2434	1251.5	1377.2	1.7510
800	6.1950	1292.3	1429.9	1.8260	5.3016	1291.6	1429.1	1.8085	4.6316	1291.0	1428.2	1.7932
900	6.7030	1332.1	1481.1	1.8650	5.7388	1331.6	1480.4	1.8476	5.0156	1331.1	1479.7	1.8325
1000	7.2083	1372.7	1532.8	1.9018	6.1732	1372.2	1532.3	1.8845	5.3968	1371.8	1531.7	1.8695
1200	8.2137	1456.2	1638.8	1.9697	7.0367	1455.9	1638.4	1.9526	6.1540	1455.6	1638.0	1.9376
1400	9.2148	1543.3	1748.1	2.0319	7.8960	1543.1	1747.8	2.0148	6.9069	1542.9	1747.5	1.9999
1600	10.213	1634.0	1861.0	2.0896	8.7529	1633.9	1860.8	2.0725	7.6574	1633.7	1860.5	2.0577
1800	11.211	1728.3	1977.4	2.1435	9.6082	1728.2	1977.2	2.1264	8.4063	1728.0	1977.1	2.1116

	P =	180 psia	$T_{sat} = 3'$	73.1°F)	$P = 200 \text{ psia} (T_{\text{sat}} = 381.8^{\circ} \text{F})$					P =	250 psia	$T_{sat} = 40$	01.0°F)
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	2.5321	1113.7	1198.1	1.5559	2.2882	1114.8	1199.6	1.5470		1.8440	1117.0	1202.4	1.5280
400	2.6490	1127.0	1215.3	1.5763	2.3615	1124.2	1211.7	1.5613					
500	3.0433	1170.6	1272.007	1.6387	2.7247	1169.0	1269.887	1.6254		2.1506	1164.9	1264.419	1.5964
600	3.4097	1211.0	1324.6	1.6909	3.0586	1209.9	1323.2	1.6782		2.4264	1207.1	1319.5	1.6510
700	3.7635	1250.7	1376.1	1.7373	3.3795	1249.8	1375.0	1.7250		2.6883	1247.8	1372.3	1.6986
800	4.1104	1290.4	1427.4	1.7798	3.6934	1289.8	1426.6	1.7676		2.9428	1288.2	1424.4	1.7417
900	4.4531	1330.6	1479.0	1.8192	4.0030	1330.1	1478.3	1.8072		3.1930	1328.8	1476.6	1.7816
1000	4.7929	1371.4	1531.1	1.8562	4.3098	1371.0	1530.6	1.8443		3.4403	1369.9	1529.2	1.8189
1200	5.4674	1455.3	1637.5	1.9245	4.9182	1455.0	1637.1	1.9127		3.9295	1454.2	1636.1	1.8876
1400	6.1377	1542.6	1747.2	1.9868	5.5222	1542.4	1746.9	1.9751		4.4144	1541.8	1746.2	1.9501
1600	6.80539	1633.5	1860.3	2.0446	6.12377	1633.3	1860.1	2.0329		4.8968	1632.8	1859.5	2.0080
1800	7.47155	1727.8	1976.9	2.0986	6.72375	1727.7	1976.7	2.0869		5.37769	1727.3	1976.3	2.0621

 $P = 350 \text{ psia} (T_{\text{sat}} = 431.7^{\circ} \text{F})$

 $P = 400 \text{ psia} (T_{\text{sat}} = 444.6^{\circ} \text{F})$

T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	1.5435	1118.4	1204.1	1.5121	1.3263	1119.3	1205.2	1.4984	1.1616	1119.8	1205.8	1.4862
500	1.7670	1160.5	1258.7	1.5716	1.4921	1156.0	1252.7	1.5497	1.2851	1151.2	1246.4	1.5298
600	2.00461	1204.3	1315.7	1.6282	1.70301	1201.4	1311.8	1.6084	1.47653	1198.4	1307.8	1.5907
700	2.22731	1245.8	1369.5	1.6767	1.89791	1243.7	1366.7	1.6579	1.65073	1241.5	1363.8	1.6413
800	2.44237	1286.6	1422.3	1.7204	2.08483	1285.0	1420.1	1.7021	1.81661	1283.3	1417.9	1.6860
900	2.65291	1327.5	1474.9	1.7605	2.26711	1326.2	1473.1	1.7426	1.97772	1324.9	1471.4	1.7269
1000	2.86054	1368.8	1527.7	1.7981	2.44642	1367.8	1526.3	1.7803	2.13582	1366.7	1524.9	1.7649
1200	3.27038	1453.5	1635.1	1.8670	2.79958	1452.7	1634.1	1.8495	2.44647	1451.9	1633.1	1.8343
1400	3.6759	1541.2	1745.4	1.9297	3.14838	1540.6	1744.6	1.9124	2.75274	1540.0	1743.9	1.8973
1600	4.0789	1632.3	1858.9	1.9877	3.49466	1631.9	1858.4	1.9704	3.05647	1631.4	1857.8	1.9555
1800	4.48032	1726.9	1975.8	2.0418	3.83935	1726.5	1975.4	2.0247	3.35861	1726.1	1974.9	2.0098

Reference States: U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Superheated Vapor

Water
٨F

	$P = 450 \text{ psia} (T_{\text{sat}} = 456.3^{\circ} \text{F})$				$P = 450 \text{ psia} (T_{\text{sat}} = 456.3^{\circ} \text{F})$					$P = 500 \text{ psia} (T_{\text{sat}} = 467.0^{\circ} \text{F})$					$P = 550 \text{ psia} (T_{\text{sat}} = 477.0^{\circ} \text{F})$				
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R					
Sat	1.0324	1119.9	1206.0	1.4752		0.92815	1119.8	1205.8	1.4652		0.8422	1119.6	1205.3	1.4559					
500	1.1233	1146.2	1239.8	1.5113		0.99303	1140.8	1232.8	1.4938		0.8856	1135.1	1225.3	1.4770					
550	1.2152	1171.8	1273.1	1.5452		1.0797	1167.9	1267.8	1.5295		0.9685	1163.7	1262.4	1.5147					
600	1.3001	1195.4	1303.7	1.5748		1.1588	1192.2	1299.5	1.5601		1.0429	1189.0	1295.2	1.5464					
650	1.3807	1217.7	1332.8	1.6016		1.2331	1215.1	1329.3	1.5876		1.1122	1212.5	1325.7	1.5746					
700	1.4584	1239.4	1360.9	1.6264		1.3044	1237.2	1357.9	1.6128		1.1783	1235.0	1355.0	1.6004					
750	1.5339	1260.6	1388.5	1.6497		1.3735	1258.7	1385.9	1.6365		1.2421	1256.8	1383.3	1.6243					
800	1.6079	1281.7	1415.7	1.6717		1.4410	1280.0	1413.4	1.6588		1.3043	1278.4	1411.2	1.6469					
900	1.7526	1323.6	1469.6	1.7129		1.5725	1322.3	1467.9	1.7003		1.4251	1320.9	1466.1	1.6888					
1000	1.8942	1365.6	1523.4	1.7511		1.7009	1364.5	1522.0	1.7387		1.5428	1363.4	1520.6	1.7275					
1200	2.1718	1451.1	1632.1	1.8209		1.9521	1450.3	1631.1	1.8088		1.7723	1449.5	1630.0	1.7978					
1400	2.4450	1539.4	1743.1	1.8840		2.1988	1538.8	1742.4	1.8721		1.9974	1538.2	1741.6	1.8612					
1600	2.7157	1630.9	1857.2	1.9423		2.4430	1630.4	1856.6	1.9304		2.2199	1630.0	1856.1	1.9197					
1800	2.9847	1725.8	1974.5	1.9966		2.6856	1725.4	1974.0	1.9848		2.4409	1725.0	1973.6	1.9741					
	P =	600 psia	$(T_{sat} = 48)$	86.3⁰F)		P =	650 psia	$(T_{sat} = 49)$	4.9°F)		P =	700 psia	$(T_{sat} = 50)$	(3.1 ⁰F)					

		ooo pom	- sat	/010 _)
T ⁰F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.77015	1119.1	1204.6	1.4473
500	0.79526	1129.0	1217.3	1.4606
550	0.87542	1159.4	1256.7	1.5006
600	0.94605	1185.7	1290.8	1.5336
700	1.0732	1232.7	1351.9	1.5888
800	1.1904	1276.7	1408.9	1.6359
900	1.3023	1319.6	1464.3	1.6782
1000	1.4110	1362.3	1519.1	1.7171
1200	1.6225	1448.8	1629.0	1.7877
1400	1.8296	1537.6	1740.9	1.8513
1600	2.0340	1629.5	1855.5	1.9098
1800	2.2369	1724.6	1973.1	1.9643

P =	650 psia	$(T_{sat} = 49)$	4.9°F)	$P = 700 \text{ psia} (T_{\text{sat}} = 503.1^{\circ} \text{F})$							
V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R				
0.70878	1118.4	1203.8	1.4392	0.65586	1117.7	1202.7	1.4315				
0.71781	1122.4	1208.8	1.4444	0.02044	485.6	488.3	0.6894				
0.79625	1154.9	1250.8	1.4871	0.72799	1150.2	1244.6	1.4740				
0.86392	1182.2	1286.2	1.5214	0.79332	1178.7	1281.5	1.5097				
0.98410	1230.4	1348.8	1.5779	0.90769	1228.1	1345.7	1.5677				
1.0939	1275.0	1406.6	1.6257	1.0112	1273.2	1404.3	1.6162				
1.1983	1318.2	1462.5	1.6684	1.1092	1316.9	1460.7	1.6592				
1.2994	1361.2	1517.6	1.7075	1.2038	1360.1	1516.2	1.6986				
1.4957	1448.0	1628.0	1.7784	1.3871	1447.2	1627.0	1.7697				
1.6875	1537.0	1740.1	1.8422	1.5658	1536.4	1739.4	1.8337				
1.8767	1629.0	1854.9	1.9008	1.7419	1628.5	1854.3	1.8924				
2.0643	1724.2	1972.7	1.9553	1.9164	1723.8	1972.2	1.9470				

$P = 750 \text{ psia} (T_{sat} = 510.9^{\circ} \text{F})$

 $P = 800 \text{ psia} (T_{sat} = 518.3^{\circ} \text{F})$

 $P = 900 \text{ psia} (T_{sat} = 532.0^{\circ} \text{F})$

T °F	Vft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	 V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.60974	1116.8	1201.5	1.4242	0.56917	1115.8	1200.1	1.4171	0.50106	1113.5	1197.0	1.4039
550	0.66842	1145.3	1238.1	1.4612								
600	0.73192	1175.0	1276.7	1.4985	0.67799	1171.3	1271.7	1.4877	0.58750	1163.4	1261.3	1.4668
700	0.84139	1225.7	1342.5	1.5579	0.78330	1223.3	1339.3	1.5487	0.68629	1218.3	1332.7	1.5313
800	0.93955	1271.5	1402.0	1.6071	0.87678	1269.7	1399.6	1.5986	0.77207	1266.1	1394.8	1.5827
900	1.0319	1315.5	1458.8	1.6506	0.96433	1314.2	1457.0	1.6425	0.85160	1311.4	1453.3	1.6274
1000	1.1209	1359.0	1514.7	1.6902	1.0484	1357.9	1513.2	1.6823	0.92751	1355.7	1510.2	1.6678
1200	1.2929	1446.4	1625.9	1.7617	1.2105	1445.6	1624.9	1.7541	1.0732	1444.0	1622.8	1.7401
1400	1.4603	1535.8	1738.6	1.8257	1.3680	1535.2	1737.8	1.8183	1.2141	1534.0	1736.3	1.8047
1600	1.6251	1628.1	1853.8	1.8845	1.5228	1627.6	1853.2	1.8772	1.3524	1626.63	1852.0	1.8637
1800	1.7882	1723.4	1971.8	1.9392	1.6761	1723.0	1971.3	1.9319	1.4891	1722.3	1970.4	1.9186

Reference States: U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).
Superheated Vapor

Water AE

	P = 1	$P = 1000 \text{ psia} (T_{\text{sat}} = 544.7^{\circ} \text{F})$				P = 2	1500 psia	$(T_{sat} = 5)$	$P = 2000 \text{ psia} (T_{sat} = 635.9^{\circ} \text{F})$					
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.44605	1110.8	1193.4	1.3916		0.27697	1092.9	1169.8	1.3372		0.18813	1067.5	1137.2	1.2872
600	0.51431	1154.9	1250.1	1.4466		0.28189	1097.9	1176.2	1.3432					
650	0.56410	1185.9	1290.3	1.4837		0.33310	1148.0	1240.5	1.4026		0.20586	1092.1	1168.4	1.3155
700	0.60844	1213.2	1325.8	1.5151		0.37198	1184.4	1287.7	1.4443		0.24894	1148.4	1240.6	1.3793
750	0.64944	1238.4	1358.7	1.5428		0.40534	1215.2	1327.8	1.4781		0.28074	1188.2	1292.1	1.4228
800	0.68821	1262.5	1389.9	1.5681		0.43550	1243.0	1364.0	1.5075		0.30763	1221.3	1335.2	1.4577
900	0.76136	1308.6	1449.6	1.6137		0.49014	1294.0	1430.1	1.5580		0.35390	1278.3	1409.4	1.5145
1000	0.83077	1353.4	1507.2	1.6546		0.54031	1341.8	1491.8	1.6018		0.39479	1329.6	1475.8	1.5616
1100	0.89782	1397.8	1564.1	1.6923		0.58780	1388.3	1551.5	1.6414		0.43266	1378.4	1538.6	1.6032
1200	0.96327	1442.4	1620.8	1.7275		0.63355	1434.3	1610.3	1.6779		0.46864	1426.0	1599.6	1.6411
1300	1.0276	1487.3	1677.6	1.7608		0.67808	1480.3	1668.7	1.7121		0.50332	1473.3	1659.7	1.6763
1400	1.0910	1532.8	1734.8	1.7924		0.72172	1526.7	1727.1	1.7444		0.53708	1520.5	1719.4	1.7093
1600	1.2161	1625.7	1850.9	1.8516		0.80714	1620.9	1845.1	1.8046		0.60269	1616.0	1839.3	1.7705
1800	1.3396	1721.5	1969.5	1.9066		0.89090	1717.6	1965.0	1.8602		0.66660	1713.7	1960.6	1.8267
											-			

	$\mathbf{P} = 2$	$P = 2500 \text{ psia} (T_{\text{sat}} = 668.2^{\circ} \text{F})$				$P = 3000 \text{ psia} (T_{\text{sat}} = 695.4^{\circ} \text{F})$				P = 3500 psia				
T °F	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	
Sat	0.13071	1031.8	1092.3	1.2338		0.08466	970.58	1017.6	1.1597		Super	critical		
700	0.16849	1099.1	1177.1	1.3081		0.09837	1006.0	1060.6	1.1969	0.030653	760.51	780.37	0.95177	
750	0.20327	1155.7	1249.8	1.3695		0.14840	1114.8	1197.2	1.3127	0.10460	1058.3	1126.1	1.2443	
800	0.22949	1196.7	1302.9	1.4125		0.17601	1168.3	1266.1	1.3685	0.13639	1135.0	1223.4	1.3233	
850	0.25174	1231.0	1347.5	1.4473		0.19771	1209.0	1318.8	1.4096	0.15847	1184.6	1287.3	1.3730	
900	0.27165	1261.6	1387.3	1.4772		0.21639	1243.6	1363.8	1.4433	0.17659	1224.2	1338.7	1.4115	
950	0.29001	1290.0	1424.2	1.5038		0.23321	1274.7	1404.3	1.4726	0.19245	1258.6	1383.3	1.4438	
1000	0.30726	1316.9	1459.2	1.5282		0.24876	1303.7	1441.9	1.4988	0.20687	1289.9	1423.9	1.4721	
1200	0.36966	1417.6	1588.7	1.6114		0.30367	1409.0	1577.7	1.5861	0.25654	1400.2	1566.5	1.5638	
1400	0.42631	1514.3	1711.7	1.6814		0.35249	1508.0	1703.8	1.6579	0.29978	1501.7	1696.0	1.6375	
1600	0.48004	1611.2	1833.4	1.7436		0.39830	1606.3	1827.6	1.7211	0.33994	1601.4	1821.7	1.7017	
1800	0.53204	1709.8	1956.1	1.8004		0.44236	1705.8	1951.6	1.7785	0.37833	1701.9	1947.1	1.7598	

	P = 4000 psia				P = 5000 psia					P = 6000 psia				
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	
Sat		Super	critical			Super	critical				Super	critical		
700	0.028713	742.81	764.08	0.93536	0.026777	722.26	747.05	0.91627		0.025635	708.54	737.03	0.90344	
750	0.063703	962.70	1009.9	1.1417	0.033730	822.38	853.61	1.0061		0.029815	789.22	822.34	0.97541	
800	0.10520	1095.0	1172.9	1.2743	0.059365	987.53	1042.5	1.1589		0.039491	897.71	941.58	1.0719	
850	0.12848	1157.4	1252.6	1.3364	0.085508	1093.1	1172.3	1.2602		0.058151	1019.2	1083.8	1.1827	
900	0.14647	1203.3	1311.8	1.3808	0.10390	1156.7	1252.9	1.3207		0.075844	1104.3	1188.5	1.2612	
1000	0.17538	1275.4	1405.3	1.4473	0.13128	1244.8	1366.4	1.4014		0.10208	1212.2	1325.6	1.3587	
1200	0.22121	1391.3	1555.1	1.5437	0.17185	1373.0	1532.1	1.5081		0.13911	1354.3	1508.8	1.4768	
1400	0.26028	1495.3	1688.1	1.6193	0.20508	1482.4	1672.3	1.5879		0.16841	1469.3	1656.5	1.5609	
1600	0.29620	1596.5	1815.9	1.6846	0.23505	1586.7	1804.3	1.6553		0.19438	1576.8	1792.7	1.6305	
1800	0.33033	1698.0	1942.6	1.7434	0.26320	1690.1	1933.8	1.7153		0.21853	1682.2	1925.0	1.6918	

Reference States: U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Subcooled Liquid

Water AE

		P = 50) psia (467	7.0°F)			P = 100	0 psia (54	4.7°F)	
T ⁰F	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	 ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
32.02	62.524	0.015994	0.028146	1.5090	5.4617E-05	62.632	0.015966	0.051537	3.0081	9.4391E-05
50	62.509	0.015998	18.040	19.521	0.036035	62.611	0.015972	18.002	20.959	0.035953
100	62.086	0.016107	67.906	69.397	0.12939	62.179	0.016083	67.738	70.716	0.12908
150	61.286	0.016317	117.78	119.29	0.21477	61.380	0.016292	117.50	120.51	0.21430
200	60.217	0.016607	167.82	169.35	0.29369	60.315	0.016580	167.42	170.49	0.29309
250	58.921	0.016972	218.18	219.75	0.36733	59.028	0.016941	217.66	220.80	0.36659
300	57.416	0.017417	269.09	270.71	0.43671	57.536	0.017380	268.42	271.64	0.43581
350	55.697	0.017954	320.85	322.51	0.50275	55.835	0.017910	319.98	323.30	0.50167
400	53.737	0.018609	373.86	375.58	0.56634	53.903	0.018552	372.73	376.16	0.56501
450	51.481	0.019425	428.73	430.53	0.62845	51.689	0.019347	427.22	430.80	0.62678
500						49.097	0.020368	484.35	488.12	0.68811
Sat	50.628	0.019752	448.01	449.84	0.64949	46.297	0.021600	539.02	543.019	0.74400

		P = 200	0 psia (63	5.9°F)			P = 300	0 psia (69	95.4°F)	
T °F	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m ⁰R
32.02	62.846	0.015912	0.090413	5.9833	1.4281E-04	63.056	0.015859	0.11927	8.9292	1.5155E-04
50	62.812	0.015921	17.922	23.819	0.03577	63.010	0.015870	17.839	26.656	0.03556
100	62.365	0.016035	67.407	73.345	0.12847	62.547	0.015988	67.083	75.964	0.12785
150	61.564	0.016243	116.95	122.96	0.21338	61.746	0.016195	116.41	125.41	0.21247
200	60.508	0.016527	166.65	172.77	0.29190	60.698	0.016475	165.90	175.05	0.29073
250	59.237	0.016881	216.64	222.89	0.36513	59.442	0.016823	215.65	225.00	0.36370
300	57.770	0.017310	267.10	273.51	0.43405	57.998	0.017242	265.83	275.41	0.43234
350	56.105	0.017824	318.29	324.89	0.49955	56.365	0.017741	316.67	326.53	0.49750
400	54.223	0.018442	370.55	377.38	0.56244	54.530	0.018338	368.47	378.66	0.55997
450	52.086	0.019199	424.34	431.45	0.62357	52.461	0.019062	421.64	432.22	0.62053
500	49.618	0.020154	480.40	487.86	0.68393	50.099	0.019960	476.76	487.85	0.68005
550	46.671	0.021427	540.02	547.96	0.74495	47.335	0.021126	534.84	546.58	0.73968
600	42.888	0.023317	606.17	614.81	0.80953	43.940	0.022759	597.82	610.46	0.80141
640						40.379	0.024765	654.96	668.72	0.85535
680						34.697	0.028821	729.12	745.13	0.92351
Sat	39.009	0.025635	662.79	672.28	0.86284	29.121	0.034339	783.94	803.02	0.97391

Reference

States:

U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

AE

		P =	= 4000 psi	a			P :	= 5000 ps	ia	
T °F	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
32.02	62.846	0.015912	0.09041	5.983	1.4281E-04	63.056	0.015859	0.11927	8.929	1.5155E-04
50	62.812	0.015921	17.922	23.819	0.035769	63.010	0.015870	17.839	26.656	0.03556
100	62.365	0.016035	67.407	73.345	0.12847	62.547	0.015988	67.083	75.964	0.12785
150	61.564	0.016243	116.95	122.96	0.21338	61.746	0.016195	116.41	125.41	0.21247
200	60.508	0.016527	166.65	172.77	0.29190	60.698	0.016475	165.90	175.05	0.29073
250	59.237	0.016881	216.64	222.89	0.36513	59.442	0.016823	215.65	225.00	0.36370
300	57.770	0.017310	267.10	273.51	0.43405	57.998	0.017242	265.83	275.41	0.43234
350	56.105	0.017824	318.29	324.89	0.49955	56.365	0.017741	316.67	326.53	0.49750
400	54.223	0.018442	370.55	377.38	0.56244	54.530	0.018338	368.47	378.66	0.55997
450	52.086	0.019199	424.34	431.45	0.62357	52.461	0.019062	421.64	432.22	0.62053
500	49.618	0.020154	480.40	487.86	0.68393	50.099	0.019960	476.76	487.85	0.68005
550	46.671	0.021427	540.02	547.96	0.74495	47.335	0.021126	534.84	546.58	0.73968
600	42.888	0.023317	606.17	614.81	0.80953	43.940	0.022759	597.82	610.46	0.80141
650	4.8576	0.205862	1092.1	1168.4	1.3155	39.272	0.025463	670.99	685.13	0.87021
700	4.0171	0.248935	1148.4	1240.6	1.3793	10.165	0.098374	1006.0	1060.6	1.1969
Sat		S u p	ercritic	a l		Supercritical				

Reference

States: U = 0 and S = 0 at for saturated liquid at the triple point (32.018°F and 0.088713 psia).

Saturation Temperature Table

NH ₃	
SI	

Temp.	Pressure	V (m	³ /kg)	U (k	J/kg)	H (k	J/kg)	S (kJ/	kg*K)
(°C)	(kPa)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
-60	21.893	0.0014013	4.7057	-87.262	1251.5	-87.232	1354.6	-0.39078	6.3735
-55	30.145	0.0014126	3.4895	-65.679	1258.2	-65.637	1363.4	-0.29069	6.2600
-50	40.836	0.0014243	2.6277	-43.956	1264.7	-43.897	1372.0	-0.19223	6.1529
-45	54.489	0.0014364	2.0071	-22.096	1271.1	-22.017	1380.4	-0.095353	6.0517
-40	71.692	0.0014490	1.5533	-0.10388	1277.2	0	1388.6	0	5.9558
-35	93.098	0.0014619	1.2168	22.015	1283.2	22.151	1396.5	0.093870	5.8648
-30	119.43	0.0014753	0.96396	44.257	1289.0	44.433	1404.1	0.18630	5.7784
-25	151.47	0.0014891	0.77167	66.617	1294.6	66.843	1411.5	0.27734	5.6960
-20	190.08	0.0015035	0.62373	89.095	1299.9	89.380	1418.5	0.36703	5.6174
-15	236.17	0.0015183	0.50868	111.69	1305.1	112.05	1425.2	0.45541	5.5422
-10	290.71	0.0015336	0.41830	134.39	1309.9	134.84	1431.5	0.54255	5.4701
-5	354.76	0.0015495	0.34664	157.22	1314.5	157.77	1437.5	0.62848	5.4009
0	429.38	0.0015660	0.28930	180.16	1318.8	180.83	1443.1	0.71327	5.3343
5	515.75	0.0015831	0.24304	203.22	1322.9	204.04	1448.2	0.79697	5.2700
10	615.05	0.0016009	0.20543	226.41	1326.6	227.40	1452.9	0.87964	5.2079
15	728.52	0.0016195	0.17461	249.74	1330.0	250.92	1457.2	0.96134	5.1477
20	857.48	0.0016388	0.14920	273.21	1333.1	274.61	1461.0	1.0421	5.0891
25	1003.2	0.0016590	0.12809	296.83	1335.8	298.50	1464.3	1.1221	5.0321
30	1167.2	0.0016802	0.11046	320.63	1338.1	322.59	1467.0	1.2013	4.9764
35	1350.8	0.0017024	0.095632	344.60	1340.0	346.90	1469.2	1.2799	4.9218
40	1555.4	0.0017258	0.083101	368.78	1341.5	371.47	1470.7	1.3578	4.8682
45	1782.7	0.0017505	0.072450	393.18	1342.5	396.31	1471.7	1.4353	4.8153
50	2034.0	0.0017766	0.063350	417.84	1343.0	421.45	1471.9	1.5123	4.7630
55	2311.1	0.0018044	0.055537	442.76	1343.0	446.93	1471.4	1.5890	4.7110
60	2615.6	0.0018340	0.048797	468.00	1342.5	472.80	1470.1	1.6656	4.6591
65	2949.1	0.0018658	0.042955	493.59	1341.2	499.09	1467.9	1.7421	4.6071
70	3313.5	0.0019000	0.037868	519.58	1339.3	525.87	1464.8	1.8187	4.5548
75	3710.5	0.0019371	0.033419	546.02	1336.6	553.20	1460.6	1.8955	4.5017
80	4142.0	0.0019776	0.029509	572.98	1332.9	581.17	1455.1	1.9729	4.4477
85	4610.0	0.0020221	0.026058	600.55	1328.2	609.87	1448.4	2.0510	4.3921
90	5116.7	0.0020714	0.022997	628.84	1322.3	639.44	1440.0	2.1301	4.3346
95	5664.3	0.0021269	0.020268	657.97	1315.0	670.02	1429.8	2.2105	4.2744
100	6255.3	0.0021899	0.017820	688.13	1306.0	701.83	1417.5	2.2929	4.2107
105	6892.3	0.0022630	0.015610	719.58	1294.8	735.18	1402.4	2.3779	4.1424
110	7578.3	0.0023496	0.013596	752.71	1280.9	770.51	1383.9	2.4666	4.0675
115	8317.0	0.0024559	0.011740	788.14	1263.2	808.57	1360.8	2.5607	3.9835
120	9112.5	0.0025941	0.0099932	827.11	1240.0	850.75	1331.1	2.6635	3.8852
132.25	11333	0.0044444	0.0044444	1049.7	1049.7	1100.1	1100.1	3.2674	3.2674

Reference States:

H = 0 kJ/kg for saturated liquid at-40°C.

S = 0 kJ/kg-K for saturated liquid at -40 °C.

Saturation Pressure Table

NH ₃
ST

Pressure	Temp.	V (m ³ /kg) Sat. Liq Sat. Vap		U (k	J/kg)	H (k	J/kg)	S (kJ/	/kg*K)
(kPa)	(°C)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
10	-71.22	0.0013773	9.8000	-135.17	1236.1	-135.16	1334.1	-0.62165	6.6545
30	-55.08	0.0014124	3.5053	-66.014	1258.1	-65.972	1363.3	-0.29223	6.2617
50	-46.52	0.0014327	2.1749	-28.743	1269.1	-28.671	1377.9	-0.12459	6.0818
100	-33.59	0.0014656	1.1381	28.282	1284.9	28.429	1398.7	0.12011	5.8400
200	-18.85	0.0015068	0.59465	94.290	1301.1	94.591	1420.1	0.38750	5.5998
250	-13.65	0.0015224	0.48216	117.80	1306.4	118.18	1426.9	0.47903	5.5225
500	4.14	0.0015801	0.25032	199.24	1322.2	200.03	1447.4	0.78264	5.2809
750	15.88	0.0016228	0.16980	253.85	1330.6	255.06	1457.9	0.97559	5.1373
1000	24.90	0.0016586	0.12850	296.33	1335.7	297.99	1464.2	1.1204	5.0333
1250	32.32	0.0016904	0.10325	331.75	1339.0	333.86	1468.1	1.2379	4.9509
1500	38.70	0.0017196	0.086169	362.46	1341.1	365.04	1470.4	1.3376	4.8821
1750	44.31	0.0017470	0.073816	389.81	1342.4	392.87	1471.6	1.4246	4.8225
2000	49.35	0.0017732	0.064453	414.62	1343.0	418.17	1471.9	1.5023	4.7697
2250	53.94	0.0017984	0.057102	437.44	1343.1	441.49	1471.6	1.5727	4.7220
2500	58.16	0.0018229	0.051170	458.65	1342.7	463.21	1470.7	1.6374	4.6782
2750	62.07	0.0018469	0.046279	478.55	1342.0	483.62	1469.3	1.6972	4.6376
3000	65.72	0.0018706	0.042174	497.33	1341.0	502.94	1467.5	1.7532	4.5996
3250	69.16	0.0018941	0.038676	515.18	1339.7	521.33	1465.4	1.8058	4.5636
3500	72.40	0.0019175	0.035657	532.22	1338.1	538.93	1462.9	1.8556	4.5294
3750	75.48	0.0019408	0.033025	548.56	1336.2	555.84	1460.1	1.9029	4.4967
4000	78.40	0.0019642	0.030707	564.29	1334.2	572.15	1457.0	1.9481	4.4651
4250	81.19	0.0019878	0.028649	579.49	1331.9	587.93	1453.7	1.9914	4.4346
4500	83.86	0.0020115	0.026808	594.21	1329.4	603.26	1450.0	2.0331	4.4049
4750	86.42	0.0020356	0.025151	608.51	1326.7	618.18	1446.2	2.0733	4.3760
5000	88.88	0.0020599	0.023651	622.45	1323.8	632.75	1442.0	2.1123	4.3477
5250	91.25	0.0020847	0.022284	636.05	1320.7	647.00	1437.6	2.1501	4.3198
5500	93.54	0.0021100	0.021034	649.36	1317.3	660.97	1433.0	2.1869	4.2923
5750	95.75	0.0021358	0.019884	662.42	1313.8	674.70	1428.1	2.2228	4.2651
6000	97.89	0.0021622	0.018823	675.24	1310.0	688.22	1423.0	2.2578	4.2382
6250	99.96	0.0021894	0.017840	687.87	1306.1	701.55	1417.6	2.2922	4.2113
6500	101.97	0.0022173	0.016925	700.33	1301.9	714.74	1411.9	2.3260	4.1845
6750	103.92	0.0022461	0.016071	712.63	1297.4	727.80	1405.9	2.3592	4.1577
7000	105.81	0.0022760	0.015271	724.82	1292.8	740.76	1399.7	2.3920	4.1307
7250	107.65	0.0023069	0.014519	736.92	1287.8	753.65	1393.1	2.4244	4.1036
7500	109.45	0.0023392	0.013810	748.95	1282.6	766.49	1386.1	2.4566	4.0762
7750	111.20	0.0023729	0.013140	760.94	1277.0	779.33	1378.9	2.4885	4.0484
8000	112.90	0.0024083	0.012503	772.91	1271.2	792.18	1371.2	2.5203	4.0201
8500	116.18	0.0024851	0.011318	796.98	1258.3	818.10	1354.5	2.5840	3.9617
9000	119.32	0.0025725	0.010228	821.49	1243.6	844.64	1335.7	2.6487	3.8998
9500	122.31	0.0026755	0.0092067	846.97	1226.5	872.39	1314.0	2.7158	3.8325
11333	132.25	0.0044444	0.0044444	1049.7	1049.7	1100.1	1100.1	3.2674	3.2674

Reference States:

NH₃ SI

	Р	= 50 kPa	a (-46.52	°C)	$P = 100 \text{ kPa} (-33.59^{\circ}\text{C})$					$P = 200 \text{ kPa} (-18.85^{\circ}\text{C})$					
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		
Sat	2.1749	1269.1	1377.9	6.0818		1.1381	1284.9	1398.7	5.8400	0.59465	1301.1	1420.1	5.5998		
-40	2.2425	1280.0	1392.1	6.1438											
-30	2.3450	1296.5	1413.7	6.2344		1.1573	1291.2	1406.9	5.8739						
-20	2.4465	1312.8	1435.1	6.3205		1.2102	1308.3	1429.4	5.9645						
-10	2.5472	1329.0	1456.3	6.4028		1.2622	1325.2	1451.5	6.0502	0.61929	1317.4	1441.3	5.6818		
0	2.6474	1345.1	1477.5	6.4818		1.3136	1342.0	1473.3	6.1317	0.64649	1335.4	1464.7	5.7689		
10	2.7471	1361.3	1498.7	6.5580		1.3646	1358.6	1495.1	6.2098	0.67317	1352.9	1487.6	5.8512		
20	2.8466	1377.6	1519.9	6.6316		1.4153	1375.2	1516.7	6.2850	0.69947	1370.2	1510.1	5.9296		
30	2.9457	1393.9	1541.2	6.7030		1.4656	1391.8	1538.3	6.3575	0.72546	1387.4	1532.5	6.0048		
40	3.0447	1410.3	1562.6	6.7723		1.5158	1408.4	1560.0	6.4278	0.75122	1404.6	1554.8	6.0771		
50	3.1434	1426.8	1584.0	6.8398		1.5657	1425.2	1581.7	6.4961	0.77679	1421.7	1577.1	6.1470		
60	3.2421	1443.5	1605.6	6.9056		1.6155	1442.0	1603.5	6.5626	0.80221	1438.9	1599.3	6.2148		
70	3.3406	1460.3	1627.3	6.9698		1.6652	1458.9	1625.4	6.6274	0.82750	1456.1	1621.6	6.2807		

	P =	$P = 250 \text{ kPa} (-13.65^{\circ}\text{C})$					= 500 kl	Pa (4.14°	°C)	P = 750 kPa (15.88°C)				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	
Sat	0.48216	1306.4	1426.9	5.5225		0.25032	1322.2	1447.4	5.2809	0.16980	1330.6	1457.9	5.1373	
0	0.51293	1331.9	1460.2	5.6473										
25	0.56685	1376.5	1518.2	5.8507	(0.27526	1364.1	1501.8	5.4702	0.17770	1350.7	1484.0	5.2261	
50	0.61898	1420.0	1574.7	6.0327	(0.30323	1411.0	1562.6	5.6663	0.19781	1401.6	1550.0	5.4388	
75	0.67012	1463.4	1630.9	6.2002		0.33005	1456.5	1621.5	5.8419	0.21661	1449.4	1611.9	5.6233	
100	0.72063	1507.3	1687.5	6.3570	(0.35621	1501.8	1679.9	6.0038	0.23469	1496.1	1672.2	5.7906	
125	0.77075	1552.0	1744.7	6.5054		0.38194	1547.4	1738.4	6.1555	0.25231	1542.8	1732.0	5.9459	
150	0.82058	1597.7	1802.8	6.6470		0.40738	1593.8	1797.5	6.2995	0.26963	1589.9	1792.1	6.0923	
175	0.87022	1644.4	1862.0	6.7829		0.43261	1641.1	1857.4	6.4371	0.28673	1637.8	1852.8	6.2317	
200	0.91971	1692.4	1922.3	6.9139		0.45770	1689.5	1918.4	6.5694	0.30369	1686.6	1914.4	6.3653	
225	0.96909	1741.6	1983.9	7.0407		0.48267	1739.1	1980.4	6.6972	0.32053	1736.5	1976.9	6.4941	
250	1.0184	1792.2	2046.8	7.1639		0.50755	1789.9	2043.7	6.8211	0.33728	1787.7	2040.6	6.6188	
275	1.0676	1844.1	2111.0	7.2838		0.53237	1842.1	2108.3	6.9417	0.35395	1840.0	2105.5	6.7400	
300	1.1168	1897.4	2176.6	7.4008		0.55713	1895.6	2174.1	7.0591	0.37058	1893.7	2171.6	6.8580	

Reference States:

NH₃ SI

	P :	= 1000 k	Pa (24.9	°C)	I	P = 1500 kI	Pa (38.7°	C)	$P = 2000 \text{ kPa} (49.35^{\circ}\text{C})$				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	
Sat	0.12850	1335.7	1464.2	5.0333	0.086169	1341.1	1470.4	4.8821	0.064453	1343.0	1471.9	4.7697	
25	0.12857	1336.0	1464.5	5.0344									
50	0.14496	1391.7	1536.6	5.2669	0.091774	1370.0	1507.6	4.9994	0.064729	1344.9	1474.4	4.7773	
75	0.15983	1442.1	1601.9	5.4614	0.10288	1426.6	1580.9	5.2180	0.074231	1409.8	1558.3	5.0277	
100	0.17389	1490.4	1664.3	5.6345	0.11301	1478.5	1648.0	5.4041	0.082479	1465.9	1630.9	5.2293	
125	0.18747	1538.1	1725.6	5.7936	0.12259	1528.5	1712.4	5.5712	0.090095	1518.6	1698.7	5.4054	
150	0.20074	1586.0	1786.7	5.9425	0.13182	1578.0	1775.7	5.7255	0.097332	1569.8	1764.5	5.5654	
175	0.21379	1634.4	1848.2	6.0837	0.14082	1627.6	1838.8	5.8704	0.10432	1620.7	1829.3	5.7143	
200	0.22668	1683.7	1910.4	6.2187	0.14966	1677.8	1902.3	6.0082	0.11114	1671.8	1894.1	5.8550	
225	0.23945	1734.0	1973.4	6.3485	0.15837	1728.8	1966.3	6.1401	0.11782	1723.5	1959.2	5.9891	
250	0.25214	1785.4	2037.5	6.4740	0.16699	1780.8	2031.2	6.2672	0.12441	1776.1	2024.9	6.1178	
275	0.26475	1838.0	2102.7	6.5958	0.17554	1833.8	2097.2	6.3903	0.13093	1829.7	2091.5	6.2422	
300	0.27730	1891.9	2169.2	6.7143	0.18403	1888.1	2164.2	6.5098	0.13739	1884.4	2159.1	6.3628	
325	0.28981	1947.0	2236.9	6.8299	0.19247	1943.7	2232.4	6.6263	0.14380	1940.3	2227.8	6.4801	

	P =	= 5000 kI	Pa (88.88	B°C)	P = '	7500 kPa	ı (109.45	°C)	P = 10000 kPa (125.17°C)				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	
Sat	0.023651	1323.8	1442.0	4.3477	0.013810	1282.6	1386.1	4.0762	0.00823	1206.0	1288.3	3.7567	
100	0.026362	1370.1	1501.9	4.5107									
125	0.031082	1449.6	1605.0	4.7785	0.017196	1370.4	1499.3	4.3667					
150	0.034975	1515.6	1690.4	4.9867	0.020803	1461.2	1617.2	4.6543	0.013381	1392.3	1526.2	4.3400	
175	0.038463	1576.0	1768.3	5.1656	0.023672	1533.9	1711.5	4.8709	0.016152	1485.8	1647.3	4.6186	
200	0.041706	1633.9	1842.4	5.3266	0.026196	1599.4	1795.9	5.0543	0.018386	1561.8	1745.7	4.8323	
225	0.044785	1690.7	1914.7	5.4754	0.028513	1661.6	1875.4	5.2181	0.020353	1630.5	1834.0	5.0144	
250	0.047748	1747.3	1986.0	5.6151	0.030692	1722.0	1952.2	5.3686	0.022156	1695.6	1917.2	5.1772	
275	0.050625	1804.1	2057.2	5.7480	0.032773	1781.9	2027.7	5.5094	0.023848	1758.8	1997.3	5.3269	
300	0.053435	1861.4	2128.6	5.8753	0.034781	1841.6	2102.5	5.6429	0.025459	1821.3	2075.9	5.4670	
325	0.056192	1919.5	2200.4	5.9980	0.036731	1901.7	2177.2	5.7704	0.027010	1883.5	2153.6	5.5998	
350	0.058906	1978.5	2273.0	6.1169	0.038637	1962.4	2252.1	5.8932	0.028512	1946.0	2231.1	5.7267	
375	0.061587	2038.5	2346.4	6.2324	0.040506	2023.8	2327.6	6.0119	0.029977	2008.9	2308.7	5.8488	
400	0.064238	2099.6	2420.8	6.3450	0.042346	2086.2	2403.8	6.1272	0.031411	2072.6	2386.7	5.9668	
425	0.066865	2162.0	2496.3	6.4551	0.044161	2149.5	2480.8	6.2395	0.032820	2137.0	2465.2	6.0814	

Reference States:

Subcooled Liquid

NH₃ SI

	Р	= 1 MPa	a (24.9°C	C)	P = 1500 kPa (38.7°C)					$P = 2000 \text{ kPa} (49.35^{\circ}\text{C})$				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	
Sat	0.0016586	296.33	297.99	1.1204	0.0017196	362.46	365.04	1.3376		0.0017732	414.62	418.17	1.5023	
40										0.0017242	368.10	371.55	1.3556	
30					0.0016792	320.18	322.70	1.1999		0.0016778	319.52	322.87	1.1977	
20	0.0016385	273.04	274.68	1.0416	0.0016373	272.45	274.91	1.0396		0.0016361	271.87	275.15	1.0376	
10	0.0016001	226.01	227.61	0.87822	0.0015991	225.50	227.89	0.87640		0.0015981	224.98	228.18	0.87458	
0	0.0015650	179.63	181.20	0.71134	0.0015642	179.17	181.52	0.70966		0.0015633	178.72	181.84	0.70798	
-10	0.0015326	133.81	135.34	0.54033	0.0015318	133.40	135.70	0.53877		0.0015311	132.99	136.05	0.53721	
-20	0.0015024	88.497	90.000	0.36466	0.0015018	88.13	90.38	0.36321		0.0015011	87.77	90.77	0.36177	
-30	0.0014743	43.674	45.149	0.18390	0.0014738	43.345	45.556	0.18255		0.0014732	43.018	45.964	0.18120	
-40	0.0014481	-0.65410	0.79396	-0.0023620	0.0014476	-0.94903	1.22232	-0.0036296		0.0014471	-1.2430	1.6512	-0.0048940	
-50	0.0014235	-44.464	-43.041	-0.19451	0.0014231	-44.728	-42.593	-0.19570		0.0014227	-44.991	-42.146	-0.19688	
-60	0.0014006	-87.724	-86.324	-0.39295	0.0014002	-87.960	-85.859	-0.39406		0.0013998	-88.194	-85.395	-0.39516	

	P = 5000 kPa (88.88°C)					P =	7500 kPa	a (109.4	5°C)	$P = 10000 \text{ kPa} (125.17^{\circ}\text{C})$				
Temp. (°C)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.0020599	622.45	632.75	2.1123		0.0023392	748.95	766.49	2.4566		0.0028035	874.36	902.40	2.7879
110											0.0022636	733.84	756.48	2.4154
110											0.0022636	733.84	756.48	2.4154
100						0.0021621	681.11	697.33	2.2736		0.0021166	669.05	690.22	2.2402
90						0.0020388	619.34	634.63	2.1033		0.0020101	610.62	630.72	2.0786
80	0.0019690	570.23	580.07	1.9650		0.0019462	562.76	577.35	1.9434		0.0019261	555.96	575.22	1.9237
70	0.0018880	515.30	524.74	1.8061		0.0018715	509.36	523.40	1.7885		0.0018566	503.83	522.40	1.7720
60	0.0018212	463.04	472.14	1.6505		0.0018087	458.14	471.71	1.6356		0.0017971	453.51	471.48	1.6214
50	0.0017641	412.64	421.46	1.4961		0.0017543	408.50	421.65	1.4831		0.0017450	404.54	421.99	1.4706
40	0.0017141	363.61	372.18	1.3412		0.0017061	360.04	372.84	1.3296		0.0016985	356.60	373.59	1.3184
30	0.0016695	315.63	323.97	1.1847		0.0016629	312.51	324.98	1.1743		0.0016566	309.49	326.05	1.1642
20	0.0016292	268.46	276.61	1.0259		0.0016236	265.71	277.88	1.0163		0.0016183	263.03	279.21	1.0071
10	0.0015923	221.96	229.92	0.86383		0.0015876	219.51	231.42	0.85509		0.0015830	217.13	232.96	0.84652
0	0.0015583	176.02	183.81	0.69806		0.0015542	173.84	185.49	0.68996		0.0015503	171.70	187.20	0.68200
-10	0.0015268	130.58	138.22	0.52800		0.0015233	128.62	140.04	0.52045		0.0015198	126.70	141.90	0.51303
-20	0.0014974	85.603	93.090	0.35317		0.0014943	83.838	95.046	0.34612		0.0014913	82.106	97.019	0.33918
-30	0.0014699	41.075	48.425	0.17316		0.0014672	39.488	50.492	0.16656		0.0014646	37.927	52.573	0.16005
-40	0.0014442	-2.9863	4.2348	-0.012414		0.0014418	-4.4130	6.4009	-0.018597		0.0014395	-5.8167	8.5785	-0.024705
-50	0.0014201	-46.552	-39.452	-0.20392		0.0014181	-47.831	-37.196	-0.20971		0.0014160	-49.090	-34.930	-0.21543
-60	0.0013976	-89.587	-82.599	-0.40173		0.0013958	-90.728	-80.260	-0.40714		0.0013940	-91.853	-77.913	-0.41249

Reference States:

H = 0 kJ/kg for saturated liquid at-40°C.

S = 0 kJ/kg-K for saturated liquid at -40 °C.

Saturation Temperature Table

N	H ₃
Δ	F

Temp.	Pressure	V (ft	³ /lb _m)	U (Bt	u/lb _m)	H (Bt	u/lb _m)	S (Btu	/lb _m ^o R)
(°F)	(psia)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
-100	1.2374	0.021994	182.19	-61.999	530.52	-61.994	572.26	-0.15922	1.6042
-95	1.5234	0.022085	149.92	-56.940	532.19	-56.934	574.48	-0.14525	1.5862
-90	1.8637	0.022177	124.12	-51.862	533.86	-51.854	576.69	-0.13142	1.5689
-85	2.2661	0.022272	103.35	-46.765	535.50	-46.755	578.87	-0.11773	1.5521
-80	2.7394	0.022368	86.546	-41.648	537.13	-41.637	581.03	-0.10416	1.5359
-75	3.2930	0.022467	72.857	-36.512	538.75	-36.499	583.17	-0.090721	1.5202
-70	3.9374	0.022567	61.646	-31.358	540.34	-31.341	585.29	-0.077407	1.5050
-65	4.6837	0.022669	52.415	-26.184	541.92	-26.165	587.38	-0.064214	1.4904
-60	5.5439	0.022773	44.774	-20.992	543.47	-20.969	589.44	-0.051141	1.4761
-55	6.5312	0.022879	38.418	-15.782	545.01	-15.754	591.47	-0.038185	1.4624
-50	7.6592	0.022988	33.105	-10.554	546.52	-10.521	593.48	-0.025344	1.4490
-45	8.9429	0.023098	28.644	-5.3077	548.01	-5.2695	595.45	-0.012617	1.4360
-40	10.398	0.023210	24.881	-0.044690	549.48	0	597.39	0	1.4235
-35	12.041	0.023324	21.694	5.2352	550.92	5.2872	599.29	0.012507	1.4113
-30	13.890	0.023441	18.983	10.532	552.34	10.592	601.16	0.024907	1.3994
-25	15.962	0.023560	16.668	15.844	553.73	15.914	602.99	0.037201	1.3878
-20	18.279	0.023681	14.683	21.173	555.09	21.253	604.79	0.049391	1.3766
-15	20.859	0.023804	12.976	26.517	556.42	26.609	606.54	0.061479	1.3657
-10	23.723	0.023929	11.502	31.877	557.73	31.982	608.26	0.073466	1.3550
-5	26.895	0.024057	10.226	37.253	559.00	37.372	609.93	0.085355	1.3446
0	30.397	0.024187	9.1159	42.643	560.24	42.779	611.55	0.097148	1.3345
5	34.253	0.024320	8.1483	48.049	561.45	48.203	613.13	0.10885	1.3246
10	38.487	0.024456	7.3020	53.470	562.63	53.644	614.67	0.12045	1.3150
15	43.126	0.024594	6.5597	58.906	563.77	59.103	616.15	0.13197	1.3055
20	48.194	0.024735	5.9067	64.358	564.88	64.579	617.59	0.14340	1.2963
25	53.720	0.024879	5.3307	69.825	565.95	70.072	618.97	0.15474	1.2873
30	59.731	0.025025	4.8213	75.308	566.98	75.585	620.31	0.16600	1.2784
35	66.255	0.025175	4.3695	80.807	567.97	81.116	621.58	0.17717	1.2698
40	73.322	0.025328	3.9680	86.323	568.93	86.666	622.80	0.18827	1.2613
45	80.962	0.025484	3.6102	91.855	569.84	92.237	623.97	0.19929	1.2529
50	89.205	0.025644	3.2906	97.405	570.72	97.828	625.07	0.21024	1.2447
55	98.083	0.025808	3.0045	102.97	571.55	103.44	626.12	0.22111	1.2367
60	107.63	0.025975	2.7479	108.56	572.33	109.08	627.10	0.23192	1.2287
65	117.87	0.026146	2.5172	114.16	573.07	114.73	628.01	0.24266	1.2210
70	128.85	0.026322	2.3094	119.79	573.77	120.42	628.86	0.25334	1.2133
75	140.59	0.026502	2.1217	125.44	574.41	126.13	629.65	0.26396	1.2057
80	153.13	0.026686	1.9521	131.10	575.01	131.86	630.36	0.27452	1.1982
85	166.51	0.026876	1.7983	136.80	575.55	137.62	631.00	0.28503	1.1909
90	180.76	0.027070	1.6588	142.51	576.04	143.42	631.56	0.29549	1.1836
100	212.01	0.027476	1.4163	154.02	576.86	155.10	632.46	0.31626	1.1692
120	286.60	0.028364	1.0452	177.39	577.76	178.90	633.23	0.35736	1.1411
140	379.36	0.029379	0.7817	201.34	577.54	203.40	632.45	0.39808	1.1136
160	492.95	0.030563	0.58993	226.04	575.95	228.83	629.80	0.43875	1.0858
180	630.24	0.031986	0.44729	251.74	572.60	255.47	624.80	0.47980	1.0572
200	794.38	0.033761	0.33869	278.84	566.86	283.81	616.69	0.52188	1.0265
220	989.03	0.036110	0.25381	308.04	557.63	314.65	604.11	0.56605	0.99193
240	1218.7	0.039556	0.18487	340.84	542.46	349.77	584.18	0.61462	0.94966
270.05	1643.7	0.071193	0.071193	451.57	451.57	473.25	473.25	0.78093	0.78093

Reference States:

 $H = 0 Btu/lb_m$ for saturated liquid at -40°F.

S = 0 Btu/lb_m°R for saturated liquid at -40°F.

Saturation Pressure Table

N	H ₃
Λ	F

Pressure	Temp.	V (ft ³ /lb _m)		U (Bt	tu/lb _m)	H (B	tu/lb _m)	S (Btu/lb ^o _m ^o R)		
(psia)	(^o F)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	
1	-104.96	0.021906	222.48	-67.002	528.84	-66.998	570.04	-0.17323	1.6227	
5	-63.08	0.022709	49.310	-24.192	542.52	-24.171	588.17	-0.059178	1.4848	
10	-41.31	0.023181	25.805	-1.4228	549.10	-1.3799	596.88	-0.0032891	1.4267	
15	-27.99	0.023488	18.007	12.668	552.90	12.732	601.90	0.029867	1.3947	
20	-16.61	0.023764	13.497	24.799	556.00	24.887	605.98	0.057608	1.3691	
30	-0.54	0.024173	9.2292	42.056	560.11	42.191	611.38	0.095871	1.3356	
40	11.68	0.024502	7.0417	55.295	563.02	55.477	615.17	0.12433	1.3118	
50	21.68	0.024783	5.7050	66.195	565.24	66.424	618.06	0.14722	1.2932	
60	30.21	0.025032	4.8007	75.544	567.02	75.822	620.36	0.16648	1.2780	
70	37.70	0.025257	4.1470	83.782	568.49	84.109	622.25	0.18317	1.2651	
80	44.39	0.025465	3.6516	91.180	569.73	91.558	623.83	0.19795	1.2539	
90	50.46	0.025659	3.2628	97.919	570.79	98.347	625.17	0.21125	1.2440	
100	56.03	0.025842	2.9492	104.13	571.71	104.60	626.32	0.22335	1.2350	
120	66.00	0.026181	2.4740	115.28	573.21	115.87	628.19	0.24480	1.2194	
140	74.76	0.026493	2.1304	125.16	574.38	125.85	629.61	0.26345	1.2061	
160	82.61	0.026784	1.8700	134.07	575.30	134.86	630.70	0.28001	1.1944	
180	89.74	0.027060	1.6657	142.22	576.02	143.12	631.54	0.29495	1.1839	
200	96.30	0.027323	1.5008	149.75	576.58	150.76	632.17	0.30859	1.1745	
220	102.38	0.027576	1.3650	156.77	577.02	157.89	632.62	0.32117	1.1658	
240	108.05	0.027820	1.2510	163.36	577.34	164.60	632.94	0.33286	1.1578	
260	113.37	0.028057	1.1540	169.59	577.58	170.94	633.14	0.34380	1.1504	
280	118.40	0.028289	1.0704	175.50	577.73	176.97	633.22	0.35410	1.1434	
300	123.17	0.028515	0.99749	181.14	577.81	182.72	633.22	0.36382	1.1368	
350	134.11	0.029064	0.85053	194.22	577.74	196.10	632.86	0.38611	1.1217	
400	143.94	0.029597	0.73907	206.14	577.35	208.33	632.09	0.40608	1.1081	
450	152.89	0.030119	0.65151	217.15	576.69	219.66	630.98	0.42427	1.0957	
500	161.12	0.030636	0.58080	227.45	575.81	230.29	629.58	0.44104	1.0842	
550	168.76	0.031152	0.52243	237.15	574.73	240.33	627.93	0.45665	1.0734	
600	175.90	0.031670	0.47336	246.37	573.45	249.89	626.05	0.47132	1.0632	
650	182.60	0.032193	0.43149	255.17	572.00	259.05	623.94	0.48520	1.0533	
700	188.93	0.032725	0.39530	263.63	570.38	267.88	621.62	0.49841	1.0438	
750	194.92	0.033268	0.36365	271.80	568.59	276.42	619.10	0.51106	1.0345	
800	200.63	0.033824	0.33572	279.72	566.64	284.73	616.37	0.52322	1.0255	
900	211.26	0.034992	0.28850	294.96	562.20	300.79	610.28	0.54640	1.0077	
1000	221.03	0.036254	0.24992	309.63	557.02	316.34	603.30 596.07	0.56842	0.9900	
1200	238.49	0.039233	0.18968	358.17	545.92	346.89	586.07	0.61069	0.9533	
1300	246.36	0.041098	0.16508	352.63	555.51	302.52 270.12	5/5.25	0.63190	0.9332	
1400	253.75	0.043431	0.14263	30/.80	525.16	3/9.12	502.13	0.05418	0.910/2	
1500	260.70	0.046/09	0.12101	385.12	511.50	398.09	545.11	0.0/948	0.88357	
16/3 7	267.24	0.053180	0.096827	409.74	489.23	425.50	517.92 473-25	0.71607	0.84322	
1043.7	270.05	0.071193	0.071193	431.37	431.37	473.23	473.23	0.78093	0.78093	

Reference States:

$$\begin{split} H &= 0 \ Btu/lb_m \ for \ saturated \ liquid \ at \ -40^\circ F. \\ S &= 0 \ Btu/lb_m^\circ R \ for \ saturated \ liquid \ at \ -40^\circ F. \end{split}$$

Т °F Sat -90 -80 -70 -60 -50 -40 -20 0 20 40 60 80 100 NH₃

Superheated Vapor

											AŁ		
Р	e = 1 psia	(-104.96	õ°F)]	P = 5 psia	a (-63.08	° F)	P = 10 psia (-41.31°F)					
V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		
222.48	528.84	570.04	1.6227	49.310	542.52	588.17	1.4848	25.805	549.10	596.88	1.4267		
232.07	534.43	577.40	1.6431										
238.46	538.15	582.30	1.6561										
244.84	541.86	587.20	1.6689										
251.21	545.56	592.08	1.6812	49.718	543.73	589.76	1.4888						
257.57	549.27	596.96	1.6933	51.037	547.64	594.89	1.5015						
263.92	552.97	601.84	1.7051	52.349	551.52	599.98	1.5138	25.894	549.63	597.58	1.4284		
276.60	560.39	611.61	1.7278	54.953	559.22	610.09	1.5373	27.242	557.70	608.15	1.4530		
289.27	567.84	621.41	1.7496	57.539	566.87	620.15	1.5597	28.569	565.63	618.53	1.4761		
301.92	575.34	631.24	1.7705	60.111	574.52	630.18	1.5810	29.882	573.49	628.82	1.4980		
314.57	582.88	641.13	1.7907	62.674	582.18	640.21	1.6015	31.185	581.31	639.06	1.5189		
327.20	590.47	651.06	1.8102	65.228	589.88	650.27	1.6213	32.480	589.13	649.27	1.5389		
339.84	598.14	661.07	1.8291	67.777	597.62	660.37	1.6404	33.769	596.97	659.50	1.5583		
352.46	605.87	671.14	1.8474	70.322	605.42	670.53	1.6588	35.054	604.84	669.76	1.5769		

	$P = 14.696 \text{ psia} (-27.99^{\circ} \text{F})$					P	P = 20 psi	a (-16.6)	l°F)	$P = 25 psia (-7.93^{\circ}F)$				
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	18.007	552.90	601.90	1.3947		13.497	556.00	605.98	1.3691		10.951	558.26	608.95	1.3507
-20	18.383	556.24	606.26	1.4047										
-10	18.849	560.36	611.65	1.4168		13.730	558.83	609.68	1.3774					
0	19.310	564.44	616.99	1.4286		14.078	563.06	615.20	1.3896		11.178	561.72	613.47	1.3606
10	19.767	568.48	622.27	1.4399		14.423	567.23	620.65	1.4013		11.460	566.03	619.08	1.3727
20	20.221	572.50	627.53	1.4510		14.764	571.36	626.04	1.4126		11.739	570.26	624.61	1.3843
30	20.673	576.49	632.75	1.4618		15.103	575.45	631.38	1.4237		12.015	574.45	630.07	1.3956
40	21.122	580.47	637.95	1.4723		15.439	579.52	636.69	1.4344		12.288	578.60	635.49	1.4065
50	21.570	584.45	643.14	1.4826		15.772	583.56	641.98	1.4449		12.559	582.72	640.86	1.4172
60	22.015	588.41	648.32	1.4926		16.104	587.60	647.24	1.4551		12.829	586.82	646.21	1.4276
70	22.459	592.38	653.50	1.5025		16.435	591.62	652.49	1.4651		13.096	590.90	651.53	1.4377
90	23.343	600.32	663.85	1.5217		17.092	599.66	662.96	1.4845		13.628	599.04	662.12	1.4573

	P = 30 psia (-0.54°F)					P = 40 psia (11.68°F)					$P = 50 psia (21.68^{\circ}F)$				
T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	
Sat	9.2292	560.11	611.38	1.3356		7.0417	563.02	615.17	1.3118		5.7050	565.24	618.06	1.2932	
0	9.2424	560.35	611.70	1.3363											
10	9.4836	564.79	617.47	1.3487											
20	9.7211	569.15	623.15	1.3607		7.1965	566.84	620.15	1.3222						
30	9.9554	573.44	628.74	1.3722		7.3794	571.35	626.00	1.3343		5.8317	569.18	623.17	1.3038	
40	10.187	577.67	634.26	1.3834		7.5594	575.77	631.76	1.3459		5.9811	573.80	629.18	1.3159	
60	10.644	586.03	645.16	1.4048		7.9126	584.43	643.04	1.3681		6.2726	582.78	640.86	1.3388	
100	11.540	602.51	666.62	1.4445		8.5994	601.32	665.01	1.4088		6.8347	600.10	663.38	1.3806	
150	12.637	623.04	693.25	1.4901		9.4352	622.16	692.05	1.4551		7.5136	621.27	690.84	1.4276	
200	13.721	643.82	720.04	1.5323		10.256	643.13	719.10	1.4977		8.1774	642.44	718.16	1.4707	
300	15.864	686.73	774.86	1.6097		11.874	686.27	774.23	1.5755		9.4808	685.82	773.60	1.5489	
400	17.990	732.03	831.97	1.6803		13.476	731.69	831.51	1.6463		10.767	731.36	831.05	1.6199	

Reference States:

 $H = 0 Btu/lb_m$ for saturated liquid at -40°F.

 $S = 0 Btu/lb_m$ °R for saturated liquid at -40°F.

NH ₃
AE

S Btu/lb _m °R
1.2000
1.2017
1.2279
1.2516
1.2734
1.2938
1.3131
1.3315
1.3663
1.3989
1.4298
1.4593
1.4878

$\mathbf{P} = 2$	200 p	sia (9	6.3°F)
------------------	-------	--------	----------------

P = 250 psia (110.75°F)

P = 300 psia (123.17°F)

T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	1.5008	576.58	632.17	1.1745	2.9492	892.95	633.05	1.1540	0.99749	577.81	633.22	1.1368
120	1.6116	590.63	650.31	1.2065	1.2385	583.50	640.84	1.1676				
140	1.6982	601.52	664.41	1.2304	1.3150	595.60	656.47	1.1941	1.0570	589.16	647.88	1.1616
160	1.7805	611.86	677.80	1.2523	1.3862	606.80	670.97	1.2179	1.1217	601.41	663.73	1.1876
200	1.9365	631.56	703.28	1.2922	1.5187	627.66	697.97	1.2601	1.2393	623.61	692.46	1.2325
240	2.0848	650.59	727.80	1.3283	1.6426	647.44	723.49	1.2977	1.3474	644.20	719.05	1.2717
280	2.2281	669.38	751.90	1.3618	1.7612	666.75	748.29	1.3321	1.4497	664.07	744.60	1.3072
320	2.3680	688.17	775.87	1.3933	1.8762	685.92	772.78	1.3644	1.5482	683.64	769.64	1.3402
360	2.5054	707.11	799.89	1.4234	1.9885	705.15	797.21	1.3950	1.6439	703.17	794.49	1.3712
400	2.6409	726.28	824.08	1.4522	2.0989	724.55	821.72	1.4242	1.7376	722.81	819.34	1.4008
440	2.7749	745.76	848.52	1.4800	2.2078	744.22	846.43	1.4522	1.8297	742.67	844.32	1.4292
500	2.9738	775.64	885.77	1.5201	2.3690	774.32	884.00	1.4927	1.9658	773.00	882.21	1.4700
600	3.3015	827.46	949.73	1.5834	2.6337	826.41	948.34	1.5564	2.1885	825.36	946.94	1.5342

P = 400 psia (143.94°F)

P = 500 psia (161.12°F)

P = 1000 psia (221.03°F)

T °F	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m ⁰R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.73907	577.35	632.09	1.1081	0.58080	575.81	629.58	1.0842	0.24992	557.02	603.30	0.98998
150	0.75752	582.06	638.17	1.1181								
200	0.88799	614.94	680.71	1.1853	0.67434	605.33	667.77	1.1440				
250	0.99835	642.80	716.74	1.2380	0.77209	635.99	707.48	1.2021	0.30570	592.49	649.10	1.0560
300	1.0991	668.80	750.20	1.2836	0.85835	663.52	743.00	1.2505	0.37138	633.30	702.07	1.1282
350	1.1942	694.10	782.56	1.3248	0.93835	689.81	776.69	1.2934	0.42399	666.37	744.89	1.1829
400	1.2857	719.28	814.51	1.3631	1.0144	715.68	809.60	1.3329	0.47051	696.51	783.64	1.2293
450	1.3747	744.63	846.45	1.3992	1.0878	741.54	842.26	1.3698	0.51344	725.36	820.44	1.2709
500	1.4617	770.34	878.61	1.4337	1.1593	767.64	874.97	1.4048	0.55401	753.69	856.27	1.3093
600	1.6321	823.25	944.14	1.4986	1.2982	821.13	941.33	1.4706	0.63052	810.28	927.04	1.3794
800	1.9635	936.62	1082.1	1.6177	1.5667	935.17	1080.2	1.5905	0.77330	927.88	1071.1	1.5039

Reference States:

H = 0 Btu/lb_m for saturated liquid at -40°F.

 $S = 0 Btu/lb_m^{\circ}R$ for saturated liquid at -40°F.

Subcooled Liquid

NI	H 3
A	E

		P = :	50 psia (21	.68°F)			P = 1	00 psia (56	5.03°F)	
Т	ρ	V	U	Н	S	ρ	V	U	Н	S
°F	lb _m /ft ₃	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	 lb _m /ft ₃	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R
Sat	40.351	0.024783	66.195	66.424	0.14722	38.697	0.025842	104.13	104.604	0.22335
50						38.999	0.025642	97.371	97.85	0.21017
40						39.490	0.025323	86.246	86.714	0.18812
30						39.972	0.025018	75.199	75.662	0.16577
20	40.429	0.024734	64.353	64.582	0.14339	40.443	0.024726	64.226	64.684	0.14312
10	40.893	0.024454	53.442	53.669	0.12039	40.906	0.024446	53.323	53.776	0.12014
0	41.349	0.024185	42.599	42.8230	0.097052	41.361	0.024177	42.487	42.93463	0.096808
-10	41.796	0.023926	31.822	32.0432	0.073342	41.808	0.023919	31.716	32.159	0.073108
-20	42.236	0.023677	21.110	21.329	0.049247	42.247	0.023670	21.011	21.449	0.049022
-30	42.668	0.023437	10.464	10.681	0.024749	42.679	0.023431	10.371	10.804	0.024532
-40	43.093	0.023206	-0.11447	0.10039	-1.6633E-04	43.103	0.023200	-0.20238	0.2272	-3.7599E-04
-50	43.510	0.022983	-10.6237	-10.411	-0.025516	43.519	0.022978	-10.706	-10.281	-0.025718
-60	43.919	0.022769	-21.061	-20.850	-0.051314	43.928	0.022764	-21.139	-20.717	-0.051509
-70	44.321	0.022563	-31.425	-31.216	-0.077579	44.329	0.022559	-31.498	-31.080	-0.077767
-80	44.714	0.022364	-41.713	-41.506	-0.10433	44.722	0.022360	-41.781	-41.367	-0.10451
-90	45.098	0.022174	-51.924	-51.718	-0.13159	45.106	0.022170	-51.987	-51.577	-0.13176
-100	45.474	0.021990	-62.058	-61.854	-0.15938	45.481	0.021987	-62.117	-61.710	-0.15955

		P = 1	.50 psia (78	8.78°F)			P = 2	200 psia (9	6.3°F)	
T °F	ρ lb _m /ft₃	V ft ³ /lbm	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	ρ lb _m /ft₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	37.536	0.026641	129.72	130.46	0.27196	36.599	0.027323	149.75	150.76	0.30859
90						36.950	0.027064	142.43	143.43	0.29534
80						37.492	0.026672	130.93	131.91	0.27419
70	37.999	0.026316	119.71	120.45	0.25320	38.019	0.026303	119.54	120.51	0.25287
60	38.514	0.025965	108.42	109.14	0.23165	38.532	0.025953	108.25	109.22	0.23134
50	39.016	0.025631	97.218	97.929	0.20987	39.032	0.025620	97.064	98.013	0.20957
40	39.506	0.025312	86.102	86.805	0.18783	39.522	0.025302	85.958	86.895	0.18754
30	39.987	0.025008	75.064	75.759	0.16550	40.001	0.024999	74.930	75.856	0.16522
20	40.458	0.024717	64.100	64.786	0.14286	40.471	0.024709	63.974	64.889	0.14259
10	40.920	0.024438	53.204	53.883	0.11989	40.933	0.024430	53.086	53.990	0.11963
0	41.374	0.024170	42.375	43.046	0.096564	41.386	0.024163	42.264	43.158	0.096321
-10	41.820	0.023912	31.611	32.275	0.072874	41.831	0.023905	31.506	32.391	0.072639
-20	42.258	0.023664	20.912	21.569	0.048795	42.269	0.023658	20.813	21.689	0.048570
-30	42.689	0.023425	10.277	10.928	0.024314	42.700	0.023419	10.184	11.052	0.024098
-40	43.113	0.023195	-0.29009	0.35417	-5.8529E-04	43.123	0.023190	-0.37760	0.48122	-7.9422E-04
-50	43.529	0.022973	-10.789	-10.151	-0.025919	43.538	0.022968	-10.871	-10.020	-0.026121
-60	43.937	0.022760	-21.216	-20.584	-0.051703	43.946	0.022755	-21.294	-20.451	-0.051897
-70	44.338	0.022554	-31.571	-30.944	-0.077953	44.346	0.022550	-31.643	-30.808	-0.078140
-80	44.730	0.022356	-41.849	-41.228	-0.10469	44.738	0.022352	-41.917	-41.089	-0.10487
-90	45.114	0.022166	-52.051	-51.436	-0.13193	45.121	0.022163	-52.115	-51.294	-0.13211
-100	45.489	0.021984	-62.177	-61.566	-0.15972	45.496	0.021980	-62.236	-61.422	-0.15988

Subcooled Liquid

Ammonia AE

		P = 3	00 psia (12	3.17°F)			P = 40)0 psia (14	3.94°F)	
T °F	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	35.069	0.028515	181.14	182.72	0.36382	33.787	0.029597	206.14	208.33	0.40608
140						34.053	0.029366	201.21	203.38	0.39786
120	35.264	0.028357	177.32	178.90	0.35724	35.322	0.028311	176.80	178.90	0.35634
100	36.439	0.027443	153.63	155.16	0.31557	36.487	0.027407	153.19	155.22	0.31478
80	37.534	0.026643	130.55	132.03	0.27349	37.575	0.026614	130.18	132.15	0.27280
60	38.568	0.025928	107.93	109.37	0.23071	38.603	0.025904	107.61	109.52	0.23008
40	39.553	0.025282	85.673	87.078	0.18697	39.585	0.025262	85.390	87.261	0.18640
20	40.499	0.024692	63.723	65.094	0.14207	40.527	0.024675	63.473	65.301	0.14155
0	41.411	0.024148	42.042	43.383	0.095837	41.436	0.024134	41.821	43.608	0.095354
-20	42.291	0.023645	20.616	21.929	0.048121	42.314	0.023633	20.420	22.170	0.047674
-40	43.143	0.023179	-0.55201	0.73563	-0.0012110	43.162	0.023168	-0.72562	0.99044	-0.0016263
-60	43.964	0.022746	-21.448	-20.184	-0.052284	43.982	0.022737	-21.601	-19.917	-0.052669
-80	44.754	0.022344	-42.053	-40.812	-0.10523	44.770	0.022336	-42.188	-40.533	-0.10558
-100	45.510	0.021973	-62.355	-61.134	-0.16021	45.524	0.021966	-62.473	-60.846	-0.16054

		P = 5	00 psia (16	51.12°F)			P = 10	00 psia (22	21.03°F)	
T °F	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	ρ lb _m /ft ₃	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	32.641	0.030636	227.45	230.29	0.44104	27.583	0.036254	309.63	316.34	0.56842
220						27.722	0.036072	307.80	314.48	0.56569
200						29.949	0.033390	276.09	282.27	0.51761
180						31.679	0.031566	248.16	254.01	0.47411
160	32.725	0.030557	225.98	228.81	0.43866	33.151	0.030165	222.25	227.83	0.43254
140	34.124	0.029305	200.58	203.29	0.39680	34.459	0.029020	197.60	202.97	0.39176
120	35.380	0.028265	176.28	178.90	0.35544	35.654	0.028047	173.82	179.01	0.35113
100	36.535	0.027371	152.76	155.30	0.31400	36.766	0.027199	150.67	155.71	0.31023
80	37.616	0.026585	129.81	132.27	0.27211	37.814	0.026445	128.01	132.90	0.26874
60	38.639	0.025881	107.28	109.68	0.22946	38.812	0.025765	105.72	110.49	0.22641
40	39.616	0.025242	85.109	87.446	0.18583	39.768	0.025146	83.731	88.388	0.18305
20	40.555	0.024658	63.225	65.508	0.14103	40.690	0.024576	62.007	66.558	0.13846
0	41.460	0.024120	41.601	43.834	0.094874	41.581	0.024049	40.520	44.973	0.092501
-20	42.336	0.023621	20.225	22.412	0.047228	42.444	0.023560	19.265	23.628	0.045025
-40	43.182	0.023158	-0.8984	1.2457	-0.0020402	43.280	0.023105	-1.7508	2.5277	-4.0886E-03
-60	44.000	0.022728	-21.754	-19.650	-0.053053	44.088	0.022682	-22.508	-18.308	-0.054956
-80	44.786	0.022329	-42.322	-40.255	-0.105940	44.865	0.022289	-42.986	-38.859	-0.10770
-100	45.538	0.021959	-62.591	-60.558	-0.160871	45.609	0.021926	-63.172	-59.112	-0.16250

Reference States:

$$\begin{split} H &= 0 \ Btu/lb_m \ for \ saturated \ liquid \ at \ -40^\circ F. \\ S &= 0 \ Btu/lb_m^\circ R \ for \ saturated \ liquid \ at \ -40^\circ F. \end{split}$$

Saturation Temperature Table

R-1	.34a
------------	------

									SI
Temp.	Pressure	V (m ²	³ /kg)	U (k	J/kg)	H (k	J/kg)	S (kJ/	kg*K)
(°C)	(kPa)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
-100	0.55940	0.00063195	25.193	75.362	322.76	75.362	336.85	0.43540	1.9456
-95	0.93899	0.00063729	15.435	81.287	325.29	81.288	339.78	0.46913	1.9201
-90	1.5241	0.00064274	9.7698	87.225	327.87	87.226	342.76	0.50201	1.8972
-85	2.3990	0.00064831	6.3707	93.180	330.49	93.182	345.77	0.53409	1.8766
-80	3.6719	0.00065401	4.2682	99.158	333.15	99.161	348.83	1	1.8580
-75	5.4777	0.00065985	2.9312	105.16	335.85	105.17	351.91	0.59613	1.8414
-70	7.9814	0.00066583	2.0590	111.19	338.59	111.20	355.02	0.62619	1.8264
-65	11.380	0.00067197	1.4765	117.26	341.35	117.26	358.16	0.65568	1.8130
-60	15.906	0.00067827	1.0790	123.35	344.15	123.36	361.31	0.68462	1.8010
-55	21.828	0.00068475	0.80236	129.48	346.96	129.50	364.48	0.71305	1.7902
-50	29.451	0.00069142	0.60620	135.65	349.80	135.67	367.65	0.74101	1.7806
-45	39.117	0.00069828	0.46473	141.86	352.65	141.89	370.83	0.76852	1.7720
-40	51.209	0.00070537	0.36108	148.11	355.51	148.14	374.00	0.79561	1.7643
-35	66.144	0.00071268	0.28402	154.40	358.38	154.44	377.17	0.82230	1.7575
-30	84.378	0.00072025	0.22594	160.73	361.25	160.79	380.32	0.84863	1.7515
-25	106.40	0.00072809	0.18162	167.11	364.12	167.19	383.45	0.87460	1.7461
-20	132.73	0.00073623	0.14739	173.54	366.99	173.64	386.55	0.90025	1.7413
-15	163.94	0.00074469	0.12067	180.02	369.85	180.14	389.63	0.92559	1.7371
-10	200.60	0.00075351	0.099590	186.55	372.69	186.70	392.66	0.95065	1.7334
-5	243.34	0.00076271	0.082801	193.13	375.51	193.32	395.66	0.97544	1.7300
0	292.80	0.00077233	0.069309	199.77	378.31	200	398.60	1	1.7271
5	349.66	0.00078243	0.058374	206.48	381.08	206.75	401.49	1.0243	1.7245
10	414.61	0.00079305	0.049442	213.25	383.82	213.58	404.32	1.0485	1.7221
15	488.37	0.00080425	0.042090	220.09	386.52	220.48	407.07	1.0724	1.7200
20	571.71	0.00081610	0.035997	227.00	389.17	227.47	409.75	1.0962	1.7180
25	665.38	0.00082870	0.030912	233.99	391.77	234.55	412.33	1.1199	1.7162
30	770.20	0.00084213	0.026642	241.07	394.30	241.72	414.82	1.1435	1.7145
35	886.98	0.00085653	0.023033	248.25	396.76	249.01	417.19	1.1670	1./128
40	1016.6	0.0008/204	0.019966	255.52	399.13	256.41	419.43	1.1905	1./111
45	1159.9	0.00088885	0.01/344	262.91	401.40	263.94	421.52	1.2139	1.7092
50	1317.9	0.00090719	0.013089	270.43	403.55	271.02	425.44	1.2375	1.7072
55 60	1491.5	0.00092737	0.013140	278.09	405.55	2/9.4/	425.15	1.2011	1.7050
65	1081.8	0.00094979	0.0011444	285.91	407.38	287.50	420.03	1.2848	1.7024
70	2116 9	0.0009/300	0.0099004	293.92	400.99	293.70	427.82	1.3088	1.0995
70	2110.8	0.0010038	0.0080327	310.69	410.55	304.28	420.03	1.5552	1.0930
80	2504.1	0.0010372	0.0074910	310.08	411.32	372.15	429.03	1.3300	1.6909
85	2035.2	0.0010773	0.0004403	378.03	411.03	322.39	420.01	1.3030	1.0050
90	3244 2	0.0011272	0.0046134	339.06	410.45	342.93	425 42	1.4390	1.6662
95	3591.2	0.0012942	0.0037434	350.60	407.23	355.25	420.67	1 4715	1.6492
100	3972.4	0.0015357	0.0026809	367.20	397.03	373.30	407.68	1.5188	1.6109
101.06	4059.3	0.0019535	0.0019535	381.71	381.71	389.64	389.64	1.5621	1.5621

Reference States:

Saturation Pressure Table

R-	1	3	4	a
	S	51		

Pressure	Temp.	V (m ³ /kg)		U (k	J/kg)	H (k	J/kg)	S (kJ/	′kg*K)
(kPa)	(°C)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
50	-40.45	0.00070471	0.36925	147.54	355.25	147.57	373.71	0.79317	1.7650
100	-26.36	0.00072593	0.19256	165.37	363.34	165.44	382.60	0.86756	1.7475
150	-17.13	0.00074104	0.13128	177.25	368.63	177.36	388.32	0.91482	1.7388
200	-10.08	0.00075337	0.099877	186.45	372.64	186.60	392.62	0.95027	1.7334
250	-4.28	0.00076406	0.080685	194.08	375.91	194.27	396.08	0.97898	1.7296
300	0.67	0.00077366	0.067704	200.67	378.68	200.90	399.00	1.00328	1.7267
350	5.03	0.00078249	0.058319	206.52	381.10	206.79	401.51	1.02447	1.7244
400	8.93	0.00079073	0.051207	211.79	383.24	212.11	403.72	1.04333	1.7226
450	12.48	0.00079852	0.045625	216.63	385.16	216.99	405.69	1.06036	1.7210
500	15.73	0.00080595	0.041123	221.10	386.91	221.50	407.47	1.07594	1.7197
550	18.75	0.00081308	0.037413	225.27	388.51	225.72	409.09	1.09032	1.7185
600	21.57	0.00081998	0.034300	229.19	389.99	229.68	410.57	1.10370	1.7175
650	24.22	0.00082667	0.031650	232.89	391.36	233.43	411.94	1.11622	1.7165
700	26.71	0.00083320	0.029365	236.41	392.64	236.99	413.20	1.12801	1.7156
750	29.08	0.00083959	0.027375	239.76	393.84	240.39	414.37	1.13916	1.7148
800	31.33	0.00084585	0.025625	242.97	394.96	243.65	415.46	1.14975	1.7140
850	33.47	0.00085202	0.024073	246.05	396.02	246.77	416.48	1.15984	1.7133
900	35.53	0.00085811	0.022687	249.01	397.01	249.78	417.43	1.16948	1.7126
950	37.50	0.00086412	0.021442	251.86	397.95	252.69	418.32	1.17872	1.7119
1000	39.39	0.00087007	0.020316	254.63	398.85	255.50	419.16	1.18760	1.7113
1100	42.97	0.00088185	0.018360	259.90	400.49	260.87	420.69	1.20441	1.7100
1200	46.31	0.00089351	0.016718	264.88	401.98	265.95	422.04	1.22012	1.7087
1300	49.46	0.00090511	0.015319	269.60	403.32	270.78	423.24	1.23490	1.7075
1400	52.42	0.00091671	0.014110	274.12	404.54	275.40	424.30	1.24887	1.7062
1500	55.23	0.00092836	0.013056	278.45	405.64	279.84	425.23	1.26216	1.7049
1600	57.91	0.00094010	0.012126	282.61	406.64	284.11	426.04	1.27484	1.7036
1700	60.46	0.00095197	0.011301	286.63	407.54	288.25	426.75	1.28700	1.7022
1800	62.90	0.00096400	0.010562	290.52	408.35	292.26	427.36	1.29868	1.7007
1900	65.23	0.00097626	0.0098956	294.30	409.06	296.15	427.87	1.30995	1.6992
2000	67.48	0.00098877	0.0092915	297.98	409.70	299.95	428.28	1.32085	1.6976
2200	71.73	0.00101474	0.0082357	305.07	410.72	307.30	428.84	1.34171	1.6941
2400	75.69	0.00104234	0.0073402	311.88	411.42	314.38	429.04	1.36153	1.6902
2600	79.41	0.00107211	0.0065670	318.47	411.80	321.26	428.88	1.38054	1.6858
2800	82.90	0.00110474	0.0058879	324.92	411.84	328.01	428.33	1.39898	1.6807
3000	86.20	0.00114128	0.0052813	331.28	411.49	334.70	427.34	1.4171	1.6748
3200	89.33	0.00118330	0.0047295	337.64	410.70	341.43	425.83	1.4350	1.6679
3400	92.30	0.00123354	0.0042160	344.12	409.32	348.31	423.65	1.4533	1.6595
3600	95.12	0.00129737	0.0037218	350.91	407.11	355.58	420.50	1.4724	1.6487
3800	97.80	0.00138860	0.0032143	358.50	403.41	363.77	415.63	1.4939	1.6336
4000	100.34	0.00158011	0.0025626	369.25	395.13	375.57	405.38	1.5247	1.6046
4059.3	101.06	0.0019535	0.0019535	381.71	381.71	389.64	389.64	1.5621	1.5621

Reference States:

R-134a SI

	Р	= 60 kPa	ı (-36.9 3	°C)	$P = 100 \text{ kPa} (-26.36^{\circ} \text{C})$				$P = 140 \text{ kPa} (-18.76^{\circ}\text{C})$					
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.31123	357.27	375.94	1.7601		0.19256	363.34	382.60	1.7475		0.14015	367.70	387.32	1.7402
-30	0.32149	361.93	381.22	1.7821										
-20	0.33608	368.74	388.91	1.8131		0.19841	367.81	387.65	1.7677					
-10	0.35049	375.70	396.73	1.8434		0.20743	374.89	395.64	1.7986		0.14606	374.05	394.50	1.7680
0	0.36476	382.80	404.69	1.8730		0.21630	382.10	403.73	1.8288		0.15263	381.37	402.74	1.7987
10	0.37893	390.07	412.81	1.9022		0.22506	389.45	411.95	1.8584		0.15908	388.81	411.08	1.8287
20	0.39303	397.50	421.08	1.9310		0.23373	396.94	420.31	1.8874		0.16544	396.37	419.53	1.8580
30	0.40705	405.10	429.52	1.9593		0.24233	404.59	428.82	1.9160		0.17172	404.08	428.12	1.8868
40	0.42102	412.86	438.12	1.9872		0.25088	412.40	437.49	1.9441		0.17795	411.93	436.84	1.9151
50	0.43495	420.79	446.88	2.0147		0.25938	420.37	446.30	1.9718		0.18412	419.94	445.72	1.9430
60	0.44884	428.88	455.81	2.0419		0.26784	428.49	455.28	1.9991		0.19025	428.10	454.74	1.9705
70	0.46269	437.14	464.90	2.0688		0.27626	436.78	464.41	2.0261		0.19635	436.42	463.91	1.9977
80	0.47652	445.56	474.15	2.0954		0.28466	445.23	473.70	2.0528		0.20243	444.90	473.24	2.0244
90	0.49032	454.14	483.56	2.1217		0.29303	453.84	483.14	2.0792		0.20847	453.53	482.72	2.0509
100	0.50410	462.89	493.14	2.1477		0.30138	462.61	492.74	2.1053		0.21450	462.32	492.35	2.0771

P = 1	80 kI	Pa (-1	1 2.71 °	C)

 $P = 200 \text{ kPa} (-10.08^{\circ} \text{C})$

 $P = 240 \text{ kPa} (-5.37^{\circ}\text{C})$

Temp. (°C)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.11042	371.15	391.02	1.7353	0.099877	372.64	392.62	1.7334	0.083906	375.30	395.44	1.7303
-10	0.11190	373.17	393.31	1.7441	0.099915	372.70	392.68	1.7337				
0	0.11722	380.62	401.72	1.7754	0.10481	380.23	401.20	1.7654	0.086170	379.43	400.11	1.7475
10	0.12240	388.15	410.18	1.8059	0.10955	387.82	409.73	1.7961	0.090262	387.13	408.79	1.7787
20	0.12748	395.79	418.73	1.8355	0.11419	395.49	418.33	1.8259	0.094233	394.89	417.51	1.8090
30	0.13248	403.55	427.40	1.8646	0.11874	403.29	427.04	1.8551	0.098118	402.75	426.30	1.8385
40	0.13742	411.46	436.19	1.8931	0.12323	411.22	435.87	1.8838	0.10193	410.74	435.20	1.8674
50	0.14230	419.51	445.13	1.9212	0.12766	419.29	444.83	1.9120	0.10570	418.86	444.22	1.8957
60	0.14715	427.71	454.20	1.9489	0.13206	427.51	453.92	1.9397	0.10942	427.11	453.37	1.9236
70	0.15196	436.06	463.41	1.9761	0.13642	435.88	463.16	1.9670	0.11310	435.51	462.65	1.9511
80	0.15674	444.56	472.78	2.0030	0.14074	444.39	472.54	1.9939	0.11675	444.06	472.08	1.9781
90	0.16149	453.22	482.29	2.0296	0.14505	453.06	482.07	2.0206	0.12038	452.75	481.64	2.0048
100	0.16622	462.03	491.95	2.0558	0.14933	461.88	491.75	2.0468	0.12398	461.59	491.35	2.0312
110	0.17094	470.99	501.76	2.0818	0.15359	470.86	501.57	2.0728	0.12756	470.58	501.20	2.0573

Reference States:

R-134a SI

	P :	= 280 kP	a (-1.23	°C)	$P = 320 \text{ kPa} (2.48^{\circ}\text{C})$						Р	= 400 kI	Pa (8.93°	C)
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.072360	377.62	397.89	1.7278		0.063611	379.69	400.04	1.7257		0.051207	383.24	403.72	1.7226
0	0.072819	378.59	398.98	1.7318										
10	0.076460	386.42	407.83	1.7636		0.066088	385.69	406.83	1.7501	\square	0.051506	384.12	404.72	1.7261
20	0.079966	394.27	416.67	1.7943	Π	0.069252	393.64	415.80	1.7812		0.054214	392.32	414.01	1.7584
30	0.083378	402.21	425.55	1.8241		0.072313	401.65	424.79	1.8113		0.056797	400.50	423.22	1.7893
40	0.086719	410.25	434.53	1.8532		0.075299	409.75	433.85	1.8407		0.059293	408.73	432.45	1.8192
50	0.090003	418.41	443.61	1.8818	Π	0.078226	417.96	443.00	1.8695	Π	0.061724	417.05	441.74	1.8484
60	0.093242	426.71	452.82	1.9098		0.081106	426.30	452.25	1.8977		0.064104	425.47	451.11	1.8770
70	0.096443	435.14	462.14	1.9374		0.083947	434.77	461.63	1.9254		0.066443	434.01	460.58	1.9050
80	0.099612	443.71	471.61	1.9646	Π	0.086755	443.37	471.13	1.9527	Π	0.068748	442.67	470.17	1.9325
90	0.10275	452.43	481.20	1.9914		0.089536	452.11	480.77	1.9796		0.071023	451.47	479.88	1.9597
100	0.10587	461.30	490.94	2.0178		0.092293	461.00	490.54	2.0062		0.073275	460.41	489.72	1.9864
110	0.10897	470.31	500.82	2.0440	Π	0.095030	470.03	500.44	2.0324	Π	0.075505	469.48	499.68	2.0127
120	0.11206	479.47	510.85	2.0698		0.097749	479.21	510.49	2.0583		0.077717	478.69	509.78	2.0387
130	0.11512	488.78	521.01	2.0953		0.10045	488.54	520.68	2.0838		0.079914	488.05	520.02	2.0645
140	0.11818	498.24	531.33	2.1206	Π	0.10314	498.01	531.02	2.1092	Π	0.082097	497.55	530.39	2.0899

$P = 500 \text{ kPa} (15.73^{\circ}\text{C})$

$P = 600 \text{ kPa} (21.57^{\circ}\text{C})$

$P = 700 \text{ kPa} (26.71^{\circ}\text{C})$

Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.041123	386.91	407.47	1.7197	0.034300	389.99	410.57	1.7175	0.02937	392.64	413.20	1.7156
20	0.042116	390.55	411.61	1.7339								
30	0.044338	398.99	421.16	1.7659	0.035984	397.37	418.96	1.7455	0.029966	395.62	416.60	1.7269
40	0.046456	407.40	430.63	1.7967	0.037865	406.01	428.73	1.7772	0.031696	404.53	426.72	1.7598
50	0.048499	415.86	440.11	1.8265	0.039659	414.63	438.43	1.8077	0.033322	413.35	436.67	1.7910
60	0.050486	424.40	449.64	1.8555	0.041389	423.30	448.13	1.8373	0.034875	422.16	446.57	1.8212
70	0.052427	433.04	459.25	1.8839	0.043070	432.04	457.88	1.8661	0.036374	431.01	456.47	1.8505
80	0.054331	441.78	468.95	1.9118	0.044710	440.87	467.70	1.8943	0.037829	439.94	466.42	1.8791
90	0.056205	450.65	478.76	1.9392	0.046319	449.82	477.61	1.9220	0.039250	448.97	476.44	1.9070
100	0.058054	459.65	488.68	1.9661	0.047900	458.88	487.62	1.9492	0.040642	458.09	486.54	1.9345
110	0.059880	468.78	498.72	1.9927	0.049459	468.06	497.74	1.9759	0.042010	467.34	496.74	1.9615
120	0.061688	478.04	508.88	2.0189	0.050998	477.37	507.97	2.0023	0.043358	476.70	507.05	1.9880
130	0.063479	487.44	519.18	2.0447	0.052520	486.82	518.33	2.0283	0.044689	486.19	517.47	2.0142
140	0.065257	496.98	529.60	2.0703	0.054027	496.39	528.81	2.0540	0.046004	495.80	528.01	2.0400
150	0.067022	506.65	540.17	2.0955	0.055522	506.11	539.42	2.0794	0.047307	505.55	538.67	2.0655
160	0.068776	516.47	550.86	2.1205	0.057006	515.96	550.16	2.1045	0.048598	515.44	549.45	2.0907

Reference States:

R-134a

C	T
D	1

	P =	= 800 kPa	n (31.33°	C)	P = 900 kPa (35.53°C)						P =	= 1000 kH	Pa (39.39	°C)
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	_	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.025625	394.96	415.46	1.7140		0.022687	397.01	417.43	1.7126		0.020316	398.85	419.16	1.7113
40	0.027036	402.97	424.59	1.7436		0.023375	401.28	422.32	1.7283		0.020407	399.45	419.86	1.7135
50	0.028547	412.00	434.84	1.7758		0.024810	410.59	432.92	1.7616		0.021796	409.09	430.88	1.7482
60	0.029974	420.97	444.95	1.8067		0.026146	419.75	443.28	1.7932		0.023068	418.46	441.53	1.7806
70	0.031340	429.96	455.03	1.8365		0.027414	428.87	453.54	1.8236		0.024262	427.74	452.00	1.8116
80	0.032659	438.99	465.12	1.8654		0.028630	438.01	463.78	1.8530		0.025399	437.00	462.40	1.8414
90	0.033942	448.10	475.25	1.8937		0.029807	447.21	474.03	1.8816		0.026493	446.30	472.79	1.8705
100	0.035193	457.30	485.45	1.9214		0.030951	456.48	484.34	1.9096		0.027552	455.65	483.21	1.8988
110	0.036420	466.60	495.74	1.9486		0.032069	465.85	494.71	1.9370		0.028584	465.09	493.67	1.9264
120	0.037626	476.02	506.12	1.9754		0.033164	475.32	505.17	1.9640		0.029593	474.62	504.21	1.9536
130	0.038813	485.55	516.60	2.0017		0.034241	484.91	515.72	1.9905		0.030582	484.25	514.83	1.9803
140	0.039985	495.21	527.20	2.0277		0.035302	494.61	526.38	2.0166		0.031554	494.00	525.55	2.0065
150	0.041144	504.99	537.91	2.0533		0.036349	504.43	537.14	2.0423		0.032512	503.86	536.37	2.0324
160	0.042291	514.91	548.74	2.0786		0.037384	514.38	548.02	2.0678		0.033458	513.84	547.30	2.0579
170	0.043427	524.96	559.70	2.1036		0.038408	524.46	559.02	2.0929		0.034392	523.95	558.35	2.0831
180	0.044554	535.14	570.78	2.1283		0.039423	534.67	570.15	2.1177		0.035318	534.19	569.51	2.1080

P = 1200 kPa (46.31°C)

$P = 1400 \text{ kPa} (52.42^{\circ}\text{C})$

P = 1600 kPa (57.91°C)

Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.016718	401.98	422.04	1.7087	0.014110	404.54	424.30	1.7062	0.012126	406.64	426.04	1.7036
50	0.017201	405.77	426.41	1.7223								
60	0.018404	415.70	437.79	1.7570	0.015005	412.61	433.62	1.7345	0.012373	409.04	428.84	1.7120
70	0.019502	425.36	448.76	1.7895	0.016060	422.77	445.25	1.7689	0.013430	419.91	441.40	1.7491
80	0.020530	434.90	459.53	1.8204	0.017023	432.65	456.48	1.8012	0.014362	430.24	453.22	1.7831
90	0.021506	444.41	470.22	1.8502	0.017923	442.42	467.52	1.8320	0.015216	440.32	464.66	1.8150
100	0.022443	453.94	480.87	1.8792	0.018778	452.16	478.45	1.8617	0.016015	450.29	475.91	1.8456
110	0.023348	463.53	491.54	1.9074	0.019597	461.90	489.34	1.8905	0.016773	460.22	487.06	1.8751
120	0.024228	473.18	502.25	1.9350	0.020388	471.70	500.24	1.9186	0.017500	470.16	498.16	1.9037
130	0.025087	482.92	513.03	1.9621	0.021156	481.55	511.17	1.9460	0.018201	480.15	509.27	1.9316
140	0.025928	492.76	523.87	1.9886	0.021904	491.49	522.16	1.9730	0.018882	490.19	520.40	1.9589
150	0.026753	502.70	534.81	2.0148	0.022636	501.52	533.21	1.9994	0.019546	500.32	531.59	1.9856
160	0.027566	512.76	545.84	2.0405	0.023355	511.65	544.35	2.0254	0.020194	510.53	542.84	2.0119
170	0.028367	522.93	556.97	2.0660	0.024061	521.89	555.58	2.0510	0.020830	520.84	554.17	2.0378
180	0.029159	533.23	568.22	2.0911	0.024758	532.25	566.91	2.0763	0.021456	531.26	565.59	2.0632
190	0.029941	543.64	579.57	2.1158	0.025445	542.72	578.34	2.1013	0.022072	541.78	577.10	2.0884

Reference States:

Subcooled Liquid

R-134a SI

	P =	800 kPa	n (31.33°	C)	P =	900 kPa	1 (3:
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	(k.
Sat	0.00084585	242.97	243.65	1.1497	0.00085811	249.01	24
35					0.00085646	248.23	24
30	0.00084199	241.05	241.72	1.1434	0.00084151	240.96	24
25	0.00082814	233.89	234.55	1.1196	0.00082772	233.81	23
20	0.00081527	226.83	227.49	1.0957	0.00081491	226.76	22
15	0.00080324	219.88	220.52	1.0717	0.00080292	219.81	22
10	0.00079193	213.01	213.64	1.0476	0.00079165	212.95	21
0	0.00077115	199.50	200.12	0.99899	0.00077092	199.45	20
-10	0.00075236	186.26	186.86	0.94957	0.00075217	186.21	18
-20	0.00073517	173.26	173.85	0.89914	0.00073501	173.22	17
-30	0.00071929	160.46	161.04	0.84752	0.00071916	160.43	16
-40	0.00070451	147.86	148.42	0.79454	0.00070440	147.82	14

P =	900 kPa	ı (35.53°	C)	P =	1000 kP	a (39.39 °	°C)
)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
11	249.01	249.78	1.1695	0.00087007	254.63	255.50	1.1876
46	248.23	249.01	1.1670	0.00085591	248.14	249.00	1.1667
51	240.96	241.72	1.1431	0.00084104	240.87	241.72	1.1428
72	233.81	234.55	1.1193	0.00082731	233.73	234.56	1.1190
91	226.76	227.50	1.0954	0.00081454	226.69	227.50	1.0952
92	219.81	220.53	1.0715	0.00080260	219.74	220.55	1.0712
65	212.95	213.66	1.0474	0.00079136	212.88	213.68	1.0472
92	199.45	200.14	0.99880	0.00077069	199.39	200.16	0.99860
17	186.21	186.89	0.94939	0.00075198	186.17	186.92	0.94921
01	173.22	173.88	0.89897	0.00073485	173.18	173.91	0.89881
16	160.43	161.07	0.84737	0.00071903	160.39	161.11	0.84722
40	147.82	148.46	0.79439	0.00070428	147.79	148.50	0.79425

	P =	1200 kP	a (46.31	°C)	$P = 1400 \text{ kPa} (52.42^{\circ}\text{C})$					$P = 1600 \text{ kPa} (57.91^{\circ}\text{C})$				
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)		V (m³/kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)
Sat	0.00089351	264.88	265.95	1.2201		0.00091671	274.12	275.40	1.2489		0.00094010	282.61	284.11	1.2748
55											0.00092620	277.92	279.41	1.2606
50						0.00090646	270.32	271.59	1.2371		0.00090470	270.06	271.51	1.2363
45	0.00088854	262.86	263.93	1.2138		0.00088706	262.63	263.87	1.2131		0.00088561	262.40	263.82	1.2123
40	0.00087087	255.33	256.37	1.1899		0.00086962	255.12	256.34	1.1892		0.00086840	254.92	256.31	1.1885
35	0.00085483	247.95	248.98	1.1660		0.00085376	247.76	248.96	1.1654		0.00085271	247.58	248.94	1.1648
30	0.00084011	240.70	241.71	1.1423		0.00083919	240.53	241.71	1.1417		0.00083828	240.37	241.71	1.1412
25	0.00082650	233.57	234.57	1.1185		0.00082569	233.42	234.57	1.1180		0.00082490	233.27	234.59	1.1175
20	0.00081383	226.55	227.52	1.0947		0.00081312	226.40	227.54	1.0942		0.00081242	226.26	227.56	1.0937
15	0.00080196	219.61	220.57	1.0708		0.00080134	219.48	220.60	1.0703		0.00080071	219.35	220.63	1.0699
10	0.00079080	212.76	213.71	1.0467		0.00079024	212.64	213.75	1.0463		0.00078968	212.52	213.78	1.0459
5	0.00078024	205.99	206.93	1.0226		0.00077974	205.88	206.97	1.0222		0.00077924	205.76	207.01	1.0218
0	0.00077023	199.29	200.21	0.99821		0.00076978	199.18	200.26	0.99782		0.00076933	199.08	200.31	0.99743
-5	0.00076070	192.65	193.56	0.97365		0.00076029	192.55	193.61	0.97327		0.00075988	192.45	193.67	0.97290
-10	0.00075161	186.07	186.98	0.94885		0.00075123	185.98	187.03	0.94850		0.00075086	185.89	187.09	0.94814
-15	0.00074290	179.56	180.45	0.92380		0.00074256	179.47	180.51	0.92346		0.00074222	179.38	180.57	0.92312
-20	0.00073454	173.09	173.97	0.89848		0.00073423	173.01	174.04	0.89815		0.00073392	172.93	174.10	0.89783
-25	0.00072650	166.68	167.55	0.87286		0.00072622	166.60	167.62	0.87254		0.00072593	166.52	167.69	0.87223
-30	0.00071876	160.32	161.18	0.84691		0.00071850	160.24	161.25	0.84661		0.00071824	160.17	161.32	0.84631
-40	0.00070406	147.73	148.57	0.79397		0.00070383	147.66	148.64	0.79368		0.00070361	147.59	148.72	0.79340

Reference States:

Saturation Temperature Table

R-1 .	34a
--------------	-----

									AE
Temp.	Pressure	V (ft	³ /lb _m)	U (Bt	tu/lb _m)	H (B	tu/lb _m)	S (Btu	/lb ^o _m R)
(^o F)	(psia)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
-40	7.4272	0.011299	5.7839	63.718	152.95	63.733	160.90	0.19016	0.42169
-35	8.5756	0.011364	5.0544	65.219	153.63	65.237	161.66	0.19371	0.42076
-30	9.8624	0.011429	4.4330	66.725	154.32	66.746	162.41	0.19724	0.41989
-25	11.299	0.011496	3.9014	68.238	155.00	68.262	163.17	0.20074	0.41907
-20	12.898	0.011565	3.4449	69.756	155.69	69.784	163.92	0	0.41831
-15	14.6/1	0.011635	3.0514	/1.281	150.38	/1.313	164.6/	0.20766	0.41/60
-10	18 794	0.011700	2.7109	74.350	157.00	74 301	166.15	0.21109	0.41095
-5	21 171	0.011853	2.4134	75 894	157.75	75 940	166.89	0.21449	0.41031
5	23 777	0.011929	1 9330	77 445	159.11	77 497	167.62	0.22122	0.41518
10	26.628	0.012007	1.7357	79.002	159.79	79.062	168.35	0.22456	0.41467
15	29.739	0.012086	1.5623	80.567	160.47	80.634	169.07	0.22787	0.41419
20	33.124	0.012168	1.4094	82.140	161.14	82.214	169.79	0.23117	0.41374
25	36.800	0.012251	1.2742	83.720	161.82	83.803	170.50	0.23445	0.41332
32	42.468	0.012372	1.1102	85.945	162.75	86.042	171.48	0.23901	0.41278
40	49.741	0.012515	0.95280	88.507	163.81	88.623	172.59	0.24418	0.41222
45	54.749	0.012608	0.86796	90.120	164.47	90.248	173.27	0.24739	0.41190
50	60.134	0.012703	0.79198	91.742	165.12	91.883	173.94	0.25059	0.41159
55	65.913	0.012802	0.72380	93.372	165.77	93.529	174.60	0.25378	0.41131
60 65	72.105	0.012903	0.00240	95.015	167.05	95.185	1/5.20	0.25095	0.41103
70	85.805	0.013008	0.55724	90.003	167.67	90.833	176.53	0.26011	0.41077
75	93 351	0.013229	0.53724	100.00	168 30	100.22	177.15	0.26641	0.41028
80	101.39	0.013345	0.47104	101.68	168.91	101.93	177.75	0.26955	0.41005
85	109.93	0.013465	0.43379	103.37	169.51	103.65	178.34	0.27268	0.40982
90	119.01	0.013590	0.39988	105.08	170.11	105.38	178.92	0.27580	0.40959
95	128.65	0.013720	0.36896	106.80	170.69	107.13	179.48	0.27892	0.40937
100	138.85	0.013856	0.34070	108.53	171.26	108.89	180.02	0.28204	0.40914
105	149.65	0.013998	0.31483	110.28	171.82	110.67	180.55	0.28515	0.40891
110	161.07	0.014146	0.29111	112.04	172.37	112.46	181.05	0.28827	0.40867
115	173.14	0.014301	0.26933	113.82	172.90	114.28	181.53	0.29139	0.40842
120	185.86	0.014464	0.24928	115.62	173.41	116.12	181.99	0.29451	0.40815
125	213.41	0.014636	0.23080	11/.43	174.38	11/.9/	182.42	0.29764	0.40787
130	213.41	0.014817	0.21374	119.27	174.30	119.65	182.85	0.30077	0.40737
133	223.23	0.015214	0.19793	121.12	175.26	123.69	183.54	0.30708	0.40689
145	260.36	0.015432	0.16973	124.90	175.66	125.65	183.84	0.31026	0.40650
150	277.61	0.015666	0.15709	126.84	176.02	127.64	184.10	0.31346	0.40606
160	314.73	0.016191	0.13428	130.79	176.64	131.74	184.46	0.31995	0.40503
170	355.53	0.016815	0.11424	134.91	177.05	136.02	184.57	0.32659	0.40371
180	400.34	0.017588	0.096375	139.24	177.19	140.54	184.33	0.33350	0.40196
190	588.75	0.031292	0.031292	164.22	164.22	167.63	167.63	0.37335	0.37335
200	503.59	0.020096	0.064663	149.07	175.80	150.95	181.83	0.34896	0.39577
213.91	588.72	0.031292	0.031292	164.22	164.22	167.63	167.63	0.37335	0.37335

Reference States:

 $\label{eq:H} \begin{array}{l} H=85.985 \ Btu/lb_m \ for \ Saturated \ Liquid \ at \ 32^\circ F. \\ S=0.23885 \ Btu/lb_m \ ^\circ R \ for \ Saturated \ Liquid \ at \ 32^\circ F. \end{array}$

Saturation Pressure Table

R-	1.	34	a
1	4]	E	

Pressure	Temp.	V (ft	³ /lb _m)	U (Bt	u/lb _m)	H (Bt	u/lb _m)	S (Btu	/lb ^o R)
(psia)	(°F)	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap	Sat. Liq	Sat. Vap
5	-53.07	0.011135	8.3793	59.821	151.16	59.832	158.92	0.18072	0.42441
10	-29.50	0.011436	4.3756	66.877	154.39	66.898	162.49	0.19759	0.41980
15	-14.13	0.011647	2.9882	71.548	156.50	71.581	164.80	0.20826	0.41748
20	-2.40	0.011817	2.2774	75.150	158.10	75.194	166.54	0.21624	0.41600
25	7.20	0.011963	1.8431	78.129	159.41	78.184	167.94	0.22269	0.41495
30	15.40	0.012093	1.5493	80.693	160.52	80.760	169.13	0.22814	0.41415
35	22.60	0.012211	1.3370	82.961	161.49	83.040	170.16	0.23288	0.41352
40	29.05	0.012320	1.1761	85.004	162.36	85.095	171.07	0.23709	0.41301
45	34.90	0.012423	1.0498	86.870	163.14	86.974	171.89	0.24088	0.41257
50	40.27	0.012520	0.94802	88.593	163.85	88.709	172.63	0.24435	0.41220
55	45.24	0.012612	0.86410	90.198	164.50	90.326	173.30	0.24755	0.41188
60	49.88	0.012701	0.79371	91.703	165.11	91.844	173.93	0.25051	0.41160
65	54.23	0.012787	0.73379	93.122	165.67	93.276	174.50	0.25329	0.41135
70	58.34	0.012869	0.68214	94.467	166.20	94.633	175.04	0.25590	0.41112
80	65.92	0.013028	0.59758	96.969	167.16	97.162	176.02	0.26070	0.41073
85	69.45	0.013104	0.56251	98.140	167.61	98.346	176.46	0.26292	0.41055
90	72.82	0.013179	0.53121	99.265	168.03	99.484	176.88	0.26504	0.41039
95	76.05	0.013253	0.50308	100.35	168.43	100.58	177.28	0.26707	0.41023
100	79.16	0.013325	0.47767	101.39	168.81	101.64	177.65	0.26902	0.41009
110	85.04	0.013466	0.43353	103.38	169.52	103.66	178.35	0.27270	0.40982
120	90.53	0.013604	0.39650	105.26	170.17	105.56	178.98	0.27613	0.40957
130	95.68	0.013738	0.36496	107.03	170.77	107.36	179.55	0.27935	0.40934
140	100.55	0.013871	0.33777	108.72	171.32	109.08	180.08	0.28238	0.40911
150	105.16	0.014002	0.31406	110.33	171.84	110.72	180.56	0.28525	0.40890
160	109.54	0.014132	0.29321	111.88	172.32	112.30	181.00	0.28798	0.40869
170	113.73	0.014261	0.27471	113.37	172.76	113.82	181.41	0.29059	0.40848
180	117.73	0.014389	0.25818	114.80	173.18	115.28	181.79	0.29309	0.40827
190	121.57	0.014517	0.24332	116.18	173.57	116.70	182.13	0.29549	0.40807
200	125.26	0.014645	0.22988	117.53	173.93	118.07	182.45	0.29780	0.40786
220	132.25	0.014902	0.20649	120.10	174.59	120.70	183.00	0.30218	0.40743
240	138.77	0.015163	0.18682	122.54	175.16	123.21	183.46	0.30630	0.40698
260	144.89	0.015428	0.17001	124.86	175.65	125.61	183.84	0.31019	0.40651
280	150.67	0.015699	0.15546	127.10	176.07	127.91	184.13	0.31389	0.40600
300	156.15	0.015978	0.14271	129.25	176.42	130.14	184.35	0.31743	0.40546
320	161.35	0.016268	0.13143	131.34	176.71	132.30	184.50	0.32083	0.40487
340	166.30	0.016570	0.12136	133.37	176.93	134.41	184.57	0.32411	0.40424
360	171.04	0.016888	0.11229	135.35	177.08	136.47	184.57	0.32730	0.40355
380	175.58	0.017223	0.10404	137.29	177.17	138.50	184.49	0.33040	0.40280
400	179.93	0.017582	0.096497	139.20	177.19	140.51	184.33	0.33345	0.40197
450	190.09	0.018614	0.079969	143.92	176.88	145.47	183.54	0.34089	0.39948
475	194.83	0.019238	0.072617	146.29	176.50	147.98	182.88	0.34461	0.39793
500	199.37	0.019977	0.065644	148.72	175.91	150.57	181.98	0.34840	0.39607
588.75	213.91	0.031292	0.031292	164.22	164.22	167.63	167.63	0.37335	0.37335

Reference States:

 $\label{eq:H} \begin{array}{l} H=85.985 \ Btu/lb_m \ for \ Saturated \ Liquid \ at \ 32^\circ F. \\ S=0.23885 \ Btu/lb_m \ ^\circ R \ for \ Saturated \ Liquid \ at \ 32^\circ F. \end{array}$

R-134a AE

	P	e = 1 psia	(-97.56 °]	F)	P	e = 10 psia	a (-29.5 °]	F)	P =	14.696 ps	sia (-14.9	3°F)
Temp. (°C)	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft³/lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	37.834	145.20	152.20	0.43789	4.3756	154.39	162.49	0.41980	3.0465	156.39	164.68	0.41759
-20	46.109	156.61	165.14	0.47022	4.4856	155.93	164.23	0.42382				
0	48.229	159.78	168.72	0.47816	4.7136	159.21	167.94	0.43206	3.1669	158.90	167.51	0.42387
20	50.346	163.06	172.38	0.48597	4.9380	162.57	171.71	0.44009	3.3248	162.30	171.35	0.43203
40	52.461	166.44	176.15	0.49366	5.1601	166.00	175.56	0.44795	3.4799	165.77	175.24	0.43998
60	54.574	169.91	180.01	0.50124	5.3802	169.52	179.49	0.45565	3.6331	169.32	179.21	0.44776
80	56.685	173.47	183.97	0.50871	5.5990	173.13	183.50	0.46323	3.7848	172.95	183.25	0.45539
100	58.796	177.13	188.02	0.51608	5.8166	176.82	187.59	0.47068	3.9352	176.66	187.37	0.46289
120	60.906	180.88	192.16	0.52335	6.0332	180.60	191.78	0.47802	4.0847	180.46	191.57	0.47027
140	63.015	184.73	196.40	0.53053	6.2490	184.47	196.04	0.48526	4.2334	184.34	195.86	0.47754
160	65.123	188.66	200.72	0.53762	6.4643	188.43	200.40	0.49240	4.3814	188.30	200.23	0.48470
180	67.231	192.68	205.13	0.54463	6.6789	192.47	204.84	0.49945	4.5289	192.35	204.68	0.49178
200	69.338	196.79	209.63	0.55156	6.8931	196.60	209.36	0.50641	4.6759	196.49	209.22	0.49876
220	71.445	200.99	214.22	0.55841	7.1069	200.81	213.97	0.51330	4.8225	200.71	213.84	0.50566
240	73.552	205.28	218.90	0.56519	7.3204	205.11	218.66	0.52010	4.9688	205.02	218.54	0.51248

	$P = 20 psia (-2.4^{\circ}F)$				I	P = 30 psi	a (15.4°I	F)	Р	[•] = 40 psia	a (29.05°]	F)
Temp.	v	U	н	S	v	U	н	S	v	U	н	S
(°C)	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R
Sat	2.2774	158.10	166.54	0.41600	1.5493	160.52	169.13	0.41415	1.1761	162.36	171.07	0.41301
0	2.2922	158.52	167.01	0.41702								
20	2.4130	161.99	170.92	0.42536	1.5691	161.35	170.07	0.41612				
40	2.5306	165.50	174.87	0.43343	1.6528	164.97	174.15	0.42446	1.2126	164.41	173.39	0.41770
60	2.6461	169.08	178.88	0.44130	1.7338	168.62	178.26	0.43251	1.2768	168.15	177.60	0.42597
80	2.7600	172.74	182.96	0.44900	1.8130	172.33	182.41	0.44035	1.3389	171.92	181.83	0.43396
100	2.8726	176.47	187.11	0.45655	1.8908	176.11	186.62	0.44801	1.3995	175.74	186.11	0.44173
120	2.9842	180.29	191.34	0.46397	1.9675	179.96	190.89	0.45551	1.4589	179.63	190.44	0.44933
140	3.0950	184.18	195.65	0.47128	2.0434	183.89	195.24	0.46289	1.5173	183.59	194.83	0.45678
160	3.2051	188.16	200.03	0.47848	2.1185	187.90	199.67	0.47014	1.5751	187.63	199.29	0.46410
180	3.3147	192.23	204.50	0.48557	2.1931	191.98	204.16	0.47729	1.6322	191.73	203.82	0.47130
200	3.4237	196.37	209.05	0.49258	2.2672	196.15	208.74	0.48434	1.6888	195.92	208.43	0.47839
220	3.5324	200.60	213.68	0.49949	2.3408	200.39	213.40	0.49129	1.7449	200.18	213.11	0.48537
240	3.6407	204.91	218.40	0.50633	2.4141	204.72	218.13	0.49815	1.8007	204.53	217.86	0.49227

Reference States:

 $\label{eq:H} \begin{array}{l} H=85.985 \ Btu/lb_m \ for \ Saturated \ Liquid \ at \ 32^\circ F. \\ S=0.23885 \ Btu/lb_m^-\circ R \ for \ Saturated \ Liquid \ at \ 32^\circ F. \end{array}$

R-134a AE

	P	e = 50 psia	a (40.27°)	F)	Р	= 60 psia	a (49.88 °)	F)	Р	= 70 psia	a (58.34°]	F)
Temp. (°C)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V (m ³ /kg)	U (kJ/kg)	H (kJ/kg)	S (kJ/kg*K)	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.94802	163.85	172.63	0.41220	0.79371	165.11	173.93	0.41160	0.68214	166.20	175.04	0.41112
60	1.0019	167.64	176.92	0.42063	0.81790	167.11	176.20	0.41601	0.81790	167.11	176.20	0.41601
80	1.0540	171.49	181.24	0.42879	0.86356	171.03	180.63	0.42438	0.72710	170.56	179.99	0.42048
100	1.1043	175.36	185.59	0.43670	0.90725	174.97	185.05	0.43243	0.76618	174.57	184.50	0.42869
120	1.1534	179.29	189.97	0.44440	0.94955	178.95	189.50	0.44024	0.80372	178.59	189.01	0.43661
140	1.2015	183.29	194.41	0.45192	0.99079	182.98	193.99	0.44785	0.84013	182.66	193.55	0.44431
160	1.2488	187.35	198.91	0.45931	1.0312	187.07	198.53	0.45530	0.87565	186.78	198.13	0.45183
180	1.2955	191.48	203.48	0.46656	1.0709	191.23	203.13	0.46260	0.91047	190.97	202.77	0.45919
200	1.3416	195.69	208.11	0.47369	1.1101	195.46	207.79	0.46978	0.94472	195.22	207.46	0.46642
220	1.3873	199.97	212.82	0.48071	1.1489	199.76	212.52	0.47684	0.97849	199.54	212.22	0.47352
240	1.4326	204.33	217.59	0.48764	1.1872	204.13	217.32	0.48380	1.0119	203.93	217.05	0.48051
260	1.4776	208.76	222.44	0.49448	1.2252	208.58	222.19	0.49067	1.0449	208.39	221.94	0.48741
280	1.5223	213.28	227.37	0.50123	1.2629	213.10	227.14	0.49745	1.0776	212.93	226.90	0.49421
300	1.5668	217.87	232.37	0.50790	1.3004	217.71	232.15	0.50414	1.1101	217.54	231.93	0.50092
320	1.6111	222.53	237.45	0.51450	1.3377	222.38	237.25	0.51075	1.1424	222.23	237.04	0.50756

	P = 80 psia (65.92°F)					Р	= 90 psia	a (72.82°]	F)	Р	= 100 psi	a (79.16°	F)
Temp.	v	U	н	S		\mathbf{V}	U	н	S	V	U	н	S
(°C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)		(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg*K)	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R
Sat	0.59758	167.16	176.02	0.41073	1	0.53121	168.03	176.88	0.41039	0.47767	168.81	177.65	0.41009
80	0.62430	170.07	179.32	0.41693		0.54389	169.55	178.61	0.41362	0.47907	168.99	177.86	0.41047
100	0.66009	174.15	183.93	0.42531		0.57729	173.71	183.33	0.42221	0.51077	173.26	182.72	0.41931
120	0.69416	178.23	188.51	0.43336		0.60874	177.85	188.00	0.43040	0.54023	177.47	187.47	0.42766
140	0.72699	182.34	193.11	0.44116		0.63885	182.01	192.65	0.43830	0.56822	181.67	192.19	0.43566
160	0.75888	186.49	197.74	0.44875		0.66796	186.20	197.33	0.44597	0.59513	185.90	196.92	0.44342
180	0.79004	190.71	202.41	0.45617		0.69629	190.44	202.04	0.45345	0.62123	190.17	201.67	0.45097
200	0.82060	194.98	207.14	0.46345		0.72400	194.74	206.80	0.46078	0.64667	194.49	206.47	0.45835
220	0.85066	199.32	211.92	0.47059		0.75120	199.10	211.62	0.46797	0.67158	198.87	211.31	0.46558
240	0.88031	203.73	216.77	0.47762		0.77797	203.52	216.49	0.47503	0.69606	203.32	216.20	0.47268
260	0.90962	208.21	221.68	0.48454		0.80438	208.02	221.42	0.48198	0.72017	207.83	221.16	0.47966
280	0.93862	212.76	226.66	0.49137		0.83049	212.58	226.42	0.48884	0.74397	212.40	226.18	0.48654
300	0.96737	217.38	231.71	0.49811		0.85634	217.22	231.49	0.49559	0.76750	217.05	231.26	0.49332
320	0.99590	222.08	236.83	0.50476		0.88196	221.92	236.62	0.50227	0.79080	221.77	236.41	0.50001

Reference States:

$$\label{eq:H} \begin{split} H &= 85.985 \ Btu/lb_m \ for \ Saturated \ Liquid \ at \ 32^\circ F. \\ S &= 0.23885 \ Btu/lb_m \ ^\circ R \ for \ Saturated \ Liquid \ at \ 32^\circ F. \end{split}$$

R-134a AE

	P =	= 150 psia	a (105.16	° F)	P =	= 200 psia	a (125.26	° F)	P =	= 250 psia	a (141.88	° F)
Temp. (°C)	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.31406	171.84	180.56	0.40890	0.22988	173.93	182.45	0.40786	0.17810	175.41	183.66	0.40675
120	0.33233	175.31	184.54	0.41585								
140	0.35477	179.83	189.69	0.42458	0.24541	177.66	186.75	0.41512				
160	0.37558	184.29	194.73	0.43285	0.26412	182.48	192.26	0.42416	0.19527	180.33	189.37	0.41611
180	0.39527	188.74	199.72	0.44078	0.28115	187.17	197.58	0.43262	0.21146	185.40	195.19	0.42535
200	0.41413	193.21	204.71	0.44846	0.29705	191.82	202.82	0.44068	0.22600	190.30	200.76	0.43393
220	0.43234	197.71	209.72	0.45594	0.31213	196.46	208.02	0.44845	0.23945	195.13	206.21	0.44206
240	0.45003	202.25	214.75	0.46324	0.32658	201.12	213.22	0.45599	0.25213	199.93	211.60	0.44988
260	0.46730	206.84	219.82	0.47039	0.34055	205.82	218.43	0.46333	0.26421	204.74	216.97	0.45744
280	0.48422	211.50	224.94	0.47740	0.35411	210.55	223.66	0.47050	0.27584	209.56	222.33	0.46480
300	0.50084	216.21	230.12	0.48430	0.36734	215.33	228.94	0.47754	0.28709	214.43	227.72	0.47198
320	0.51721	220.98	235.35	0.49110	0.38029	220.17	234.25	0.48444	0.29803	219.33	233.13	0.47901
340	0.53337	225.82	240.64	0.49780	0.39301	225.06	239.62	0.49124	0.30872	224.28	238.58	0.48591
360	0.54934	230.73	245.99	0.50441	0.40553	230.02	245.04	0.49793	0.31919	229.29	244.07	0.49269
380	0.56514	235.71	251.40	0.51094	0.41787	235.04	250.51	0.50453	0.32947	234.36	249.61	0.49937

	$P = 300 \text{ psia} (156.15^{\circ} \text{F})$				P =	= 400 psia	a (179.93	° F)	P =	= 500 psia	a (199.37	°F)
Temp.	v	U	н	S	v	U	н	S	V	U	н	S
(°C)	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R	ft ³ /lb _m	Btu/lb _m	Btu/lb _m	Btu/lb _m °R
Sat	0.14271	176.42	184.35	0.40546	0.096497	177.19	184.33	0.40197	0.065644	175.91	181.98	0.39607
160	0.14656	177.63	185.77	0.40776				_				
180	0.16356	183.34	192.42	0.41833	0.096581	177.22	184.37	0.40203	0.017125	138.11	139.70	0.33168
200	0.17777	188.60	198.48	0.42765	0.11440	184.33	192.81	0.41502	0.066753	176.38	182.56	0.39695
220	0.19044	193.67	204.25	0.43627	0.12746	190.26	199.70	0.42532	0.086577	185.65	193.66	0.41355
240	0.20211	198.65	209.88	0.44443	0.13853	195.77	206.03	0.43450	0.098822	192.26	201.41	0.42479
260	0.21306	203.59	215.43	0.45226	0.14844	201.09	212.08	0.44303	0.10876	198.19	208.26	0.43444
280	0.22347	208.53	220.95	0.45982	0.15756	206.31	217.98	0.45111	0.11745	203.81	214.69	0.44326
300	0.23346	213.48	226.45	0.46716	0.16611	211.48	223.78	0.45886	0.12535	209.28	220.89	0.45153
320	0.24310	218.46	231.97	0.47433	0.17423	216.64	229.54	0.46634	0.13269	214.67	226.96	0.45942
340	0.25247	223.48	237.51	0.48134	0.18201	221.81	235.29	0.47361	0.13960	220.02	232.95	0.46700
360	0.26159	228.54	243.08	0.48822	0.18951	226.99	241.03	0.48071	0.14618	225.36	238.90	0.47435
380	0.27052	233.66	248.69	0.49498	0.19678	232.22	246.79	0.48765	0.15250	230.71	244.83	0.48150
400	0.27928	238.82	254.34	0.50164	0.20386	237.48	252.58	0.49446	0.15860	236.08	250.76	0.48848

Reference States:

Subcooled Liquid

R-134a AE

	P =	- 100 psia	a (79.16 °	° F)	P =	200 psia	(125.26	° F)		P =	300 psia	(156.15	° F)
Temp. (°C)	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	_	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.013325	101.39	101.64	0.26902	0.014645	117.53	118.07	0.29780		0.015978	129.25	130.14	0.31743
150										0.015624	126.70	127.57	0.31323
120										0.014360	115.20	115.99	0.29377
100					0.013816	108.35	108.86	0.28171		0.013754	108.06	108.83	0.28120
80					0.013298	101.44	101.93	0.26911		0.013253	101.21	101.95	0.26868
60					0.012858	94.758	95.234	0.25646		0.012823	94.565	95.277	0.25608
40					0.012473	88.253	88.715	0.24367		0.012446	88.089	88.780	0.24334
32	0.012357	85.852	86.081	0.23882	0.012331	85.694	86.151	0.23849		0.012307	85.539	86.223	0.23818
10	0.011992	78.902	79.124	0.22434	0.011972	78.767	79.210	0.22405		0.011952	78.634	79.298	0.22377
0	0.011838	75.793	76.012	0.21765	0.011820	75.667	76.104	0.21737		0.011803	75.542	76.198	0.21710
-10	0.011692	72.712	72.929	0.21086	0.011676	72.594	73.027	0.21060		0.011660	72.478	73.125	0.21034
-20	0.011552	69.659	69.873	0.20399	0.011537	69.548	69.975	0.20374		0.011522	69.438	70.078	0.20349
-30	0.011417	66.630	66.842	0.19702	0.011403	66.526	66.948	0.19677		0.011390	66.423	67.056	0.19653
-40	0.011287	63.626	63.835	0.18994	0.011275	63.527	63.945	0.18970		0.011262	63.430	64.056	0.18947
-50	0.011162	60.644	60.851	0.18274	0.011151	60.551	60.964	0.18251		0.011139	60.460	61.079	0.18229

	P =	500 psia	(199.37	° F)			P = 100	0 psia			P = 500	0 psia	
Temp. (°C)	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R		V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R	V ft ³ /lb _m	U Btu/lb _m	H Btu/lb _m	S Btu/lb _m °R
Sat	0.019977	148.72	150.57	0.34840	Ì		Superci	ritical			Superci	ritical	
350						0.057233	212.59	223.19	0.44466	0.016647	179.06	194.48	0.38805
300						0.042185	194.14	201.95	0.41754	0.015546	162.68	177.08	0.36587
250						0.023076	166.29	170.56	0.37474	0.014574	146.58	160.07	0.34272
200						0.016985	142.57	145.72	0.33851	0.013722	130.79	143.50	0.31850
180	0.017125	138.11	139.70	0.33168		0.015906	134.65	137.60	0.32602	0.013411	124.57	136.99	0.30848
160	0.015788	129.57	131.03	0.31791		0.015084	127.17	129.96	0.31389	0.013116	118.40	130.55	0.29825
140	0.014886	121.81	123.19	0.30507		0.014423	120.00	122.67	0.30193	0.012836	112.29	124.18	0.28780
120	0.014198	114.52	115.83	0.29258		0.013870	113.07	115.63	0.29000	0.012569	106.24	117.87	0.27711
100	0.013640	107.53	108.79	0.28022		0.013396	106.33	108.81	0.27803	0.012314	100.23	111.64	0.26616
80	0.013168	100.77	101.99	0.26784		0.012980	99.760	102.163	0.26593	0.012071	94.289	105.47	0.25494
60	0.012758	94.192	95.373	0.25536		0.012609	93.328	95.663	0.25366	0.011839	88.398	99.359	0.24341
40	0.012394	87.769	88.916	0.24269		0.012274	87.019	89.292	0.24115	0.011617	82.559	93.315	0.23155
32	0.012259	85.237	86.372	0.23756		0.012149	84.527	86.776	0.23608	0.011531	80.239	90.915	0.22670
20	0.012067	81.477	82.594	0.22978		0.011969	80.819	83.04	0.22838	0.011404	76.774	87.332	0.21933
0	0.011768	75.299	76.388	0.21656		0.011687	74.718	76.882	0.21527	0.011199	71.041	81.409	0.20672
-20	0.011493	69.223	70.287	0.20299		0.011425	68.706	70.822	0.20180	0.011002	65.359	75.545	0.19367
-30	0.011364	66.220	67.272	0.19606		0.011301	65.732	67.825	0.19490	0.010906	62.536	72.634	0.18697
-40	0.011238	63.239	64.280	0.18901		0.011181	62.778	64.848	0.18789	0.010811	59.726	69.736	0.18015
-50	0.011117	60.279	61.308	0.18184		0.011064	59.843	61.891	0.18076	0.010719	56.929	66.853	0.17320

Reference States:

 $H = 200 \text{ kJ/kg} = 85.985 \text{ Btu/lbm for Saturated Liquid at } 0^{\circ}\text{C} = 32^{\circ}\text{F}.$ S = 1 kJ/kg = 0.23885 Btu/lbm-°R for Saturated Liquid at $0^{\circ}\text{C} = 32^{\circ}\text{F}.$

SI

Ideal Gas Property Table: AI

AIR

MW = 28.970

Т	Ů	Ŕ	s	Pr	$\mathbf{V}_{\mathbf{r}}$
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	85.570	0	1	1
300	1.3137	87.415	0.0061681	1.0217	0.98481
310	8.4305	97.401	0.038914	1.1452	0.90791
320	15.573	107.41	0.070702	1.2793	0.83893
330	22.741	117.45	0.10159	1.4247	0.77688
340	29.933	127.51	0.13163	1.5819	0.72088
350	37.151	137.60	0.16087	1.7516	0.67020
360	44.393	147.71	0.18936	1.9344	0.62421
370	51.659	157.85	0.21713	2.1309	0.58238
380	58.949	168.01	0.24422	2.3419	0.54423
390	66.263	178.19	0.27068	2.5680	0.50938
400	73.600	188.40	0.29652	2.8099	0.47745
410	80.961	198.63	0.32178	3.0685	0.44815
420	88.345	208.89	0.34649	3.3444	0.42121
430	95.751	219.16	0.37067	3.6383	0.39640
440	103.18	229.46	0.39435	3.9512	0.37349
450	110.63	239.78	0.41755	4.2839	0.35232
460	118.11	250.13	0.44028	4.6370	0.33272
470	125.60	260.49	0.46258	5.0116	0.31455
480	133.12	270.88	0.48445	5.4084	0.29767
490	140.66	281.29	0.50591	5.8284	0.28197
500	148.22	291.73	0.52699	6.2725	0.26736
510	155.81	302.18	0.54769	6.7417	0.25373
520	163.41	312.65	0.56803	7.2368	0.24100
530	171.04	323.15	0.58802	7.7590	0.22911
540	178.69	333.67	0.60768	8.3091	0.21797
550	186.36	344.21	0.62702	8.8882	0.20755
560	194.05	354.77	0.64605	9.4975	0.19776
570	201.76	365.35	0.66478	10.138	0.18858
580	209.49	375.95	0.68321	10.810	0.17995
590	217.24	386.57	0.70137	11.516	0.17183
600	225.01	397.21	0.71926	12.257	0.16418
610	232.80	407.88	0.73688	13.033	0.15698
620	240.62	418.56	0.75425	13.846	0.15018
630	248.45	429.26	0.//13/	14.698	0.14377
640	256.30	439.98	0.78826	15.588	0.13770
650	264.17	450.72	0.80492	16.520	0.1319/
660	272.06	461.49	0.82135	17.493	0.12654
670	279.98	4/2.2/	0.83/30	18.510	0.12141
080	207.91	485.07	0.83330	19.571	0.11034
700	293.80	475.89	0.80930	20.078	0.11192
700	211.01	515 50	0.00495	21.655	0.10733
720	310.82	526.46	0.90033	23.037	0.10557
730	327.85	520.40	0.91557	24.291	0.099410
740	335.80	548.27	0.94545	25.597	0.095054
750	343.95	559 21	0.96012	28.350	0.092073
760	352.04	570.16	0.97463	29.841	0.085421
770	360 14	581 13	0.98897	31 370	0.082327
780	368.26	502.12	1 0031	32 050	0.002327
790	376.20	603.12	1.0031	34 600	0.075570
800	384 55	614 15	1.0172	36 200	0.073872
000	501.55	011.15	1.0510	50.522	0.073872

Т	℃	₽°	s	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
820	400.91	636.25	1.0583	39.946	0.068851
840	417.35	658.43	1.0850	43.843	0.064261
860	433.85	680.67	1.1112	48.029	0.060057
880	450.42	702.99	1.1369	52.519	0.056200
900	467.07	725.37	1.1620	57.329	0.052654
920	483.78	747.82	1.1867	62.475	0.049391
940	500.56	770.34	1.2109	67.974	0.046382
960	517.40	792.92	1.2347	73.845	0.043603
980	534.31	815.57	1.2580	80.104	0.041033
1000	551.28	838.29	1.2810	86.771	0.038654
1020	568.32	861.06	1.3035	93.864	0.036447
1040	585.42	883.90	1.3257	101.40	0.034399
1060	602.58	906.81	1.3475	109.41	0.032494
1080	619.81	929.77	1.3690	117.91	0.030722
1100	637.09	952.80	1.3901	126.91	0.029070
1150	680.57	1010.6	1.4415	151.81	0.025408
1200	724.40	1068.8	1.4910	180.40	0.022310
1250	768.59	1127.3	1.5388	213.09	0.019675
1300	813.12	1186.2	1.5850	250.29	0.017420
1350	857.98	1245.4	1.6297	292.47	0.015482
1400	903.16	1305.0	1.6730	340.09	0.013807
1450	948.65	1364.8	1.7150	393.68	0.012353
1500	994.44	1424.9	1.7558	453.78	0.011087
1550	1040.5	1485.4	1.7954	520.96	9.9790E-03
1600	1086.9	1546.1	1.8339	595.85	9.0064E-03
1650	1133.5	1607.0	1.8715	679.07	8.1495E-03
1700	1180.4	1668.3	1.9080	771.33	7.3922E-03
1750	1227.5	1729.8	1.9437	873.32	6.7209E-03
1800	1274.9	1791.5	1.9784	985.82	6.1241E-03
1850	1322.5	1853.4	2.0124	1109.6	5.5920E-03
1900	1370.3	1915.6	2.0456	1245.5	5.1164E-03
1950	1418.4	1978.0	2.0780	1394.4	4.6903E-03
2000	1466.6	2040.6	2.1097	1557.3	4.3075E-03
2100	1563.7	2166.4	2.1710	1928.5	3.6522E-03
2200	1661.5	2292.9	2.2299	2367.5	3.1168E-03
2300	1760.0	2420.1	2.2864	2882.9	2.6758E-03
2400	1859.1	2547.9	2.3408	3484.4	2.3102E-03
2500	1958.7	2676.2	2.3932	4182.3	2.0049E-03
2600	2058.9	2805.1	2.4437	4987.6	1.7484E-03
2700	2159.5	2934.4	2.4925	5912.1	1.5317E-03
2800	2260.5	3064.1	2.5397	6968.5	1.3477E-03
2900	2361.9	3194.2	2.5854	8170.0	1.1905E-03
3000	2463.7	3324.7	2.6296	9530.9	1.0557E-03
3500	2976.2	3980.7	2.8318	19282	6.0880E-04
4000	3493.0	4641.0	3.0082	35643	3.7640E-04
4500	4012.5	5304.1	3.1644	61422	2.4573E-04
5000	4535.3	5970.3	3.3047	100177	1.6740E-04
5500	5063.7	6642.2	3.4328	156509	1.1787E-04
6000	5601.7	7323.8	3.5514	236591	8.5059E-05

Appendix D

SI

Ideal Gas Property Table:

CO

= WM 28.013

Т	Å U ⁰	Ĥ°	∧ S°	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	88.493	0	1	1
300	1.3758	90.418	0.0064361	1.0219	0.98462
310	8.8090	100.82	0.040542	1.1464	0.90700
320	16.239	111.22	0.073554	1.2812	0.83770
330	23.668	121.61	0.10555	1.4271	0.77560
340	31.100	132.01	0.13659	1.5844	0.71974
350	38.535	142.42	0.16675	1.7539	0.66933
360	45.978	152.83	0.19608	1.9360	0.62368
370	53.429	163.25	0.22463	2.1315	0.58222
380	60.890	173.68	0.25244	2.3408	0.54447
390	68.362	184.12	0.27956	2.5648	0.51000
400	75.848	194.57	0.30602	2.8040	0.47846
410	83.347	205.04	0.33187	3.0592	0.44952
420	90.862	215.52	0.35713	3.3309	0.42291
430	98.393	226.02	0.38184	3.6200	0.39840
440	105.94	236.54	0.40601	3.9272	0.37578
450	113.51	247.07	0.42969	4.2533	0.35485
460	121.09	257.62	0.45288	4.5990	0.33547
470	128.70	268.20	0.47562	4.9652	0.31749
480	136.32	278.79	0.49792	5.3526	0.30077
490	143.97	289.40	0.51980	5.7622	0.28522
500	151.63	300.04	0.54129	6.1947	0.27072
510	159.32	310.69	0.56239	6.6512	0.25718
520	167.03	321.37	0.58312	7.1324	0.24453
530	174.76	332.07	0.60350	7.6394	0.23269
540	182.52	342.79	0.62355	8.1731	0.22160
550	190.29	353.54	0.64327	8.7345	0.21120
560	198.10	364.31	0.66267	9.3247	0.20143
570	205.92	375.10	0.68177	9.9446	0.19224
580	213.77	385.92	0.70059	10.595	0.18360
590	221.64	396.76	0.71912	11.278	0.17546
600	229.54	407.63	0.73738	11.994	0.16779
610	237.46	418.52	0.75538	12.744	0.16055
620	245.41	429.43	0.77313	13.529	0.15371
630	253.38	440.37	0.79063	14.351	0.14724
640	261.38	451.33	0.80790	15.210	0.14113
650	269.40	462.32	0.82494	16.109	0.13534
660	277.44	473.34	0.84175	17.048	0.12985
670	285.52	484.38	0.85836	18.029	0.12465
680	293.61	495.44	0.87475	19.052	0.11971
690	301.74	506.53	0.89094	20.120	0.11502
700	309.88	517.65	0.90693	21.234	0.11057
710	318.05	528.79	0.92273	22.396	0.10633
720	326.25	539.95	0.93835	23.606	0.10230
730	334.48	551.15	0.95379	24.866	0.098466
740	342.72	562.36	0.96905	26.178	0.094813
750	351.00	573.60	0.98414	27.543	0.091331
760	359.30	584.87	0.99906	28.963	0.088010
///0	307.62	390.10	1.0138	30.440	0.084842
780	375.97	607.48	1.0284	31.975	0.081818
790	384.34	618.82	1.0429	33.570	0.078930
800	392.74	630.19	1.0572	35.227	0.076170

Т	Û°	Ĥ⁰	Ŝ⁰	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	1	
820	409.61	653.00	1.0853	38.733	0.071007
840	426.58	675.90	1.1129	42.507	0.066281
860	443.65	698.90	1.1400	46.565	0.061945
880	460.81	722.00	1.1665	50.923	0.057961
900	478.07	745.20	1.1926	55.596	0.054295
920	495.42	768.49	1.2182	60.603	0.050917
940	512.87	791.87	1.2433	65.959	0.047799
960	530.40	815.34	1.2680	71.685	0.044917
980	548.02	838.89	1.2923	77.797	0.042250
1000	565.73	862.54	1.3162	84.317	0.039779
1020	583.52	886.27	1.3397	91.262	0.037486
1040	601.40	910.08	1.3628	98.655	0.035357
1060	619.36	933.97	1.3856	106.52	0.033378
1080	637.39	957.94	1.4080	114.87	0.031535
1100	655.50	981.99	1.4300	123.73	0.029818
1150	701.09	1042.4	1.4838	148.28	0.026012
1200	747.10	1103.3	1.5356	176.55	0.022797
1250	793.47	1164.5	1.5855	208.93	0.020067
1300	840.16	1226.0	1.6338	245.82	0.017738
1350	887.21	1287.9	1.6805	287.72	0.015737
1400	934.57	1350.1	1.7258	335.09	0.014013
1450	982.21	1412.6	1.7696	388.44	0.012520
1500	1030.1	1475.3	1.8122	448.31	0.011222
1550	1078.3	1538.3	1.8535	515.25	0.010090
1600	1126.6	1601.5	1.8936	589.86	0.0090977
1650	1175.2	1665.0	1.9326	672.77	0.0082259
1700	1224.0	1728.6	1.9706	764.62	0.0074571
1750	1273.0	1792.4	2.0076	866.11	0.0067769
1800	1322.1	1856.4	2.0437	977.94	0.0061734
1850	1371.4	1920.5	2.0788	1100.9	0.0056363
1900	1420.9	1984.8	2.1131	1235.7	0.0051571
1950	1470.4	2049.2	2.1466	1383.2	0.0047283
2000	1520.2	2113.8	2.1793	1544.3	0.0043437
2100	1620.0	2243.3	2.2425	1910.8	0.0036862
2200	1720.4	2373.3	2.3029	2342.6	0.0031498
2300	1821.1	2503.8	2.3609	2848.0	0.0027087
2400	1922.3	2634.6	2.4166	3435.7	0.0023430
2500	2023.8	2765.8	2.4702	4115.1	0.0020376
2600	2125.6	2897.3	2.5217	4896.2	0.0017811
2700	2227.8	3029.2	2.5715	5789.9	0.0015641
2800	2330.3	3161.3	2.6196	6807.5	0.0013795
2900	2433.0	3293.7	2.6660	7961.1	0.0012218
3000	2536.0	3426.4	2.7110	9263.7	0.0010862
3500	3054.3	4093.1	2.9165	18514	6.3405E-04
4000	3577.1	4764.4	3.0958	33869	3.9611E-04
4500	4103.7	5439.3	3.2548	57868	2.6082E-04
5000	4633.3	6117.3	3.3976	93644	1.7908E-04
5500	5165.7	6798.1	3.5274	144997	1.2722E-04
6000	5700.8	/481.6	3.6463	216472	9.2964E-05

Appendix D

SI

Ideal Gas Property Table: CO₂

MW = 44.010

Т	Ŭ	Ĥ⁰	So	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	56.327	0	1	1
300	1.2131	57.890	0.0052249	1.0280	0.97876
310	7.8336	66.400	0.033127	1.1917	0.87252
320	14.558	75.013	0.060474	1.3773	0.77929
330	21.384	83.728	0.087289	1.5873	0.69730
340	28.307	92.541	0.11360	1.8245	0.62504
350	35.326	101.45	0.13942	2.0917	0.56122
360	42.438	110.45	0.16478	2.3921	0.50476
370	49.640	119.54	0.18969	2.7293	0.45469
380	56.931	128.72	0.21417	3.1069	0.41023
390	64.308	137.99	0.23824	3.5290	0.37066
400	71.770	147.34	0.26191	4.0002	0.33539
410	79.314	156.77	0.28520	4.5251	0.30389
420	86.939	166.29	0.30813	5.1089	0.27573
430	94.643	175.88	0.33070	5.7573	0.25050
440	102.42	185.55	0.35293	6.4763	0.22787
450	110.28	195.30	0.37484	7.2724	0.20754
460	118.21	205.12	0.39642	8.1526	0.18925
470	126.22	215.01	0.41770	9.1244	0.17277
480	134.29	224.98	0.43868	10.196	0.15790
490	142.44	235.01	0.45937	11.376	0.14447
500	150.65	245.11	0.47978	12.674	0.13232
510	158.94	255.29	0.49992	14.100	0.12132
520	167.28	265.52	0.51980	15.664	0.11134
530	175.70	275.82	0.53942	17.379	0.10229
540	184.17	286.19	0.55880	19.256	0.094058
550	192.71	296.62	0.57793	21.308	0.086572
560	201.31	307.11	0.59683	23.550	0.079754
570	209.97	317.66	0.61550	25.997	0.073539
580	218.69	328.27	0.63395	28.664	0.067867
590	227.47	338.93	0.65219	31.568	0.062686
600	236.30	349.66	0.67021	34.728	0.057948
610	245.19	360.43	0.68803	38.163	0.053611
620	254.14	371.27	0.70565	41.893	0.049638
630	263.14	382.16	0.72307	45.940	0.045996
640	272.19	393.10	0.74030	50.326	0.042653
650	281.29	404.09	0.75734	55.078	0.039582
660	290.45	415.14	0.77420	60.220	0.036760
670	299.65	426.23	0.79089	65.779	0.034163
680	308.91	437.37	0.80739	71.786	0.031771
690	318.21	448.56	0.82373	78.271	0.029568
700	327.56	459.80	0.83990	85.266	0.027535
710	336.96	471.09	0.85591	92.806	0.025660
720	346.40	482.42	0.87176	100.93	0.023927
730	355.88	493.80	0.88745	109.67	0.022326
740	365.42	505.22	0.90299	119.07	0.020845
750	374.99	516.68	0.91838	129.17	0.019474
760	384.61	528.19	0.93362	140.03	0.018204
770	394.27	539.74	0.94872	151.67	0.017027
780	403.97	551.33	0.96367	164.17	0.015936
790	413.71	562.96	0.97848	177.56	0.014923
800	423.49	574.62	0.99316	191.90	0.013982

Т	₽o	₽	\$°	Pr	V _r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K))	
820	443.16	598.08	1.0221	223.69	0.012295
840	462.99	621.68	1.0506	260.03	0.010835
860	482.95	645.43	1.0785	301.47	0.0095679
880	503.06	669.31	1.1060	348.63	0.0084661
900	523.30	693.33	1.1329	402.17	0.0075058
920	543.68	717.48	1.1595	462.83	0.0066671
940	564.17	741.76	1.1856	531.40	0.0059329
960	584.79	766.15	1.2113	608.77	0.0052891
980	605.52	790.67	1.2365	695.90	0.0047233
1000	626.37	815.29	1.2614	793.82	0.0042251
1020	647.32	840.02	1.2859	903.68	0.0037857
1040	668.38	864.86	1.3100	1026.7	0.0033974
1060	689.54	889.80	1.3338	1164.3	0.0030537
1080	710.80	914.83	1.3572	1317.8	0.0027489
1100	732.15	939.96	1.3802	1488.8	0.0024781
1150	785.93	1003.2	1.4364	2004.7	0.0019240
1200	840.24	1066.9	1.4907	2671.8	0.0015064
1250	895.02	1131.2	1.5431	3526.5	0.0011889
1300	950.27	1195.9	1.5939	4613.2	0.00094516
1350	1006.0	1261.0	1.6430	5984.2	0.00075665
1400	1062.0	1326.5	1.6907	7700.9	0.00060975
1450	1118.4	1392.4	1.7369	9835.9	0.00049445
1500	1175.2	1458.6	1.7818	12474	0.00040333
1550	1232.3	1525.1	1.8254	15713	0.00033086
1600	1289.6	1591.9	1.8678	19666	2.7287E-04
1650	1347.2	1658.9	1.9091	24467	2.2619E-04
1700	1405.0	1726.2	1.9492	30264	1.8840E-04
1750	1463.1	1793.7	1.9884	37231	1.5765E-04
1800	1521.4	1861.4	2.0265	45564	1.3250E-04
1850	1579.9	1929.4	2.0638	55487	1.1183E-04
1900	1638.5	1997.5	2.1001	67253	9.4757E-05
1950	1697.4	2065.8	2.1356	81147	8.0598E-05
2000	1756.4	2134.2	2.1702	97492	6.8806E-05
2100	1874.9	2271.7	2.2373	1.3902E+05	5.0664E-05
2200	1994.0	2409.6	2.3015	1.9527E+05	3.7787E-05
2300	2113.6	2548.2	2.3631	2.7051E+05	2.8517E-05
2400	2233.8	2687.2	2.4222	3.6999E+05	2.1757E-05
2500	2354.3	2826.6	2.4791	5.0009E+05	1.6767E-05
2600	2475.3	2966.5	2.5340	6.6857E+05	1.3043E-05
2700	2596.6	3106.7	2.5869	8.8475E+05	1.0236E-05
2800	2718.3	3247.3	2.6381	1.1597E+06	8.0977E-06
2900	2840.4	3388.3	2.6875	1.5068E+06	6.4552E-06
3000	2962.7	3529.5	2.7354	1.9415E+06	5.1827E-06
3500	3578.6	4239.8	2.9544	6.1873E+06	1.8973E-06
4000	4200.2	4955.9	3.1456	1.7025E+07	7.8801E-07
4500	4826.7	5676.9	3.3154	4.1829E+07	3.6083E-07
5000	5457.8	6402.4	3.4683	9.3949E+07	1.7850E-07
5500	6093.4	7132.5	3.6075	1.9625E+08	9.3996E-08
6000	6734.3	7867.8	3.7354	3.8634E+08	5.2089E-08

Ideal Gas Property Table:

H₂

= WM 2.016 g/mole

CT		
21		
~ -		

Т	Û°	Ĥ⁰	Ŝ⁰	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	1229.6	0	1	1
300	18.838	1256.1	0.088501	1.0217	0.98484
310	120.85	1399.4	0.55823	1.1449	0.90812
320	223.14	1542.9	1.0139	1.2787	0.83935
330	325.67	1686.7	1.4563	1.4235	0.77754
340	428.41	1830.6	1.8861	1.5799	0.72182
350	531.31	1974.8	2.3040	1.7483	0.67145
360	634.37	2119.1	2.7105	1.9294	0.62581
370	737.56	2263.5	3.1062	2.1237	0.58435
380	840.86	2408.1	3.4917	2.3318	0.54659
390	944.25	2552.7	3.8674	2.5542	0.51213
400	1047.7	2697.4	4.2338	2.7915	0.48061
410	1151.3	2842.2	4.5913	3.0442	0.45172
420	1254.9	2987.1	4.9403	3.3131	0.42519
430	1358.5	3132.0	5.2813	3.5986	0.40077
440	1462.2	3276.9	5.6145	3.9014	0.37826
450	1566.0	3421.9	5.9403	4.2222	0.35747
460	1669.7	3566.9	6.2591	4.5614	0.33824
470	1773.6	3711.9	6.5710	4.9198	0.32042
480	1877.4	3857.0	6.8765	5.2980	0.30387
490	1981.3	4002.1	7.1757	5.6966	0.28850
500	2085.2	4147.3	7.4689	6.1164	0.27418
510	2189.1	4292.4	7.7563	6.5579	0.26084
520	2293.0	4437.6	8.0383	7.0219	0.24838
530	2397.0	4582.8	8.3149	7.5090	0.23673
540	2501.0	4728.1	8.5864	8.0199	0.22583
550	2605.0	4873.3	8.8529	8.5553	0.21562
560	2709.1	5018.6	9.1147	9.1161	0.20604
570	2813.2	5164.0	9.3719	9.7027	0.19704
580	2917.3	5309.3	9.6248	10.316	0.18857
590	3021.4	5454.7	9.8733	10.957	0.18060
600	3125.6	5600.2	10.118	11.626	0.17310
610	3229.9	5745.7	10.358	12.324	0.16601
620	3334.2	5891.2	10.595	13.052	0.15933
630	3438.5	6036.8	10.828	13.810	0.15301
640	3542.9	6182.4	11.057	14.600	0.14703
650	3647.3	6328.0	11.283	15.422	0.14137
660	3751.8	6473.8	11.505	16.276	0.13600
670	3856.3	6619.6	11.725	17.165	0.13092
680	3960.9	6765.4	11.941	18.088	0.12609
690	4065.6	6911.3	12.154	19.047	0.12150
700	4170.4	7057.3	12.364	20.042	0.11714
710	4275.2	7203.4	12.571	21.075	0.11299
720	4380.1	7349.5	12.775	22.146	0.10904
730	4485.1	7495.8	12.977	23.256	0.10528
740	4590.1	7642.1	13.176	24.406	0.10170
750	4695.3	7788.5	13.373	25.597	0.098274
760	4800.5	7935.0	13.567	26.830	0.095008
770	4905.9	8081.6	13.758	28.106	0.091888
780	5011.3	8228.2	13.948	29.426	0.088906
790	5116.9	8375.0	14.135	30.791	0.086054
800	5222.5	8521.9	14.319	32.202	0.083326

Т	Û ⁰	₽°	Ŝ°	Pr	V _r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K))	
820	5434.2	8816.1	14.683	35.166	0.078210
840	5646.3	9110.7	15.038	38.326	0.073511
860	5858.9	9405.8	15.385	41.692	0.069184
880	6072.1	9701.4	15.725	45.273	0.065194
900	6285.7	9997.6	16.057	49.078	0.061507
920	6500.0	10294	16.383	53.116	0.058094
940	6714.9	10592	16.703	57.398	0.054929
960	6930.4	10890	17.017	61.934	0.051989
980	7146.5	11188	17.325	66.734	0.049254
1000	7363.4	11488	17.627	71.810	0.046707
1020	7580.9	11788	17.924	77.173	0.044330
1040	7799.1	12088	18.216	82.834	0.042110
1060	8018.1	12390	18.503	88.806	0.040034
1080	8237.8	12692	18.786	95.101	0.038089
1100	8458.3	12995	19.064	101.73	0.036266
1150	9013.0	13756	19.740	119.86	0.032179
1200	9572.7	14522	20.392	140.39	0.028669
1250	10138	15293	21.022	163.55	0.025635
1300	10708	16070	21.631	189.58	0.022999
1350	11284	16852	22.221	218.75	0.020699
1400	11865	17639	22.794	251.35	0.018682
1450	12452	18432	23.351	287.66	0.016906
1500	13044	19231	23.892	328.00	0.015338
1550	13636	20028	24.415	372.37	0.013961
1600	14235	20833	24.926	421.49	0.012732
1650	14840	21645	25.426	475.75	0.011632
1700	15451	22463	25.914	535.54	0.010647
1750	16069	23286	26.391	601.27	0.0097618
1800	16692	24115	26.858	673.39	0.0089655
1850	17320	24950	27.316	752.33	0.0082476
1900	17953	25789	27.763	838.60	0.0075991
1950	18591	26633	28.202	932.69	0.0070123
2000	19234	27482	28.632	1035.1	0.0064804
2100	20532	29193	29.466	1267.3	0.0055579
2200	21846	30920	30.269	1539.8	0.0047920
2300	23176	32662	31.044	1857.9	0.0041521
2400	24521	34419	31.792	2227.2	0.0036143
2500	25879	36190	32.514	2653.8	0.0031596
2600	27251	37974	33.214	3144.5	0.0027732
2700	28635	39770	33.892	3706.4	0.0024433
2800	30032	41579	34.550	4347.5	0.0021602
2900	31440	43401	35.189	5076.1	0.0019162
3000	32861	45233	35.811	5901.4	0.0017050
3500	40128	54563	38.686	11850	9.9061E-04
4000	47652.0	64149	41.245	22041	6.0868E-04
4500	55409	73968	43.558	38615	3.9086E-04
5000	63375	83996	45.670	64451	2.6020E-04
5500	71521	94204	47.616	103302	1.7857E-04
6000	79814	104559	49.418	159903	1.2585E-04

Appendix D

SI

Ideal Gas Property Table: H₂

H₂O

MW = 18.016

Т	Uº	Ħ⁰	So	P _r	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	137.60	0	1	1
500	291.18	521.93	0.98239	8.4037	0.19956
510	306.14	541.51	1.0212	9.1402	0.18715
520	321.16	561.14	1.0593	9.9274	0.17568
530	336.24	580.84	1.0968	10.768	0.16508
540	351.38	600.59	1.1337	11.665	0.15526
550	366.58	620.41	1.1701	12.621	0.14616
560	381.84	640.29	1.2059	13.640	0.13770
570	397.17	660.22	1.2412	14.724	0.12984
580	412.55	680.22	1.2760	15.876	0.12253
590	428.00	700.29	1.3103	17.101	0.11572
600	443.51	720.42	1.3441	18.402	0.10936
610	459.09	740.61	1.3775	19.782	0.10343
620	474.73	760.86	1.4104	21.245	0.097881
630	490.43	781.18	1.4429	22.796	0.092694
640	506.20	801.56	1.4750	24.438	0.087838
650	522.04	822.01	1.5067	26.176	0.083287
660	537.94	842.53	1.5381	28.014	0.079019
670	553.90	863.11	1.5690	29.957	0.075013
680	569.94	883.76	1.5996	32.010	0.071250
690	586.04	904.48	1.6298	34.178	0.067712
700	602.20	925.26	1.6597	36.466	0.064384
710	618.44	946.11	1.6893	38.879	0.061250
720	634.74	967.02	1.7186	41.424	0.058298
730	651.11	988.01	1.7475	44.105	0.055514
740	667.55	1009.1	1.7762	46.929	0.052888
750	684.06	1030.2	1.8045	49.902	0.050409
760	700.63	1051.4	1.8326	53.031	0.048067
770	717.28	1072.6	1.8604	56.323	0.045853
780	733.99	1094.0	1.8879	59.784	0.043760
790	750.77	1115.4	1.9151	63.421	0.041779
800	767.62	1136.8	1.9422	67.242	0.039904
810	784.54	1158.4	1.9689	71.256	0.038127
820	801.53	1180.0	1.9954	75.469	0.036443
830	818.59	1201.6	2.0217	79.890	0.034846
840	835.72	1223.4	2.0477	84.527	0.033331
850	852.92	1245.2	2.0735	89.391	0.031893
860	870.19	1267.1	2.0991	94.489	0.030527
870	887.53	1289.0	2.1245	99.831	0.029229
880	904.94	1311.1	2.1497	105.43	0.027996
890	922.42	1333.2	2.1747	111.29	0.026823
900	939.98	1355.3	2.1994	117.42	0.025707
910	957.60	1377.6	2.2240	123.84	0.024645
920	975.29	1399.9	2.2484	130.56	0.023634
930	993.05	1422.3	2.2726	137.59	0.022671
940	1010.9	1444.7	2.2966	144.94	0.021753
950	1028.8	1467.2	2.3204	152.62	0.020878
960	1046.8	1489.8	2.3441	160.64	0.020044
970	1064.8	1512.5	2.36/5	169.03	0.019248
980	1082.9	1535.2	2.3909	177.78	0.018488
990	1101.1	1558.0	2.4140	186.93	0.017763
1000	1119.4	1580.9	2.4370	196.47	0.017071

Т	Û ⁰	₽°	\$⁰	P _r	V _r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	1	
1000	1119.4	1580.9	2.4370	196.47	0.017071
1020	1156.1	1626.8	2.4825	216.83	0.015778
1040	1193.1	1673.0	2.5274	238.98	0.014596
1060	1230.4	1719.6	2.5717	263.05	0.013515
1080	1267.9	1766.3	2.6154	289.20	0.012526
1100	1305.8	1813.4	2.6586	317.56	0.011618
1120	1343.9	1860.8	2.7012	348.31	0.010785
1140	1382.3	1908.4	2.7434	381.61	0.010020
1160	1420.9	1956.3	2.7850	417.65	0.0093156
1180	1459.9	2004.4	2.8262	456.62	0.0086675
1200	1499.1	2052.9	2.8669	498.72	0.0080703
1220	1538.5	2101.6	2.9071	544.17	0.0075196
1240	1578.3	2150.5	2.9469	593.20	0.0070111
1260	1618.3	2199.8	2.9863	646.05	0.0065414
1280	1658.5	2249.3	3.0253	702.97	0.0061071
1330	1760.3	2374.1	3.1210	864.95	0.0051574
1380	1863.7	2500.6	3.2143	1058.8	0.0043715
1430	1968.6	2628.6	3.3054	1289.8	0.0037185
1480	2075.0	2758.0	3.3944	1564.1	0.0031736
1500	2117.9	2810.2	3.4294	1687.4	0.0029814
1550	2226.3	2941.6	3.5156	2033.9	0.0025560
1600	2336.0	3074.4	3.5999	2441.5	0.0021980
1650	2446.9	3208.4	3.6824	2919.3	0.0018957
1700	2559.0	3343.6	3.7631	3477.2	0.0016398
1750	2672.3	3479.9	3.8421	4126.8	0.0014223
1800	2786.7	3617.5	3.9196	4881.2	0.0012368
1850	2902.3	3756.1	3.9956	5754.5	0.0010783
1900	3018.9	3895.8	4.0701	6762.7	9.4233E-04
1950	3136.5	4036.5	4.1432	7923.1	8.2548E-04
2000	3255.1	4178.1	4.2149	9255.3	7.2478E-04
2050	3374.6	4320.7	4.2853	10781	6.3779E-04
2100	3494.9	4464.1	4.3544	12523	5.6246E-04
2150	3616.1	4608.4	4.4223	14507	4.9707E-04
2250	3860.9	4899.3	4.5546	19321	3.9058E-04
2350	4108.6	5193.1	4.6824	25485	3.0927E-04
2450	4359.1	5489.8	4.8060	33312	2.4668E-04
2550	4612.1	5788.9	4.9256	43173	1.9810E-04
2650	4867.4	6090.4	5.0416	55507	1.6013E-04
2750	5124.9	6394.1	5.1541	70826	1.3023E-04
2850	5384.5	6699.8	5.2633	89733	1.0653E-04
2950	5645.9	7007.4	5.3694	112922	8.7621E-05
3000	5777.4	7161.9	5.4213	126371	7.9623E-05
3100	6041.4	7472.1	5.5230	157534	6.6001E-05
3500	7113.0	8728.2	5.9040	359705	3.2635E-05
4000	8480.1	10326	6.3307	906669	1.4797E-05
4500	9870.8	11948	6.7126	2074198	7.2766E-06
5000	11280	13588	7.0582	4385884	3.8236E-06
5500	12706	15244	7.3739	8693076	2.1220E-06
6000	14148	10917	1.6650	16334017	1.2320E-06

SI

Ideal Gas Property Table:

: N₂

MW = 28.010

Т	Åo U⁰	₽°	Ŝ⁰	Pr	Vr
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
298.15	0	88.503	0	1	1
300	1.3579	90.410	0.0063766	1.0217	0.98482
310	8.7063	100.73	0.040205	1.1450	0.90804
320	16.069	111.06	0.073005	1.2788	0.83927
330	23.447	121.40	0.10484	1.4236	0.77748
340	30.841	131.77	0.13578	1.5800	0.72176
350	38.252	142.15	0.16586	1.7485	0.67137
360	45.680	152.54	0.19515	1.9298	0.62567
370	53.126	162.96	0.22369	2.1245	0.58412
380	60.590	173.39	0.25151	2.3333	0.54623
390	68.072	183.84	0.27865	2.5567	0.51162
400	75.573	194.31	0.30516	2.7955	0.47991
410	83.093	204.80	0.33106	3.0504	0.45081
420	90.632	215.30	0.35638	3.3220	0.42404
430	98.191	225.83	0.38115	3.6111	0.39938
440	105.77	236.38	0.40539	3.9185	0.37662
450	113.37	246.94	0.42914	4.2448	0.35556
460	120.99	257.53	0.45241	4.5909	0.33606
470	128.62	268.14	0.47522	4.9576	0.31797
480	136.28	278.76	0.49759	5.3457	0.30116
490	143.96	289.41	0.51954	5.7560	0.28552
500	151.66	300.08	0.54109	6.1894	0.27095
510	159.37	310.76	0.56225	6.6468	0.25735
520	167.11	321.47	0.58304	7.1290	0.24465
530	174.87	332.20	0.60348	7.6370	0.23276
540	182.65	342.94	0.62356	8.1717	0.22164
550	190.45	353.71	0.64332	8.7342	0.21121
560	198.27	364.50	0.66276	9.3252	0.20142
570	206.11	375.31	0.68189	9.9460	0.19222
580	213.97	386.14	0.70072	10.597	0.18357
590	221.85	396.98	0.71926	11.281	0.17542
600	229.75	407.85	0.73753	11.997	0.16775
610	237.67	418.74	0.75553	12.746	0.16051
620	245.61	429.65	0.77327	13.531	0.15368
630	253.57	440.58	0.79075	14.352	0.14723
640	261.55	451.52	0.80799	15.210	0.14112
650	269.55	462.49	0.82500	16.107	0.13535
660	277.56	473.48	0.84177	17.044	0.12988
670	285.60	484.49	0.85832	18.021	0.12470
680	293.66	495.51	0.87466	19.041	0.11978
690	301.74	506.56	0.89079	20.104	0.11512
700	309.84	517.62	0.90671	21.212	0.11069
710	317.95	528.71	0.92243	22.365	0.10647
720	326.09	539.81	0.93796	23.567	0.10247
730	334.24	550.94	0.95331	24.817	0.098660
740	342.42	562.08	0.96847	26.117	0.095032
750	350.61	573.24	0.98345	27.469	0.091575
760	358.82	584.42	0.99826	28.874	0.088280
770	307.06	595.62	1.0129	30.334	0.085138
780	375.31	606.84	1.0274	31.850	0.082139
790	383.57	618.08	1.0417	33.424	0.079275
800	391.86	629.33	1.0558	35.057	0.076539

Т	€ o	₽°	\$°	Pr	V _r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
820	408.49	651.90	1.0837	38.507	0.071424
840	425.20	674.54	1.1110	42.213	0.066742
860	441.97	697.25	1.1377	46.189	0.062449
880	458.82	720.04	1.1639	50.450	0.058504
900	475.74	742.89	1.1896	55.009	0.054875
920	492.73	765.82	1.2148	59.882	0.051530
940	509.79	788.82	1.2395	65.084	0.048442
960	526.92	811.88	1.2638	70.631	0.045587
980	544.11	835.01	1.2876	76.540	0.042944
1000	561.37	858.21	1.3111	82.827	0.040494
1020	578.70	881.48	1.3341	89.511	0.038220
1040	596.10	904.81	1.3568	96.610	0.036106
1060	613.56	928.21	1.3790	104.14	0.034139
1080	631.08	951.67	1.4010	112.13	0.032306
1100	648.67	975.20	1.4226	120.58	0.030597
1150	692.91	1034.3	1.4751	143.92	0.026800
1200	737.54	1093.7	1.5257	170.68	0.023581
1250	782.52	1153.6	1.5745	201.21	0.020837
1300	827.87	1213.8	1.6217	235.89	0.018484
1350	873.55	1274.3	1.6674	275.14	0.016457
1400	919.57	1335.1	1.7117	319.39	0.014702
1450	965.91	1396.3	1.7546	369.10	0.013176
1500	1012.6	1457.8	1.7963	424.76	0.011844
1550	1059.5	1519.6	1.8368	486.88	0.010678
1600	1106.7	1581.7	1.8763	556.02	9.6515E-03
1650	1154.2	1644.0	1.9146	632.75	8.7461E-03
1700	1202.0	1706.6	1.9520	717.68	7.9448E-03
1750	1250.1	1769.5	1.9885	811.45	7.2334E-03
1800	1298.3	1832.6	2.0240	914.72	6.6001E-03
1850	1346.8	1896.0	2.0587	1028.2	6.0347E-03
1900	1395.6	1959.6	2.0927	1152.6	5.5287E-03
1950	1444.5	2023.4	2.1258	1288.8	5.0748E-03
2000	1493.7	2087.4	2.1582	1437.5	4.6666E-03
2100	1592.6	2216.0	2.2209	1775.8	3.9664E-03
2200	1692.2	2345.3	2.2811	2174.7	3.3931E-03
2300	1792.5	2475.2	2.3389	2641.9	2.9200E-03
2400	1893.4	2605.8	2.3944	3185.7	2.5268E-03
2500	1994.8	2736.9	2.4479	3815.0	2.1979E-03
2600	2096.6	2868.4	2.4995	4539.2	1.9211E-03
2700	2198.9	3000.4	2.5493	5368.4	1.6869E-03
2800	2301.6	3132.7	2.5975	6313.3	1.4875E-03
2900	2404.5	3265.4	2.6440	7385.2	1.3170E-03
3000	2507.8	3398.3	2.6891	8596.0	1.1706E-03
3500	3026.9	4065.8	2.8949	17193	6.8277E-04
4000	3548.2	4735.6	3.0737	31409	4.2714E-04
4500	4070.2	5406.0	3.2317	53472	2.8226E-04
5000	4593.4	6077.6	3.3732	86133	1.9470E-04
5500	5120.4	6/53.0	3.5019	132894	1.3881E-04
6000	3033.8	/430.8	3.0209	198429	1.0142E-04

Ideal Gas Property Table:

 O_2

MW = 32.000

g/mole

SI

(K) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) (kJ/kg) 298.15 0 77.467 0 1 1 300 1.1921 79.140 0.0055933 1.0218 0.98478 310 7.675 88.22 0.035371 1.1458 0.907463 320 14.222 97.367 0.064404 1.2813 0.83766 330 20.827 106.57 0.092725 1.4289 0.77463 340 27.488 115.83 0.12036 1.5892 0.77763 350 34.200 125.14 0.14735 1.7632 0.66179 360 40.961 134.50 0.17472 1.9515 0.61879 370 47.767 143.90 0.2909 3.1374 0.43830 410 75.411 181.94 0.29709 3.1374 0.43830 420 82.417 191.54 0.32023 3.4297 0.41073 430 93.51 0.488 3.2142 0	Т	₽°	Å⁰	Ås₀ S₀	Pr	V_r	Г
298.15 0 77.467 0 1 1 820 300 1.1921 79.140 0.0055933 1.0218 0.99478 860 310 7.6755 88.222 0.035371 1.1458 0.90741 860 320 14.222 97.367 0.064404 1.2813 0.83766 880 330 20.827 106.57 0.092725 1.4289 0.71756 920 340 27.488 115.83 0.12036 1.5892 0.71756 920 350 34.200 125.14 0.14735 1.7632 0.66579 960 360 40.961 134.50 0.1737 1.9515 0.6677 960 370 47.767 143.90 0.29799 3.1374 0.43830 104 410 75.411 18.194 0.29709 3.1374 0.43830 104 420 82.417 191.54 0.32023 3.4297 0.41073 105 435 103.6	(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)			(K
300 1.1921 79.140 0.0055933 1.0218 0.98478 840 310 7.6755 88.222 0.035371 1.1458 0.90741 860 320 14.222 97.367 0.064404 1.2813 0.83766 960 330 20.827 106.57 0.092725 1.4289 0.77463 900 340 27.488 115.83 0.12036 1.5892 0.71756 920 360 40.961 134.50 0.17372 1.9515 0.61873 960 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.53678 100 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 18.194 0.22079 3.17426 0.38536 116 440 96.531 210.86 0.36515 4.0770 0.36198 125 450<	298.15	0	77.467	0	1	1	820
310 7.6755 88.222 0.035371 1.1458 0.90741 860 320 14.222 97.367 0.064404 1.2813 0.83766 980 330 20.827 106.57 0.092725 1.4289 0.77463 900 340 27.488 115.83 0.12036 1.5892 0.71756 920 350 34.200 125.14 0.14735 1.7632 0.66579 940 360 40.961 134.50 0.17372 1.9515 0.61873 960 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.435678 100 400 68.442 172.37 0.27346 2.8648 0.4631 104 410 75.411 181.04.02970 3.1374 0.43836 110 420 82.452 0.36066 4.4339 0.34040 122 450 103.64 220.6	300	1.1921	79.140	0.0055933	1.0218	0.98478	840
320 14.222 97.367 0.064404 1.2813 0.83766 330 20.827 106.57 0.092725 1.4289 0.77463 340 27.488 115.83 0.12036 1.5892 0.71756 350 34.200 125.14 0.14735 1.7532 0.66579 360 40.961 134.50 0.17372 1.9515 0.61873 370 47.767 143.90 0.19949 2.1549 0.57588 380 54.618 153.35 0.22468 2.3744 0.48831 100 400 68.442 172.37 0.27346 2.8648 0.46831 104 440 96.531 210.86 0.36515 4.0770 0.36198 115 440 96.531 210.86 0.36515 4.0770 0.36198 135 450 103.64 220.56 0.34998 5.6510 0.28492 135 500 139.62 269.53 0.49013 6.5954 0.254277	310	7.6755	88.222	0.035371	1.1458	0.90741	860
330 20.827 106.57 0.092725 1.4289 0.77463 900 340 27.488 115.83 0.12036 1.5892 0.71756 920 350 34.200 125.14 0.14735 1.7632 0.66579 940 360 40.961 134.50 0.17372 1.9151 0.61873 980 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.53678 100 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 106 440 96.531 210.86 0.36515 4.0770 0.3618 115 440 96.531 210.86 0.44938 5.6510 0.28489 125 450 117.79 240.06 0.42936 5.198 0.30200 135 450	320	14.222	97.367	0.064404	1.2813	0.83766	880
340 27.488 115.83 0.12036 1.5892 0.71756 920 350 34.200 125.14 0.14735 1.7632 0.66579 940 360 40.961 134.50 0.17372 1.9515 0.61873 960 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.53678 100 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.220703 3.1374 0.43836 1168 420 82.458 201.18 0.34291 3.7426 0.38536 1100 420 82.458 201.86 0.36515 4.0700 0.36198 115 450 103.64 220.56 0.38696 4.4339 0.34040 122 460 110.77 230.30 0.40835 4.8145 0.32040 140 500 139.62 269.53 0.49013 6.5954 0.25427 150	330	20.827	106.57	0.092725	1.4289	0.77463	900
350 34.200 125.14 0.14735 1.7632 0.66579 940 360 40.961 134.50 0.17372 1.9515 0.61873 960 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.53678 100 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 108 420 82.417 191.54 0.32023 3.4297 0.41073 108 430 96.531 210.86 0.36515 4.070 0.36108 112 440 96.531 210.86 0.36515 4.070 0.34040 125 440 132.36 259.68 0.47023 6.1091 0.26902 140 500 139.62 269.53 0.49013 6.5954 0.25427 155 510	340	27.488	115.83	0.12036	1.5892	0.71756	920
360 40.961 134.50 0.17372 1.9515 0.61873 960 370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.530104 102 390 61.510 162.84 0.24934 2.6107 0.50104 102 410 75.411 181.94 0.29709 3.1374 0.43830 106 420 82.417 191.54 0.32023 3.4297 0.41073 108 430 96.531 210.86 0.36515 4.0770 0.36198 110 440 96.531 210.86 0.40355 4.8145 0.32001 130 450 110.77 230.30 0.40835 4.8145 0.32046 125 470 117.94 240.06 0.42936 5.2198 0.30200 130 500 139.62 269.53 0.49013 6.5954 0.22427 155 510	350	34.200	125.14	0.14735	1.7632	0.66579	940
370 47.767 143.90 0.19949 2.1549 0.57588 980 380 54.618 153.35 0.22468 2.3744 0.53678 100 390 61.510 162.84 0.24934 2.6107 0.50104 102 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 106 420 82.417 191.54 0.32023 3.4297 0.41073 108 430 89.458 201.18 0.34291 3.7426 0.38536 110 440 96.531 210.86 0.36515 4.0770 0.36198 120 450 103.64 220.56 0.38696 4.4339 0.34040 120 460 110.77 230.0 0.40835 4.8145 0.32046 123 470 117.94 240.06 0.4998 5.6510 0.28489 135 510 146.89 29.741 0.50869 7.1111 0.24055 135	360	40.961	134.50	0.17372	1.9515	0.61873	960
380 54.618 153.35 0.22468 2.3744 0.53678 100 390 61.510 162.84 0.24934 2.6107 0.50104 102 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 104 420 82.417 191.54 0.32023 3.4297 0.41073 108 430 89.458 201.18 0.34291 3.7426 0.38536 110 440 96.531 210.86 0.36515 4.0770 0.36198 125 450 103.64 220.56 0.38696 4.4339 0.34040 120 460 110.77 230.30 0.40835 5.610 0.28489 135 470 117.94 240.06 0.49936 5.6510 0.28489 146 500 136.2 269.53 0.49013 6.5954 0.22477 155 510	370	47.767	143.90	0.19949	2.1549	0.57588	980
390 61.510 162.84 0.24934 2.6107 0.50104 102 400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 106 420 82.417 191.54 0.32023 3.4297 0.41073 108 440 96.531 210.86 0.36515 4.0770 0.36198 115 450 103.64 220.56 0.38696 4.4339 0.34040 120 460 110.77 230.30 0.40835 4.8145 0.32046 123 470 117.94 240.06 0.42936 5.2198 0.30200 130 480 125.14 249.86 0.44908 5.6510 0.264921 140 500 139.62 269.53 0.49013 6.5954 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 150 540 168.88 309.19 0.620751 10.893 0.17550 188	380	54.618	153.35	0.22468	2.3744	0.53678	100
400 68.442 172.37 0.27346 2.8648 0.46831 104 410 75.411 181.94 0.29709 3.1374 0.43830 106 420 82.417 191.54 0.32023 3.4297 0.41073 108 430 89.458 201.18 0.34291 3.7426 0.38536 110 440 96.531 210.86 0.36515 4.0770 0.36198 122 440 103.64 220.56 0.38696 4.4339 0.34040 122 450 103.64 220.56 0.38696 5.2198 0.30200 130 460 110.77 230.30 0.40835 4.8145 0.32046 122 470 117.94 240.06 0.42936 5.2198 0.30200 140 500 139.62 269.53 0.49013 6.5954 0.25427 155 510 146.89 299.1 0.52892 7.6573 0.22777 155 530	390	61.510	162.84	0.24934	2.6107	0.50104	102
410 75.411 181.94 0.29709 3.1374 0.43830 420 82.417 191.54 0.32023 3.4297 0.41073 430 89.458 201.18 0.34291 3.7426 0.38536 440 96.531 210.86 0.36515 4.0770 0.36198 450 103.64 220.56 0.38696 4.4339 0.34040 460 110.77 230.30 0.40835 4.8145 0.32046 470 117.94 240.06 0.42936 5.2198 0.30200 480 125.14 249.86 0.44998 5.6510 0.28489 490 132.36 259.68 0.47023 6.1091 0.26902 510 146.89 279.41 0.50699 7.1111 0.24055 520 154.20 289.31 0.52892 7.6573 0.22777 550 176.26 319.17 0.5844 8.8468 0.20473 550 176.26 319.17 0.62051 10.893 0.17550 580 198.54 349.24 0.6	400	68.442	172.37	0.27346	2.8648	0.46831	104
420 82.417 191.54 0.32023 3.4297 0.41073 108 430 89.458 201.18 0.34291 3.7426 0.38536 110 440 96.531 210.86 0.36515 4.0770 0.36198 125 450 103.64 220.56 0.38696 4.4339 0.34040 125 460 110.77 230.30 0.40835 4.8145 0.32001 130 470 117.94 240.06 0.42936 5.2198 0.30200 130 480 125.14 249.86 0.44998 5.6510 0.28489 135 500 139.62 269.53 0.49013 6.5954 0.25427 145 510 146.89 279.41 0.50869 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 160 540 168.88 309.19 0.62051 10.893 0.17550 180 <t< td=""><td>410</td><td>75.411</td><td>181.94</td><td>0.29709</td><td>3.1374</td><td>0.43830</td><td>106</td></t<>	410	75.411	181.94	0.29709	3.1374	0.43830	106
430 89.458 201.18 0.34291 3.7426 0.38536 110 440 96.531 210.86 0.36515 4.0770 0.36198 115 450 103.64 220.56 0.38696 4.4339 0.34040 120 460 110.77 230.30 0.40835 4.8145 0.3200 130 480 125.14 249.86 0.44998 5.6510 0.28489 135 490 132.36 259.68 0.47023 6.1091 0.26902 140 500 139.62 269.53 0.49013 6.5954 0.25427 155 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 540 168.88 309.19 0.62051 10.893 0.17550 180 560 183.67 329.17 0.60276 10.174 0.18437 610 221.02	420	82.417	191.54	0.32023	3.4297	0.41073	108
440 96.531 210.86 0.36515 4.0770 0.36198 450 103.64 220.56 0.38696 4.4339 0.34040 460 110.77 230.30 0.40835 4.8145 0.32046 470 117.94 240.06 0.42936 5.2198 0.30200 480 125.14 249.86 0.44998 5.6510 0.28489 490 132.36 259.68 0.47023 6.1091 0.26902 500 139.62 269.53 0.49013 6.5954 0.25427 510 146.89 279.41 0.50969 7.1111 0.24055 520 154.20 289.31 0.52892 7.6573 0.22777 530 161.53 299.24 0.54783 8.2355 0.21585 540 168.88 309.19 0.62051 10.893 0.17550 550 176.26 319.17 0.58474 9.4926 0.19433 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.	430	89.458	201.18	0.34291	3.7426	0.38536	110
450 103.64 220.56 0.38696 4.4339 0.34040 120 460 110.77 230.30 0.40835 4.8145 0.32046 125 470 117.94 240.06 0.42936 5.2198 0.30200 130 480 125.14 249.86 0.44998 5.6510 0.28489 135 500 139.62 269.53 0.49013 6.5954 0.25427 145 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 160 540 168.88 309.19 0.56644 8.8468 0.20473 165 550 176.26 319.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 <t< td=""><td>440</td><td>96.531</td><td>210.86</td><td>0.36515</td><td>4.0770</td><td>0.36198</td><td>115</td></t<>	440	96.531	210.86	0.36515	4.0770	0.36198	115
460 110.77 230.30 0.40835 4.8145 0.32046 125 470 117.94 240.06 0.42936 5.2198 0.30200 130 480 125.14 249.86 0.44998 5.6510 0.28489 140 500 139.62 269.53 0.49013 6.5954 0.25427 145 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21885 160 540 168.88 309.19 0.662051 10.893 0.17550 176 560 183.67 329.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 185 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.6519 12.449 0.13146 220 <t< td=""><td>450</td><td>103.64</td><td>220.56</td><td>0.38696</td><td>4.4339</td><td>0.34040</td><td>120</td></t<>	450	103.64	220.56	0.38696	4.4339	0.34040	120
470 117.94 240.06 0.42936 5.2198 0.30200 480 125.14 249.86 0.44998 5.6510 0.28489 490 132.36 259.68 0.47023 6.1091 0.26902 500 139.62 269.53 0.49013 6.5954 0.25427 510 146.89 279.41 0.50969 7.1111 0.24055 520 154.20 289.31 0.52892 7.6573 0.22777 530 161.53 299.24 0.54783 8.2355 0.21585 540 168.88 309.19 0.56644 8.8468 0.20473 550 176.26 319.17 0.58474 9.4926 0.19433 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.63798 11.651 0.16697 590 206.01 359.31 0.65519 12.449 0.15896 190 21.02 379.51 0.68886 14.172 0.14437 610 221.02 379.51 0.6	460	110.77	230.30	0.40835	4.8145	0.32046	125
480 125.14 249.86 0.44998 5.6510 0.28489 135 490 132.36 259.68 0.47023 6.1091 0.26902 140 500 139.62 269.53 0.49013 6.5954 0.25427 155 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 160 540 168.88 309.19 0.56644 8.8468 0.20473 155 550 176.26 319.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.13146 195 610 221.02 379.51 0.68886 14.172 0.14437 200 <t< td=""><td>470</td><td>117.94</td><td>240.06</td><td>0.42936</td><td>5.2198</td><td>0.30200</td><td>130</td></t<>	470	117.94	240.06	0.42936	5.2198	0.30200	130
490 132.36 259.68 0.47023 6.1091 0.26902 140 500 139.62 269.53 0.49013 6.5954 0.25427 145 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 160 540 168.88 309.19 0.56644 8.8468 0.20473 165 550 176.26 319.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15896 190 610 221.02 379.51 0.68886 14.172 0.14437 200 630 236.11 399.80 0.72159 16.074 0.13146 220 <t< td=""><td>480</td><td>125.14</td><td>249.86</td><td>0.44998</td><td>5.6510</td><td>0.28489</td><td>135</td></t<>	480	125.14	249.86	0.44998	5.6510	0.28489	135
500 139.62 269.53 0.49013 6.5954 0.25427 1455 510 146.89 279.41 0.50969 7.1111 0.24055 150 520 154.20 289.31 0.52892 7.6573 0.22777 155 530 161.53 299.24 0.54783 8.2355 0.21585 160 540 168.88 309.19 0.56644 8.8468 0.20473 165 550 176.26 319.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.705342 18.168 0.11999 240 640	490	132.36	259.68	0.47023	6.1091	0.26902	140
510 146.89 279.41 0.50969 7.1111 0.24055 520 154.20 289.31 0.52892 7.6573 0.22777 530 161.53 299.24 0.54783 8.2355 0.21585 540 168.88 309.19 0.56644 8.8468 0.20473 550 176.26 319.17 0.60276 10.174 0.18461 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.63798 11.651 0.16697 590 206.01 359.31 0.65519 12.449 0.15896 610 221.02 379.51 0.68886 14.172 0.14437 620 228.55 389.64 0.70534 15.099 0.13772 630 251.28 420.17 0.73761 17.096 0.12556 650 251.28 420.17 0.75342 18.168 0.11978 660 258.89 430.38 0.76901 19.292 0.11474 670 266.53 440.61 0.	500	139.62	269.53	0.49013	6.5954	0.25427	145
520 154.20 289.31 0.52892 7.6573 0.22777 530 161.53 299.24 0.54783 8.2355 0.21585 540 168.88 309.19 0.56644 8.8468 0.20473 550 176.26 319.17 0.58474 9.4926 0.19433 550 176.26 319.17 0.60276 10.174 0.18461 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.63798 11.651 0.16697 590 206.01 359.31 0.65519 12.449 0.15896 610 221.02 379.51 0.68886 14.172 0.14437 620 228.55 389.64 0.70534 15.099 0.13772 630 251.28 420.17 0.73761 17.096 0.12556 650 251.28 420.17 0.75342 18.168 0.11978 660 258.89 430.38 0.76901 19.292 0.11474 670 266.53 440.61 0.	510	146.89	279.41	0.50969	7.1111	0.24055	150
530 161.53 299.24 0.54783 8.2355 0.21585 540 168.88 309.19 0.56644 8.8468 0.20473 550 176.26 319.17 0.58474 9.4926 0.19433 560 183.67 329.17 0.60276 10.174 0.18461 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.63798 11.651 0.16697 590 206.01 359.31 0.65519 12.449 0.15896 610 221.02 379.51 0.68886 14.172 0.14437 620 228.55 389.64 0.70534 15.099 0.13772 630 236.11 399.80 0.72159 16.074 0.13146 640 243.68 409.97 0.73761 17.096 0.12556 650 251.28 420.17 0.75342 18.168 0.11999 660 258.89 430.38 0.76901 19.292 0.11474 670 266.53 440.61 0.	520	154.20	289.31	0.52892	7.6573	0.22777	155
540 168.88 309.19 0.56644 8.8468 0.20473 550 176.26 319.17 0.58474 9.4926 0.19433 560 183.67 329.17 0.60276 10.174 0.18461 570 191.09 339.19 0.62051 10.893 0.17550 580 198.54 349.24 0.63798 11.651 0.16697 590 206.01 359.31 0.65519 12.449 0.15896 600 213.50 369.40 0.67215 13.289 0.15144 610 221.02 379.51 0.68886 14.172 0.14437 620 228.55 389.64 0.70534 15.099 0.13772 630 236.11 399.80 0.72159 16.074 0.13146 640 243.68 409.97 0.73761 17.096 0.12556 650 251.28 420.17 0.75342 18.168 0.11999 660 258.89 430.38 0.76901 19.292 0.11474 670 266.53 440.61 0.	530	161.53	299.24	0.54783	8.2355	0.21585	160
550 176.26 319.17 0.58474 9.4926 0.19433 170 560 183.67 329.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15896 190 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.092486 270 <	540	168.88	309.19	0.56644	8.8468	0.20473	165
560 183.67 329.17 0.60276 10.174 0.18461 175 570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15896 190 600 213.50 369.40 0.67215 13.289 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 710 297.26 481.74 0.84401 25.748 0.092486 350 730 312.73 502.41 0.87272 28.757 0.088718 350 760 328.28 523.15 <td>550</td> <td>176.26</td> <td>319.17</td> <td>0.58474</td> <td>9.4926</td> <td>0.19433</td> <td>170</td>	550	176.26	319.17	0.58474	9.4926	0.19433	170
570 191.09 339.19 0.62051 10.893 0.17550 180 580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15896 190 600 213.50 369.40 0.67215 13.289 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 700 289.55 471.43 0.82939 24.339 0.096462 290 <	560	183.67	329.17	0.60276	10.174	0.18461	175
580 198.54 349.24 0.63798 11.651 0.16697 185 590 206.01 359.31 0.65519 12.449 0.15896 190 600 213.50 369.40 0.67215 13.289 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 290 <t< td=""><td>570</td><td>191.09</td><td>339.19</td><td>0.62051</td><td>10.893</td><td>0.17550</td><td>180</td></t<>	570	191.09	339.19	0.62051	10.893	0.17550	180
590 206.01 359.31 0.65519 12.449 0.15896 190 600 213.50 369.40 0.67215 13.289 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.092486 300 710 297.26 481.74 0.84401 25.748 0.092486 350 730 312.73 502.41 0.87272 28.757 0.088718 350 760 326.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 500 780 351.73 554.40 <	580	198.54	349.24	0.63798	11.651	0.16697	185
600 213.50 369.40 0.67215 13.289 0.15144 195 610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 200 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 710 297.26 481.74 0.84401 25.748 0.092486 300 730 312.73 502.41 0.87272 28.757 0.088718 350 740 320.50 512.77 0.88682 30.360 0.072558 500 770 343.90 543.96 0.92814 35.593 0.072558 500 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808	590	206.01	359.31	0.65519	12.449	0.15896	190
610 221.02 379.51 0.68886 14.172 0.14437 200 620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 710 297.26 481.74 0.84401 25.748 0.092486 300 730 312.73 502.41 0.87272 28.757 0.088718 350 730 320.50 512.77 0.88682 30.360 0.078530 550 760 326.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808	600	213.50	369.40	0.67215	13.289	0.15144	195
620 228.55 389.64 0.70534 15.099 0.13772 210 630 236.11 399.80 0.72159 16.074 0.13146 240 640 243.68 409.97 0.73761 17.096 0.12556 250 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.072558 500 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	610	221.02	379.51	0.68886	14.172	0.14437	200
630 236.11 399.80 0.72159 16.074 0.13146 220 640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 720 304.99 492.06 0.85846 27.220 0.088718 730 312.73 502.41 0.87272 28.757 0.085143 740 320.50 512.77 0.88682 30.360 0.081751 750 328.28 523.15 0.90076 32.033 0.078530 760 336.08 533.55 0.91453 35.793 0.072558 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	620	228.55	389.64	0.70534	15.099	0.13772	210
640 243.68 409.97 0.73761 17.096 0.12556 230 650 251.28 420.17 0.75342 18.168 0.11999 240 660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 720 304.99 492.06 0.85846 27.220 0.088718 730 312.73 502.41 0.87272 28.757 0.085143 740 320.50 512.77 0.88682 30.360 0.078530 760 336.08 533.55 0.91453 33.776 0.075469 770 343.90 54.396 0.92814 35.593 0.072558 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	630	236.11	399.80	0.72159	16.074	0.13146	220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	640	243.68	409.97	0.73761	17.096	0.12556	230
660 258.89 430.38 0.76901 19.292 0.11474 250 670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 780 351.73 554.40 0.94160 37.486 0.069790 <t< td=""><td>650</td><td>251.28</td><td>420.17</td><td>0.75342</td><td>18.168</td><td>0.11999</td><td>240</td></t<>	650	251.28	420.17	0.75342	18.168	0.11999	240
670 266.53 440.61 0.78440 20.469 0.10978 260 680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 600 <td>660</td> <td>258.89</td> <td>430.38</td> <td>0.76901</td> <td>19.292</td> <td>0.11474</td> <td>250</td>	660	258.89	430.38	0.76901	19.292	0.11474	250
680 274.18 450.87 0.79959 21.702 0.10509 270 690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 <t< td=""><td>670</td><td>266.53</td><td>440.61</td><td>0.78440</td><td>20.469</td><td>0.10978</td><td>260</td></t<>	670	266.53	440.61	0.78440	20.469	0.10978	260
690 281.86 461.14 0.81458 22.991 0.10066 280 700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 800 800 367.45 575.31 0.96808 41.507 0.064645 600 <	680	274.18	450.87	0.79959	21.702	0.10509	270
700 289.55 471.43 0.82939 24.339 0.096462 290 710 297.26 481.74 0.84401 25.748 0.092486 300 720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645 450	690	281.86	461.14	0.81458	22.991	0.10066	280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	700	289.55	471.43	0.82939	24.339	0.096462	290
720 304.99 492.06 0.85846 27.220 0.088718 350 730 312.73 502.41 0.87272 28.757 0.085143 400 740 320.50 512.77 0.88682 30.360 0.081751 450 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645 1.507 0.064645	710	297.26	481.74	0.84401	25.748	0.092486	300
730 312.73 502.41 0.87272 28.757 0.085143 740 320.50 512.77 0.88682 30.360 0.081751 750 328.28 523.15 0.90076 32.033 0.078530 760 336.08 533.55 0.91453 33.776 0.075469 770 343.90 543.96 0.92814 35.593 0.072558 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	720	304.99	492.06	0.85846	27.220	0.088718	350
740 320.50 512.77 0.88682 30.360 0.081751 750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	730	312.73	502.41	0.87272	28.757	0.085143	400
750 328.28 523.15 0.90076 32.033 0.078530 500 760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	740	320.50	512.77	0.88682	30.360	0.081751	450
760 336.08 533.55 0.91453 33.776 0.075469 550 770 343.90 543.96 0.92814 35.593 0.072558 600 780 351.73 554.40 0.94160 37.486 0.069790 600 790 359.58 564.84 0.95491 39.456 0.067155 600 800 367.45 575.31 0.96808 41.507 0.064645	750	328.28	523.15	0.90076	32.033	0.078530	500
770 343.90 543.96 0.92814 35.593 0.072558 780 351.73 554.40 0.94160 37.486 0.069790 790 359.58 564.84 0.95491 39.456 0.067155 800 367.45 575.31 0.96808 41.507 0.064645	760	336.08	533.55	0.91453	33.776	0.075469	550
780351.73554.400.9416037.4860.069790790359.58564.840.9549139.4560.067155800367.45575.310.9680841.5070.064645	770	343.90	543.96	0.92814	35.593	0.072558	600
790359.58564.840.9549139.4560.067155800367.45575.310.9680841.5070.064645	780	351.73	554.40	0.94160	37.486	0.069790	
800 367.45 575.31 0.96808 41.507 0.064645	790	359.58	564.84	0.95491	39.456	0.067155	
	800	367.45	575.31	0.96808	41.507	0.064645	

Т	℃	₽°	Ŝ⁰	Pr	V_r
(K)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)		
320	383.23	596.29	0.99398	45.858	0.059974
340	399.08	617.33	1.0193	50.559	0.055725
860	414.99	638.44	1.0442	55.629	0.051851
880	430.96	659.61	1.0685	61.091	0.048313
000	447.00	680.84	1.0924	66.966	0.045077
920	463.10	702.14	1.1158	73.277	0.042110
940	479.25	723.49	1.1387	80.047	0.039386
960	495.47	744.90	1.1613	87.301	0.036882
980	511.74	766.37	1.1834	95.063	0.034576
.000	528.07	787.89	1.2051	103.36	0.032450
020	544.45	809.48	1.2265	112.22	0.030485
040	560.89	831.11	1.2475	121.67	0.028669
.060	577.39	852.80	1.2682	131.74	0.026987
.080	593.94	874.55	1.2885	142.46	0.025427
100	610.54	896.35	1.3085	153.86	0.023980
150	652.27	951.07	1.3571	185.54	0.020789
200	694.33	1006.1	1.4040	222.20	0.018113
250	736.69	1061.5	1.4492	264.42	0.015856
300	779.35	1117.1	1.4928	312.79	0.013940
350	822.30	1173.1	1.5351	367.99	0.012304
400	865.54	1229.3	1.5760	430.72	0.010902
450	909.06	1285.8	1.6156	501.75	9.6928E-03
500	952.84	1342.6	1.6541	581.87	8.6463E-03
550	996.89	1399.6	1.6915	671.97	7.7366E-03
600	1041.2	1456.9	1.7279	772.95	6.9427E-03
.650	1085.7	1514.5	1.7633	885.82	6.2475E-03
700	1130.5	1572.2	1.7978	1011.6	5.6364E-03
750	1175.6	1630.3	1.8315	1151.4	5.0976E-03
800	1220.8	1688.5	1.8643	1306.4	4.6211E-03
850	1266.3	1747.0	1.8963	1477.9	4.1984E-03
900	1312.0	1805.7	1.9276	1667.1	3.8225E-03
.950	1357.9	1864.6	1.9582	1875.5	3.4872E-03
2000	1404.0	1923.7	1.9882	2104.5	3.1874E-03
2100	1496.9	2042.5	2.0461	2630.7	2.6774E-03
2200	1590.5	2162.1	2.1018	3258.8	2.2643E-03
2300	1684.9	2282.5	2.1553	4003.8	1.9267E-03
2400	1779.9	2403.5	2.2068	4881.7	1.6489E-03
2500	1875.6	2525.2	2.2565	5910.3	1.4187E-03
2600	1972.0	2647.5	2.3044	7109.0	1.2267E-03
2700	2069.0	2770.5	2.3508	8498.9	1.0655E-03
2800	2166.5	2894.0	2.3958	10103	9.2956E-04
2900	2264.6	3018.1	2.4393	11946	8.1423E-04
\$000	2363.2	3142.7	2.4815	14055	7.1592E-04
\$500	2863.5	3772.9	2.6758	29683	3.9548E-04
000	3374.5	4413.9	2.8469	57356	2.3391E-04
500	3895.4	5064.7	3.0002	103464	1.4588E-04
5000	4426.5	5725.6	3.1395	176825	9.4840E-05
\$500	4969.0	6398.0	3.2676	289571	6.3705E-05
5000	5525.5	7084.4	3.3871	458547	4.3887E-05

Ideal Gas Property Table:

AIR

MW = 28.970

lb_m/lbmole

AE

Т	Û	Å⁰	s	Pr	$\mathbf{V_r}$
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
536.67	0	36.789	0	1	1
540	0.56481	37.582	0.0014732	1.0217	0.98481
550	2.2632	39.966	0.0058475	1.0890	0.94104
560	3.9651	42.353	0.010149	1.1596	0.89987
570	5.6704	44.744	0.014381	1.2334	0.86111
580	7.3790	47.138	0.018545	1.3107	0.82458
590	9.0910	49.535	0.022643	1.3914	0.79012
600	10.806	51.936	0.026678	1.4758	0.75758
610	12.525	54.340	0.030652	1.5638	0.72682
620	14.247	56.748	0.034566	1.6558	0.69773
630	15.972	59.158	0.038424	1.7516	0.67020
640	17.701	61.572	0.042225	1.8515	0.64410
650	19.432	63.989	0.045973	1.9555	0.61937
660	21.167	66.410	0.049668	2.0638	0.59589
670	22.905	68.833	0.053312	2.1765	0.57360
680	24.646	71.260	0.056908	2.2937	0.55241
690	26.391	73.690	0.060455	2.4155	0.53227
700	28.138	76.123	0.063956	2.5421	0.51310
710	29.889	78.559	0.067411	2.6735	0.49484
720	31.643	80.998	0.070823	2.8099	0.47745
730	33.399	83.441	0.074192	2.9515	0.46087
740	35.159	85.886	0.077519	3.0983	0.44505
750	36.922	88.334	0.080805	3.2504	0.42995
760	38.688	90.786	0.084052	3.4081	0.41552
770	40.457	93.241	0.087261	3.5714	0.40174
780	42.229	95.698	0.090432	3.7405	0.38856
790	44.004	98.159	0.093567	3.9155	0.37595
800	45.782	100.62	0.096665	4.0966	0.36388
810	47.564	103.09	0.099730	4.2839	0.35232
820	49.348	105.56	0.10276	4.4775	0.34125
830	51.135	108.03	0.10576	4.6776	0.33064
840	52.924	110.51	0.10872	4.8843	0.32046
850	54.717	112.98	0.11165	5.0978	0.31069
860	56.513	115.47	0.11456	5.3183	0.30132
870	58.312	117.95	0.11743	5.5458	0.29231
880	60.113	120.44	0.12027	5.7806	0.28366
890	61.918	122.93	0.12308	6.0228	0.27535
900	63.725	125.42	0.12587	6.2725	0.26736
910	65.535	127.92	0.12863	6.5300	0.25967
920	67.348	130.41	0.13136	6.7954	0.25227
930	69.164	132.92	0.13406	7.0688	0.24515
940	70.983	135.42	0.13674	7.3505	0.23829
950	72.805	137.93	0.13939	7.6406	0.23168
960	74.629	140.44	0.14202	7.9392	0.22531
970	76.456	142.95	0.14463	8.2466	0.21918
980	78.286	145.46	0.14721	8.5628	0.21326
990	80.119	147.98	0.14976	8.8882	0.20755
1000	81.955	150.50	0.15230	9.2229	0.20203
1010	83.793	153.03	0.15481	9.5670	0.19671
1020	85.634	155.55	0.15730	9.9208	0.19158
1030	87.478	158.08	0.15976	10.284	0.18662
1040	89.324	160.62	0.16221	10.658	0.18182

(PR) (Btu/lb _m) (Btu/lb _m)	Т	Û⁰	Ĥ⁰	\$°	P _r	$\mathbf{V_r}$
1060 93.026 165.69 0.16704 11.436 0.172708 1080 96.738 170.77 0.17179 12.257 0.164184 1100 100.46 175.87 0.17647 13.122 0.156204 1120 104.19 180.97 0.18106 14.032 0.148725 1140 107.94 186.08 0.18559 14.990 0.141707 1160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.128819 1200 119.23 201.49 0.19876 18.166 0.129084 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.0080020 1400 157.55 253.51 0.23885 32.600 0.045487 1650 166.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 </th <th>(°R)</th> <th>(Btu/lb_m)</th> <th>(Btu/lb_m)</th> <th>(Btu/lb_m °R)</th> <th>)</th> <th></th>	(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m °R))	
1080 96.738 170.77 0.17179 12.257 0.164184 1100 100.46 175.87 0.17647 13.122 0.156204 1120 104.19 180.97 0.18106 14.032 0.148725 1140 107.94 186.08 0.18559 14.990 0.141707 1160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.088667 1400 157.55 253.51 0.23885 32.600 0.0072431 1500 167.28 266.67 0.24808 37.302 0.047451 150 26.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.4	1060	93.026	165.69	0.16704	11.436	0.172708
1100 100.46 175.87 0.17647 13.122 0.156204 1120 104.19 180.97 0.18106 14.032 0.148725 1140 107.94 186.08 0.18559 14.990 0.141707 1160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.128919 1200 119.23 201.49 0.19876 18.166 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26575 48.270 0.03984 1600 196.82 306.50 0.27422 54.616 0.054587 1500 17.01 31314	1080	96.738	170.77	0.17179	12.257	0.164184
1120 104.19 180.97 0.18106 14.032 0.148725 1140 107.94 186.08 0.18559 14.990 0.141707 1160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.128819 1200 119.23 201.49 0.2930 21.186 0.109841 1300 138.26 227.38 0.21948 24.577 0.098863 1350 147.87 240.42 0.22932 28.370 0.088067 1400 157.55 253.51 0.23885 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26874 61.593 0.049916 1700 216.81 33.34 0.29049 69.246 0.045745 1750 226.88 346.84	1100	100.46	175.87	0.17647	13.122	0.156204
1140 107.94 186.08 0.18559 14.990 0.141707 1160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.128919 1200 119.23 201.49 0.19876 18.166 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.0880620 14400 157.55 253.51 0.23885 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26575 48.270 0.038654 1700 216.81 333.34 0.29042 69.246 0.045745 1750 226.88 346.42<	1120	104.19	180.97	0.18106	14.032	0.148725
11160 111.69 191.21 0.19005 15.997 0.135115 1180 115.46 196.35 0.19444 17.055 0.128919 1200 119.23 201.49 0.19876 18.166 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1440 157.55 253.51 0.23883 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 0.27422 54.616 0.054587 1750 226.88 346.84 0.29832 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038634 1900 257.42 387.67 </td <td>1140</td> <td>107.94</td> <td>186.08</td> <td>0.18559</td> <td>14.990</td> <td>0.141707</td>	1140	107.94	186.08	0.18559	14.990	0.141707
1180 115.46 196.35 0.19444 17.055 0.128919 1200 119.23 201.49 0.19876 18.166 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22322 28.370 0.088667 1400 157.55 253.51 0.23855 32.600 0.005746 1550 167.28 266.67 0.24808 37.302 0.045745 1550 186.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 0.27422 54.616 0.054587 1650 206.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.34 0.29049 69.246 0.045745 1750 226.88 346.84 0.29832 77.622 0.04209 1800 237.01 361.4154 </td <td>1160</td> <td>111.69</td> <td>191.21</td> <td>0.19005</td> <td>15.997</td> <td>0.135115</td>	1160	111.69	191.21	0.19005	15.997	0.135115
1200 119.23 201.49 0.19876 18.166 0.123088 1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.088667 1400 157.55 253.51 0.23885 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065784 1600 196.82 306.50 0.27422 54.616 0.054587 1750 226.88 346.84 0.29832 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.030439 2000 278.04 415.14 0.33479 132.15 0.028201 2100 298.86 442.81 <td>1180</td> <td>115.46</td> <td>196.35</td> <td>0.19444</td> <td>17.055</td> <td>0.128919</td>	1180	115.46	196.35	0.19444	17.055	0.128919
1250 128.72 214.40 0.20930 21.186 0.109941 1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.088667 1400 157.55 253.51 0.23885 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1600 196.82 306.50 0.27422 54.616 0.045745 1700 216.81 333.34 0.29049 69.246 0.045745 1750 226.88 346.84 0.2932 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 <td>1200</td> <td>119.23</td> <td>201.49</td> <td>0.19876</td> <td>18.166</td> <td>0.123088</td>	1200	119.23	201.49	0.19876	18.166	0.123088
1300 138.26 227.38 0.21948 24.577 0.098563 1350 147.87 240.42 0.22932 28.370 0.088667 1400 157.55 253.51 0.23885 32.600 0.080020 1450 167.28 266.67 0.24808 37.302 0.072431 1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 0.27422 54.616 0.045487 1650 206.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.34 0.29049 69.246 0.04503 1800 237.01 360.40 0.30596 86.771 0.03863 1850 247.19 374.01 0.31341 96.742 0.03633 1900 257.42 387.67 0.32070 107.59 0.028201 2010 298.86 442.81	1250	128.72	214.40	0.20930	21.186	0.109941
1350147.87240.420.2293228.3700.0886671400157.55253.510.2388532.6000.0800201450167.28266.670.2480837.3020.0724311500177.07279.890.2570542.5120.0657461550186.92293.170.2657548.2700.0598341600196.82306.500.2742254.6160.0545871650206.79319.900.2824661.5930.0499161700216.81333.340.2904969.2460.0457451750226.88346.840.2983277.6220.0420091800237.01360.400.3059686.7710.0386541850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329062100278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.010872800449.55641	1300	138.26	227.38	0.21948	24.577	0.098563
1400157.55253.510.2388532.6000.0800201450167.28266.670.2480837.3020.0724311500177.07279.890.2570542.5120.0657461550186.92293.170.2657548.2700.0598341600196.82306.500.2742254.6160.0545871650206.79319.900.2824661.5930.0499161700216.81333.340.2904969.2460.0457451750226.88346.840.2983277.6220.0420091800237.01360.400.3059686.7710.0386541850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329061950267.71401.380.32782119.370.0304392000278.04415.140.34729160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04 <td< td=""><td>1350</td><td>147.87</td><td>240.42</td><td>0.22932</td><td>28.370</td><td>0.088667</td></td<>	1350	147.87	240.42	0.22932	28.370	0.088667
1450167.28266.670.2480837.3020.0724311500177.07279.890.2570542.5120.0657461550186.92293.170.2657548.2700.0598341600196.82306.500.2742254.6160.0545871650206.79319.900.2824661.5930.0499161700216.81333.340.2904969.2460.0457451750226.88346.840.2983277.6220.0420091800237.01360.400.3059686.7710.0386541850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329061950267.71401.380.32782119.370.0304392000278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.010872800449.55641.490.42986528.890.00986472900471.7167	1400	157.55	253.51	0.23885	32.600	0.080020
1500 177.07 279.89 0.25705 42.512 0.065746 1550 186.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 0.27422 54.616 0.054587 1650 206.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.34 0.29049 69.246 0.045745 1750 226.88 346.84 0.29832 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 0.3479 132.15 0.028201 2100 298.86 442.81 0.34829 160.91 0.021087 2300 341.05 498.72 0.37372 233.17 0.018380 2400 362.42 526.94 <td>1450</td> <td>167.28</td> <td>266.67</td> <td>0.24808</td> <td>37.302</td> <td>0.072431</td>	1450	167.28	266.67	0.24808	37.302	0.072431
1550 186.92 293.17 0.26575 48.270 0.059834 1600 196.82 306.50 0.27422 54.616 0.054587 1650 206.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.34 0.29049 69.246 0.045745 1750 226.88 346.84 0.29832 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 0.33479 132.15 0.02201 2100 298.86 442.81 0.34829 160.91 0.021887 2300 341.05 498.72 0.37372 233.17 0.018380 2400 362.42 526.94 0.38573 277.83 0.011087 2800 449.55 641.49 <td>1500</td> <td>177.07</td> <td>279.89</td> <td>0.25705</td> <td>42.512</td> <td>0.065746</td>	1500	177.07	279.89	0.25705	42.512	0.065746
1600196.82306.50 0.27422 54.616 0.054587 1650206.79319.90 0.28246 61.593 0.049916 1700216.81333.34 0.29049 69.246 0.045745 1750226.88346.84 0.29832 77.622 0.042009 1800237.01360.40 0.30596 86.771 0.038654 1850247.19374.01 0.31341 96.742 0.032906 1950267.71401.38 0.32782 119.37 0.030439 2000278.04415.14 0.33479 132.15 0.028201 2100298.86442.81 0.34829 160.91 0.024318 2200319.86470.67 0.36125 194.40 0.021087 2300341.05498.72 0.37372 233.17 0.018380 2400362.42526.94 0.38573 277.83 0.016096 2500383.96555.34 0.39732 329.01 0.014159 2600449.55641.49 0.42986 528.89 0.0098647 2900471.71670.51 0.44004 613.60 0.0088066 3000494.02699.67 0.44993 708.79 0.0078867 3100516.46728.97 0.45954 815.41 0.005308 3300561.73787.95 0.47797 1067.0 0.0052176 3400584.55 817.62 0.48683 1214.2 0.0024754 3500<	1550	186.92	293.17	0.26575	48.270	0.059834
1650 206.79 319.90 0.28246 61.593 0.049916 1700 216.81 333.34 0.29049 69.246 0.045745 1750 226.88 346.84 0.29832 77.622 0.042009 1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.035633 1900 257.42 387.67 0.32070 107.59 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 0.33479 132.15 0.028201 2100 298.86 442.81 0.34829 160.91 0.024318 2200 319.86 470.67 0.36125 194.40 0.021087 2300 341.05 498.72 0.37372 233.17 0.018380 2400 362.42 526.94 0.38573 277.83 0.011087 2800 495.5 641.49 <td>1600</td> <td>196.82</td> <td>306.50</td> <td>0.27422</td> <td>54.616</td> <td>0.054587</td>	1600	196.82	306.50	0.27422	54.616	0.054587
1700216.81333.340.2904969.2460.0457451750226.88346.840.2983277.6220.0420091800237.01360.400.3059686.7710.0386541850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329061950267.71401.380.32782119.370.0043992000278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00251763400584.55817.620.486831214.20.0025176350067.48847.410.495461377.20.00473543600630.53<	1650	206.79	319.90	0.28246	61.593	0.049916
1750226.88346.840.2983277.6220.0420091800237.01360.400.3059686.7710.0386541850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329061950267.71401.380.32782119.370.0304392000278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00251763500607.48847.410.495461377.20.00430753700653.67907.310.512111755.70.00328364000723.7097.900.535652475.10.00328364000723.70	1700	216.81	333.34	0.29049	69.246	0.045745
1800 237.01 360.40 0.30596 86.771 0.038654 1850 247.19 374.01 0.31341 96.742 0.035633 1900 257.42 387.67 0.32070 107.59 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 0.33479 132.15 0.028201 2100 298.86 442.81 0.34829 160.91 0.024318 2200 319.86 470.67 0.36125 194.40 0.021087 2300 341.05 498.72 0.37372 233.17 0.018380 2400 362.42 526.94 0.38573 277.83 0.016096 2500 383.96 555.34 0.39732 329.01 0.014159 2600 405.67 583.90 0.40852 387.42 0.012505 2700 427.53 612.62 0.41936 453.78 0.011087 2800 449.55 641.49 <td>1750</td> <td>226.88</td> <td>346.84</td> <td>0.29832</td> <td>77.622</td> <td>0.042009</td>	1750	226.88	346.84	0.29832	77.622	0.042009
1850247.19374.010.3134196.7420.0356331900257.42387.670.32070107.590.0329061950267.71401.380.32782119.370.0304392000278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.0078403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.520141973.80.00328363700653.67907.310.512111755.70.00328363600676.92 <td>1800</td> <td>237.01</td> <td>360.40</td> <td>0.30596</td> <td>86.771</td> <td>0.038654</td>	1800	237.01	360.40	0.30596	86.771	0.038654
1900 257.42 387.67 0.32070 107.59 0.032906 1950 267.71 401.38 0.32782 119.37 0.030439 2000 278.04 415.14 0.33479 132.15 0.028201 2100 298.86 442.81 0.34829 160.91 0.024318 2200 319.86 470.67 0.36125 194.40 0.021087 2300 341.05 498.72 0.37372 233.17 0.018380 2400 362.42 526.94 0.38573 277.83 0.016096 2500 383.96 555.34 0.39732 329.01 0.014159 2600 405.67 583.90 0.40852 387.42 0.012505 2700 427.53 612.62 0.41936 453.78 0.011087 2800 449.55 641.49 0.42986 528.89 0.0098647 2900 471.71 670.51 0.44004 613.60 0.0088066 3000 594.73 787.95<	1850	247.19	374.01	0.31341	96.742	0.035633
1950267.71401.38 0.32782 119.37 0.030439 2000278.04415.14 0.33479 132.15 0.028201 2100298.86442.81 0.34829 160.91 0.024318 2200319.86470.67 0.36125 194.40 0.021087 2300341.05498.72 0.37372 233.17 0.018380 2400362.42526.94 0.38573 277.83 0.016096 2500383.96555.34 0.39732 329.01 0.014159 2600405.67583.90 0.40852 387.42 0.012505 2700427.53612.62 0.41936 453.78 0.011087 2800449.55641.49 0.42986 528.89 0.0098647 2900471.71670.51 0.44004 613.60 0.0088066 3000494.02699.67 0.44993 708.79 0.0078867 3100516.46728.97 0.45954 815.41 0.00052176 3200539.04758.39 0.46888 934.48 0.0063808 3300561.73787.95 0.47797 1067.0 0.0057627 3400584.55817.62 0.48683 1214.2 0.0022176 3500607.48847.41 0.49546 1377.2 0.0047354 3600630.53877.31 0.50389 1557.3 0.0032836 3700653.67907.31 0.51211 1755.7 0.0032269 3800676.92937.41<	1900	257.42	387.67	0.32070	107.59	0.032906
2000278.04415.140.33479132.150.0282012100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.0078403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.51211175.70.00392693800676.92937.410.527982213.10.00328364000723.70997.900.535652475.10.0031144500842.101150.60.571614182.30.00200495000962.19 </td <td>1950</td> <td>267.71</td> <td>401.38</td> <td>0.32782</td> <td>119.37</td> <td>0.030439</td>	1950	267.71	401.38	0.32782	119.37	0.030439
2100298.86442.810.34829160.910.0243182200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.0078403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083	2000	278.04	415.14	0.33479	132.15	0.028201
2200319.86470.670.36125194.400.0210872300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00328364000723.70997.900.535652475.10.00328364000723.70997.900.535652475.10.00328364000723.70997.900.535652475.10.003204955001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-047000145	2100	298.86	442.81	0.34829	160.91	0.024318
2300341.05498.720.37372233.170.0183802400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00328364000723.70997.900.535652475.10.00328364000723.70997.900.535652475.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001	2200	319.86	470.67	0.36125	194 40	0.021087
2400362.42526.940.38573277.830.0160962500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00392693800676.92937.410.520141973.80.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0466001205.81617.10.66104154187.2513E-0465001328.81774.40.68621222585.4415E-047000	2300	341.05	498 72	0 37372	233.17	0.018380
2500352.12217.130.50112217.1650.1010902500383.96555.340.39732329.010.0141592600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00392693800676.92937.410.520141973.80.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.002004955001083.51460.60.63380103619.8909E-0460001205.81617.10.66104154187.2513E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-047500	2400	362.42	526.94	0 38573	277.83	0.016096
2600263.5263.5263.5263.5263.5263.5263.52600405.67583.900.40852387.420.0125052700427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0466001205.81617.10.66104154187.2513E-04	2500	383.96	555 34	0.39732	329.01	0.014159
2000427.53612.620.41936453.780.0110872800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-048000<	2600	405 67	583.90	0 40852	387.42	0.012505
2000121.020111020111020111032800449.55641.490.42986528.890.00986472900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00328364000723.70997.900.535652475.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	2700	427 53	612.62	0 41936	453 78	0.011087
2900471.71670.510.44004613.600.00880663000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00708403200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	2800	449.55	641.49	0.42986	528.89	0.0098647
3000494.02699.670.44993708.790.00788673100516.46728.970.45954815.410.00788673200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	2900	471 71	670 51	0 44004	613.60	0.0088066
3100 516.46 728.97 0.45954 815.41 0.0070840 3200 539.04 758.39 0.46888 934.48 0.0063808 3300 561.73 787.95 0.47797 1067.0 0.0057627 3400 584.55 817.62 0.48683 1214.2 0.0052176 3500 607.48 847.41 0.49546 1377.2 0.0047354 3600 630.53 877.31 0.50389 1557.3 0.0043075 3700 653.67 907.31 0.51211 1755.7 0.0039269 3800 676.92 937.41 0.52014 1973.8 0.0032836 4000 723.70 997.90 0.53565 2475.1 0.0030114 4500 842.10 1150.6 0.57161 4182.3 0.0020049 5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8	3000	494.02	699.67	0.44993	708 79	0.0078867
3200539.04758.390.46888934.480.00638083300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3100	516.46	728.97	0 45954	815.41	0.0070840
3300561.73787.950.477971067.00.00576273400584.55817.620.486831214.20.00521763500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.0032693800676.92937.410.520141973.80.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3200	539.04	758.39	0.46888	934.48	0.0063808
3400 584.55 817.62 0.48683 1214.2 0.0052176 3500 607.48 847.41 0.49546 1377.2 0.0047354 3600 630.53 877.31 0.50389 1557.3 0.0043075 3700 653.67 907.31 0.51211 1755.7 0.0039269 3800 676.92 937.41 0.52014 1973.8 0.0032836 4000 723.70 997.90 0.53565 2475.1 0.0030114 4500 842.10 1150.6 0.57161 4182.3 0.0020049 5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0	3300	561.73	787.95	0.47797	1067.0	0.0057627
3500607.48847.410.495461377.20.00473543600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3400	584.55	817.62	0.48683	1214.2	0.0052176
3600630.53877.310.503891557.30.00430753700653.67907.310.512111755.70.00392693800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0466001205.81617.10.66104154187.2513E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3500	607.48	847.41	0.49546	1377.2	0.0047354
3700 653.67 907.31 0.51211 1755.7 0.0039269 3800 676.92 937.41 0.52014 1973.8 0.0035873 3900 700.27 967.61 0.52798 2213.1 0.0032836 4000 723.70 997.90 0.53565 2475.1 0.0030114 4500 842.10 1150.6 0.57161 4182.3 0.0020049 5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	3600	630.53	877.31	0.50389	1557.3	0.0043075
3800676.92937.410.520141973.80.00358733900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0460001205.81617.10.66104154187.2513E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3700	653.67	907.31	0.51211	1755.7	0.0039269
3900700.27967.610.527982213.10.00328364000723.70997.900.535652475.10.00301144500842.101150.60.571614182.30.00200495000962.191304.90.604136721.71.3861E-0355001083.51460.60.63380103619.8909E-0460001205.81617.10.66104154187.2513E-0465001328.81774.40.68621222585.4415E-0470001452.21932.10.70959313034.1668E-0475001576.02090.20.73140430323.2476E-0480001700.22248.60.75185579902.5706E-04	3800	676.92	937.41	0.52014	1973.8	0.0035873
4000 723.70 997.90 0.53565 2475.1 0.0030114 4500 842.10 1150.6 0.57161 4182.3 0.0020049 5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	3900	700.27	967.61	0.52798	2213.1	0.0032836
4500 842.10 1150.6 0.57161 4182.3 0.0020049 5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	4000	723.70	997.90	0.53565	2475.1	0.0030114
5000 962.19 1304.9 0.60413 6721.7 1.3861E-03 5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	4500	842.10	1150.6	0.57161	4182.3	0.0020049
5500 1083.5 1460.6 0.63380 10361 9.8909E-04 6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	5000	962.19	1304 9	0.60413	6721 7	1.3861E-03
6000 1205.8 1617.1 0.66104 15418 7.2513E-04 6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	5500	1083.5	1460.6	0.63380	10361	9.8909E-04
6500 1328.8 1774.4 0.68621 22258 5.4415E-04 7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	6000	1205.8	1617 1	0.66104	15418	7.2513E-04
7000 1452.2 1932.1 0.70959 31303 4.1668E-04 7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	6500	1328.8	1774.4	0.68621	222.58	5.4415E-04
7500 1576.0 2090.2 0.73140 43032 3.2476E-04 8000 1700.2 2248.6 0.75185 57990 2.5706E-04	7000	1452.2	1932.1	0.70959	31303	4.1668E-04
8000 1700.2 2248.6 0.75185 57990 2.5706E-04	7500	1576.0	2090.2	0.73140	43032	3.2476E-04
	8000	1700.2	2248.6	0.75185	57990	2.5706E-04

Ideal Gas Property Table: C

CO

MW = 28.013

lb_m/lbmole

AE

Т	ť	н°	Ś	Pr	Vr
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
536.67	0	38.045	0	1	1
540	0.59148	38.873	0.0015372	1.0219	0.98462
550	2.3671	41.357	0.0060962	1.0898	0.94039
560	4.1422	43.841	0.010572	1.1608	0.89891
570	5.9168	46.325	0.014968	1.2351	0.85995
580	7.6912	48.808	0.019287	1.3127	0.82332
590	9.4656	51.292	0.023532	1.3937	0.78883
600	11.240	53.775	0.027706	1.4782	0.75633
610	13.015	56.259	0.031812	1.5663	0.72567
620	14.791	58.744	0.035852	1.6582	0.69671
630	16.567	61.229	0.039828	1.7539	0.66933
640	18.345	63.715	0.043743	1.8534	0.64342
650	20.123	66.202	0.047600	1.9571	0.61887
660	21.902	68.690	0.051399	2.0648	0.59561
670	23.683	71.180	0.055142	2.1768	0.57353
680	25.465	73.671	0.058833	2.2931	0.55256
690	27.248	76.163	0.062471	2.4139	0.53264
700	29.033	78.657	0.066060	2.5392	0.51368
710	30.820	81.153	0.069600	2.6692	0.49564
720	32.609	83.651	0.073093	2.8040	0.47846
730	34.399	86.150	0.076540	2.9438	0.46208
740	36.192	88.651	0.079944	3.0885	0.44645
750	37.986	91.155	0.083304	3.2384	0.43154
760	39.783	93.660	0.086623	3.3936	0.41729
770	41.581	96.168	0.089901	3.5543	0.40368
780	43.382	98.678	0.093139	3.7204	0.39066
790	45.186	101.19	0.096340	3.8922	0.37820
800	46.991	103.70	0.099503	4.0698	0.36628
810	48.800	106.22	0.10263	4.2533	0.35485
820	50.610	108.74	0.10572	4.4429	0.34391
830	52.423	111.26	0.108/8	4.638/	0.33341
840 850	54.239	115.79	0.11180	4.8408	0.32334
850	57.057	110.52	0.11479	5.0494	0.31367
800	50 702	121.29	0.11//3	5.2040	0.30438
870	59.702 61.520	121.30	0.12008	5.4800	0.29540
800	62 259	125.91	0.12556	5.0515	0.28089
000	65 100	120.43	0.12043	6 1047	0.27803
900	67.025	120.99	0.12928	6 1 1 5 3	0.27072
920	68 863	134.08	0.13210	6 7034	0.20508
930	70 704	136.63	0.13764	6 9692	0.23373
940	72 548	139.19	0.13701	7 2428	0.21003
950	74 395	141 74	0.14307	7 5245	0.23526
960	76 244	144 30	0.14575	7.8143	0.23320
970	78.097	146.86	0.14375	8 1125	0.22092
980	79.953	149.43	0.15103	8 4 1 9 1	0.22200
990	81.812	151.99	0.15364	8 7345	0.21000
1000	83.674	154.57	0.15623	9.0588	0.20570
1010	85.539	157.14	0.15879	9.3920	0.20038
1020	87.408	159.72	0.16133	9.7345	0.19524
1030	89.279	162.30	0.16384	10.086	0.19028
1040	91.154	164.88	0.16634	10.448	0.18548

Т	\mathbf{U}^{o}	H	S	P _r	V _r
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m °R)	
1060	94.913	170.06	0.17127	11.200	0.17634
1080	98.685	175.25	0.17612	11.994	0.16779
1100	102.47	180.45	0.18089	12.829	0.15977
1120	106.27	185.67	0.18559	13.708	0.15224
1140	110.08	190.90	0.19022	14.633	0.14517
1160	113.90	196.14	0.19478	15.605	0.13851
1180	117.74	201.39	0.19927	16.626	0.13225
1200	121.59	206.66	0.20370	17.697	0.12635
1250	131.28	219.89	0.21450	20.610	0.11301
1300	141.05	233.21	0.22494	23.881	0.10143
1350	150.90	246.61	0.23506	27.543	0.091331
1400	160.84	260.09	0.24486	31.629	0.082478
1450	170.86	273.65	0.25438	36.175	0.074689
1500	180.96	287.30	0.26364	41.218	0.067811
1550	191.14	301.03	0.27264	46.799	0.061715
1600	201.41	314.83	0.28141	52.960	0.056295
1650	211.75	328.72	0.28995	59.744	0.051461
1700	222.17	342.68	0.29829	67.199	0.047139
1750	232.66	356.72	0.30642	75.373	0.043263
1800	243.22	370.83	0.31437	84.317	0.039779
1850	253.86	385.00	0.32214	94.083	0.036640
1900	264.56	399.25	0.32974	104.73	0.033805
1950	275.33	413.56	0.33718	116.31	0.031240
2000	286.15	427.94	0.34446	128.88	0.028915
2100	307.99	456.86	0.35857	157.27	0.024881
2200	330.04	486.00	0.37212	190.41	0.021529
2300	352.27	515.32	0.38515	228.84	0.018728
2400	374.67	544.81	0.39771	273.17	0.016371
2500	397.26	574.49	0.40982	324.06	0.014375
2600	419.99	604.31	0.42152	382.20	0.012676
2700	442.87	634.28	0.43283	448.31	0.011222
2800	465.88	664.37	0.44377	523.15	0.0099729
2900	489.00	694.59	0.45437	607.55	0.0088943
3000	512.24	724.91	0.46465	702.36	0.0079589
3100	535.57	755.34	0.47463	808.49	0.0071446
3200	559.01	785.86	0.48432	926.91	0.0064329
3300	582.53	816.47	0.49374	1058.6	0.0058085
3400	606.13	847.16	0.50290	1204.7	0.0052590
3500	629.81	877.93	0.51182	1366.2	0.0047736
3600	653.56	908.77	0.52051	1544.3	0.0043437
3700	677.38	939.68	0.52898	1740.3	0.0039616
3800	701.27	970.66	0.53724	1955.4	0.0036211
3900	725.22	1001.7	0.54530	2190.9	0.0033169
4000	749.23	1032.8	0.55318	2448.3	0.0030443
4500	870.07	1189.1	0.58999	4115.1	0.0020376
5000	992.03	1346.5	0.62315	6570.0	1.4181E-03
5500	1114.9	1504.8	0.65333	10057	1.0191E-03
6000	1238.6	1663.9	0.68102	14862	7.5227E-04
6500	1362.9	1823.7	0.70660	21318	5.6814E-04
7000	1487.8	1984.0	0.73036	29808	4.3757E-04
7500	1613.2	2144.9	0.75256	40767	3.4281E-04
8000	1739.0	2306.2	0.77338	54682	2.7261E-04

Page 575

,

Ideal Gas Property Table: CC

CO₂

MW = 44.010

lb_m/lbmole

4	E	

Т	Ú	Ħ "	ڰ	P _r	V _r
(°R)	(Btu/lb _m)	(Btu/lb_m)	(Btu/lb _m ^o R)		
536.67	0	24.216	0	1	1
540	0.52155	24.888	0.0012480	1.0280	0.97876
550	2.0972	26.915	0.0049671	1.1164	0.91801
560	3.6869	28.956	0.0086445	1.2112	0.86155
570	5.2903	31.011	0.012281	1.3128	0.80903
580	6.9073	33.079	0.015878	1.4217	0.76015
590	8.5375	35.160	0.019436	1.5384	0.71463
600	10.181	37.255	0.022957	1.6632	0.67220
610	11.837	39.362	0.026440	1.7967	0.63263
620	13.506	41.483	0.029887	1.9393	0.59570
630	15.187	43.615	0.033300	2.0917	0.56122
640	16.881	45.760	0.036678	2.2543	0.52901
650	18.587	47.917	0.040022	2.4277	0.49889
660	20.305	50.087	0.043334	2.6126	0.47072
670	22.035	52.268	0.046614	2.8096	0.44435
680	23.776	54.460	0.049862	3.0193	0.41966
690	25.529	56.664	0.053080	3.2424	0.39652
700	27.294	58.880	0.056268	3.4798	0.37483
710	29.069	61.107	0.059426	3.7321	0.35448
720	30.856	63.345	0.062556	4.0002	0.33539
730	32.653	65.593	0.065658	4.2848	0.31746
740	34.462	67.853	0.068733	4.5869	0.30061
750	36.281	70.123	0.071780	4.9074	0.28477
760	38.110	72.404	0.074801	5 2472	0.26988
770	39.950	74.696	0.077796	5 6073	0.25587
780	41.801	76,997	0.080766	5 9888	0.24269
790	43 661	79 309	0.083711	6 3927	0.23027
800	45.532	81.631	0.086632	6 8202	0.21857
810	47 413	83 963	0.089529	7 2724	0.20754
820	49 303	86 305	0.092402	7 7 5 0 5	0 19714
830	51 204	88 656	0.095252	8 2 5 5 9	0.19711
840	53 113	91.017	0.098080	8 7898	0.17807
850	55.033	93 388	0 10089	9 3 5 3 7	0.16933
860	56 962	95 768	0.10367	9 9489	0.16107
870	58,900	98 157	0.10507	10 577	0.15327
880	60 847	100 56	0 10917	11 239	0.14589
890	62.804	102.96	0.11189	11.239	0.13892
900	64 769	105.38	0.11459	12.674	0.13232
910	66 744	107.81	0.11727	13 450	0.12607
920	68 727	110.24	0 11994	14 267	0.12016
930	70 719	112.68	0.12258	15 127	0.11456
940	72 720	115.14	0.12520	16.032	0.10925
950	74 730	117.60	0.12780	16 984	0.10422
960	76 747	120.07	0.12/00	17 986	0.099456
970	78 774	120.07	0.13296	19.039	0.094934
980	80 808	125.03	0.13551	20.146	0.090644
990	82,851	127.52	0.13804	21 308	0.086572
1000	84 902	130.03	0 14055	22 530	0.082706
1010	86 961	132 54	0 14305	22.330	0.002700
1020	89.028	135.05	0.14553	25.012	0.075548
1020	91 102	137.58	0 14799	26.570	0.072234
1040	93 185	140 11	0.15044	28.051	0.069083
1040	22.105	110.11	0.12077	20.001	0.007003

Т	℃	₽°	\$⁰	Pr	V_r
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)	
1060	97.373	145.20	0.15529	31.233	0.063239
1080	101.59	150.33	0.16008	34.728	0.057948
1100	105.84	155.48	0.16480	38.562	0.053152
1120	110.12	160.66	0.16947	42.764	0.048802
1140	114.42	165.86	0.17408	47.363	0.044850
1160	118.76	171.10	0.17863	52.392	0.041256
1180	123.12	176.36	0.18313	57.884	0.037985
1200	127.51	181.65	0.18758	63.878	0.035004
1250	138.59	194.99	0.19847	81.315	0.028644
1300	149.83	208.49	0.20905	102.81	0.023560
1350	161.22	222.13	0.21935	129.17	0.019474
1400	172.75	235.92	0.22938	161.31	0.016171
1450	184.41	249.84	0.23915	200.31	0.013489
1500	196.20	263.89	0.24867	247.38	0.011299
1550	208.11	278.05	0.25796	303.94	0.0095026
1600	220.14	292.34	0.26703	3/1.60	0.0080231
1650	232.28	306.73	0.27589	452.19	0.0067992
1700	244.52	321.23	0.28454	547.80	0.0057825
1750	256.86	335.82	0.29301	660.79	0.0049347
1800	269.29	350.51	0.30128	793.82	0.0042251
1850	281.81	365.29	0.30938	949.89	0.0036290
1900	294.42	380.16	0.31/31	1132.4	0.0031265
1950	307.12	395.11	0.32508	1345.0	0.0027015
2000	245 (5	410.13	0.33208	1592.0	0.0023408
2100	343.05	440.41	0.34745	2208.6	1.7717E-03
2200	3/1.08	4/0.95	0.30100	3026.0	1.354/E-03
2300	397.90 424.49	522.78	0.37333	4098.5	1.045/E-03
2400	424.48	564.02	0.38830	7286.0	8.1428E-04
2500	431.22	505.46	0.40151	/280.0	6.3935E-04
2000	4/0.14 505 24	627.08	0.41504	9373.3	3.0394E-04
2700	532.51	658.85	0.42338	12474	4.0333E-04
2000	550.02	690.78	0.43713	20655	2.6162E.04
2900	587.46	722.83	0.45920	20035	2.0102E-04 2.1271E-04
3100	615.14	755.02	0.45720	33205	1.7396E.04
3200	642.93	787 32	0.40775	41678	1.7390E-04
3300	670.83	819 73	0.48998	51988	1.4507E-04
3400	698.83	852.25	0.49969	64465	9.8276E-05
3500	726.93	884.86	0.50914	79489	8 2046E-05
3600	755 12	917 56	0.50911	97492	6.8806E-05
3700	783.39	950.35	0.52734	118968	5 7952E-05
3800	811 75	983.22	0.52751	144474	4 9010E-05
3900	840.18	1016.2	0.53616	174643	4 1611E-05
4000	868.68	1049.2	0.55302	210185	3 5461E-05
4500	1012.2	1215.2	0.59213	500088	1.6767E-05
5000	1157.0	1382.7	0.62741	1.0929E+06	8.5247E-06
5500	1303.0	1551.2	0.65954	2.2274E+06	4.6010E-06
6000	1450.0	1720.7	0.68904	4.2824E+06	2.6107E-06
6500	1597.7	1891.0	0.71630	7.8361E+06	1.5456E-06
7000	1746.2	2062.1	0.74165	1.3743E+07	9.4908E-07
7500	1895.3	2233.8	0.76534	2.3234E+07	6.0150E-07
8000	2045.1	2406.1	0.78759	3.8035E+07	3.9192E-07
Ideal Gas Property Table: H₂

MW = 2.016

lb_m/lbmole

AE

Т	Ů	ф	s	Pr	V _r
(^o R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
536.67	0	528.65	0	1	1
540	8.0991	540.03	0.021138	1.0217	0.98484
550	32.449	574.23	0.083893	1.0889	0.94117
560	56.838	608.47	0.14559	1.1593	0.90011
570	81.263	642.75	0.20625	1.2329	0.86146
580	105.72	677.06	0.26592	1.3099	0.82505
590	130.21	711.40	0.32463	1.3903	0.79072
600	154.73	745.76	0.38239	1.4743	0.75833
610	179.27	780.16	0.43924	1.5619	0.72773
620	203.84	814.57	0.49520	1.6532	0.69881
630	228.42	849.01	0.55030	1.7483	0.67145
640	253.03	883.47	0.60457	1.8473	0.64555
650	277.66	917.95	0.65802	1.9503	0.62101
660	302.30	952.44	0.71069	2.0574	0.59773
670	326.96	986.95	0.76258	2.1687	0.57565
680	351.63	1021.5	0.81373	2.2843	0.55468
690	376.32	1056.0	0.86415	2.4043	0.53476
700	401.02	1090.6	0.91386	2.5287	0.51581
710	425.72	1125.1	0.96288	2.6577	0.49778
720	450.44	1159.7	1.0112	2.7915	0.48061
730	475.17	1194.3	1.0589	2.9299	0.46426
740	499.91	1228.9	1.1060	3.0733	0.44866
750	524.65	1263.4	1.1524	3.2216	0.43379
760	549.40	1298.0	1.1982	3.3751	0.41959
770	574.16	1332.7	1.2435	3.5337	0.40603
780	598.92	1367.3	1.2881	3.6976	0.39307
790	623.69	1401.9	1.3323	3.8669	0.38068
800	648.47	1436.5	1.3758	4.0417	0.36882
810	673.25	1471.1	1.4188	4.2222	0.35747
820	698.03	1505.8	1.4613	4.4083	0.34661
830	722.82	1540.4	1.5033	4.6003	0.33619
840	747.62	15/5.1	1.5448	4.7982	0.32621
850	7/2.41	1609./	1.5858	5.0021	0.31663
860	191.22	1644.4	1.6263	5.2122	0.30/45
870	822.02	16/9.0	1.6664	5.4286	0.29862
880	846.83	1/13./	1.7060	5.6513	0.29015
890	8/1.64	1792.0	1.7452	5.8806	0.28201
900	896.46	1/83.0	1.7839	6.1164	0.2/418
910	921.28	181/./	1.8222	0.3389	0.20005
920	946.10	1852.4	1.8001	6.0083	0.25941
930	970.95	1007.0	1.09/0	0.8047	0.23244
940	995.70	1921./	1.934/	7.1281	0.24572
930	1020.0	1930.4	2.0077	7.3987	0.23920
960	1045.4	1991.1	2.0077	7.0/00	0.23302
970	10/0.5	2025.8	2.0437	7.9019 0.2540	0.22701
980	1095.1	2000.3	2.0793	0.2340	0.22121
990 1000	1120.0	2093.2	2.1143	0.3333	0.21562
1000	1144.8 1160 7	2129.9	2.1494	8.803/ 0.1700	0.21022
1010	1109./	2104.0	2.1839	9.1/99	0.20501
1020	1194.5	2199.5	2.2181	9.5042	0.19998
1030	1219.4	2234.0	2.2520	9.8367	0.19511
1040	1244.3	2208.7	2.2833	10.1//	0.19041

Т	₽°	₽°	\$ ⁰	Pr	V_r
(⁰ R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m °R)	
1060	1294.0	2338.2	2.3517	10.884	0.18147
1080	1343.8	2407.7	2.4166	11.626	0.17310
1100	1393.6	2477.1	2.4803	12.403	0.16525
1120	1443.4	2546.7	2.5430	13.218	0.15789
1140	1493.2	2616.2	2.6045	14.070	0.15098
1160	1543.1	2685.8	2.6650	14.961	0.14447
1180	1593.0	2755.4	2.7245	15.892	0.13835
1200	1642.9	2825.0	2.7830	16.865	0.13258
1250	1767.9	2999.2	2.9253	19.485	0.11954
1300	1893.1	3173.7	3.0621	22.389	0.10819
1350	2018.6	3348.5	3.1940	25.597	0.098274
1400	2144.4	3523.5	3.3213	29.129	0.089557
1450	2270.5	3698.9	3.4444	33.006	0.081860
1500	2397.1	3874.7	3.5636	37.250	0.075034
1550	2524.0	4050.8	3.6791	41.885	0.068954
1600	2651.3	4227.4	3.7913	46.936	0.063520
1650	2779.1	4404.5	3.9003	52.426	0.058645
1700	2907.5	4582.1	4.0063	58.383	0.054257
1750	3036.3	4760.2	4.1095	64.835	0.050295
1800	3165.7	4938.8	4.2102	71.810	0.046707
1850	3295.7	5118.0	4.3084	79.338	0.043449
1900	3426.2	5297.8	4.4043	87.451	0.040484
1950	3557.4	5478.3	4.4980	96.182	0.037777
2000	3689.2	5659.3	4.5897	105.56	0.035302
2100	3954.9	6023.5	4.7674	126.43	0.030951
2200	4223.2	6390.4	4.9380	150.34	0.027266
2300	4494.4	6760.1	5.1024	177.64	0.024126
2400	4768.5	7132.6	5.2609	208.66	0.021432
2500	5045.5	7508.1	5.4142	243.79	0.019108
2600	5325.3	7886.5	5.5626	283.43	0.017093
2700	5608.1	8267.7	5.7065	328.00	0.015338
2800	5890.9	8649.0	5.8451	377.58	0.013818
2900	6177.4	9034.1	5.9803	433.09	0.012477
3000	6467.4	9422.6	6.1120	495.05	0.011292
3100	6760.6	9814.3	6.2404	564.00	0.010242
3200	7056.9	10209	6.3657	640.52	0.0093091
3300	7356.0	10607	6.4881	725.23	0.0084787
3400	7657.8	11007	6.6076	818.77	0.0077376
3500	7962.2	11410	6.7244	921.83	0.0070747
3600	8269.0	11815	6.8386	1035.1	0.0064804
3700	8578.1	12223	6.9503	1159.4	0.0059465
3800	8889.5	12633	7.0596	1295.5	0.0054657
3900	9203.1	13045	7.1666	1444.2	0.0050320
4000	9518.7	13459	7.2715	1606.4	0.0046399
4500	11126	15559	7.7660	2653.8	0.0031596
5000	12777	17703	8.2177	4197.8	0.0022194
5500	14469	19887	8.6339	6405.3	1.6000E-03
6000	16198	22108	9.0205	9483.1	1.1789E-03
6500	17962	24365	9.3816	13683	8.8514E-04
7000	19759	26654	9.7210	19311	6.7544E-04
7500	21588	28976	10.041	26731	5.2280E-04
8000	23446	31327	10.345	36376	4.0980E-04

Ideal Gas Property Table: H₂O

= WM

18.016

lb_m/lbmole

AE

Т	Ú	н°	Ś	Pr	Vr
(^o R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
536.67	0	59.157	0	1	1
900	125.18	224.39	0.23464	8.4037	0.19956
910	128.75	229.06	0.23980	8.8068	0.19254
920	132.33	233.74	0.24492	9.2251	0.18583
930	135.92	238.43	0.24999	9.6592	0.17941
940	139.51	243.13	0.25501	10.110	0.17326
950	143.11	247.83	0.25999	10.577	0.16737
960	146.72	252.54	0.26492	11.061	0.16173
970	150.34	257.26	0.26982	11.563	0.15632
980	153.97	261.99	0.27466	12.083	0.151133
990	157.60	266.73	0.27947	12.621	0.14616
1000	161.24	271.47	0.28424	13.179	0.14138
1010	164.89	276.23	0.28897	13.757	0.13680
1020	168.55	280.99	0.29366	14.355	0.13240
1030	172.22	285.75	0.29831	14.974	0.12817
1040	175.89	290.53	0.30293	15.614	0.12411
1050	179.58	295.32	0.30751	16.276	0.12021
1060	183.27	300.11	0.31205	16.961	0.11645
1070	186.97	304.91	0.31656	17.670	0.11284
1080	190.68	309.72	0.32104	18.402	0.10936
1090	194.39	314.54	0.32548	19.158	0.10601
1100	198.12	319.37	0.32989	19.940	0.10279
1110	201.85	324.21	0.33426	20.748	0.099688
1120	205.59	329.05	0.33861	21.582	0.096698
1130	209.35	333.90	0.34292	22.443	0.093817
1140	213.11	338.77	0.34720	23.333	0.091040
1150	216.87	343.64	0.35146	24.251	0.088362
1160	220.65	348.52	0.35568	25.198	0.085779
1170	224.44	353.40	0.35988	26.176	0.083287
1180	228.23	358.30	0.36405	27.184	0.080883
1190	232.03	363.21	0.36819	28.225	0.078562
1200	235.85	368.12	0.37230	29.297	0.076321
1210	239.67	373.04	0.37638	30.404	0.074157
1220	243.50	3/1.9/	0.38044	31.544	0.072066
1230	247.33	382.92	0.38448	32.720	0.0/004/
1240	251.18	387.86	0.38848	35.931	0.068095
1250	255.04	392.82	0.39247	35.180	0.066208
1200	258.90	397.79	0.39642	30.400 27.701	0.062620
1270	202.78	402.77	0.40030	20 155	0.002020
1200	200.00	407.75	0.40427	39.133	0.000913
1290	270.33	412.75	0.40813	40.300	0.039202
1300	274.43	417.75	0.41202	42.007	0.05/003
1310	278.30	422.70	0.41360	45.497	0.054622
1320	282.28	427.78	0.41908	45.050	0.053172
1340	200.21	437.85	0.42725	48 232	0.051769
1350	294.09	442.90	0.43100	40.252	0.050/00
1360	298.05	447.96	0 43473	51 621	0.020409
1370	302.01	453.03	0.43845	53 389	0.047815
1380	305.99	458.10	0 44214	55 207	0.046577
1390	309.97	463 19	0 44581	57 077	0.045378
1400	313.96	468.28	0.44946	59 000	0.044215
1100				57.000	5.011215

Т	Û ⁰	₽°	\$⁰	Pr	V _r
([°] R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)	
1420	321.97	478.50	0.45671	63.008	0.041994
1440	330.02	488.75	0.46388	67.242	0.039904
1460	338.10	499.04	0.47097	71.714	0.037935
1480	346.23	509.36	0.47800	76.433	0.036081
1500	354.38	519.73	0.48495	81.411	0.034332
1520	362.58	530.13	0.49184	86.660	0.032683
1540	370.81	540.57	0.49866	92.193	0.031125
1560	379.08	551.04	0.50542	98.022	0.029655
1580	387.39	561.55	0.51212	104.16	0.028265
1600	395.74	572.10	0.51875	110.62	0.026950
1650	416.76	598.64	0.53508	128.29	0.023965
1700	438.02	625.41	0.55107	148.31	0.021359
1750	459.51	652.41	0.56672	170.94	0.019076
1800	481.24	679.65	0.58207	196.47	0.017071
1850	503.20	707.12	0.59712	225.22	0.015306
1900	525.39	734.82	0.61189	257.53	0.013747
1950	547.81	762.76	0.62641	293.77	0.012369
2000	570.46	790.92	0.64067	334.34	0.011146
2050	593.34	819.31	0.65469	379.69	0.010060
2100	616.45	847.93	0.66848	430.30	0.0090936
2150	639.79	876.78	0.68206	486.70	0.0082314
2200	663.34	905.85	0.69542	549.43	0.0074611
2250	687.12	935.13	0.70858	619.13	0.0067717
2300	711.12	964.64	0.72156	696.44	0.0061537
2400	759.75	1024.3	0.74694	876.82	0.0051003
2500	809.22	1084.8	0.77164	1097.0	0.0042465
2600	859.50	1146.1	0.79568	1364.4	0.0035509
2700	910.55	1208.2	0.81911	1687.4	0.0029814
2800	962.35	1271.0	0.84195	2076.0	0.0025131
2900	1014.8	1334.5	0.86424	2541.3	0.0021264
3000	1068.0	1398.7	0.88600	3095.8	0.0018057
3100	1121.8	1463.5	0.90724	3753.9	1.5388E-03
3200	1176.2	1528.9	0.92801	4532.1	1.3157E-03
3300	1231.2	1594.9	0.94832	5449.3	1.1284E-03
3400	1286.7	1661.5	0.96820	6526.1	9.7077E-04
3500	1342.8	1728.6	0.98766	7786.1	8.3761E-04
3600	1399.4	1796.3	1.0067	9255.3	7.2478E-04
3700	1456.5	1864.4	1.0254	10963	6.2888E-04
3800	1514.1	1933.0	1.0437	12942	5.4713E-04
3900	1572.1	2002.0	1.0616	15228	4.7723E-04
4000	1630.5	2071.4	1.0792	17861	4.1730E-04
4500	1928.3	2424.3	1.1623	37963	2.2088E-04
5000	2234.2	2785.4	1.2384	75690	1.2309E-04
5500	2546.8	3153.1	1.3084	142940	7.1697E-05
6000	2864.9	3526.3	1.3734	257641	4.3394E-05
6500	3187.6	3904.1	1.4339	445964	2.7159E-05
7000	3514.2	4285.8	1.4904	745055	1.7507E-05
7500	3844.1	4670.8	1.5435	1206399	1.1584E-05
8000	4176.8	5058.7	1.5936	1899904	7.8460E-06

 N_2

Ideal Gas Property Table:

MW =

28.010

lb_m/lbmole

A	Е	

Т	Û	ĥ	s^	Pr	V_r
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
536.67	0	38.049	0	1	1
540	0.58381	38.869	0.0015230	1.0217	0.98482
550	2.3382	41.333	0.0060431	1.0890	0.94110
560	4.0944	43.798	0.010485	1.1594	0.90002
570	5.8526	46.265	0.014852	1.2330	0.86137
580	7.6128	48.734	0.019146	1.3100	0.82497
590	9.3750	51.206	0.023371	1.3905	0.79066
600	11.139	53.679	0.027528	1.4744	0.75827
610	12.906	56.154	0.031619	1.5620	0.72767
620	14.675	58.632	0.035648	1.6533	0.69875
630	16.446	61.112	0.039616	1.7485	0.67137
640	18.219	63.594	0.043525	1.8476	0.64544
650	19.994	66.079	0.047377	1.9508	0.62086
660	21.772	68.566	0.051174	2.0581	0.59754
670	23.553	71.055	0.054918	2.1697	0.57540
680	25.335	73.547	0.058609	2.2857	0.55436
690	27.120	76.041	0.062250	2.4061	0.53435
700	28.908	78.537	0.065842	2.5312	0.51531
710	30.698	81.036	0.069387	2.6609	0.49718
720	32.491	83.538	0.072886	2.7955	0.47991
730	34.286	86.042	0.076340	2.9351	0.46344
740	36.083	88.549	0.079751	3.0797	0.44772
/50	37.884	91.058	0.083119	3.2296	0.43272
/60	39.686	93.570	0.086445	3.384/	0.41839
//0	41.492	96.084	0.089/32	3.5453	0.40469
/80 700	45.300	98.601	0.092980	3./115	0.39159
/90	45.110	101.12	0.090190	3.8834	0.3/900
800	40.923	105.04	0.099302	4.0011	0.30700
820	40.7 <i>39</i> 50.558	100.17	0.10250	4.2440	0.33330
830	52 379	111 23	0.10300	4 6306	0.33300
840	54 203	113.76	0.11170	4 8331	0.32385
850	56 029	116.29	0.11470	5.0420	0.32303
860	57 858	118.83	0 11767	5 2 5 7 6	0.30479
870	59 690	121.37	0.12061	5 4800	0.29582
880	61.524	123.92	0.12351	5.7093	0.28721
890	63.361	126.46	0.12639	5.9457	0.27892
900	65.201	129.01	0.12924	6.1894	0.27095
910	67.043	131.56	0.13206	6.4405	0.26328
920	68.888	134.12	0.13485	6.6991	0.25590
930	70.736	136.67	0.13761	6.9654	0.24879
940	72.587	139.23	0.14035	7.2396	0.24194
950	74.440	141.79	0.14306	7.5218	0.23534
960	76.295	144.36	0.14575	7.8122	0.22898
970	78.154	146.93	0.14841	8.1110	0.22284
980	80.015	149.50	0.15104	8.4182	0.21692
990	81.879	152.07	0.15366	8.7342	0.21121
1000	83.746	154.64	0.15624	9.0589	0.20569
1010	85.615	157.22	0.15881	9.3927	0.20037
1020	87.487	159.80	0.16135	9.7357	0.19522
1030	89.361	162.39	0.16387	10.088	0.19025
1040	91.238	164.97	0.16637	10.450	0.18544

Т	℃	₽°	Ŝ ⁰	Pr	V _r
(°R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)	
1060	95.001	170.15	0.17131	11.203	0.17630
1080	98.774	175.35	0.17616	11.997	0.16775
1100	102.56	180.55	0.18093	12.832	0.15973
1120	106.35	185.76	0.18563	13.710	0.15222
1140	110.16	190.98	0.19025	14.634	0.14515
1160	113.97	196.22	0.19480	15.604	0.13852
1180	117.80	201.46	0.19928	16.623	0.13227
1200	121.63	206.71	0.20370	17.691	0.12639
1250	131.27	219.90	0.21446	20.590	0.11312
1300	140.97	233.14	0.22485	23.840	0.10161
1350	150.74	246.45	0.23489	27.469	0.091575
1400	160.56	259.82	0.24462	31.508	0.082793
1450	170.45	273.26	0.25405	35.990	0.075072
1500	180.40	286.75	0.26320	40.948	0.068258
1550	190.42	300.31	0.27209	46.418	0.062221
1600	200.49	313.93	0.28073	52.438	0.056854
1650	210.62	327.60	0.28915	59.047	0.052069
1700	220.80	341.33	0.29735	66.286	0.047788
1750	231.05	355.12	0.30534	74.198	0.043948
1800	241.35	368.97	0.31314	82.827	0.040494
1850	251.70	382.87	0.32076	92.222	0.037379
1900	262.11	396.82	0.32820	102.43	0.034564
1950	272.58	410.83	0.33548	113.50	0.032013
2000	283.09	424.89	0.34260	125.49	0.029697
2100	304.28	455.17	0.35640	152.45	0.025668
2200	325.66	481.64	0.36964	183.76	0.022308
2300	347.24	510.50	0.38238	219.94	0.019486
2500	309.00	569.10	0.39400	201.33	0.017100
2500	<i>JJJJJJJJJJJJJ</i>	507.30	0.40031	262 20	0.013071
2000	435 32	626.75	0.42905	103.29 101.76	0.013330
2800	457.76	656.27	0.43978	494 21	0.010557
2000	480.34	685.95	0.45020	572.40	0.0094405
3000	503.07	715 77	0.46031	660.12	0.0091103
3100	525.94	745.73	0.47013	758.23	0.0076183
3200	548.95	775.82	0 47968	867.61	0.0070105
3300	572.08	806.04	0.48898	989.20	0.0062162
3400	595.33	836.39	0.49804	1124.0	0.0056364
3500	618.70	866.84	0.50687	1273.1	0.0051228
3600	642.17	897.41	0.51548	1437.5	0.0046666
3700	665.76	928.08	0.52389	1618.4	0.0042601
3800	689.44	958.86	0.53209	1817.0	0.0038970
3900	713.22	989.72	0.54011	2034.5	0.0035719
4000	737.08	1020.7	0.54795	2272.3	0.0032801
4500	857.60	1176.6	0.58468	3815.0	0.0021979
5000	979.68	1334.2	0.61787	6092.8	1.5291E-03
5500	1102.9	1492.8	0.64811	9333.2	1.0981E-03
6000	1226.8	1652.2	0.67584	13800	8.1012E-04
6500	1351.1	1811.9	0.70142	19795	6.118 <u>5E-0</u> 4
7000	1475.6	1971.9	0.72513	27658	4.7160E-04
7500	1600.3	2132.0	0.74722	37768	3.7002E-04
8000	1724.9	2292.1	0.76789	50553	2.9488E-04

Ideal Gas Property Table: O₂

MW =

lb_m/lbmole

32.000

AE

(*R)(Btu/lb.,)(Btu/lb., 'Btu/lb., 'R)536.67033.3050115400.5125234.0240.00133591.02180.984785502.057636.1900.0052071.16030.899305603.611338.3640.00922741.16030.899305603.611338.3640.00922741.16030.899305806.743342.7370.0169001.31300.823105908.321044.9360.0206581.39500.788096009.906147.1410.0243651.48080.7549861011.49849.3540.0280231.57070.7236362013.09751.5740.0316321.666480.6939363014.70353.8000.0351951.76320.6657964016.31656.0330.0381711.86600.6391065017.93458.2720.0421831.97330.6137766019.55960.5180.0456102.08540.5897367021.18962.7690.0489622.2230.5668868022.82665.0260.0523392.32420.5451669024.46767.2880.056422.45130.5245170026.11569.5560.0589052.58660.6485171027.76771.8290.061292.72140.4861472029.42574.1070.0653162.86480.46831 <tr< th=""><th>Т</th><th>Û</th><th>\mathbf{H}</th><th>s</th><th>Pr</th><th>V_r</th></tr<>	Т	Û	\mathbf{H}	s	Pr	V_r
S36.67033.3050115400.5125234.0240.00133591.02180.984785502.057636.1900.00530971.08930.940805603.611338.3640.00922741.16030.899305705.773340.5470.0130911.23480.860125806.743342.7370.0169001.31300.823105908.321044.9360.0206581.39500.788096009.906147.1410.0243651.48080.7549861011.49849.3540.0280231.57070.7236362013.09751.5740.0316321.666890.6637963014.70353.8000.0351951.76320.6657964016.31656.0330.0381911.86600.6391065017.93458.2720.0418962.20230.5668868022.82665.0260.0523392.32420.5451670026.11569.5560.058052.58360.5048571027.6771.8290.0621292.72140.4861472029.42574.1070.0653162.86480.4683173031.08776.3900.0684653.01390.4512274032.75578.6790.0715783.16890.4715275034.42780.9720.0746563.33010.4196676036.10483.2690.0716993.6712 </th <th>(^oR)</th> <th>(Btu/lb_m)</th> <th>(Btu/lb_m)</th> <th>(Btu/lb_m ^oR)</th> <th></th> <th></th>	(^o R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m ^o R)		
540 0.51252 34.024 0.0013359 1.0218 0.98478 550 2.0576 36.190 0.0053097 1.0893 0.94080 560 3.6113 38.364 0.0092274 1.1603 0.89930 570 5.1733 40.547 0.016900 1.3130 0.82310 580 6.7433 42.737 0.016900 1.3130 0.82310 600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 12.586 6.5026 0.52339 2.3242 0.54685 700 26.115 69.556	536.67	0	33.305	0	1	1
550 2.0576 36.190 0.0053097 1.0893 0.94080 560 3.6113 38.364 0.0092274 1.1603 0.8930 570 5.1733 40.547 0.013091 1.2348 0.8012 580 6.7433 42.737 0.016000 1.3130 0.82310 90 8.3210 44.936 0.02658 1.3950 0.78809 610 11.498 49.354 0.024365 1.4808 0.75498 610 11.498 49.354 0.024365 1.4808 0.6579 640 16.316 50.33 0.035195 1.7632 0.66579 640 16.316 50.03 0.035195 1.7632 0.6579 640 16.316 50.26 0.05239 2.3242 0.54618 650 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.05805 2.5836 0.50485 710 27.767 71.829 0.06212	540	0.51252	34.024	0.0013359	1.0218	0.98478
560 3.6113 38.364 0.0092274 1.1603 0.8990 570 5.1733 40.547 0.013091 1.2348 0.86012 580 6.7433 42.737 0.016900 1.3130 0.82310 590 8.3210 44.936 0.020658 1.3950 0.78809 600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.041896 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54518 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 <t< td=""><td>550</td><td>2.0576</td><td>36.190</td><td>0.0053097</td><td>1.0893</td><td>0.94080</td></t<>	550	2.0576	36.190	0.0053097	1.0893	0.94080
570 5.1733 40.547 0.013091 1.2348 0.86012 580 6.7433 42.737 0.016900 1.3130 0.82310 590 8.3210 44.936 0.020658 1.3950 0.78809 600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.04896 2.2023 0.56688 622 2826 65.026 0.05239 2.3242 0.5416 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.0	560	3.6113	38.364	0.0092274	1.1603	0.89930
580 6.7433 42.737 0.016900 1.3130 0.82310 590 8.3210 44.936 0.020658 1.3950 0.78809 600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.04896 2.2023 0.56688 700 26.115 69.556 0.058905 2.5836 0.504851 700 26.15 74.107 0.068465 3.0139 0.45132 740 32.755 78.679 <td< td=""><td>570</td><td>5.1733</td><td>40.547</td><td>0.013091</td><td>1.2348</td><td>0.86012</td></td<>	570	5.1733	40.547	0.013091	1.2348	0.86012
590 8.3210 44.936 0.020658 1.3950 0.78809 600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 12.589 60.518 0.045610 2.0854 0.56688 680 22.826 65.026 0.052339 2.3242 0.54518 700 26.115 69.556 0.058905 2.5836 0.504851 710 27.67 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.068455 3.0139 0.45132 740 32.755 78.679 <t< td=""><td>580</td><td>6.7433</td><td>42.737</td><td>0.016900</td><td>1.3130</td><td>0.82310</td></t<>	580	6.7433	42.737	0.016900	1.3130	0.82310
600 9.9061 47.141 0.024365 1.4808 0.75498 610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.053395 2.5836 0.504851 700 26.115 69.556 0.058905 2.5836 0.50481 710 27.67 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.068455 3.0139 0.45132 740 32.755 78.679 <t< td=""><td>590</td><td>8.3210</td><td>44.936</td><td>0.020658</td><td>1.3950</td><td>0.78809</td></t<>	590	8.3210	44.936	0.020658	1.3950	0.78809
610 11.498 49.354 0.028023 1.5707 0.72363 620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54515 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.67 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.071578 3.1689 0.43512 750 34.427 80.972 <td< td=""><td>600</td><td>9.9061</td><td>47.141</td><td>0.024365</td><td>1.4808</td><td>0.75498</td></td<>	600	9.9061	47.141	0.024365	1.4808	0.75498
620 13.097 51.574 0.031632 1.6648 0.69393 630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.05805 2.5836 0.54683 710 27.67 71.829 0.06126 3.0139 0.45132 740 32.755 78.679 0.071578 3.1689 0.43512 750 34.427 80.972 0.074656 3.3301 0.41966 760 36.104 83.269 0	610	11.498	49.354	0.028023	1.5707	0.72363
630 14.703 53.800 0.035195 1.7632 0.66579 640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.066316 3.6848 0.46311 730 31.087 76.390 0.071659 3.3011 0.41966 760 34.427 80.972 4.0387 0.36428 800 42.857 92.504 0.089542 <t< td=""><td>620</td><td>13.097</td><td>51.574</td><td>0.031632</td><td>1.6648</td><td>0.69393</td></t<>	620	13.097	51.574	0.031632	1.6648	0.69393
640 16.316 56.033 0.038711 1.8660 0.63910 650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.67 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.463512 740 32.755 78.679 0.071578 3.1689 0.43512 740 32.755 78.679 0.074565 3.3301 0.41966 760 36.104 83.269 0.077699 3.4974 0.40491 770 37.786 85.571 <t< td=""><td>630</td><td>14.703</td><td>53.800</td><td>0.035195</td><td>1.7632</td><td>0.66579</td></t<>	630	14.703	53.800	0.035195	1.7632	0.66579
650 17.934 58.272 0.042183 1.9733 0.61377 660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.068465 3.0139 0.45132 740 32.755 78.679 0.077699 3.4974 0.40491 770 37.786 85.571 0.080709 3.6712 0.39082 780 39.472 87.878 0.08629 4.0387 0.36448 800 42.857 92.504 <td< td=""><td>640</td><td>16.316</td><td>56.033</td><td>0.038711</td><td>1.8660</td><td>0.63910</td></td<>	640	16.316	56.033	0.038711	1.8660	0.63910
660 19.559 60.518 0.045610 2.0854 0.58973 670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.068465 3.0139 0.45132 740 32.755 78.679 0.071578 3.1689 0.43512 750 34.427 80.972 0.074656 3.3301 0.41966 760 36.104 83.269 0.077699 3.4974 0.40491 770 37.786 85.571 0.0807629 4.0387 0.36448 800 42.857 92.504 <	650	17.934	58.272	0.042183	1.9733	0.61377
670 21.189 62.769 0.048996 2.2023 0.56688 680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.068465 3.0139 0.45132 740 32.755 78.679 0.071578 3.1689 0.43512 750 34.427 80.972 0.074656 3.3301 0.41966 760 36.104 83.269 0.07769 3.4974 0.40491 770 37.786 85.571 0.080709 3.6712 0.39082 780 39.472 87.878 0.08629 4.0387 0.36448 800 42.857 92.504	660	19.559	60.518	0.045610	2.0854	0.58973
680 22.826 65.026 0.052339 2.3242 0.54516 690 24.467 67.288 0.055642 2.4513 0.52451 700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.064465 3.0139 0.45132 740 32.755 78.679 0.071578 3.1689 0.43512 750 34.427 80.972 0.074656 3.3301 0.41966 760 36.104 83.269 0.077699 3.4974 0.40491 770 37.786 85.571 0.080709 3.6712 0.39082 780 39.472 87.878 0.086629 4.0387 0.36448 800 42.857 92.504 0.089542 4.2328 0.31834 810 44.556 94.824 <t< td=""><td>670</td><td>21.189</td><td>62.769</td><td>0.048996</td><td>2.2023</td><td>0.56688</td></t<>	670	21.189	62.769	0.048996	2.2023	0.56688
69024.46767.2880.0556422.45130.5245170026.11569.5560.0589052.58360.5048571027.76771.8290.0621292.72140.4861472029.42574.1070.0653162.86480.4683173031.08776.3900.0684653.01390.4513274032.75578.6790.0715783.16890.4351275034.42780.9720.0746563.33010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788066.560111.170.111786.05690.2707289065.246122.960.124817.47180.2319394066.993125.330.12734 <t< td=""><td>680</td><td>22.826</td><td>65.026</td><td>0.052339</td><td>2.3242</td><td>0.54516</td></t<>	680	22.826	65.026	0.052339	2.3242	0.54516
700 26.115 69.556 0.058905 2.5836 0.50485 710 27.767 71.829 0.062129 2.7214 0.48614 720 29.425 74.107 0.065316 2.8648 0.46831 730 31.087 76.390 0.068465 3.0139 0.45132 740 32.755 78.679 0.071578 3.1689 0.43512 750 34.427 80.972 0.074656 3.301 0.41966 760 36.104 83.269 0.077699 3.4974 0.40491 770 37.786 85.571 0.080709 3.6712 0.39082 780 39.472 87.878 0.086629 4.0387 0.36448 800 42.857 92.504 0.089542 4.2328 0.35218 810 44.556 94.824 0.092423 4.4339 0.34040 820 46.259 97.148 0.095274 4.6424 0.32913 830 47.967 99.475 <td< td=""><td>690</td><td>24.467</td><td>67.288</td><td>0.055642</td><td>2.4513</td><td>0.52451</td></td<>	690	24.467	67.288	0.055642	2.4513	0.52451
71027.76771.8290.0621292.72140.4861472029.42574.1070.0653162.86480.4683173031.08776.3900.0684653.01390.4513274032.75578.6790.0715783.16890.4351275034.42780.9720.0746563.3010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0995424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.12734	700	26.115	69.556	0.058905	2.5836	0.50485
72029.42574.1070.0653162.86480.4683173031.08776.3900.0684653.01390.4513274032.75578.6790.0715783.16890.4351275034.42780.9720.0746563.33010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2546292063.502120.600.122557.17020.2390893065.246122.960.12481	710	27.767	71.829	0.062129	2.7214	0.48614
73031.08776.3900.0684653.01390.4513274032.75578.6790.0715783.16890.4351275034.42780.9720.0746563.3010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.	720	29.425	74.107	0.065316	2.8648	0.46831
74032.75578.6790.0715783.16890.4351275034.42780.9720.0746563.33010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.	730	31.087	76.390	0.068465	3.0139	0.45132
75034.42780.9720.0746563.33010.4196676036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.1	740	32.755	78.679	0.071578	3.1689	0.43512
76036.10483.2690.0776993.49740.4049177037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43	750	34.427	80.972	0.074656	3.3301	0.41966
77037.78685.5710.0807093.67120.3908278039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.129	760	36.104	83.269	0.077699	3.4974	0.40491
78039.47287.8780.0836853.85160.3773579041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134608.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.4926	770	37.786	85.571	0.080709	3.6712	0.39082
79041.16390.1890.0866294.03870.3644880042.85792.5040.0895424.23280.3521881044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134608.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.4926<	780	39.472	87.878	0.083685	3.8516	0.37735
800 42.857 92.504 0.089542 4.2328 0.35218 810 44.556 94.824 0.092423 4.4339 0.34040 820 46.259 97.148 0.095274 4.6424 0.32913 830 47.967 99.475 0.098096 4.8583 0.31834 840 49.678 101.81 0.10089 5.0819 0.30800 850 51.393 104.14 0.10365 5.3134 0.29809 860 53.111 106.48 0.10639 5.5529 0.28858 870 54.834 108.83 0.10910 5.8007 0.27072 890 56.560 111.17 0.11178 6.0569 0.27072 890 58.290 113.52 0.11444 6.3217 0.26233 900 60.024 115.88 0.11707 6.5954 0.25427 910 61.761 118.23 0.12481 7.4718 0.23193 940 66.993 125.33 0.1273	790	41.163	90.189	0.086629	4.0387	0.36448
81044.55694.8240.0924234.43390.3404082046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134608.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.252<	800	42.857	92.504	0.089542	4.2328	0.35218
82046.25997.1480.0952744.64240.3291383047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18855101079.316142.000.1444410.2520.18357102081.089144.390.1468010.649<	810	44.556	94.824	0.092423	4.4339	0.34040
83047.96799.4750.0980964.85830.3183484049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.058<	820	46.259	97.148	0.095274	4.6424	0.32913
84049.678101.810.100895.08190.3080085051.393104.140.103655.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.479<	830	47.967	99.4/5	0.098096	4.8583	0.31834
85051.393104.140.103035.31340.2980986053.111106.480.106395.55290.2885887054.834108.830.109105.80070.2794788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	840 850	49.078	101.81	0.10089	5.0819	0.30800
860 53.111 106.48 0.10639 5.3329 0.28838 870 54.834 108.83 0.10910 5.8007 0.27947 880 56.560 111.17 0.11178 6.0569 0.27072 890 58.290 113.52 0.11444 6.3217 0.26233 900 60.024 115.88 0.11707 6.5954 0.25427 910 61.761 118.23 0.11967 6.8782 0.24652 920 63.502 120.60 0.12225 7.1702 0.23908 930 65.246 122.96 0.12481 7.4718 0.23193 940 66.993 125.33 0.12734 7.7830 0.22505 950 68.744 127.70 0.12985 8.1042 0.21843 960 70.498 130.07 0.13234 8.4355 0.21206 970 72.255 132.45 0.13480 8.7772 0.20002 990 75.780 137.22 0.13966 <td>850</td> <td>52 111</td> <td>104.14</td> <td>0.10505</td> <td>5.5154</td> <td>0.29809</td>	850	52 111	104.14	0.10505	5.5154	0.29809
87034.834108.830.109103.80070.2194788056.560111.170.111786.05690.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	800	54.824	100.48	0.10039	5.007	0.28858
88056.300111.170.111780.03090.2707289058.290113.520.114446.32170.2623390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	870	56 560	100.05	0.10910	5.8007	0.27947
89038.290113.320.114440.32170.2023390060.024115.880.117076.59540.2542791061.761118.230.119676.87820.2465292063.502120.600.122557.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	800	58 200	111.17	0.11170	6 2217	0.27072
90000.024113.880.117070.39340.2342791061.761118.230.119676.87820.2465292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	000	50.290	115.32	0.11707	6 5 9 5 4	0.20233
91001.701113.230.119070.07820.2403292063.502120.600.122257.17020.2390893065.246122.960.124817.47180.2319394066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	900 910	61 761	118.00	0.11967	6 8782	0.23427
930 65.302 120.00 0.12223 1.1102 0.23908 930 65.246 122.96 0.12481 7.4718 0.23193 940 66.993 125.33 0.12734 7.7830 0.22505 950 68.744 127.70 0.12985 8.1042 0.21843 960 70.498 130.07 0.13234 8.4355 0.21206 970 72.255 132.45 0.13480 8.7772 0.20593 980 74.016 134.83 0.13724 9.1295 0.20002 990 75.780 137.22 0.13966 9.4926 0.19433 1000 77.547 139.61 0.14206 9.8668 0.18885 1010 79.316 142.00 0.14444 10.252 0.18357 1020 81.089 144.39 0.14680 10.649 0.17847 1030 82.866 146.79 0.14914 11.058 0.17356 1040 84.645 149.19 0.151	910 920	63 502	120.60	0.11207	7 1702	0.24032
94066.993122.900.124011.44160.2519395066.993125.330.127347.78300.2250595068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	930	65 246	122.00	0.12223	7.1702	0.23193
95068.744127.700.129858.10420.2184396070.498130.070.132348.43550.2120697072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	940	66 993	122.90	0.12401	7 7830	0.23175
960 70.498 130.07 0.12203 0.12103 0.12103 960 70.498 130.07 0.13234 8.4355 0.21206 970 72.255 132.45 0.13480 8.7772 0.20593 980 74.016 134.83 0.13724 9.1295 0.20002 990 75.780 137.22 0.13966 9.4926 0.19433 1000 77.547 139.61 0.14206 9.8668 0.18885 1010 79.316 142.00 0.14444 10.252 0.18357 1020 81.089 144.39 0.14680 10.649 0.17847 1030 82.866 146.79 0.14914 11.058 0.17356 1040 84.645 149.19 0.15146 11.479 0.16882	950	68 744	127.70	0.12734	8 1042	0.22303
97072.255132.450.134808.77720.2059398074.016134.830.137249.12950.2000299075.780137.220.139669.49260.19433100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	960	70 498	130.07	0.1220	8 4355	0.21015
980 74.016 134.83 0.13724 9.1295 0.20002 990 75.780 137.22 0.13966 9.4926 0.19433 1000 77.547 139.61 0.14206 9.8668 0.18885 1010 79.316 142.00 0.14444 10.252 0.18357 1020 81.089 144.39 0.14680 10.649 0.17847 1030 82.866 146.79 0.14914 11.058 0.17356 1040 84.645 149.19 0.15146 11.479 0.16882	970	72 255	132.45	0.13480	8 7772	0.20593
990 75.780 137.22 0.13966 9.4926 0.19433 1000 77.547 139.61 0.14206 9.8668 0.18885 1010 79.316 142.00 0.14444 10.252 0.18357 1020 81.089 144.39 0.14680 10.649 0.17847 1030 82.866 146.79 0.14914 11.058 0.17356 1040 84.645 149.19 0.15146 11.479 0.16882	980	74 016	134.83	0.13724	9.1295	0.20002
100077.547139.610.142069.86680.18885101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	990	75.780	137.22	0.13966	9 4926	0.19433
101079.316142.000.1444410.2520.18357102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	1000	77.547	139.61	0.14206	9.8668	0.18885
102081.089144.390.1468010.6490.17847103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	1010	79.316	142.00	0.14444	10.252	0.18357
103082.866146.790.1491411.0580.17356104084.645149.190.1514611.4790.16882	1020	81.089	144.39	0.14680	10.649	0.17847
1040 84.645 149.19 0.15146 11.479 0.16882	1030	82.866	146.79	0.14914	11.058	0.17356
	1040	84.645	149.19	0.15146	11.479	0.16882

Т	€ ⁰	₽°	\$ ⁰	Pr	V_r
(⁰ R)	(Btu/lb _m)	(Btu/lb _m)	(Btu/lb _m °R)	
1060	88.211	153.99	0.15604	12.358	0.15982
1080	91.790	158.81	0.16054	13.289	0.15144
1100	95.380	163.64	0.16497	14.273	0.14361
1120	98.981	168.49	0.16934	15.312	0.13630
1140	102.59	173.34	0.17363	16.409	0.12945
1160	106.22	178.20	0.17786	17.566	0.12305
1180	109.85	183.08	0.18203	18.786	0.11704
1200	113.49	187.96	0.18613	20.071	0.11141
1250	122.65	200.22	0.19614	23.583	0.098766
1300	131.86	212.54	0.20580	27.556	0.087907
1350	141.14	224.92	0.21514	32.033	0.078530
1400	150.47	237.35	0.22419	37.059	0.070393
1450	159.86	249.84	0.23295	42.681	0.063303
1500	169.30	262.39	0.24146	48.952	0.057098
1550	178.80	274.99	0.24972	55.922	0.051646
1600	188.34	287.64	0.25776	63.650	0.046840
1650	197.94	300.34	0.26557	72.194	0.042587
1700	207.59	313.09	0.27318	81.616	0.038812
1750	217.29	325.89	0.28060	91.982	0.035451
1800	227.03	338.73	0.28784	103.36	0.032450
1850	236.82	351.63	0.29491	115.82	0.029762
1900	246.65	364.57	0.30181	129.45	0.027350
1950	256.54	377.55	0.30855	144.31	0.025179
2000	266.46	390.58	0.31515	160.49	0.023220
2100	286.44	416.76	0.32793	197.18	0.019845
2200	306.59	443.11	0.34018	240.24	0.017063
2300	326.89	469.63	0.35197	290.49	0.014753
2400	347.36	496.30	0.36332	348.79	0.012822
2500	367.98	523.12	0.37427	416.09	0.011195
2600	388.74	550.09	0.38485	493.42	0.0098186
2700	409.65	577.21	0.39508	581.87	0.0086463
2800	430.70	604.46	0.40499	682.63	0.0076430
2900	451.88	631.85	0.41460	796.97	0.0067803
3000	473.19	659.37	0.42393	926.26	0.0060351
3100	494.63	687.02	0.43300	1071.9	0.0053887
3200	516.20	714.79	0.44182	1235.6	0.0048258
3300	537.88	742.68	0.45040	1418.8	0.0043338
3400	559.69	770.69	0.45876	1623.5	0.0039023
3500	581.60	798.81	0.46691	1851.4	0.0035226
3600	603.63	827.04	0.47486	2104.5	0.0031874
3700	625.77	855.38	0.48263	2385.0	0.0028907
3800	648.01	883.83	0.49022	2695.2	0.0026272
3900	670.35	912.38	0.49763	3037.2	0.0023927
4000	692.79	941.02	0.50488	3413.7	0.0021833
4500	806.38	1085.6	0.53895	5910.3	1.4187E-03
5000	922.09	1232.4	0.56986	9726.7	9.5785E-04
5500	1039.6	1381.0	0.59818	15352	6.6757E-04
6000	1158.8	1531.2	0.62433	23394	4.7791E-04
6500	1279.5	1682.9	0.64861	34599	3.5006E-04
7000	1401.6	1836.0	0.67130	49871	2.6154E-04
7500	1525.0	1990.4	0.69261	70298	1.9880E-04
8000	1649.7	2146.1	0.71270	97181	1.5339E-04

Page 580

Gas Phase Heat Capacity (Shomate Equation)

$$C_{p}^{\circ} = A + (B/1000) T + (C/1000^{2}) T^{2} + (D/1000^{3}) T^{3} + (E/1000^{-2}) T^{-2}$$

C_p = heat capacity (J/mol*K)

T = temperature (K)

Compound	Symbol	Temperature Range (K)	А	В	С	D	Е
Air *	N ₂ (g) / O ₂ (g)	298 - 6000	26.84107	7.7816776	-1.8103208	0.14594026	-0.01102637
Ammonia	$NH_3(g)$	298 - 1400	19.99563	49.77119	-15.37599	1.921168	0.189174
Ammonia	$NH_3(g)$	1400 - 6000	52.02427	18.48801	-3.765128	0.248541	-12.45799
Oxygen	$O_2(g)$	298 - 6000	29.659	6.137261	-1.186521	0.09578	-0.219663
Carbon Dioxide	$CO_2(g)$	298 - 1200	24.99735	55.18696	-33.69137	7.948387	-0.136638
Carbon Dioxide	$CO_2(g)$	1200 - 6000	58.16639	2.720074	-0.492289	0.038844	-6.447293
Carbon Monoxide	CO (g)	298 - 1300	25.56759	6.09613	4.054656	-2.671301	0.131021
Carbon Monoxide	CO (g)	1300 - 6000	35.1507	1.300095	-0.205921	0.01355	-3.28278
Methane	$CH_4(g)$	298 - 1300	-0.703029	108.4773	-42.52157	5.862788	0.678565
Methane	$CH_4(g)$	1300 - 6000	85.81217	11.26467	-2.114146	0.13819	-26.42221
Nitrogen	$N_2(g)$	298 - 6000	26.092	8.218801	-1.976141	0.159274	0.044434
Nitrogen Dioxide	$NO_2(g)$	298 - 1200	16.10857	75.89525	-54.3874	14.30777	0.239423
Nitrogen Dioxide	$NO_2(g)$	1200 - 6000	56.82541	0.738053	-0.144721	0.009777	-5.459911
Nitric Oxide	NO (g)	298 - 1200	23.83491	12.58878	-1.139011	-1.497459	0.214194
Nitric Oxide	NO (g)	1200 - 6000	35.99169	0.95717	-0.148032	0.009974	-3.004088
Nitrous Oxide	$N_2O(g)$	298 - 1400	27.67988	51.14898	-30.64454	6.847911	-0.157906
Nitrous Oxide	$N_2O(g)$	1400 - 6000	60.30274	1.034566	-0.192997	0.01254	-6.860254
Sulfuric Acid	$H_2SO_4(g)$	298 - 1200	47.28924	190.3314	-148.1299	43.86631	-0.740016
Sulfuric Acid	$H_2SO_4(g)$	1200 - 6000	139.2289	9.513663	-1.795577	0.118069	-15.61486
Hydrogen	$H_{2}(g)$	298 - 1500	33.1078	-11.508	11.6093	-2.8444	-0.159665
Hydrogen	$H_{2}(g)$	1500 - 6000	34.1434	0.503927	0.372036	-0.038599	-8.074761
Hydrogen	H (g)	298 - 6000	20.78603	0	0	0	0
Helium	He (g)	298 - 6000	20.78603	0	0	0	0
Water	$H_2O(g)$	500 - 1700	30.092	6.832514	6.793435	-2.53448	0.082139
Water	H ₂ O(g)	1700 - 6000	41.96426	8.622053	-1.49978	0.098119	-11.15764
Sulfur	$S_2(g)$	298 - 6000	33.51313	5.06536	-1.05967	0.089905	-0.211911
Sulfur Dioxide	SO ₂ (g)	298 - 1200	21.43049	74.35094	-57.75217	16.35534	0.086731
Sulfur Dioxide	$SO_2(g)$	1200 - 6000	57.48188	1.009328	-0.07629	0.005174	-4.045401

* Air is assumed to consist of 79 mole% $N_{\rm 2}$ and 21 mole% $O_{\rm 2}.$

© 1991, 1994, 1996, 1997, 1998, 1999, 2000, 2001 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

For Metric Units

Unit Prefix	Multiple	Unit Prefix	Multiple
tetra (T)	10 ¹²	deci (d)	10 ⁻¹
giga (G)	10 ⁹	centi (c)	10 ⁻²
mega (M)	10 ⁶	milli (m)	10 ⁻³
kilo (k)	10 ³	micro (µ)	10 ⁻⁶
hecto (h)	10 ²	nano (n)	10 ⁻⁹
deka (da)	10 ¹	pico (p)	10 -12

Conversion Factors

<u>Length</u>	m	ft	in	yd	mi
1 m	1	3.2808	39.3701	1.0936	6.2137E-04
<u>1 ft</u>	0.30480	1	12	0.33333	1.894E-04
1 in	0.02540	0.08333	1	0.027777	1.5782E-05
1 yd	0.91440	3	36	1	5.6812E-04
1 mi	1609.34	5280	63360	1760	1
•					
Mass	kg	lb _m	slug	ton	tonne
1 kg	1	2.20462	0.06852	0.001102	0.001
1 lb _m	0.453592	1	0.031081	0.00050	4.5359E-04
1 slug	14.5939	32.174	1	0.01609	0.01459
1 ton	907.1847	2000	62.1619	1	0.90718
1 tonne	1000	2204.62	68.5218	1.10231	1

Area	1 m ²	1 ft^2	1 in^2	
1 m^2	1	10.7639	1550.00	Example
1 ft^2	0.092903	1	144	$1 \text{ m}^2 = 10.7639 \text{ ft}^2$
1 in^2	0.00064516	0.0069444	1	

Volume	m ³	ft ³	L	US gallon
1 m ³	1	35.3147	1000	264.172
1 ft^3	0.028317	1	28.317	7.48052
1 L	0.001	0.035315	1	0.264172
1 US gallon	0.0037854	0.133681	3.78541	1

<u>Velocity</u>	m/s	ft/s	mi/h
1 m/s	1	3.28084	2.23964
1 ft/s	0.30480	1	0.68182
1 mi/h	0.44704	1.46667	1

<u>Temperature</u>	K	R	<u>Example</u>
1 K	1	1/1.8	$T(^{o}C) = T(K) - 273.15 = [T(^{0}F) - 32]/1.8$
1 R	1.8	1	$T(^{o}F) = T(^{o}R) - 459.67 = 1.8 T(^{o}C) + 32$

Conversio	on Factors					
Density	kg/m ³	lb _m /ft ³	lb _m /in ³	_		
1 kg/m ³	1	0.06243	3.613E-05			
$1 \text{ lb}_{\text{m}}/\text{ft}^3$	16.0180	1	5.787E-04			
$1 \text{ lb}_{\text{m}}/\text{in}^3$	27679	1728	1			
Force	Ν	lb _f	dyne	kg _f		
1 N	1	0.224809	100000	0.101972]	
1 lb _f	4.44822	1	444822	0.4536		
1 dyne	0.00001	2.2481E-06	1	1.01972E-06		
1 kg _f	9.80665	2.20462	980665	1		
	$1 \text{ N} = \text{kg-m/s}^2$				1	
Pressure	Pa	bar	atm	torr	lb _f /in ²	
1 Pa	1	1.0E-05	9.86923E-06	0.00750064	1.45037E-04	
1 bar	1.0E+05	1	0.986923	750.064	14.5038	
1 atm	101325	1.01325	1	760	14.6959	
1 torr	133.322	1.33322E-03	1.31579E-03	1	0.0193367	
$1 \text{ lb}_{\text{f}}/\text{in}^2$	6894.76	0.068948	0.0680461	51.7151	1	
	$1 \text{ Pa} = 1 \text{ N/m}^2 = 1$	1 kg/m-s ²				
Energy	J	cal	Btu	lb _f ft	erg	eV
1 J	1	0.238845	9.47817E-04	0.73756	1.00E+07	6.242E+18
1 cal	4.1868	1	0.0039683	3.088025	4.1868E+07	2.613E+19
1 Btu	1055.055	251.996	1	778.169	1.055E+10	6.585E+21
1 lb _f ft	1.355818	0.323831	0.00128507	1	1.35582E+07	8.462E+18
1erg	1.00E-07	2.388E-08	9.478E-11	7.376E-08	1	6.242E+11
1 eV	1.6022E-19	3.827E-20	1.5185E-22	1.182E-19	1.6022E-12	1
	1 J = N-m = Pa-n	n ³				
Power	W	hp	Btu/hr	lb _f ft/s		
1 W	1	0.001341	3.413	0.73756	Exan	<u>nples</u>
1 hp	745.7	1	2544.53	550.001	1 Btu =	1055.1 J
1 Btu/hr	0.293000	3.9003	1	0.216150	1 hP = 7	745.7 W
1 lb _f ft/s	1.35582	0.00181818	4.62641	1		

mechanical hp

Physical Constants

Universal Gas Constant

8.31434621	J / mol K
8.314344621	Pa m ³ / mol K
1.985884	cal / mol K
0.08205746	atm L / mol K
1.985884	Btu / lbmol °R
1545.34896	lb _f ft / lbmol [°] R
10.73159	psi ft ³ / lbmol [°] R
0.7302413	atm ft ³ / lbmol °R

Standard	Accel	leration	of	Gravity

9.80665	m/s ²
32.174	ft/s ²